
Online Non-Preemptive Scheduling to Minimize
Maximum Weighted Flow-Time on Related
Machines
Giorgio Lucarelli
LCOMS, University of Lorraine, Metz, France
giorgio.lucarelli@univ-lorraine.fr

Benjamin Moseley
Tepper School of Business, Carnegie Mellon University, USA
moseleyb@andrew.cmu.edu

Nguyen Kim Thang
IBISC, Univ. Paris-Saclay, France
kimthang.nguyen@univ-evry.fr

Abhinav Srivastav
IBISC, Univ. Paris-Saclay, France
abhinavsriva@gmail.com

Denis Trystram
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France
trystram@imag.fr

Abstract
We consider the problem of scheduling jobs to minimize the maximum weighted flow-time on a set of
related machines. When jobs can be preempted this problem is well-understood; for example, there
exists a constant competitive algorithm using speed augmentation. When jobs must be scheduled
non-preemptively, only hardness results are known. In this paper, we present the first online
guarantees for the non-preemptive variant. We present the first constant competitive algorithm
for minimizing the maximum weighted flow-time on related machines by relaxing the problem and
assuming that the online algorithm can reject a small fraction of the total weight of jobs. This is
essentially the best result possible given the strong lower bounds on the non-preemptive problem
without rejection.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Online Algorithms, Scheduling, Resource Augmentation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.24

Funding Benjamin Moseley: Google Research Award and NSF grants CCF-1830711, CCF-1824303,
and CCF-1733873
Nguyen Kim Thang: OATA ANR-15-CE40-0015-01
Abhinav Srivastav: OATA ANR-15-CE40-0015-01

1 Introduction

We study the problem of online scheduling non-preemptive jobs to minimize the maximum
(or `∞-norm of the) weighted flow-time on related machines. Here, we are given a set of n
independent jobs that arrive over time. Each job j has a processing requirement pj and a
weight wj . In the related machines environment, each machine i has speed si and the time
required to process j is equal to pj/si. The scheduling algorithm makes online decisions for
assigning each job to one of the machines. If a job j arrives at time rj and completes its
processing at time Cj , then its flow-time Fj is defined as (Cj − rj). We focus on the objective

© Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 24; pp. 24:1–24:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giorgio.lucarelli@univ-lorraine.fr
mailto:moseleyb@andrew.cmu.edu
mailto:kimthang.nguyen@univ-evry.fr
mailto:abhinavsriva@gmail.com
mailto:trystram@imag.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Non-Preemptive Maximum Weighted Flow-Time

of minimizing the maximum weighted flow-time, i.e., maxj wjFj . This metric is often used
in systems where jobs are prioritized according to their weights and every job needs to be
completed in a reasonable amount of time after its release. The problem of minimizing the
maximum flow-time is a natural generalization of the load-balancing problem where jobs
arrive over time. This problem is also closely related to deadline scheduling problems.

In this paper, we are interested in designing a non-preemptive schedule whose performance
is bounded in the worst-case model. In non-preemptive setting, a job, once started processing,
must be executed without interruption until its completion time. This is in contrast to
preemptive setting where a job can be stopped and later continued from where it left off
without penalty. Several strong theoretical lower bounds are known for simple instances [9, 4].
In order to overcome this lower bounds, Kalyanasundaram and Pruhs [12] and Phillips et
al. [15] proposed the analysis of scheduling algorithms in terms of the speed and machine
augmentations, respectively. Together these augmentations are commonly referred to as
resource augmentation. In a resource augmentation analysis, the idea is to either give the
scheduling algorithm faster processors or extra machines in comparison to the adversary.
For preemptive problems, these models have been quite successful in establishing theoretical
guarantees on algorithms that achieve good performance in practice [5, 11, 3, 10, 17].

Choudhury et al. [7, 8] proposed a different model of resource augmentation where the
online algorithm is allowed to reject a small fraction of the total weight of the incoming
jobs, while the adversary must complete all jobs. Theoretically, this model can lead to
the discovery of good online algorithms, even in the face of strong lower bounds [7, 13].
Practically, the model is useful for systems where it is assumed that clients loose interest in
their job if they wait too long to be completed. Choudhury et al. [7] considered the problem
of load balancing as well as the problem of minimizing the maximum weighted flow-time in
the restricted assignment setting. In this setting, we are given a set of machines and each
job j can only be scheduled on a subset Mj of the machines while its execution takes pj
time units. Even with speed augmentation, these problems admit strong lower bounds in
both preemptive and non-preemptive settings. However, online preemptive algorithms that
achieve a O(1)-competitive ratio and reject a small fraction of the total weight of jobs have
been presented in [7].

Prior works have left open the online non-preemptive scheduling problem of minimizing
the maximum weighted flow time. Even on a single machine, the problem is not understood
and no positive result is known. Moreover, even with speed augmentation, simple examples
lead to strong lower bounds. However, recent works on the rejection model [13] give the
possibility of creating algorithms with strong guarantees for the non-preemptive setting.
Thus, an intriguing open question is whether there exists a constant competitive algorithm
for the maximum weighted flow-time objective in the non-preemptive setting assuming that
a small fraction of total weight of jobs can be rejected. In this paper, we affirmatively answer
this question for the case of related machines by proving the following theorem.

I Theorem 1. For the non-preemptive scheduling problem of minimizing the maximum
weighted flow-time on related machines, there exists a O(1/ε9)-competitive algorithm that
rejects at most O(ε)-fraction of the total weight of jobs, where ε ∈ (0, 1).

1.1 Problem definition and notation
We are given a setM of m machines and a set J of n jobs that arrive online. Each machine i
processes a job at speed si. We index the machines such that s1 ≥ s2 ≥ . . . sm. Each
job j is characterized by its release time rj , its processing requirement pj and its weight wj .

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:3

The processing requirement and the weight of j are known at its release time rj . If j is
processed on machine i, then it requires pj/si time units. The goal is to schedule the jobs
non-preemptively. Given a schedule S, the completion time of a job j is denoted by CSj . The
weighted flow-time of j is defined as wjFSj = wj(CSj − rj), which is the weighted amount
of time during which j remains in the system. The objective is to minimize the maximum
(`∞-norm of) weighted flow-time, i.e., maxj wjFSj . We omit the superscripts if the schedule
S is clearly defined by the context.

Let F denote the value of the offline optimal solution. Let ε be an arbitrary constant
such that ε ∈ (0, 1). We assume that all weights wj are of the form (1/ε)k, where k is an
integer. This can be assumed by rounding down weights to the nearest power of 1

ε which
affects the competitive ratio by a factor of at most

(1
ε

)
. After rounding, we say that a job j

is of class k if wj =
(1
ε

)k. Let K denote the largest weight class of any job. A job j is valid
on machine i, iff it takes at most F/wj time units on i, that is pj

si
≤ F

wj
.

1.2 Organization
In Section 2, we present the works related to our problem. Then, in Section 3, we present an
offline algorithm for the scheduling problem of minimizing the maximum weighted flow-time
on related machines. This algorithm is inspired by Anand et al. [2] and uses a small look-
ahead, allows preemptions and does not respect the release dates. Specifically, we assume that
the value F of the optimal weighted flow time is known to the algorithm. Since release dates
are not respected, the algorithm creates an infeasible schedule. Later, in Section 4, we discuss
how to convert this offline algorithm to an online algorithm respecting the non-preemptive
requirement. Note that the release dates will be respected due to the online nature. Finally,
we explain how to remove the assumption about knowing the value F in Section 5.

2 Related Work

We discuss first related works for the unweighted case. For a single machine, First-In-First-
Out is an optimal algorithm for minimizing the maximum flow-time. For identical machines,
Bender et al. [14] and Ambulh and Mastrolilli [1] showed that the algorithm that schedules
the incoming jobs on the least loaded machine, is (3−2/m)-competitive. On related machines,
Bansal et al. [4] showed that there exists a 13.5-competitive algorithm. This has recently
been improved to a 12.5-competitive algorithm by Im et al [16]. All the above algorithms
are non-preemptive and their results hold against both the preemptive and non-preemptive
adversary. For the more general setting of unrelated machines, Anand et al. [2] gave an
O(1/ε)-competitive algorithm with (1 + ε)-speed augmentation and this result fundamentally
uses preemption.

In the presence of weights, only results in the preemptive setting are known for the
problem of minimizing the maximum weighted flow-time. Bender et al. [14] showed a lower
bound of Ω(P 1/3) on the competitive ratio on single machine where P is the ratio of the
minimum to maximum job size. This was later improved to Ω(P 0.4) in [6]. Both these lower
bounds also hold if P is replaced with the ratio of the maximum to minimum weight. In
speed augmentation model, Bansal and Pruhs [5] showed that the Highest Density First
policy is (1 + ε)-speed O(1/ε2)-competitive on a single machine. Chekuri and Moseley [6]
presented a (1 + ε)-speed O(1/ε)-competitive algorithm for parallel machines, while Anand
et al. [2] proposed a (1 + ε)-speed O(1/ε3)-competitive algorithm for related machines. In
the rejection model, Choudhury et al. [7] presented an O(1/ε4)-competitive algorithm for
the restricted assignment settings when an ε-factor of the weight of the jobs can be rejected
by the online algorithm.

FSTTCS 2019

24:4 Non-Preemptive Maximum Weighted Flow-Time

3 An Offline Look-ahead Algorithm with Preemptions

In this section we assume that the value F of the optimal solution is given, preemptions are
allowed and the release dates of the jobs are not necessarily respected. Intuitively, we show
the following. For ease of explanation assume that all jobs have unit weight. We consider
all the jobs released during a long interval of size O(F/ε). Since the maximum weighted
flow-time is F , all such jobs must be scheduled within an interval of size O(F/ε+ F) by the
optimal solution. We show that by rejecting an O(ε)-fraction of the total weight of jobs,
an online algorithm can schedule all the remaining jobs in the interval of size O(F/ε). The
algorithm below builds on this idea when jobs have different weights. This is inspired by the
work of Anand et al. [2] where speed augmentation is used to achieve a similar effect. Recall
that there exists a strong lower bound in the speed augmentation model. In rejection model,
one needs to ensure that the algorithm rejects at most O(ε)-fraction of jobs both in terms of
weights and volume.

We allow our algorithm to reject some jobs. For each weight class k and integer `, let
I(k, `) denote the interval

[
`Fεk

ε3 , (`+1)Fεk

ε3

)
. We say that a job j belongs to type (k, `) if it is of

class k and rj ∈ I(k, `). Observe that intervals I(k, `) form a nested set of intervals. Note that
at least

(1
ε3

)
jobs that belong to class k or more, can be scheduled during an interval I(k, `).

The online algorithm A is defined to have the following rejection and scheduling policies.

Rejection policy. The rejection policy of A is described in Algorithm 1. The algorithm
uses a simple rejection policy where it ensures that for each interval I(k, `) the algorithm
rejects at least ε2/2-fraction of volume of jobs and O(ε)-fraction of weight of jobs.

Algorithm 1 RA(I, F, ε).
1: for k = K to 1 do
2: for ` = 1, 2, . . . do
3: J(k, `) := the set of jobs of type (k, `)
4: D := bε2|J(k, `)|+ ε

∑
I(k′`′)⊆I(k,`):

k′=k+1

|J(k′, `′)|c+
∑

I(k′,`′)⊆I(k,`):
k′≥k+2

|J(k′, `′)|

5: Reject longest-D jobs from J(k, `)

Scheduling policy. The scheduling policy of A is described in Algorithm 2. The algorithm
uses the following order: it picks jobs in the decreasing order of their class, and within each
class it goes by increasing order of its intervals. When considering a job j, the algorithm
schedules j during the interval I(k, `) on the slowest valid machine with enough free space.
Jobs may be scheduled preemptively. This completes the description of the algorithm A.

Algorithm 2 SA(I, F, ε).
1: for k = K to 1 do
2: for ` = 1, 2, . . . do
3: for each non-rejected job j of type (k, `) do
4: mj := the slowest machine for which j is valid
5: for i := mj , . . . , 1 do
6: If there is at least pj/si free slots (preemptive) on machine i during I(k, `) then

schedule j on i during the first such free slots.

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:5

3.1 Analysis of the Offline Algorithm
In this section, we prove that Algorithm SA will always find enough space to schedule the
non-rejected set of jobs in RA.

I Theorem 2. Algorithm SA outputs a preemptive schedule for the set of non-rejected jobs
which ensures that each job that belongs to type (k, `) is scheduled during I(k, `). Note that
schedule may process jobs before their release date.

We prove this by contradiction. Let j∗ be the first non-rejected job that algorithm A
cannot schedule on some machine i. Then we will show that the value of the offline optimal
solution is strictly greater than F , which contradicts our assumption on the knowledge of
the value of optimal offline solution, F .

Assume that j∗ is of type (k∗, `∗). We build a set S of job recursively. Initially S just
contains j∗. We add j′ of type (k′, `′) to S if there is already a job j of type (k, l) in S

satisfying the following conditions:
1. k′ ≥ k.
2. A processes j′ on a machine i which is valid for j as well.
3. A processes j′ during the I(k′, `′) such that I(k′, `′) ⊆ I(k, `)

For a machine i and interval I(k, `), define the machine-interval Ii(k, `) as the time
interval I(k, `) on machine i. We construct a set IM of machine-intervals as follows: For
every job j ∈ S of type (k, `), we add the interval Ii(k, `) to IM for all machines i such that
j is valid for i.

I Definition 3. We say that an interval Ii(k, `) ∈ IM is maximal if there is no other interval
Ii(k′, `′) which contains Ii(k, `).

Observe that every job in S except j∗ gets processed in one of machine-intervals in IM .
Let IX denote the set of maximal intervals in IM . We show that the jobs in S satisfy the
following property.

I Lemma 4. For any maximal interval Ii(k, `) ∈ IX , Algorithm SA processes a job on at
least (1− ε3)-fraction of the interval on machine i.

Proof. We prove this property holds whenever we add a new maximal interval to IX . Suppose
this property holds at some point in time, and we add a new job j′ to S. Let j, k, `, j′, k′, `′
be as in the description of S. Since k′ ≥ k and j is valid for i, the interval set IX already
contains the interval Ii′(k, `) for all i′ ≤ i. Hence the intervals Ii′(k′, `′) cannot be maximal
for any i′ ≤ i. Suppose an interval Ii′(k′, `′) is maximal, where i′ > i, and j′ is valid for
i′. Our algorithm would have considered scheduling j′ on i′ before going to i. Hence the
machine i′ is at least |Ii′(k′, `′)| − pj/si′ amount busy scheduling other jobs from S. The
lemma follows since pj/si′ ≤ F/wj ≤ Fεk. J

I Corollary 5. There are at least (1
ε3 − 1) jobs of class k or more scheduled for every

Ii(k, `) ∈ IX .

Proof. Recall that the size of the interval Ii(k, `) is Fεk

ε3 and the size of the longest job
scheduled in the interval Ii(k, `) is εkF . Combining these facts with Lemma 4 shows that
the corollary holds. J

Next we associate the set of rejected jobs to the maximal intervals. Recall that
|I(k, `)| denote the length of the interval I(k, `). Intuitively, we show that for each
maximal interval Ii(k, `) ∈ IX , we can associate at least O(ε2)|Ii(k, `)| volume of jobs

FSTTCS 2019

24:6 Non-Preemptive Maximum Weighted Flow-Time

that are rejected by the algorithm RA such that these jobs are of type (k′, `′) where
I(k′, `′) ⊆ I(k, `). To this end, let R denote the set of job rejected by RA. Let R(k, `) =
{j ∈ R : j is of type (k′, `′) and I(k′, `′) ⊆ I(k, `)}.

I Lemma 6. There exists a function φ : R→ IX such that for every Ii(k, `) ∈ IX , it holds
that vol(φ−1(Ii(k, `))) ≥ ε2

4 |Ii(k, `)| and φ−1(Ii(k, `)) ⊆ R(k, `) where vol(Q) denotes the
total volume of jobs in the set Q.

Proof. Fix a maximum interval I = Ii(k, `). Let kmax denote the maximum weight class of
the job scheduled in I. Recall the intervals Ii(k′, `′) ⊆ Ii(k, `) are nested.

We first form an 1/ε-ary tree where a node v(k′, `′) represents the set of jobs of type
(k′, `′) scheduled in the interval I on i. The node v(k′, `′) is the the ancestor of the node
v(k′ + 1, `′′) iff Ii(k′ + 1, `′′) ⊆ Ii(k′, `′). The height of this tree is kmax − k. Note that some
of the leaves can be empty. Therefore, we trim the tree such that leaves are non-empty. For
this, we find an empty leave and remove it from the tree. We repeat this procedure until no
empty leaves are present. Note that an intermediate node of the tree can be empty. Next,
we consider the following cases depending upon the number of jobs in the leaves:

Case 1: There are at least 1/ε2-jobs in each leaf. The algorithm RA rejects at least ε2/2
number of jobs at each non-empty node of the tree. Let j be such a job rejected by RA
for some node in the tree, then we define φ(j) = I (i.e., associate rejected job j to interval
I). Recall that RA rejects longest jobs among jobs of fixed class. Thus, the total volume
of jobs associated with the interval I is at least ε2/2 and the lemma holds.

Case 2: If the number of jobs in each leaf is between 1/ε and 1/ε2. The algorithm RA
rejects at least ε2/2 fraction of volume of jobs at each non-empty node except leaves.
As before, let j be such a job rejected by RA, then we define φ(j) = I. We show that
the total volume of jobs in the leaves are small. Let v(k′, `′) denote jobs corresponding
to some leaf. Then |v(k′, `′)| < 1/ε2. The total volume of jobs in v(k′, `′) is at most
(Fεk′)/ε2 = ε|Ii(k′, `′)|. Observe that the jobs of any two leaves are scheduled independent
of each other in separate sub-intervals. Combining this fact with the previous bound
on the volume of jobs in leaves implies that the total volume of jobs in leaves is at
most ε|I|. Thus, the total volume of jobs scheduled during the interval I is at most
2.vol(φ−1(I))/ε2 + ε|I|. Since SA processes jobs on at least (1− ε3)-fraction of I, it holds
that vol(φ−1(I)) ≥ (ε2/2)(1− ε3 − ε)|I| ≥ (ε2/4)|I|.

Case 3: If the number of jobs in each leaf is strictly less than 1/ε. If the algorithm rejects
ε2-fraction of total volume of jobs at each non-empty level other than the leaf, then the
lemma holds (the proof is similar to Case 2). Thus, we consider the case where the parent
of a leaf does not reject ε2-fraction of the total volume of jobs. This implies that each
parent has at most 1/ε2 number of jobs and the height of the subtree rooted at the parent
node is at most 1. The algorithm RA rejects ε2/2 jobs for each node from the root to
the parent of parent of a leaf. As before, let j be such a job rejected by RA, then we
define φ(j) = I. Unlike Case 2 where intervals corresponding to leaves are disjoint, th
intervals of parents of two leaves can overlap. Here, we use the top-down approach to
count the total volume of jobs. Each job in the parent node is split into 1/ε-parts. We
“virtually force” these parts to be accounted in the leaves of that parent (even though
their weight class is strictly smaller than the weight class of the leaves). Thus the number
of jobs in each leaf can increase by at most 1/ε2. Using arguments similar to Case 2,
the total volume of jobs in the leaves is at most 2εI. Since SA process job on at least
(1 − ε3)-fraction of I, it holds that vol(φ−1(I)) is at least ε2/2(1 − ε3 − 2ε)|I|-volume
of jobs. J

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:7

I Corollary 7. The total volume of jobs in S′ = S ∪ R is greater than
∑
I(k,`)∈IX I(1 +

ε3)|I(k, `)|.

I Lemma 8. If the value of offline solution is at most F , then the total volume of jobs in S′
is at most

∑
I(k,`)∈IX (1 + ε3)|I(k, `)|.

Proof. For any maximal interval I(k, `) on machine i, let Iεi (k, `) be the interval of length
(1 + ε3)|I(k, `)| which starts at the same time as I(k, `) on machine i.

Let j ∈ S be a job of type (k, `). The optimal offline solution must schedule j within
Fεk of its release date. Since rj ∈ I(k′, `′) ⊆ I(k, `), the optimal solution must process a job
j during Iε(k, `). So, the total volume of jobs in S can be at most |

⋃
I(k,`)∈IX I

ε
i (k, `)| ≤∑

I(k,`)∈IX (1 + ε3)|I(k, `)|. J

Clearly, Corollary 7 contradicts Lemma 8. So, Algorithm SA must be able to process all
the jobs.

I Lemma 9. The total weight of jobs rejected by the algorithm RA is O(ε)-fraction of the
total weight of jobs in the instance I.

4 The Online Algorithm B

The previous algorithm A is an offline preemptive algorithm for I that does not respect the
release dates. This section presents an online non-preemptive algorithm B. This algorithm is
assumed to know the optimal objective F and this algorithm is extended in a later section
to when this is not known. The algorithm maintains a queue for each machine i and time
t. Unlike the previous algorithm, B rejects the job of type (k, `) at the end of the interval
I(k, `). For each non-rejected job j, B uses SA to figure out the assignment of jobs to the
machines. This algorithm differs from the online algorithm mentioned in Anand et al. [2] as
it schedules jobs non-preemptively and does not necessarily process jobs in their decreasing
order of their weights.

The rejection and assignment policies of B in given Algorithm 3.

Algorithm 3 MB(I, F, ε).
1: for t = 0, 1, 2, · · · do
2: Let K denote the largest class of a job.
3: for k = K to 1 do
4: if t is the end point of the interval I(k, `) for some ` then

5: Rejection similar to RA
6: J(k, `) := the set of jobs of type (k, `)
7: D := bε2|J(k, `)|+ ε

∑
I(k′`′)⊆I(k,`):

k′=k+1

|J(k′, `′)|c+
∑

I(k′,`′)⊆I(k,`):
k′≥k+2

|J(k′, `′)|

8: Reject longest-D Tjobs from J(k, `) from the remaining jobs in J(k, `)

9: Assignment similar to SA
10: for each non-rejected job j of class k do
11: Let mj denote the machine on which j is scheduled by SA
12: Assign j to the queue of mj

FSTTCS 2019

24:8 Non-Preemptive Maximum Weighted Flow-Time

After the execution of Algorithm 3, the algorithm B uses two more rejection policies for
each machine i . The first policy ensures that B rejects O(ε2)-fraction of new assigned jobs
whereas the second policy ensures that B processes jobs in a non-preemptive fashion. At any
time if the machine i is idle, B picks a job from the highest class according to the ordering
given by SA.

Making B Non-preemptive. We now detail the second rejection policy. During the pro-
cessing of a job of some class on a machine i, the algorithm maintains a bound on total
weight of higher class jobs that are newly assigned to machine i. Let j be the job running at
the start of interval I(k, `+ 1) on machine i. Let kj denote the class of j. B rejects j if there
is a new job j′ of type (k′, l′) that k′ ≥ kj + 2 and the intervals I(k′, `′) and I(k, `) end at
same time. This ensures that the weight of job j and j′ differ at least by a factor of 1/ε. It
may happen that there is no job class k′ ≥ kj + 2. In this case, the algorithm B rejects j
if there are at least (1/ε newly arrived jobs of type (k′, `′) if k′ ≥ kj + 1 and the intervals
I(k′, `′) and I(k, `) end at same time. Note that this also ensures the weight of newly arrived
jobs is at least an (1/ε) times the weight of current running job. These rejection policies and
scheduling policy of the algorithm B for the machine i at time t is mentioned in Algorithm 4.

Algorithm 4 SB(I, F, ε, i, t).
1: Rejection similar to RA
2: for k = K to 1 do
3: if t is the end point of the interval I(k, `) for some ` then

4: Ji(k, `) := the set of jobs of type (k, `) assigned to i at t
5: D := b2ε2|Ji(k, `)|+ 2ε

∑
I(k′`′)⊆I(k,`):

k′=k+1

|Ji(k′, `′)|c+ 2
∑

I(k′,`′)⊆I(k,`):
k′≥k+2

|Ji(k′, `′)|

6: Reject D-longest jobs from J(k, `, i)

7: Making algorithm non-preemptive
8: Let j ∈ (k, `) be the job executing on i at t
9: Let Jk′ denote the set of jobs of class k′ assigned to i at t

10: if |J(k+1)| ≥ 1/ε or ∃k′′ : |J(k′′)| > 0 and k′′ ≥ k + 2 then
11: Reject j

12: Scheduling Policy
13: if the machine i is idle then
14: Start processing the earliest job of highest class in the queue of i

4.1 Analysis
For a class k, let Jk be the jobs of class at least k. For a class k, integer `, and machine i,
let Q(i, k, `) denote the jobs of Jk which are in the queue of machine i at the beginning of
I(k, `). The jobs in Q(i, k, `) could consist of either
1. jobs in Q(i, k, `− 1), or
2. jobs of Jk which get processed by A during I(k, ` − 1) on machine i. Indeed, the jobs

of Jk which are dispatched to machine i during I(k, `− 1) will complete processing in
I(k, `− 1) in A and hence may get added (if not rejected) to Q(i, k, `). Let P (i, k, `− 1)
denotes the volume of such jobs that are added by B to the queue of machine i.

Next, we note some properties of the algorithm B:

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:9

I Property 1. A job j gets scheduled in B only in later slots than those it was scheduled on
by A.

I Property 2. For a class k, integer ` and machine i, the total processing of jobs in P (i, k, `)
is at most (1−ε3)Fεk

ε3 .

Proof. If the volume of jobs processed by algorithm A during the interval I(k, `) is at most
(1−ε3)Fεk

ε3 , then the property holds trivially. Assume that the volume of jobs processed by
algorithm A during the interval I(k, `) is strictly greater than (1−ε3)Fεk

ε3 . Then it holds that
the algorithm rejects at least ε2/4-fraction of volume of jobs assigned to i (the proof is similar
to Lemma 6). Thus the total volume of jobs assigned to i is strictly greater than (1+ε3)Fεk

ε3 .
But, this contradicts Theorem 2. J

I Property 3. For a class k, integer l and machine i, the total remaining processing time of
jobs in Q(i, k, `) is at most (1−ε3)Fεk

ε3 .

Proof. We use induction. Suppose this is true for some i, k, l. We show that this holds
for i, k, ` + 1 as well. By induction |Q(i, k, `)| is at most (1−ε3)Fεk

ε3 . We consider multiple
separate cases based on which job gets processed during the interval I(k, `) on machine i.

1. Suppose the machine i is busy processing jobs from Jk during I(k, `).
Then algorithm either processes job from Q(i, k, `) or P (i, k, `). The total volume of
such jobs are bounded by 2(1−ε3)Fεk

ε3 . The property holds since the total volume of job
processed by i is |I(k, `)| = Fεk

ε3 .
2. Suppose job j of class smaller than k is processed at the start of I(k, `) and Q(i, k, `) = 0.

In this case, Q(i, k, ` + 1) consists of the jobs of P (i, k, `). The property follows since
|P (i, k, `)| ≤ (1−ε3)Fεk

ε3 .
3. Suppose job j of class smaller than k is processing at the start of I(k, `) and Q(i, k, `) > 0.

We show that Q(i, k, `) is at most Fεk

ε . Let σj denote the starting time of job j on
machine i. Then we have that σj > `Fεk

ε3 − pj/si ≥ `Fεk

ε3 − Fεk

ε . Since algorithm B prefers
jobs of higher class, it must be the case that at σj no job of class k or higher was available
with machine i . Hence Q(i, k, `) consists of jobs that were added to the queue of machine
i during the interval

(
σj ,

`Fεk

ε3

]
. Since Q(i, k, `) > 0 and the class of j is strictly smaller

than k, j must belong of class (k − 1), otherwise B would reject j due to non-preemptive
rejection policy. Moreover, there are at most 1/ε jobs of class k in Q(i, k, `). Hence, the
total volume of jobs in Q(i, k, `) is most Fεk

ε . The property follows from the facts that B
spends at most Fεk

ε processing time on j.
4. Suppose B processes a job of class smaller than k at some point in I(k, `).

This implies that Q(i, k, `+ 1) contains jobs that are released during the interval I(k, `).
The property holds due to Claim 2. J

I Theorem 10. In the schedule B a job j of class k has flow-time at most Fεk

ε8 . Hence the
algorithm B is an O(1

ε9)-competitive algorithm that rejects at most O(ε)-fraction of total
weights of job.

Proof. Consider a job j of class (k, ` − 1). Suppose it gets processed on machine i. The
algorithm B adds j to the queue Q(i, k, `). Let j′ be the job running at beginning of the
interval I(k, `). Property 3 from above implies that the total remaining processing time of
jobs in Q(i, k, `) is at most (1−ε3)Fεk

ε3 = (1− ε3)|(k, `)|.

FSTTCS 2019

24:10 Non-Preemptive Maximum Weighted Flow-Time

Consider an interval I that starts at same time as I(k, `) and has length (1−ε3)Fεk

ε7 =
|I(k, `)|/ε4. During I, the algorithm process jobs of Jk that are either in (1) Q(i, k, `), or
(2) processed by A on machine i. From Property 2, the total processing of jobs in (2) is
(1 − ε3)|I|. This leaves us with ε3|I| processing time. This is enough of process the jobs
in Q(i, k, `) and j′ as (1− ε3)Fε

k

ε3 + Fεk−1 ≤ Fεk

ε4 = ε3|I|. So the flow time of j is at most
|I|+ |I(k, `)| = Fεk(1

ε7 + 1
ε3). J

5 Removing the assumption about knowledge of F

In this section, we show how to remove the assumption about knowledge of F . We apply the
standard double trick that is often used in the online algorithms. Recall that our previous
look-ahead algorithm assumed that we know the optimal F . Here, we will construct another
look-ahead algorithm C which will invoke A for different guesses of F . Fix an instance I. Let
I(k, `, F) be the interval [`Fε

k

ε3 , (`+1)Fεk

ε3). This is same as I(k, `) except that the intervals
are also parameterized by F . Similarly, we say that a job of class k is of type (k, `, F) if
rj ∈ I(k, `, F).

Our algorithm will work with the guesses of F which are powers of
(

1+ε3

ε3

)
. Without the

loss of generality, we assume that all release dates and processing times are integers. We
first generalize the algorithm A. The new algorithm, denoted by A′, will take as parameters
an instance I ′, the guess F and a starting time t0 - all release dates in I ′ will be at least t0.
It will run A′ with the understanding that time start at t0. The interval I(k, `, F) will be
defined as [t0 + `Fεk

ε3 , t0 + (`+1)Fεk

ε3). The algorithm C is described below.

Algorithm 5 A look-ahead algorithm C.
1: Initialize F0 = 1, t0 = 0, I0 = I
2: for u = 0, 1, 2, . . . do
3: Run A′(Iu, Fu, tu)
4: if All non-rejected jobs are finished then
5: Stop and output the scheduled produced.
6: else
7: let j be the first non-rejected job which algorithm A′(Iu, Fu, tu) is not to schedule.
8: Suppose j is of type (k, `, Fu).
9: Define tu+1 be the end-point of I(k, `, Fu).

10: Define Iu+1 be the jobs in Iu which are not scheduled yet.
11: Define rj = max{tu+1, rj},∀j ∈ Iu+1.
12: Set Fu+1 = Fu

(
1+ε3

ε3

)
.

Note that this algorithm, like Algorithm A, is preemptive.

5.1 Analysis
Suppose during some iteration u, we find a job j∗ that the algorithm is not able to schedule
in iteration u. Let j∗ be type of (k∗, `∗, Fu). Recall that tu+1 is the end point of I(k∗, `∗, Fu).
For a job j ∈ Iu let ruj denote its release date in Iu.

I Lemma 11. Any job j ∈ Iu+1 with ruj < tu+1 must be of class at most k∗. Further, if
such a job is of class k, then tu+1 − rj ≤ Fu+1ε

k.

G. Lucarelli, B. Moseley, N. K. Thang, A. Srivastav, and D. Trystram 24:11

Proof. Suppose j ∈ Iu and ruj < tu+1. If j is of type (k, `, Fu) such that k > k∗, then
I(k, `, Fu) ⊆ I(k∗, `∗, Fu). Hence the interval I(k, `, Fu) end at or or before tu+1. By
definition of j∗ the algorithm must have scheduled j in I(k, `, Fu) and so, before the tu+1.
This proves the first statement in the lemma.

To prove the second statement of lemma, we use induction on u. Suppose the second
statement is true for iteration u − 1. We show that it holds for u. Let j be job of class
k ≤ k∗ such that j ∈ Iu+1 and ruj < tu+1. Note that interval I(k, `, Fu) ends on or after
tu+1. Hence tu+1 − ruj ≤ |I(k, `, Fu)| = Tuε

k

ε3 . If rj ≥ tu, then ruj = rj , and we have
tu+1 − rj ≤ |I(k, `, Fu)| = Fuε

k

ε3 = Fu+1ε
k

(1+ε3) ≤ Fu+1ε
k.

On the other hand, if ruj = tu. So we get tu+1 − tu ≤ |I(k∗, `∗, Fu)| ≤ Fuε
k∗

ε3 ≤ Fuε
k

ε3 . By
induction hypothesis, we have tu−rj < Fuε

k. Hence we have tu+1−rj = tu+1−tu+tu−rj ≤(
1+ε3

ε3

)
Fuε

k = Fu+1ε
k. J

I Lemma 12. If C does not finish all jobs in the iteration u, then the value of offline optimal
solution is at least Fu.

Proof. The proof is similar to Lemma 8. The set S is defined similarly. For each machine
and interval I(k, `, Fu) the algorithm rejects at least ε2-fraction of volume of jobs. Lemma 4
and Lemma 6 remain unchanged.

Note that for a job j of type (k, `, Fu), ruj may lie earlier than the start time of I(k, `, Fu).
So the optimum offline algorithm may complete processing j even before the start of this
interval. But Lemma 11 shows that j is released at most ε3|I(k, `, Fu)| to the left of
I(k, `, Fu). So in the definition of the intervals Iε(k, `, Fu) in Lemma 4, we consider the
interval I(k, `, Fu) and two segments of length ε3|I(k, `, Fu)| both before and after I(k, `, Fu).
Rest of the arguments are same as in the proof of Lemma 8. J

I Corollary 13. Suppose OPT lies between Fu−1 and Fu. Then the algorithm C completes a
job of class k with flow-time at most (1+ε3)Fuε

k

ε3

5.2 Making the algorithm online

We now describe the final on-line algorithm D. The above theorem implies that for any job
j, we will know the machine on which it get schedules by time rj + (1+ε3)Fuε

k

ε3 . At this time,
we place j on the queue of the machine to which it gets scheduled on by C. Further each
machine prefer the jobs of larger class and within a particular class, it just goes by processing
times. We reject at least 2ε2 volume of jobs in each interval. To achieve this, the algorithm
rejects job 4ε2-jobs (ε-fraction as in A and 3ε-fraction on each machine i) in the description
of the algorithm B. Hence Property 2 for the algorithm B can be changed slightly to show
that |P (i, k, `)| is at most (1−2ε3)Fεk

ε3 .

I Theorem 14. In the schedule D a job j of class k has flow-time at most Fεk

ε8 . Hence the
algorithm D is an O(1

ε9)-competitive algorithm that rejects at most O(ε)-fraction of total
weights of job.

FSTTCS 2019

24:12 Non-Preemptive Maximum Weighted Flow-Time

References
1 C. Ambühl and M. Mastrolilli. On-line scheduling to minimize max flow time: an optimal

preemptive algorithm. Oper. Res. Lett., 33(6):597–602, 2005.
2 S. Anand, K. Bringmann, T. Friedrich, N. Garg, and A. Kumar. Minimizing Maximum

(Weighted) Flow-time on Related and Unrelated Machines. In Proceedings of International
Colloquium on Automata, Languages and Programming, pages 13–24, 2013.

3 S. Anand, N. Garg, and A. Kumar. Resource augmentation for weighted flow-time explained
by dual fitting. In Proceedings of Symposium on Discrete Algorithms, pages 1228–1241, 2012.

4 N. Bansal and E. Cloostermans. Minimizing Maximum Flow-Time on Related Machines. In
Proceedings of Workshop on Approximation Algorithms for Combinatorial Problems, pages
1–14, 2015.

5 N. Bansal and K. Pruhs. Server Scheduling in the Weighted `p Norm. In Proceedings of Latin
American Symposium on Theoretical Informatics, pages 434–443, 2004.

6 Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Online Scheduling to Minimize
Maximum Response Time and Maximum Delay Factor. Theory of Computing, 8(1):165–195,
2012.

7 A.R. Choudhury, S. Das, N. Garg, and A .Kumar. Rejecting jobs to Minimize Load and
Maximum Flow-time. In Proceedings of Symposium on Discrete Algorithms, pages 1114–1133,
2015.

8 A.R. Choudhury, S. Das, A. Kumar, P. Harsha, and G. Ramalingam. Minimizing weighted
`p-norm of flow-time in the rejection model. In Proceedings on the Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 45, pages 25–37, 2015.

9 P.F. Dutot, E. Saule, A. Srivastav, and Denis D. Trystram. Online Non-preemptive Scheduling
to Optimize Max Stretch on a Single Machine. In Proceedings of nternational Conference on
Computing and Combinatorics, pages 483–495, 2016.

10 K. Fox, S. Im, and B. Moseley. Energy efficient scheduling of parallelizable jobs. In Proceedings
of Symposium on Discrete Algorithms, pages 948–957, 2013.

11 A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling heterogeneous
processors isn’t as easy as you think. In Proceedings of Symposium on Discrete Algorithms,
pages 1242–1253, 2012.

12 B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of ACM,
47(4):617–643, 2000.

13 Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram. Online
Non-preemptive Scheduling in a Resource Augmentation Model based on Duality. In European
Symposium on Algorithms (ESA, 2016), volume 57, pages 1–17, 2016.

14 B.A. Michael, S. Chakrabarti, and S. Muthukrishnan. Flow and Stretch Metrics for Scheduling
Continuous Job Streams. In Proceedings of the Annual Symposium on Discrete Algorithms,
pages 270–279, 1998.

15 C.A. Phillips, C. Stein, and E. Torng andJ. Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, 32(2):163–200, 2002.

16 Im S, B. Moseley, K. Pruhs, and C. Stein. Minimizing Maximum Flow Time on Related
Machines via Dynamic Posted Pricing. In 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, pages 51:1–51:10, 2017.

17 N.K. Thang. Lagrangian Duality in Online Scheduling with Resource Augmentation and
Speed Scaling. In Proceedings of European Symposium on Algorithms, pages 755–766, 2013.

	Introduction
	Problem definition and notation
	Organization

	Related Work
	An Offline Look-ahead Algorithm with Preemptions
	Analysis of the Offline Algorithm

	The Online Algorithm B
	Analysis

	Removing the assumption about knowledge of F
	Analysis
	Making the algorithm online

