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Abstract
This paper considers optimizing a submodular function subject to a set of downward closed constraints.
Previous literature on this problem has often constructed solutions by (1) discovering a fractional
solution to the multi-linear extension and (2) rounding this solution to an integral solution via a
contention resolution scheme. This line of research has improved results by either optimizing (1) or (2).

Diverging from previous work, this paper introduces a principled method called contention
resolution extensions of submodular functions. A contention resolution extension combines the
contention resolution scheme into a continuous extension of a discrete submodular function. The
contention resolution extension can be defined from effectively any contention resolution scheme. In
the case where there is a loss in both (1) and (2), by optimizing them together, the losses can be
combined resulting in an overall improvement. This paper showcases the concept by demonstrating
that for the problem of optimizing a non-monotone submodular subject to the elements forming an
independent set in an interval graph, the algorithm gives a .188-approximation. This improves upon
the best known 1

2e ' .1839 approximation.
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1 Introduction

Submodular function maximization has numerous applications and there has been a rich
theory developed on the topic. See [9] for pointers to relevant work. In this problem, the
input consists of a universe of n elements U and a submodular set function f : 2U → R+. A
function is submodular if for all sets A,B ⊆ U where A ⊆ B and any element e ∈ U \B it is
the case that f(A ∪ {e})− f(A) ≥ f(B ∪ {e}) + f(B).1 Submodular functions are a general
class of functions that capture the concept of diminishing returns. Natural occurrences
of submodular functions include the cut function [8] and the coverage function [3]. Due
to their generality, submodular functions capture many common objective functions. For
example, submodular functions are frequently used in machine learning for problems such as
document summarization [18], exemplar clustering [12], influence in social networks [13] and
other problems [15].

1 Equivalently, a function is submodular if for all sets A,B ⊆ U it is the case that f(A) + f(B) ≥
f(A ∪B) + f(A ∩B).
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3:2 Submodular Optimization with Contention Resolution Extensions

The submodular maximization problem is to select a set S maximizing f(S) such that
S ∈ I where I is a family of sets of feasible solutions. The set I is usually assumed to be
downward closed.2 The set of feasible solutions I is defined based on the constraints of the
given problem. Prior work has focused on two cases. In one, the function f is additionally
assumed to be monotone and in the other the function f is non-monotone. A submodular
function is monotone if f(S ∪ {e}) ≥ f(S) for all S ⊆ U and e ∈ U . The function f is said
to be non-monotone if there is no monotonicity restriction.

Optimizing a submodular function subject to classes of downward closed constraints has
been extensively studied [7, 11, 4, 1, 10]. The most widely considered classes of constraints
are a cardinality constraint [3], matroid constraints [17], knapsack constraints [16], and
interval constraints [9]. Through this line of research, a general algorithmic method has
emerged. The method consists of two parts. (1) Find a fractional solution to the multilinear
extension, and then (2) use a contention resolution scheme or techniques like pipage rounding
[5] to round the fractional solution to a feasible integral solution. The multilinear extension
is an extension of a discrete submodular set function f to the fractional continuous setting.
This algorithmic method is general enough to give strong results for numerous problems,
including the best known results for monotone and non-monotone submodular maximization
under a single matroid constraint [3, 7, 1].

Several past works have focused on optimizing either steps (1) or (2) to improve state-
of-the-art methods. Generally, past work has focused on improving (1), the procedure to
construct a fractional solution. This is because [6] gave general methods for converting
fractional solutions to the multilinear extension to an integral solution. The algorithm
typically used in (1) is the continuous greedy algorithm and its variants [2, 4, 19, 11, 7].

The Multi-Linear Extension, Continuous Greedy, and Contention Resolution Schemes.
Let F be the multilinear extension of f . The multilinear extension F is a continuos
function that extends f to the fractional domain [0, 1]|U |. The input to F is a vector x where
0 ≤ xi ≤ 1 for all i. Let S contain each element U with probability xi. The value of F (x)
is E[f(S)]. It is important to note that S may not be in I. Past work uses the continuous
greedy framework to discover a vector x such that F (x) is close to the optimal solution.
Then, this is rounded to an integral solution using a contention resolution scheme C(x). The
idea is to first construct the set S at random, as is done in the computation of F (x). Then
some elements from S are dropped to find a set S′ ⊆ S such that S′ ∈ I. Key is showing
that E[f(S′)] is close to F (x), and thereby bounding E[f(S′)] by the optimal solution.

The continuous greedy algorithm iteratively builds a fractional solution x. The
algorithm adds a small fractional amount x∗ of some elements to x such that it greedily
increases F (x + x∗). Past work has focused on the optimizing the greedy choice of x∗.

This line of work has mostly focused on optimizing (1). This is due to (1) is being the
core part of the algorithm where there is loss in the approximation factor. In many cases
though, there is additionally loss when performing (2) as well [6, 9].

Contention Resolution Extensions. As mentioned, past work has focused on optimizing (1)
and (2) in isolation. This paper for the first time considers optimizing (1) and (2) together to
combine the losses in the two procedures and show overall improved results. Our main results
are enabled by a principled algorithmic method called contention resolution extensions, going
beyond optimizing the multi-linear extension.

2 A set I is said to be downward closed if S ∈ I implies S′ ∈ I for all S′ ⊆ S.
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The framework takes as input a (randomized) contention resolution scheme C(x). The
contention resolution scheme takes as input a fractional solution and returns a feasible
integral solution. Past work constructs x and then produces the final solution using C only
in the last step. Instead, this paper uses C to construct x. At each step the new method
greedily selects a small fractional amount of each element x∗ to maximize the expected value
of C(x + x∗). When the algorithm terminates, it simply returns C(x) for the final vector x
computed. In this way, the algorithm’s greedy choices at each step are closely connected to
the final solution that the algorithm will return.

Improved results can be shown using this framework because the loss in step (1) and (2)
can be combined in the analysis. Further, the loss in the contention resolution scheme is
optimized over in each step, allowing the algorithm to converge to a fractional solution that
is chosen directly to optimize the final solution.

1.1 Applications of the Contention Resolution Extension Framework
This paper shows how contention resolution extensions can be used to improve state-of-the-art
results for optimizing submodular functions.

The paper considers the problem of optimizing a submodular function over independent
sets in an interval graph. In this problem, each element is associated with an interval.
The goal is to select a set of intervals that do not intersect to maximize a non-monotone
submodular function. The best known previous result is a 1

2e ' .1839-approximation [9].

I Theorem 1. For any non-monotone submodular function where f(∅) = 0 there is a
.188-approximation algorithm for maximizing the function subject to an interval constraint.

Overview of the Improved Analysis. To describe how our analysis improves over previous
work, first consider the unified continuous greedy algorithm of [11]. Let C be a contention
resolution scheme and OPT denote the value of the optimal solution. As discussed, the
algorithm greedily builds a fractional solution x. At each step, an amount x∗ is added to x
where x∗ contains a small amount of some of the elements. Past analysis of the continuous
greedy framework proves that in each step F (x) increases by an amount proportional to
(1− ||x||∞)OPT. That is, the incremental improvement of F (x) at each step is proportional
to OPT multiplied by an amount that depends on the most any element is fractionally
selected in x. The analysis crucially relies on a bound on ||x||∞ at each step. The algorithm
arrives at the final solution using C on the vector x at the end of the continuous greedy
procedure. For many contention resolution schemes, the expected value of the solution
returned is bounded by F (x) multiplied by the minimum probability an element is not
discarded by the contention resolution scheme.

Following the above, notice that improving the bound on ||x||∞ in each step will improve
the overall analysis. Our algorithmic framework will allow us to achieve better bounds on
||x||∞. In particular, we know that the final solution returned is obtained by running C,
which increases the probability that an element is not included in the final solution. If
somehow the probability an element is discarded by C could be incorporated into each step
of the algorithm to ensure ||x||∞ is small, then this would improve the overall analysis.

Our algorithm uses C at each step in the continuous process of constructing x. In
particular, by using C there is less of a chance an element is selected. For this reason, the
analysis effectively gets a tighter bound on ||x||∞, resulting in an overall improved analysis.

A challenge in this approach is that no prior analysis has considered optimizing C(x) and
have always used F (x). Consequently, our analysis introduces new techniques for optimizing
over contention resolutions extensions.

APPROX/RANDOM 2019
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2 Preliminaries

Let f be a non-monotone submodular function. The input to the problem is a universe of
n elements S. The goal is to select a set of elements S′ ⊆ I such that f(S′) is maximized
where I is a set of feasible solution sets. Let fR(S′) := f(R ∪ S′) − f(R) be the value of
adding elements in the set S′ to the set R. In this paper it is assumed that f(∅) = 0.

The paper considers a hereditary set system defined by independent sets in interval
graphs. In this problem, each element i ∈ U is an interval (si, di]. A set S′ is in I if no two
intervals in S′ intersect.

The analysis framework in this paper builds on previous submodular optimization work.
The next lemma follows from the contention resolution framework of [6]. It is not proven
explicitly, but follows from the proof in the paper. Consider a contention resolution scheme
that takes as input a set S′ and returns a set D(S′) ⊆ S′. The scheme is said to be monotonic
if the probability an element i ∈ D(S′′) is only greater than the probability i ∈ D(S′) for
S′′ ⊆ S′ and {i} ∈ S′′.

I Theorem 2 ([6]). Let S′ be a set constructed using a randomized procedure. Consider
a deterministic monotonic contention resolution scheme that given a set S′ of elements
constructs a set D(S′) ⊆ S′ such that Pr[i ∈ D(S′) | i ∈ S′] ≥ c for all S′ and i. Further,
there exists an ordering of elements e1, e2, . . . in D(S′) such that fe1,e2,...ei({ei+1}) > 0 for
all 0 ≤ i < |D(S′)|. Then it is the case that cE[f(S′)] ≤ E[f(D(S′))].

The following lemma is implied by a well known relationship between the Lovasz extension
and multilinear extension of submodular functions. See [9] and [20]. We prove this here for
completeness.

I Theorem 3. Let f be a non-negative submodular function with f(∅) = 0. Fix any set O.
Let R be a set of elements constructed at random where element i is in R with probability pi.
Say that pi ≤ α for all i /∈ O. It is the case that E[f(R ∪O)] ≥ (1− α)f(O).

Proof. Let pi be the probability that i is in R for i /∈ O and let pi = 1 for i ∈ O. Consider
ordering all of the intervals so that p1 ≥ p2 ≥ . . . ≥ pn. For notational convienience, assume
pn+1 = 0. Recall that for any sets S′ and S′′ we set fS′(S′′) = f(S′ ∪ S′′)− f(S′). In the
following [k] is the set {1, 2, . . . , k}. Let R′ = R ∪O in the following. We see the following.

E[f(R′)] = f(∅) +
n∑
k=1

E[f(R′ ∩ [k])− f(R′ ∩ [k − 1])]

=
n∑
k=1

E[fR′∩[k−1](R′ ∩ {k})] ≥
n∑
k=1

E[f[k−1](R′ ∩ {k})] [f(∅) = 0 and submodularity]

=
n∑
k=1

pkf[k−1](k) =
n∑
k=1

pk(f([k])− f([k − 1])) =
n∑
k=1

(pk − pk+1)f([k])

≥ (1− α)f(O) [f is positive and pi ≤ (1− α) for all i /∈ O by assumption] J

3 Non-Monotone Function Subject to an Interval Constraint

In this section, we consider the problem of optimizing a non-monotone submodular function
f subject to an interval scheduling constraint. In this problem, there is a set S of possible
intervals (si, di]. We note that the intervals do not contain their starting point. This is
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simply for notational purposes and is without loss of generality. A set S′ of intervals is
feasible (in I) if no two intersect and the goal is to maximize f(S′). It is said that two
intervals intersect if they both include a common point.

The algorithm maintains a vector y of size n. Let yi denote the ith entry in the vector.
Intuitively, one can think of the entry yi as the probability of selecting interval i. The
vector y will be chosen such that the following holds. Fix any point t. It is the case that∑

i:t∈(si,di] y
i ≤ 1. That is, the total weight of intervals intersecting point t is at most one.

The Function F (y). The function F is defined as follows. A set R of intervals is selected
by choosing each interval i with probability yi. The function F (y) = E[f(R)]. This function
is the multi-linear extension. Notice that R may not be in the set of feasible solutions I.

The Function G(y). The function G is constructed similarly to F , but it removes additional
intervals from R to get a set D(R). The value of G(y) is set to E[f(D(R))]. Intervals are
removed from R so that D(R) forms a feasible solution. In this way, G acts as a contention
resolution scheme. Each interval i in R is added to D(R) if there is no other interval in R
that intersects the start point si of i. This function is a contention resolution extension3 of
the set function f(S). Notice that the set D(R) is a feasible solution.

Formally, each interval i is in R with probability yi. Given R let D(R) = {i ∈ R | ∀j ∈
R, si /∈ (sj , dj ]}. Set G(y) = E[f(D(R))].

The Algorithm. The algorithm works as follows. The algorithm continuously optimizes
G. At time t a vector yt has been constructed. Let δ be very small, 1

poly(n) . The algorithm
initializes yt+δ to yt and then increases some of the entires. Pseudocode can be found in
Algorithm 1. In the following description, for any vector v let v + 1i denote the vector v
except that the coordinate of i is fixed to 1.

Separately for each element i, the algorithm finds the value of γi =
∑
S′⊆S Pr[R =

S′]f(D(S′ ∪ {i})), equivalently the value of G(yt + 1i). This can be estimated to high
accuracy following sampling techniques used in previous work [6, 9, 7] and for ease of
explanation we assume that it can be computed exactly. Let βi := δe−y

i
t(1 − yit) and

wi = βi(γi − G(yt)) = βi(G(yt + 1i) − G(yt)). The value of wi is precisely the change in
G(yt) if yit is increased to 1 and then scaled by βi.

The algorithm finds a maximum weight independent set I over all intervals where an
interval i is given weight wi. It is well known that such a solution can be found in polynomial
time using dynamic programming [14]. For each interval i ∈ I, yit+δ is increased by an
additive βi.

The procedure can stop at any time t where 0 ≤ t ≤ 1.4 When the procedure stops,
the final solution is produced by constructing D(R) as in the description of G. This set is
returned as the solution. This is a feasible solution by construction and the expected value
of the algorithm’s solution will be G(yt).

3 We note that this is not the only contention resolution extension and there are other natural contention
resolution schemes that could be used.

4 One could stop at t > 1 so long as the contention resolution scheme constructs a feasible solution. This
did not result in improvement in our analysis.

APPROX/RANDOM 2019



3:6 Submodular Optimization with Contention Resolution Extensions

Algorithm 1 Computing yt+δ from yt.

1: for i ∈ U do
2: γi ← G(yt + 1i)
3: βi ← δe−y

i
t(1− yit)

4: wi ← βi(γi −G(yt)) / / = βi(G(yt + 1i)−G(yt))
5: end for
6: Give each interval i a weight of wi. Using these weights, find a maximum weight subset

of intervals I that do not intersect.
7: for i ∈ U do
8: if i ∈ I then
9: yit+δ = yit + βi
10: else
11: yit+δ = yit
12: end if
13: end for
14: Output yt+δ

3.1 Analysis

Let O denote the intervals in a fixed optimal solution. For each interval i, let Ei be the set
of intervals at or before si that intersect i and let i be in Ei. The analysis begins by showing
that any single interval is selected with at most a small probability.

I Lemma 4. The maximum value an entry in yt can have is α(t) := 100(e37t/100−1)
100e37t/100−63 + 2δ ≤

1− e−t + 2δt for any 0 ≤ t ≤ 1.

Proof. In each step, an interval i chosen to be in I has its probability of selection increased
by the algorithm. This increase is at most δ(1− yit)e−y

i
t at time t. In the worst case, yit is

increased at each time step t. The proof will assume that this is the case for element i. For
all yit ≤ 1, from convexity of e−yit we derive,

e−y
i
t ≤ 1− (1− e−1)yit ≤ 1− 0.63yit.

We now define a function ρi(t) which is a piecewise linear version of yit over times t. Define
the function ρi(t) for any integer j ≥ 2 and t ∈ [0, 1] as follows: for each t ∈ [(j − 1)δ, jδ]
let ρi(t) = δ

∑j−2
τ=0(1− yiτδ)(1− 0.63yiτδ) + (t− (j − 1)δ)(1− yi(j−1)δ)(1− 0.63yi(j−1)δ). Set

ρi(0) = 0. Obviously yiτδ ≤ ρi(t) when t ≤ τδ and yi(τ+1)δ ≤ y
i
τδ + δ for all τ . Moreover,

dρi(t)
dt

= (1− yi(j−1)δ)(1− 0.63yi(j−1)δ) ≤ (1− yijδ + δ)(1− 0.63yijδ + δ)

≤ (1− ρi(t))(1− 0.63ρi(t)) + 4δ

Consider setting up a new function α(t) where α(0) = 0 and dα
dt = (1−α(t))(1−0.63α(t))+

4δ. Solving this differential equation gives that α(t) = 100(e37t/100−1)
100e37t/100−63 + 4δt. We know that

ρi(0) = α(0) = 0. The function α(t) is continuous and the function ρ(t) is piecewise linear.
Further, for any 0 ≤ t ≤ 1 whenever ρi(t) = α(t) the derivative of α(t) is larger than ρi(t).
This gives that ρi(t) ≤ α(t) for all 0 ≤ t ≤ 1.

Thus, we have that yit ≤ ρi(t) ≤ α(t) for all 0 ≤ t ≤ 1, proving the lemma. J
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We will begin by relating the functions G and F . To do this, we will use Theorem 2.
This theorem requires that we bound the probability an interval in R is in D(R). We do this
in the following lemma.

I Lemma 5. For any time 0 ≤ t ≤ 1 it is the case that Pr[i ∈ D(R) | i ∈ R] = Pr[R∩ (Ei \
{i}) = ∅] ≥ e−(t−yit) ≥ e−t.

Proof. Fix an interval i = (si, di]. If this interval is in R, then the only reason it is not
in D(R) is because there is another interval j ∈ R such that j intersects the start point
of i. That is if j ∈ Ei ∩ R and j 6= i then in this case i will not be in D(R); otherwise, if
R ∩ (Ei \ {i}) = ∅ then i is in D(R) when i ∈ R. Thus, it suffices to bound the probability
any interval is sampled to be in R which intersects si. The probability no interval in Ei \ {i}
is sampled is

∏
j 6=i,si∈(sj ,dj ](1 − y

j
t ) ≥ e−t+y

i
t . Where the inequality follows from the fact

that
∑
j:si∈(sj ,dj ] y

j
t ≤ t for any step of the algorithm, i.e. any time t where 0 ≤ t ≤ 1. J

Now we show two key lemmas. The first shows a relationship between G and F .

I Lemma 6. G(y) ≥ 1
etF (y) for all vectors y.

Proof. We utilize Theorem 2. First notice that the procedure to construct D(R) in the
definition of G is a monotonic scheme. This is because the probability an interval is in D(R)
only decreases if intervals are added to R. Lemma 5 and Theorem 2 give the lemma. J

The next lemma is the key technical lemma that bounds the increase in the G at each
step of the algorithm.

I Lemma 7. It is the case that G(yt+δ) ≥ (1− δ)G(yt) + δ
etE

[∑
i∈O (f(R ∪ {i})− f(R))

]
−

O(n2δ2)f(O) for all t ≤ ln 2− δ.

We defer the proof of the lemma and first show how this can be used to construct our
result. Using the previous two lemma, we can bound the total increase in the function by
the optimal solution.

I Lemma 8. It is the case that G(yt+δ) ≥ (1− δ)G(yt) + δ
et ((1− α(t)) f(O)− etG(yt))−

O(n2δ2)f(O) for all t ≤ ln 2− δ.

Proof. Lemma 7 says that G(yt+δ) ≥ (1 − δ)G(yt) + δ
etE[

∑
i∈O f(R ∪ {i}) − f(R)] −

O(n2δ2)f(O). By definition, E[f(R)] = F (yt) and Lemma 6 states that F (yt) ≤ etG(yt).
This gives the following. The first inequality follows from submodularity.

(1− δ)G(yt) + δ

et
E[
∑
i∈O

f(R ∪ {i})− f(R)]−O(n2δ2)f(O)

≥ (1− δ)G(yt) + δ

et
E[f(R ∪O)− f(R)]−O(n2δ2)f(O)

≥ (1− δ)G(yt) + δ

et
(
E[f(R ∪O)]− etG(yt)

)
−O(n2δ2)f(O). (1)

Notice that E[f(R∪O)] ≥ (1−α(t))f(O) by Theorem 3 because Lemma 4 gives that the
maximum probability any interval is in R is bounded by α(t). Combining this with equation
(1) gives the lemma. J

Using the two above lemmas, we can show our main result.

APPROX/RANDOM 2019



3:8 Submodular Optimization with Contention Resolution Extensions

Proof of Theorem 1. Lemma 8 states that G(yt+δ) ≥ (1− δ)G(yt) + δ
et ((1− α(t))f(O)−

etG(yt)) − O(n2δ2)f(O) wherever t ≤ ln 2 − δ. This implies that G(yt+δ) − G(yt) ≥
−2δG(yt) + δ

et ((1− α(t))f(O))−O(n2δ2)f(O) for t ≤ ln 2− δ.
By choosing δ to be sufficiently small, G(yt+δ) can be bounded using a differential

equation. Consider a function g(t) where g(0) = 0 and for any t ∈ [(j − 1)δ, jδ] it is the case
that

g(t) = δ

j−2∑
τ=0

(
−2G(yτδ) + f(O)

eτδ
(1− α(τδ))

)
+(t− (j − 1)δ)

(
−2G(y(j−1)δ) + f(O)

e(j−1)δ (1− α((j − 1)δ))
)
.

Inductively, notice that G(yt) +O(n2δ2 · tδ )f(O) ≥ g(t) for any t divisible by δ and t less
than ln 2 − δ. Further, dgdt = −2G(y(j−1)δ) + f(O)

e(j−1)δ (1 − α((j − 1)δ)) ≥ −2g(t) + f(O)
et (1 −

α(t))− 2δf(O). Consider a new function h(t) where h(0) = 0 and dh
dt = −2h(t) + f(O)

et (1−
α(t))− 2δf(O). Solving this differential equation results in h(.54) > .188f(O)5. Note that
.54 ≤ ln 2− δ for sufficiently small δ.

We know that h(0) = g(0) = 0. We also know that h(t) is a continuous function and
g(t) is piecewise linear. Further, for any 0 ≤ t ≤ 1 whenever h(t) = g(t) the derivative of
g(t) is only larger than that of h(t). Thus, we have that h(t) ≤ g(t) for all t. Knowing that
g(t) ≤ G(yt) + O(n2δ2 t

δ )f(O) ≤ G(yt) + O(n2δ)f(O) for t ≤ lnn − δ, it is the case that
.188f(O) < h(.54) ≤ g(.54) ≤ G(y.54) +O(n2δ)f(O), proving the theorem for δ ≤ 1

n3 . J

It only remains to prove Lemma 7. The proof can be found in Section 4.

4 Proof of Lemma 7

For this section, let y be the current solution computed by our algorithm at some fixed stage
t. Throughout the section all lemmas and proofs will assume that t ≤ ln 2− δ, an assumption
in the statement of Lemma 7. Let v be a vector equal to yt+δ − yt. For simplicity, we drop
the index t and throughout this section we only focus on stage t and drop the index t in yt.
We want to bound G(y+ v). Throughout this section, let I be the intervals in the support of
v. These are the elements the algorithm chooses in the independent set and whose variables
get increased. Let O be the intervals in the optimal solution.

Let S be the set of all intervals. Let R be the random set of intervals chosen according
to y where every interval is sampled independently. Formally, for each interval i draw a
number ri uniformly at random from [0, 1] and let i be in R if ri < yi. Let Ei denote the
event yi < ri ≤ yi + βi. Intuitively, Ei is the event that i would not be in R if yi is used for
the sampling, but would have if yi was increased by βi. For i ∈ I this is the event i was
chosen in the computation of G(y + v), but not G(y).

For any set S′, let D(S′) contain the intervals from S′ chosen according to the algorithm
that is used in G. That is D(S′) is constructed from S′ by only adding an interval j ∈ S′ to
be in D(S′) if there is no other interval in S′ with earlier start point that also intersects j.

We would like to bound G(y + v) by quantities involving O and G(y). Let E(I ′) denote
the event that Ei occurs for all i ∈ I ′ and Ei does not occur for any i ∈ I \ I ′ and recall
that Pr[Ei] = βi = δ(1− yi)eyi , the amount the algorithm would increase yi if i ∈ I. It will

5 This was verified using a differential equation solving software from Mathematica and independently
verified using numerical evaluation.
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be useful to first bound the probability that R = S′ for some S′. To do this, the following
lemmas bound the probability of either an interval being in R or R = S′ depending on the
events Ei. The claim isn’t difficult and the proof is deferred to the appendix.

B Claim 9. For any i ∈ I it is the case that Pr[i ∈ R | Ei] = Pr[i∈R]
1−βi ≥ Pr[i ∈ R] and

Pr[i /∈ R | Ei] ≥ (1 − βi)Pr[i /∈ R] when t ≤ ln 2 − δ. Further, for any i ∈ I and any
set S′ ⊆ S it is the case that Pr[S′ = R | E({i})] ≥ Pr[R = S′|Ei]

∏
j∈I,j 6=i(1 − βj) when

t ≤ ln 2− δ.

Intuitively, the next claim relates the probability R would be the same set if intervals are
drawn randomly using y or y + v.

B Claim 10. Fix any set S′ ⊆ S. It is the case that Pr[R = S′ and E(∅)] ≥ (1 −∑
i∈I\S′

βi
1−yi )Pr[R = S′].

Proof. Notice that for any i ∈ I, it is the case that Pr[i ∈ R and E(∅)] = Pr[i ∈ R] and
Pr[i /∈ R and E(∅)] = Pr[i /∈ R]− βi = Pr[i /∈ R](1− βi

1−yi ). The last equality follows from
Pr[i /∈ R] = 1− yi by definition. Knowing that elements are sampled independently, we have
the following. The first equality follows since elements are sampled independently. The three
terms break up the cases on if an elements is not in I, is in I ∩ S′ or is in I and not S′.

Pr[R = S′ and E(∅)]
= Pr[R \ I = S′ \ I]

∏
i∈I∩S′

Pr[i ∈ R and E(∅)]
∏

i∈I\S′
Pr[i /∈ R and E(∅)]

= Pr[R = S′]
∏

i∈I\S′
(1− βi

1− yi ) ≥ (1−
∑
i∈I\S′

βi
1− yi )Pr[R = S′].

The second equality follows from the observation at the beginning of the proof of the
lemma. C

The next lemma bounds G(y + v) by G(y). Intuitively, the first term says that if Ei does
not occur for any i then G(y+ v) is the same as G(y). The second term captures the case for
Ei occurs for exactly one i ∈ O. Finally, the probability that Ei occurs for more than one i is
very small (proportional to δ2) so this effect is negligible. The proof is deferred to Section 5.

I Lemma 11. It is the case that, G(y+v) ≥ (1−
∑
i∈I βi)G(y)+

∑
i∈I
∑
S′⊆S\{i} βiPr[R =

S′ | Ei]f(D(S′ ∪ {i}))−O(n2δ2f(O)).

Next it is observed that the choice of the set I allows us to swap the terms in the
expression in the previous lemma by the optimal solution O.

I Lemma 12. G(y+ v) ≥ (1−
∑
i∈O βi)G(y) +

∑
i∈O

∑
S′⊆S\{i} βiPr[R = S′ | Ei]f(D(S′ ∪

{i}))−O(n2δ2f(O))

Proof. Consider the value of

∑
i∈I

βi

 ∑
S′⊆S\{i}

Pr[R = S′ | Ei]f(D(S′ ∪ {i}))−G(y)

 .

This equals

∑
i∈I

βi

 ∑
S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′ ∪ {i}))−G(y)

 .
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3:10 Submodular Optimization with Contention Resolution Extensions

This is equal to the following since elements are sampled independently

∑
i∈I

βi

∑
S′⊆S

Pr[R = S′]f(D(S′ ∪ {i}))−G(y)

 =
∑
i∈I

wi.

By definition, this is only greater than
∑
i∈O wi. Reversing the above steps for O and

combining with Lemma 11 gives the lemma. J

Our remaining goal is to bound part of the expression from the prior lemma,∑
S′⊆S\{i}

∑
i∈O

βiPr[R = S′ | Ei]f(D(S′ ∪ {i})) +
∑
i∈O

βiG(y).

Recall that Ei is the set of intervals starting earlier than i that intersect i and also the
interval i itself. The intervals in Ei \ {i} are the intervals, which if they are sampled to be
in R then i will not be in D(R). Let Bi be the set containing intervals that start during
interval i and also i. The following fact will be useful for applying submodularity.

I Lemma 13. For any set S′ ⊆ S consider {S′ \Bi}i∈O, a collection of subsets of S′. It is
the case that every interval in S′ appears in exactly |O| − 1 sets in this collection. Further,
each interval in S appears in exactly one set Bi.

Proof. To show the lemma, it suffices to show that every interval in S appears in exactly
one set Bi for some i ∈ O. Indeed, we may assume that the intervals in O span the entire
time horizon (adding dummy intervals as needed). Then, an interval j ∈ S can only be in
Bi if j starts during i. Knowing that O cannot have two intervals that overlap, we have
the lemma. J

The next lemma is a technical lemma. The purpose is to take an expression f(D(S′) \Bi)
depending on a set S′ and Bi for i ∈ O and bound it by an expression depending on f(D(S′))
without Bi inside the function input. The lemma follows from submodularity and the
previous lemma.

I Lemma 14. Fix any set S′ ⊆ S. It is the case that
δf(D(S′)) ≥

∑
i∈O βi (f(D(S′))− f(D(S′) \Bi)).

Proof. Consider the term
∑
i∈O βi(f(D(S′))− f(D(S′) \Bi)). We will remove all negative

terms as they only makes the expression smaller. Let O′ be all i where f(D(S′))− f(D(S′) \
Bi) > 0. The lemma follows if we prove that f(D(S′)) ≥

∑
i∈O′(f(D(S′))− f(D(S′) \Bi))

because this implies δf(D(S′)) ≥ δ
∑
i∈O′(f(D(S′))−f(D(S′)\Bi)) ≥

∑
i∈O′ βi(f(D(S′))−

f(D(S′) \Bi)) knowing that βi ≤ δ and all terms are positive.
Now it is established that f(D(S′)) ≥

∑
i∈O′(f(D(S′))−f(D(S′)\Bi)), which follows by

submodularity. Indeed, let A0 = D(S′) \ ∪i∈O′Bi. Arbitrarily order the sets B1, B2, . . . B|O′|
and let Ai = Ai−1 ∪ (Bi ∩D(S′)) for 1 ≤ i ≤ |O′|. By submodularity,

∑
i∈O′(f(D(S′)) −

f(D(S′) \ Bi)) ≤
∑
i∈O′(f(Ai) − f(Ai−1)) = f(D(S′)) − f(A0) ≤ f(D(S′)). The equality

follows from the function being positive and the inequality from submodularity. J

Assuming Ei occurs, the purpose of the following lemma is to separate the cases where at
least one interval in Ei is in R and the other where no interval in Ei is in R. Intuitively, if
no interval in Ei is in R then i will be in D(R) otherwise i will not. In either case, when Ei
occurs the interval i ensures no interval in Bi is in D(R) and the lemma bounds the cost of
removing Bi by applying Lemma 14. The proof is deferred to Section 6.
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I Lemma 15. It is the case that,

G(y + v) ≥ (1− δ)G(y) +∑
S′⊆S

Pr[R = S′ | Ei]
∑

i∈O,S′∩Ei=∅

βi(f(D(S′) \Bi ∪ {i})− f(D(S′) \Bi))−O((nδ)2f(O)).

Our goal now is to bound the second term in the previous lemma by showing this following.
This shows that the second term is at least δ

et multiplied by the expected value of adding
each element of O to R individually.

I Lemma 16.
∑
S′⊆S Pr[R = S′ | Ei]

∑
i∈O,S′∩Ei=∅ βi(f(D(S′)\Bi∪{i})−f(D(S′)\Bi)) ≥

δ
et

∑
S′⊆S Pr[R = S′]

∑
i∈O fS′(i)

Before we prove the lemma, we show how this can be used to complete the proof of
Lemma 7.

Proof of Lemma 7. By combining lemmas 15 and 16 we have the following.

G(y + v) ≥ (1− δ)G(y) + δ

et

∑
S′⊆S

Pr[R = S′]
∑
i∈O

fS′(i)−O((nδ)2f(O))

≥ (1− δ)G(y) + δ

et
E[
∑
i∈O

fR(i)]−O((nδ)2f(O))

This completes the proof. J

It only remains to prove Lemma 16.

Proof of Lemma 16. Consider the term
∑
S′⊆S Pr[R = S′ | Ei]

∑
i∈O,S′∩Ei=∅ βi(f(D(S′) \

Bi ∪ {i})− f(D(S′) \Bi)). Rearranging the summations and using the definition of fS′(i)
this is equal to

∑
i∈O

∑
S′⊆S,S′∩Ei=∅Pr[R = S′ | Ei]βifD(S′)\Bi(i). We know that for any

set S′ ⊆ S if S′ ∩ Ei = ∅ then S′ ⊆ (S \ Ei). Using this, the term is equal to the following.∑
i∈O

∑
S′⊆(S\Ei)

βiPr[R = S′ | Ei]fD(S′)\Bi(i)

=
∑
i∈O

∑
S′⊆(S\Ei)

βiPr[S′ = R \ Ei and R ∩ Ei = ∅ | Ei]fD(S′)\Bi(i)

To see why the previous equality holds, notice that R = S′ if and only if S′ = R \ Ei and
R ∩ Ei = ∅ for S′ ⊆ (S \ Ei). Now we continue to lower bound this expression.∑

i∈O

∑
S′⊆(S\Ei)

βiPr[S′ = R \ Ei | Ei]Pr[R ∩ Ei = ∅ | Ei]fD(S′)\Bi(i)

[Definition of R implies independence]
=

∑
i∈O

∑
S′⊆(S\Ei)

βiPr[S′ = R \ Ei]Pr[R ∩ (Ei \ {i}) = ∅]fD(S′)\Bi(i)

[Definition of Ei]

≥
∑
i∈O

∑
S′⊆(S\Ei)

βi
et−yi

Pr[S′ = R \ Ei]fD(S′)\Bi(i) [Lemma 5]

= δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)Pr[R = S′ \ Ei]fD(S′)\Bi(i) [Definition of βi] (2)
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3:12 Submodular Optimization with Contention Resolution Extensions

Notice that 1 =
∑
E⊆Ei Pr[R ∩ Ei = E | i /∈ R] because the right hand side captures all

the events in a probability distribution. Further, fix an element i ∈ O and notice that for any
set S′ ⊆ (S \Ei) and any set E ⊆ Ei it is the case that Pr[S′ = R \Ei] ·Pr[R∩Ei = E | i /∈
R] = Pr[R = S′ ∪ E | i /∈ R]. This follows for two reasons. One is because elements are
sampled independently. The other is because Pr[S′ = R \Ei] = Pr[S′ = R \Ei | i /∈ R] since
i ∈ Ei and the independence of sampling elements. Using these facts, the following holds.

(2) = δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)Pr[S′ = R \ Ei]fD(S′)\Bi(i)
∑
E⊆Ei

Pr[R ∩ Ei = E | i /∈ R]

= δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)fD(S′)\Bi(i)
∑
E⊆Ei

Pr[R = S′ ∪ E | i /∈ R]

[Independence]

≥ δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)fS′\Bi(i)
∑
E⊆Ei

Pr[R = S′ ∪ E | i /∈ R]

[Submodularity]

≥ δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)
∑
E⊆Ei

f(S′∪E)\{i}(i)Pr[R = S′ ∪ E | i /∈ R]

[Submodularity and i ∈ Bi]

= δ

et

∑
i∈O

∑
S′⊆(S\{i})

(1− yi)fS′\{i}(i)Pr[R = S′ | i /∈ R]

= δ

et

∑
i∈O

∑
S′⊆(S\{i})

fS′\{i}(i)Pr[R = S′]

[(1− yi) = Pr[i /∈ R] and definition of conditional probability]

= δ

et

∑
i∈O

∑
S′⊆S

fS′(i)Pr[R = S′] [fS′(i) = 0 if i ∈ S′]

J

5 Proof of Lemma 11

This section is devoted to proving Lemma 11.
Consider G(y + v). The value of G(y + v) is equal to

∑
S′⊆S

∑
I′⊆I Pr[R = S′ and

E(I ′)]f(D(S′ ∪ I ′)). This is equal to the following by breaking this into cases. This is a
partitioning of the event space by definition of E(I ′).∑

S′⊆S

Pr[R = S′ and E(∅)]f(D(S′))

+
∑
i∈I

∑
S′⊆S

Pr[R = S′ and E({i})]f(D(S′ ∪ {i}))

+
∑

I′⊆I,|I′|≥2

∑
S′⊆S

Pr[R = S′ and E(I ′)]f(D(S′ ∪ {i}))

Knowing that f is positive, this is greater than the following.∑
S′⊆S

Pr[R = S′ and E(∅)]f(D(S′)) (3)

+
∑
i∈I

∑
S′⊆S

Pr[R = S′ and E({i})]f(D(S′ ∪ {i})) (4)
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The proof bounds these two terms separately. First consider (3). Using Claim 10 this is
greater than

∑
S′⊆S(1−

∑
i∈I\S′

βi
1−yi )Pr[R = S′]f(D(S′)) = G(y)−

∑
i∈I

βi
1−yi

∑
S′⊆S\{i}

Pr[R = S′]f(D(S′)). The definition of βi gives that this is equal to G(y)−
∑
i∈I βi

∑
S′⊆S\{i}

Pr[R = S′]f(D(S′))−
∑
i∈I y

ie−y
i

δ
∑
S′⊆S\{i}Pr[R = S′]f(D(S′)). We will establish that

this is only greater than (1−
∑
i∈I βi)G(y). Consider the last term.∑

i∈I
yie−y

i

δ
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))

=
∑
i∈I

yie−y
i

δ
∑

S′⊆S\{i}

Pr[R \ {i} = S′]Pr[i /∈ R]f(D(S′))

=
∑
i∈I

yie−y
i

(1− yi)δ
∑

S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′))

=
∑
i∈I

yiβi
∑

S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′))

By definition of the algorithm wi
βi

= E[f(D(R ∪ {i})) − f(D(R))] =
∑
S′⊆S Pr[R =

S′](f(D(S′ ∪ {i}))− f(D(S′))) =
∑
S′⊆S\{i}Pr[R = S′](f(D(S′ ∪ {i}))− f(D(S′))) > 0 for

all i ∈ I. The last equality follows since a term is 0 if i is in S′. Since elements are sampled
independently, this gives that the previous term is only less than the following.∑

i∈I
yiβi

∑
S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′))

≤
∑
i∈I

yiβi
∑

S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′ ∪ {i}))

=
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′ ∪ {i}]f(D(S′ ∪ {i})) [Note that Pr[i ∈ R] = yi]

Now we use this to bound (3). (3) is greater than or equal to the following.

G(y)−
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))−
∑
i∈I

yie−y
i

δ
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))

≥ G(y)−
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))−
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′ ∪ {i}]f(D(S′ ∪ {i}))

= (1−
∑
i∈I

βi)G(y)

It remains to bound (4). Using conditional probability, this can be bounded as follows.∑
i∈I

Pr[E({i})]
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

=
∑
i∈I

Pr[Ei]
∏

j∈I,j 6=i
Pr(Ej)

∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

=
∑
i∈I

βi
∏

j∈I,j 6=i
(1− βj)

∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

≥
∏
i∈I

(1− βi)
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

≥ (1−
∑
i∈I

βi)
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))
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Knowing that βi ≤ δ, this is greater than
∑
i∈I βi

∑
S′⊆S Pr[R = S′|E({i})]f(D(S′ ∪

{i}))−O(δ2n2f(O)).
Now we know that,∑

i∈I

βi
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

=
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|Ei and Ej for j 6= i)]f(D(S′ ∪ {i})) [Def. of E({i})]

≥
∑
i∈I

βi
∏

j∈I,j 6=i

(1− βj)
∑
S′⊆S

Pr[R = S′|Ei)]f(D(S′ ∪ {i})) [Claim 9 and independence]

≥
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|Ei)]f(D(S′ ∪ {i}))− |I|δ2f(O)

≥
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′|Ei)]f(D(S′ ∪ {i}))− |I|δ2f(O)

The last line follows since if Ei occurs then R does not contain i. Putting this all together
gives the lemma.

6 Proof of Lemma 15

This section is devoted to proving Lemma 15.
Consider the following expression. Lemma 12 gives the following.

G(y + v) ≥
∑
S′⊆S

∑
i∈O

βiPr[R = S′ | Ei]f(D(S′ ∪ {i})) (5)

+(1−
∑
i∈O

βi)G(y). (6)

We see that (5) equals the following.∑
i∈O

βi

( ∑
S′⊆S,S′∩Ei=∅

Pr[R = S′ | Ei]f(D(S′ ∪ {i}))

+
∑

S′⊆S,S′∩Ei 6=∅

Pr[R = S′ | Ei]f(D(S′ ∪ {i}))
)

By definition of G, for any set S′ ⊆ S it is the case that D(S′ ∪ {i}) includes i only if
S′ includes no interval in Ei \ {i}. We also know that for any j ∈ S′ it is the case that
j ∈ D(S′ ∪{i}) if and only if j ∈ D(S′) and j /∈ Bi. Using these two facts, the previous term
is equal to the following.∑

i∈O
βi

( ∑
S′⊆S,S′∩Ei=∅

Pr[R = S′ | Ei]f(D(S′) \Bi ∪ {i}))

+
∑

S′⊆S,S′∩Ei 6=∅

Pr[R = S′ | Ei]f(D(S′) \Bi)
)

This is equal to the following.∑
i∈O

βi

( ∑
S′⊆S,S′∩Ei=∅

Pr[R = S′ | Ei]
(
f(D(S′) \Bi ∪ {i}))− f(D(S′) \Bi)

)

+
∑
S′⊆S

Pr[R = S′ | Ei]f(D(S′) \Bi)
)
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We focus on bounding
∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \Bi) along with (6). The

rest of the expression is carried to the end of the proof. First we establish a bound on∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \Bi) in the following claim and then it is combined

with (6). The purpose of the following claim is to remove the conditioning on Ei.

B Claim 17.
∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \ Bi) =

∑
i∈O βi

∑
S′⊆S Pr[R =

S′]f(D(S′) \Bi).

Proof. First note that Pr[R = S′ | Ei] > 0 if and only if i /∈ S′. Thus we have that the left
hand side is equal to

∑
i∈O βi

∑
S′⊆S\{i}Pr[R = S′ | Ei]f(D(S′)\Bi). Using the definition of

conditional probability and the definition of Ei this is equal to∑
i∈O βi

∑
S′⊆S\{i}

Pr[R\{i}=S′ and Ei]
Pr[Ei] f(D(S′) \ Bi). By independence, this equals∑

i∈O βi
∑
S′⊆S\{i}Pr[R \ {i} = S′]f(D(S′) \ Bi) =

∑
i∈O βi

∑
S′⊆S\{i}Pr[R \ {i} =

S′]f(D(S′) \ Bi)(Pr[i ∈ R] + Pr[i /∈ R]) =
∑
i∈O βi

∑
S′⊆S\{i}(Pr[R = S′] + Pr(R =

S′ ∪ {i}))f(D(S′) \Bi).
We know that for any S′ ⊆ S \ {i} it is the case that f(D(S′) \Bi) = f(D(S′ ∪ {i}) \Bi)

because Bi is the set of intervals that are not in the contention resolution scheme if i is
input and also i is in Bi. Using this, we have that the previous expression is equal to∑
i∈O βi

∑
S′⊆S\{i}(Pr[R = S′]f(D(S′) \ Bi) + Pr(R = S ∪ {i})f(D(S′ ∪ {i}) \ Bi)) =∑

i∈O βi
∑
S′⊆S Pr[R = S′]f(D(S′) \Bi). C

Going back to
∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \ Bi) with the expansion of (6)

using the definition of G and the previous claim, we have the following.

∑
i∈O

βi
∑
S′⊆S

Pr[R = S′]f(D(S′) \Bi) + (1−
∑
i∈O

βi)
∑
S′⊆S

Pr[R = S′]f(D(S′))

We apply Lemma 14 for each term S′ to get that this is greater than the following.

(1− δ)
∑
S′⊆S

Pr[R = S′]f(D(S′)) = (1− δ)G(y)

The above gives that G(y + v) ≥ (1− δ)G(y) +
∑
i∈O βi

∑
S′⊆S,S′∩Ei=∅Pr[R = S′ | Ei](

f(D(S′) \Bi ∪ {i}))− f(D(S′) \Bi)
)
, giving the lemma.

7 Conclusion

This paper introduces the approach of using contention resolution extensions to optimize a
submodular function subject to a set of constraints. This algorithmic approach can be used
to improve the best known result when the constraints correspond to independent sets in an
interval graph. The next direction is to determine if this approach can be used to improve
on the best known approximation for other submodular optimization problems.
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A Omitted Proofs

Proof of Claim 9. By definition Pr[i ∈ R | Ei] = Pr[i∈R]
1−βi . To see the other part of the

claim, by definition of Ei it is the case that Pr[i /∈ R | Ei] = (1−yi−βi)
1−βi and (1 − βi)Pr[i /∈

R] = (1 − βi)(1 − yi). For all βi ∈ [0, 1) it is the case that (1−yi−βi)
1−βi ≥ (1 − βi)(1 − yi) if

0 ≤ yi ≤ 1−βi
2 . Finally, 0 ≤ yi ≤ 1−δ

2 ≤ 1−βi
2 when t ≤ ln 2−δ. This is because t ≤ ln 2−δ by

assumption and Lemma 4 states that any entry in y is at most 1− e−t ≤ 1− e−(ln 2−δ) ≤ 1−δ
2 .

Now consider the second part of the lemma. Recall that E({i}) is the event where Ei
occurs as well as Ej for all j ∈ I where j 6= i. We have the following.

Pr[S′ = R | E({i})] = Pr[S′ = R and E({i})]
Pr[E({i})]

By independence this equals the following.
Pr[S′ \ I = R \ I]

Pr[E({i})] Pr[{i} ∩ S′ = {i} ∩R and Ei]
∏

j∈I,j∈S′,j 6=i

Pr[j ∈ R and Ej ]

·
∏

j∈I,j /∈S′,j 6=i

Pr[j /∈ R and Ej ]

By independence we know that Pr[E({i})] = Pr[Ei]
∏
j∈I,j 6=i Pr[Ej ]. Using this and

conditional probability, the prior term is equal to the following.
Pr[S′ \ I = R \ I]

Pr[Ei]
Pr[{i} ∩ S′ = {i} ∩R and Ei]

∏
j∈I,j∈S′,j 6=i

Pr[j ∈ R | Ej ]

·
∏

j∈I,j /∈S′,j 6=i

Pr[j /∈ R | Ej ]

The first argument shown in the lemma gives that this is at least the following. This
argument allows us to remove the conditioning on Ej .∏

j 6=i,j∈I

(1− βj)
Pr[S′ \ I = R \ I]

Pr[Ei]
Pr[{i} ∩ S′ = {i} ∩R and Ei]

∏
j∈I,j∈S′,j 6=i

Pr[j ∈ R]

·
∏

j∈I,j /∈S′,j 6=i

Pr[j /∈ R]

Using independence, this is equal to the following.∏
j 6=i,j∈I

(1− βj)
Pr[S′ = R and Ei]

Pr[Ei]

Finally, conditional probability gives the following.∏
j 6=i,j∈I

(1− βj)Pr[S′ = R | Ei]

C
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