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—— Abstract

We propose a qualitative representation for handling shape change and object division. We model
the shape of a smooth curve in a two-dimensional plane together with its temporal change, using
curvature extrema. The representation is based on Process-Grammar, which gives a causal account
for each shape change. We introduce several rewriting rules to handle object division, that consist of
making a tangent point, reconstruction, and separation. On the treatment of the division process,
the expression can clarify the relative locations of multiple objects. We show formalization and
application to represent a sequence of shape changes frequently observed in an organogenesis process.
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1 Introduction

There are many examples of shape changes in dynamic systems. Usually simulation is
applied using quantitative data to show the process of what happened or what will happen.
An alternative way to represent shape change is to use algebraic formulas, for example,
differential equations. However, it is difficult to imagine the shapes solely with differential
equations and impossible to perform logical reasoning directly via algebraic formulation. We
sometimes would like to establish the reasons that something happened to facilitate future
predictions. For example, maybe one is interested in why a certain shape has been made
or what will happen if a pair of objects become attached. These types of problems can be
addressed using logical reasoning based on qualitative data to provide a symbolic description.

In biology and life sciences, division of an object and shape change in a single object
are frequently observed. When two smooth curves (probably portions of the same closed
circuit) contact each other at a point, we call the contact point a tangent point. In the
process of division, the shape of an object gradually changes in such a way that a concave
part is generated, a tangent point of the border is made, and then separation occurs at that
point. Therefore, if we want to analyze such dynamic systems, we must first establish a
better understanding of the underlying change mechanism.

There has been almost no symbolic treatment of shape change in the dynamic systems
found in the life sciences. Tosue et al. proposed a symbolic expression to represent a
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shape that enables reasoning about its temporal change for an organogenesis process. They
approximated the shape using straight edges ignoring lengths and regarded the object as
a polygon; transformation rules for the expression were described [12]. More specifically,
they represented the border of a polygon using a sequence of rotation angles made by the
subsequent edge. They defined shape changes as a set of rewriting rules on this expression,
and presented an algorithm for drawing a figure corresponding to the expression [13].

However, it is difficult to perceive transformations using a coarse approximation such
as straight edges, because the borders of objects are usually curved. If we wish to apply a
more intuitive model using this method, we must use a more refined approximation, which
complicates the rewriting rules and introduces high computational complexity.

In this study, we adopt a method that allows the curve to be represented qualitatively
without using straight edges. The method is based on Process Grammar proposed by
Leyton [7, 8], in which curvatures and extrema are used to represent the shape. Here, a
curvature extremum is a part of the curve, where the curvature is at a maximum or minimum
when tracing the boundary in a designated direction. Leyton considered that an extremum
of a closed curve was formed gradually from a simple convex shape, and he aimed to infer the
history of the construction of the shape. For example, the outline of an object in Figure 1(a)
is changed to that in (b) by adding the force in the direction shown by the arrow; then to (c)
if the force continues; and to (d) if the force diverges into two directions. Leyton formalized
this transition as Process Grammar, which is a rewriting rule for symbols.
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Figure 1 History of changing a shape.

Leyton’s Process Grammar treats only a smooth curve that does not cross itself and has
no cusps. Moreover, the division of an object was outside of his focus.

Here, we extend Leyton’s representation to handle the division of an object. To this end,
we define an expression of a shape that can discriminate (1) shapes, i.e., whether the curve
has concavity and/or a tangent point, and (2) relative locations of objects, more specifically,
whether an object is in the inner or outer part of another object. The second point is an
essential factor in the treatment of multiple objects in two-dimensional planes (e.g., [15]).

The division process proceeds as follows. First, a border of a single curve extends to
make a tangent point on itself. The connection is then reconstructed so that two closed
curves are connected at the tangent point. Finally, the two closed curves are separated. A
tangent point is made by connecting two points of a single curve. Therefore, the rewriting
rules with respect to the division are defined over the entire expression, while the original
Process Grammar is defined as rewriting a symbol locally.

The crucial point in the process of division is reconstruction. For example, in an
organogenesis process, the borders of each object consist of a sequence of cells, and a certain
force on the cells causes changes in the reconstruction. Here, we introduce a reconstruction
rule to reflect such a phenomenon.

The remainder of this paper is organized as follows. In Section 2, we describe Leyton’s
Process Grammar. In Section 3, we introduce the description language for representing a
shape. In Section 4, we define transformation rules for a shape change, and in Section 5, we
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apply it to the transformations of objects in the organogenesis process. In Section 6, we
discuss the extension of the proposed method and also compare our method to related works.
Finally, in Section 7, we present our conclusions and future work.

2 Process-Grammar

Process-Grammar is a means of recovering the process history of a smooth shape from its
curvature extrema, and expressing that evolution in terms of transitions at these extrema [7].
Here, a smooth curve never intersects itself and has no tangent point nor cusp. The target is
the boundary of an object between the solid and the empty. A smooth line is represented
by a sequence of curvature extrema, traveling along the curve so that the solid lies on the
left side of the curve. Leyton showed that in a two-dimensional plane the evolution of any
smooth shape of a smooth curve can be expressed in terms of six process transitions; he
named this a “Process-Grammar.” In Process-Grammar, a process is understood as creating
the curvature extrema. It shows how the shapes form over time, and a direction of change of
a curve is shown by an arrow to the curve in the figure. Here, we refer to the cause for the
shape change as a “force.”

There are four types of extrema curvatures: two maximum extrema M+ and M~ and
two minimum extrema m™ and m~. Each one shows how the shapes form over time: M™T
indicates a protrusion that is sharpening outwards, m~ indicates an indentation that is
sharpening inwards, m™ indicates a squashing that is flattening inwards, and M~ indicates
an internal resistance that is flattening outwards. The polarity represents the convexity: “+”

indicates a convex shape, while “—” is a concavity.
extremum type | explanation force type force direction | convexity
MT protrusion sharpening | outwards convex
m- indentation sharpening | inwards concave
m™ squashing flattening inwards convex
M~ internal resistance | flattening outwards concave

A smooth curve in a two-dimensional plane is expressed as a sequence of these symbols.
Figure 2 shows an example.

}
M-
M+ /‘ \ g
s M+

Figure 2 A figure and the corresponding expression.

A Process-Grammar is the transition rule over these sequences to represent changes in
the shapes. There are two kinds of rules: continuation (the names of the rules begin with
“C”) and bifurcation (the names of the rules begin with “B”) of the force at each extremum.
Below we show the rules associated with the description of changes in the shape!.

1 [7], the symbol “0” was used to represent an inflection point whose curvature is zero; we do not use
it, because it can be deduced.

7:3
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[Rules] continuation and bifurcation
Cm™: mt - m~ (squashing continues until it indents)
CM~: M~ —=M*"
BM*: MY = MtmtM*

(resistance continues until it protrudes)
(
Bm™: m~ —-m M m~  (bay formation)
(
(

shield formation)

BmT: mT > mTMtm™T
BM~™: M~ — M m M~

breaking through of a protrusion)

breaking through of an indentation)

For example, if protrusion (M™) continues in the same direction, the shape of the
extremum will become steeper, but its shape type does not change; if the force branches
forward, then the extremum will move both to the left and right sides, and the original
position will be flattened, which is formalized as BM ™ rule. The correspondence between
these rules and shape changes are shown in Figure 3. In each figure, the arrow towards a
curve indicates a force; the bold black arrow indicates the added force and the white arrow
is a newly emerged force.
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Cm™*

BM™
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Bm™ BM™

Bm~™
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Figure 3 Process-Grammar defined by Leyton.

3 Description Language

We extend the Process Grammar formalism to describe the process of division. Our target
figure is a set of smooth closed curves without an intersection. To simplify the problem, we
first restrict the case in which there are at most two closed curves with at most one tangent
point.

We introduce a description language £ based on the Process Grammar. The language
consists of two types of symbols: one with a dot and one without a dot

L={Mt, m~,m*, M~ M+ m~—,m+t, M~}

M+, m—,m+t and M~ denote that there exists a tangent point on the extrema M™T, m™,
mT and M ™, respectively. We call the symbols M+,ni—, ni‘*‘, and M—, dotted elements.
We also call M+, M~, M+ and M—, M-elements, and m*,m~,m+ and m~—, m-elements,

respectively.
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An expression is a finite sequence of elements in £. For example, the expression for the
figure in Figure 4 is MT™m~MTm*M+tm-M*m*

M+ M+

Figure 4 A single curve with a tangent point.

An expression for a single closed curve is cyclic, that is, expressions e;e; 41 ...ep€1...€;_1,
for all ¢+ (1 < i < n) show the same shape. For example, an expression for a simple oval
in Figure 5(a) is represented either as MTm*TM*m™ or m™M*m*tM™*. If we use more

elements to represent a closed curve, then we can express the shape in a more refined manner
(Figure 5(a)(b)).

t
‘ M+ M+
M+ M+ - -
f M+ M+
4
(a) (b)

Figure 5 Simple ovals.

Let € be a set of expressions

E={ereg...ep |, €L(1<i<n)}

We define an inverse function on £ as follows:

inv(M*Y)=m™, inv(M+)=m",
inv(m™)=M~, inv(m*t)= M-,
inv(M™)=m"*, inv(M~-)=mt,
inv(m™) = M"*, inv(m~)= M+,
inv(eres - - en) = inv(e,) - - - tnv(ez)inv(er) for erea---en € € (1 <i < n).

Let $ be an expression that includes exactly one dotted element. Then, s is the expression
obtained by replacing the dotted element in $ by the corresponding non-dotted element. That
is, for § = ey -+ - ey, there 1i (1 <14 < n) such that ¢; = é where e = M+t m~,m* M~ s
denotes ey ---e;_1€€;41 - €p.

An expression for a smooth closed curve satisfies the following conditions (C1) and (C2).

(C1) Fore;...e, € &, n is more than three.
(C2) For ey...e, € &, if e; is an M/m-element, then e;;; is an m/M-element for all ¢
(1<i<n,epr1 =eq).

The first condition requires at least four extrema to form a closed curve in a two-
dimensional plane, according to the four-vertex theorem in differential geometry (e.g., [4]).
The second condition requires that both M-element and m-element appear in turn, which is
critical for smooth curve formation. Specifically, it indicates that there are no cusps between
tangent points and guarantees the balance of inward and outward forces.

COSIT 2019
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If there are two closed curves, then we can combine the expressions for each curve. The
combined expression is either in the form o, o || 7 or o[7], where o and 7 are expressions that
satisfy the above conditions (C1) and (C2). In case it is in the form of o, then it includes
either a no-dotted element or two dotted elements that are not next to each other. In case it
is in the form of o || 7 or o[r], both o and 7 have exactly one dotted element. o || 7 shows
that 7 is located in the external part of o, and o[r] shows that the closed curve 7 is located
in the inner part of o. In the latter case, o has a hole 7 in its inner part. o || 7 and 7 || o
show the same figure.

This representation can be used to discriminate between the location of closed curves
and also the existence of tangent points. We show several simple combined expressions for
the shapes shown in Figure 6.

(@) Mtm*M*tm* || MTm*TM*tm*
(b) MFm* M m*[M~m~M " m~]
(c) MTmT™M+m™* || MTm™M+m™*
(d) Mtm*M™m*[M~m~-M "m™]

co (@ oo @
(a) (b) (c) (d)

Figure 6 Combined expressions.

There are two closed curves. In cases (a) and (b), they are disconnected; in case (c), they
are externally connected; and in case (d), they are internally connected. The tangent point
is represented by the dotted expressions. Moreover, in cases (b) and (d), one is inside of the
other.

4  Transition System

In addition to continuation and bifurcation rules, we introduce several rewriting rules over
the description language to formalize object division: making a tangent point, reconstructing
closed curves, and separation.

4.1 Making a tangent point

A tangent point is made by connecting a pair of extrema, which have grown by receiving a
force. For example, an extremum m~ grows to reach another extremum m™, then a tangent
point is made both at m~ and m™. The type of connection is either internal or external
depending on the direction of the added force. Only four pairs have the possibility to make a
tangent point.

1. internal connection
A pair of extrema has received forces inward and at least one of them is concave. The
pair satisfying this condition is either a pair of m~™ and m™, or a pair of m™ and m™.
2. external connection
A pair of extrema has received forces outward and at least one of them is convex. The
pair satisfying this condition is either a pair of M and M ™, or a pair of M and M.

The transition rule for each pair is as follows.
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[Rules] making a tangent point

TH : sm™tm~ — sm—tm~

TU : smttm™ — smttm~

TO : sMYtM™* — sM+tM+

TP :sM*tM~ — sM+tM~
where s,t € € that satisfy (C2), and ¢ contains at least one M+ and m™ in the rules TH
and TO, respectively.

4.2 Reconstruction

Reconstruction is a crucial part of the division process.

When we deal with an alveolus whose boundary is a sequence of cells, a pair of the
sequences reconnect with each other in the reconstruction process. Actually, this occurs
within a thick boundary at the tangent point. Here, we make a model in which the structure
of the boundary is reconstructed.

In reconstruction, the sequences of the extrema located around a tangent point are
decomposed and connected differently with new pairs of extrema.

On tracing a boundary which has a tangent point, we find two smooth curves encountered
at the tangent point. Considering the directions of these curves on passing the tangent point,
there are only two possibilities shown in Figure 7, since there is a constraint that a boundary
never crosses. The reconstruction is the process of changing from (a) to (b) or from (b) to
(a) in Figure 7. Therefore, we get four types of reconstructions, each of which corresponds to
a type of tangent point; type P is divided into P, and P,, which are symmetric.

(a) (b)

Figure 7 Directions of curves on tracing a boundary.

[Rules]  reconstruction

RH : sm—tm~ — sm* || tm™* (Type H)
RU : sm*tm— — sm*M+m™ |[tm*M+m*  (Type U)
RO : sM+tM+ — sM~[tM~] (Type O)
RP, : sM—tM+ — sM~m-M~[tM~m-M~] (Type P,)
RP, : sM+tM~ — sM~m~M~[tM~m-M~] (Type P,)

where s,t € € that satisfy (C2), |s|,|t| > 3, and s is the expression for the outer curve in the
rules RO, RP,, and RP,.

The symbols “H,” “U,” “O,” and “P” used in the names of the rules are based on the
entire shape of an object when a tangent point is made.

The constraint on the length of the expressions s and ¢ is applied to obtain a combined
expression that satisfies the conditions (C1) and (C2) after reconstruction. If this constraint
is not satisfied, then the transformation process should transit to an intermediate state by
applying bifurcation rules (BM ™, Bm™, Bm™ and BM ™) before applying the reconstruction
rule. The other constraint is for distinguishing the locations of curves.

77
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W=  U-JL
W= W=
- L-U
©-0 6-68-2

Figure 8 Reconstruction for each type.

Figure 8 illustrates the reconstruction for each type. The details of the neighbor to the
tangent point are shown at the top, and an example of the shape of an object is shown at
the bottom for each type. The shaded area indicates a solid part, that is, the inside of the
object.

The rules of types H and U are the changes in which a part(s) of the border is extended
inward to connect itself from the inside; as a result, two externally connected, closed curves
are obtained. The rules of type O and P are the changes in which a part(s) of the border is
extended to connect itself from the outside; as a result, a hole is made inside.

For example, in type H, two extrema m~ approach to make a tangent point (left side of
the figure); then, the directions of the forces are changed to m™ (right side).

4.3 Separation
The rules for separation are simple. We separate the two closed curves by removing the

tangent point.

[Rules] separation

SE : sp || So — S1 H S2
ST : 5.1 [52] — 51[52}
where s1, 59 € £ that satisfy (C1) and (C2).

5 Application of rules for division processes

We show an application of four types of rules for the division process that frequently appear
in an organogenesis process [14].

We start with a convex shape, whose expression is MTmtMTmTM+tmTMTm*. We
set this shape as Sy2.

2 We follow the Leyton viewpoint that a pure circle cannot be represented as a process. We take a simple
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51 Type H

In this case, starting from Sy, two protrusions are made, come near, make an internal tangent
point, and then the object is separated into two pieces (Figure 9).
So: MTmTMtmtMTmTMtmT

I (Cm*)
Si:MTm~MtTmTMtm~Mtm*
v (TH) |
So: Mtm—MtmTMtm-Mtm*t
v (RH) |
Sz MTm*tMtm* || MtmtM*Tm*
I (SE)

Sy Mtm*TMtm® || MTm*TMtm*

M * M+ M+ M+ M+ M+ M+ M+ M+ M+
) B *“+ _><— *”<— »'*N—'$
M+ V M+ M+ M+ M+ M+ Ve M+ M+ M+
So Sl SQ SS S4

Figure 9 Division process for Type H.

5.2 Type U

In this case, starting from Sy, one indentation arises and reaches another part of the border,
makes an internal tangent point, and then the object is separated into two pieces (Figure 10).
So: MtTmTMtmtMImTtMtm®

L (Cm*)
Ss: MtmTMtmtMtm-Mtmt
L (TU) ,
Se: MTm+TMtmTMTm-M+tm™*
L (rRU) .
Sz Mt mTMAmT M m™ || MtmTMtm*™MTm™*
I (SE)

Sg s MtmTMTmtMtm™® || MtmTM*Tm*tM*tm*

5.3 Type O

In this case, the same change as that of type U occurs before S5. After S5, the protrusion
branches and extends to connect together, and makes an external tangent point, and then the
curve is separated into two closed curves, one of which is enclosed by the other (Figure 11).
So: MtTmTMtmtMTmTMtm®
L (Cm*)
Ss: Mt™mTMTmtMTm- Mtm*

oval as an initial state and apply Bm™ to get So.

COSIT 2019
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+ M+ M+ M+ M+
M+ M+ M+ M+ M+ M+
V4 ¥
{ N N\
— - - - .~ -
M+ M+ M+ M+ MANSQ + M+ M+ M+
* * m++ ol n 7> N M+ : 7 M n M+

So Ss Se S7 Ss

Figure 10 Division process for Type U.

4 (Bm7)
So: MTmTMtm*TM*Tm-—M-—m~M*m*
L (T0) | |
Sio: MtTmTMtmtM+tm~ M- m~Mtm™
4 (RO) _ .
Si1: MTmtMImtMTmTM-m*tMtm™[M~—m~M-m™]
(S

Sia: MtmTMtmTMTmt™ M- mtMTm*T[M-m~ M -m~]

M+ M+ M+ M+ M+ M+ NP +M—‘ M+
M-
— —— |- -
M- M+ M M+ M M+ M-+ M+
4 { { }

Ss So S1o S11 S12

Figure 11 Division process for Type O.

5.4 Type P,

In this case, the same change as that of type O occurs before Sg. After Sg, only one protrusion
extends and bends to reach another part of the border; this makes an external tangent point,
and then the curve is separated into two closed curves, one of which is enclosed of by the
other (Figure 12). The process is similarly described for type P..

So: MTmTMtmtMImtMtm®

I (Cm*)
Ss: MTmTMtmtMTm-Mtmt
4 (Bm7)
So: MTmT™MtmTMTm~M - m~MTm™*
V (BMT)
Sis - MtTmTMtImTM—m~ M m " MTmTMtmtM+tm*
y (TP) . _
S :MtmTMtmtM-—m M- m - Mtmt*MTmtM+tm™*
I (RrP) , .
Sis :mTMTmtMtTmTMImtMtTmT™ M —m~ M~ [m M - m~ M ~m~M"]
4 (ST)

Si6 :mTMTmtMtmTMtmtMtTm ™M - m~ M~ [m M -m M -m~M"]
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Figure 12 Division process for Type P;.

Note that after separation in cases of type O and type P}, one closed curve becomes a
hole, that is, the inner side of the hole is an outside of the original solid object. Therefore, in
case of type O, the expression of the inner closed curve is M ~m~ M ~m~, which is equivalent
to inv(mTMtm*TM™T).

6 Discussion

6.1 Generalization

In the previous sections, we restricted the target figure to one with at most two closed curves
and at most one tangent point. We can drop these two restrictions easily.

We can represent multiple closed curves in any location by defining a combined expression
recursively: let & be a set of combined expressions; the combined expression is defined either
in the form of o, o || 7 or o[r] where o,7 € & that satisfy the conditions (C1) and (C2),
respectively. We can represent multiple tangent points by adding elements to a description
language: “numbered-dotted element” is used instead of dotted element to discriminate each
tangent point because tangent points do not affect one another. For example, Figure 13
shows one possible division process in the case of two tangent points, and the following is
the corresponding reconstruction rule, in which two tangent points are represented using a
single dot and a double dot, respectively.

[Rules]  reconstruction for double tangent points

RU; : sm+tm*[um—vm=] — sm™ M+mtum®™ M+m™ || tm™ M+m*om* M+m™*
where s,t,u,v € & that satisfy (C2), |s], |¢], |u|, |v] > 3.

In this figure, the inner circuit is expanded to reach the border of the outer circuit at two
distinct points, and two tangent points are generated (Figure 13(b)). Next, the reconstruction
occurs at these tangent points, respectively and as a result, two new curves are generated

that are externally connected (Figure 13(c)). The object is then separated into two pieces
(Figure 13(d)).

6.2 Extension

So far, we have discussed shape change starting from a simple convex form in the direction
in which concave parts are created. Moreover, we have not considered shape change after
separation. Then, the following question arises: if an object has a concave part after
separation, how does this affect the shape change? The shape may change similarly with the
process before the separation; however, it may change to recover the convex form.

7:11
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M+, M+
i <_
M+ [ M+
M+, M M+
_><7

M+ M+

Figure 13 Division process in case of double tangent points.

"’@@ &

StM~

Figure 14 Stabilization rules.

To address this issue, first, we introduce the concept of a stable state. When an expression
consists of only MT and m™, we call it stable. It can be considered that a stable curve
changes by receiving some force, and an unstable curve likes to change to become stable. To
treat this possibility, we need to allow an application of the rules introduced so far in the
opposite direction. As such, the following rules are required.

[Rules] stabilization

StmT :mtM—mt - mt
StM~: M~ mTM~ — M~

The first rule shows that if the concave part of the curve is pressed continuously from the
inside then this part vanishes. The second rule shows that if the concave part of the curve
is pressed continuously from the outside, then the protrusion vanishes (Figure 14). In each
figure, the bold black arrow indicates the changing force, and the white arrow is the force
that vanishes.

Using all of these rules together, we generate typical shape changes that appear during
the organogenesis process (Figure 15).

6.3 Related works

Generally, it is difficult to represent the shape of an object qualitatively compared to other
spatial features such as the relative positional relationships and relative directions. The most
popular approach is to divide the boundary of an object into segments and represent its
shape as a sequence of attributes such as length, direction, curvature, and so on that are
attached to each segment. In these methods, the more attributes each segment has, the more
accurately a figure can be drawn. This also requires more reasoning rules to interpret more
complicated data.

Museros et al. introduced a qualitative shape descriptor (QSD) of each boundary using
length, angle, curvature and so on [2, 5]. They also extended this scheme to a juxtaposition
of objects in point-point, point-line, or line-point connecting types. They defined this
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2~ 09-00-00
Cﬁ

Figure 15 Application for explaining an organogenesis process.

juxtaposition as a shape composition that derives a new shape by this operation [1, 9] and
treats rigid objects with non-deformable boundaries. Their focus was to provide a qualitative
description of an object and formalize their composition, whereas we describe the change in
the shape of an object with deformable boundaries using rewriting rules.

Galton et al. proposed a grammar scheme to describe changes in shapes, including a
cusp [6]. Unlike QSD, they addressed deformable boundaries. They did not use extrema but
rather local shape patterns to represent a closed curve; additionally, they created a number
of transition rules by enumerating possible local changes. However, they did not describe
the reason for the change. In contrast, here, we consider the forces involved in deforming
the boundaries. Moreover, they did not address tangent points nor the division of an object,
whereas we address these aspects.

Cohn used a mereotopological approach to formalize the shape of an object. He proposed
a qualitative representation of a concave region using predicates [3]. Various shapes can
be distinguished by representing relative position, size, and the direction of concave parts
in a refined manner. He also discussed the continuous shape change. Because the number
of possible shape descriptions is generally unbounded, he showed an example of a possible
continuous transformation under some restricted forms. In contrast to an approach using
rewriting rules, it is difficult to define the continuous transformation in the logical framework,
and no formal explanation was given regarding this transformation.

In some research activities, shape is represented as a sequence of symbols, and its change
is formalized as a set of rewriting rules. Shape grammar is a set of rules applied to an initial

shape to generate designs [11]. It is mainly applied to show the structure of architectures.

As the rules are defined to transform the initial shapes, the user may decide which rule can
be used to achieve the desired outcome. Leyton’s Process Grammar uses a set of rewriting
rules. It can be considered as an abstract rewriting system [16, 10]. The main reason for our
choice of Process Grammar is that it is suitable for resolving dynamic changes in a curve, as
the history of shape change can be explained in terms of forces applied to the curve.

The biggest difference between our work and previous works is that our method can
address the division of an object. We have defined a language and transition rules to handle
the reconstruction of closed curves and the locations of multiple closed curves, which are the
main issues involved in the treatment of a division frequently observed in an organogenesis
process.
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7 Conclusion

We have proposed a system to handle qualitative shape change, using the curvature and
extrema of the curve. The proposed system enables the representation of a transforma-
tion qualitatively, including the division of an object, and gives a causal account for each
transformation.

Our method has the following main features:

direct representation of a smooth curve, as opposed to using an approximation such as a

polygon,

the ability to accommodate a tangent point and a division process, and

the ability to describe the relative positional relationships of multiple closed curves.

Our approach can be applied to shape changes in various fields such as an alveolar division
in a life science, analysis of a tumor in immunology, change in terrain shape in geomorphology,
and so on.

As a future work, we would like to prove the completeness of this transition system, that
is, the set of expressions that cover all possible transformations. It may be suitable to make
several distinct models, including a conceptual, a theoretical, and a realistic model. We
are currently looking into the rules necessary for describing these possible transitions more
precisely, depending on the model.
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