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Abstract
In this paper, we prove a general hardness amplification scheme for optimization problems based on
the technique of direct products.

We say that an optimization problem Π is direct product feasible if it is possible to efficiently
aggregate any k instances of Π and form one large instance of Π such that given an optimal feasible
solution to the larger instance, we can efficiently find optimal feasible solutions to all the k smaller
instances. Given a direct product feasible optimization problem Π, our hardness amplification
theorem may be informally stated as follows:

If there is a distribution D over instances of Π of size n such that
every randomized algorithm running in time t(n) fails to solve

Π on 1
α(n) fraction of inputs sampled from D,

then, assuming some relationships on α(n) and t(n),
there is a distribution D′ over instances of Π of size O(n · α(n)) such that

every randomized algorithm running in time t(n)
poly(α(n)) fails to solve

Π on 99/100 fraction of inputs sampled from D′.

As a consequence of the above theorem, we show hardness amplification of problems in various
classes such as NP-hard problems like Max-Clique, Knapsack, and Max-SAT, problems in P such as
Longest Common Subsequence, Edit Distance, Matrix Multiplication, and even problems in TFNP
such as Factoring and computing Nash equilibrium.
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1 Introduction

The widely believed conjecture P 6= NP asserts that the class NP cannot be decided efficiently
on the worst-case. That is, no polynomial time algorithm can decide the satisfiability of
a CNF formula on every instance. However, the worst case hardness of NP still does not
clarify its average-case hardness: how hard is to decide the satisfiability on a uniformly
random instance.
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Studying the average-case hardness of NP has a two-fold motivation. First, it may
provide a more meaningful explanation than worst-case complexity about the intractability
of NP-hard instances actually encountered in practice. In other words, if NP is hard only on
the worst-case, then the theory of worst-case complexity that has been extensively developed
over the last fifty years, might not be a good reflection of reality. Second, hardness on average
is the cornerstone of modern cryptography as the security of any nontrivial cryptosystem
requires some computational problem to be average-case hard (for some nice distribution).
Additionally, showing average-case hardness for functions is a stepping stone towards proving
strong derandomization results and the construction of pseudorandom generators.

The study of hardness amplification is the task of connecting the worst-case and average-
case hardness. More specifically, based on a worst-case hardness (assumption) one would like
to prove the average-case hardness of the problem.

1.1 Utopic Theorem of Hardness Amplification
A utopic theorem in the context of hardness amplification would assert that if a function is
hard in the worst-case then it implies the average-case hardness for the same function against
algorithms with essentially the same running time complexity. More formally it would look
as follows:

I Utopic Theorem 1 (A Utopic Hardness Amplification Theorem). Let {fn}n∈N be a family
of functions. Assume that every algorithm running in time t(n), fails to compute fn on at
least γ(n) fraction of inputs. Then there exists a family {gn}n∈N of functions, such that every
algorithm running in time t′(n), fails to compute gn on at least γ′(n) fraction of inputs.

Ideally, we would like to achieve the above amplification for the following parameters1
1. γ(n) = O(1/2n) and γ′(n) = 1/2−O(1/2n),
2. t′(n) ≈ t(n),
3. {fn}n∈N = {gn}n∈N.

We briefly elaborate here why we would like the above three setting of parameters in
our utopic hardness amplification theorem. Item 1 would yield a worst-case to average-case
reduction, and therefore extend all the lower bounds and hardness results that have been
achieved in the theory of worst-case complexity for f to the average-case complexity of g. In
fact, achieving γ′(n) = 1/2−O(1/2n) would imply that no algorithm running in time t′(n) can
do much better than randomly guessing the output. Item 2 would imply that our worst-case
complexity lower bounds meaningfully translate to lower bounds in the average-case. Item 3
expresses the notion of self-reducability: if we are interested in understanding the average
complexity of a problem, our hardness amplification theorem should enable us to do so by
analyzing the worst-case complexity of the same problem. In summary, obtaining a hardness
amplification result satisfying the three items is in a sense an attempt to bridge the gap
between theory and practice. Finally, we remark that our utopic theorems would gain more
importance if the family of functions for which we show hardness amplification are natural
(in some broad sense).

Specifically, if we prove such a theorem for the family of deciding satisfiability of CNF
formulas, then we get that the assumption that P 6= NP implies that every polynomial
time algorithm fails to decide satisfiability on slightly more that half of the CNF formulas –

1 In order to succinctly specify the desirable parameters of a hardness amplification theorem, we assume
here that fn and gn are Boolean functions.
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a highly non-trivial and very desirable result that would pave the way for the construction of
one-way functions from (weak) worst-case assumptions. However, as we wake up from the
dream of a utopia, one may wonder if such a result can even be achieved [7].

Remarkably, nearly three decades ago, Lipton [26, 9] proved the above type of (utopic)
theorem for the function of computing the permanent (a #P-complete problem) against
probabilistic polynomial time algorithms. Trevisan and Vadhan [32] following a line of
works [3, 24, 29] proved such an amplification result for PSPACE and almost proved such
an amplification result for the class EXP (they couldn’t achieve Item 3). For the class NP
we are far from proving a strong hardness amplification result, and there are some known
barriers while trying to convert worst-case NP-hardness into average-case hardness (see e.g.
[6]). More recently, strong hardness amplification results have been proved for functions
in P [4, 16, 17]. We also note that hardness amplification results have also been shown for
one-way functions [34, 15, 5].

Given the above state-of-the-art picture, we raise a few natural questions and address
them in this paper. There are many problems that are hard in the worst-case but easy on
average. For example, 3-coloring is a well-known NP-hard problem, but it is an easy exercise
to show that it can be solved in linear time with high probability on a random graph. This
motivates us to distinguish within worst-case hard problems as to which of them remain
hard on average. One way to go about this task is to identify which worst-case hard problem
admits a hardness amplification theorem.

For which problems can we amplify hardness?
Can we identify a mathematical structure that allows us to amplify hardness?

The latter question has been implicitly addressed in literature (for example, if the problem
has algebraic structure like in the case of computing permanent [26] or counting k-cliques
[17]), but are quite specific and not broad enough to capture the class of problems that we
believe are hard on average. In Section 1.2.1 we address the above two questions.

Next, we turn our attention to NP-hard problems. In a beautiful paper, O’Donnell [28]
initiated the study of (non-uniform) hardness amplification in NP. His result was improved
by [19] who showed that if for some function in NP (with n inputs) we have that any s(n)
size circuit fails to compute the function correctly on 1/poly(n) fraction of the inputs then,
the hardness can be amplified to show that there is some function in NP such that any
s(
√
n)Ω(1) size circuit fails to compute the function on 1/2− 1/s(

√
n)Ω(1) fraction of the inputs.

However, the best uniform hardness amplification results (against algorithms as opposed
to circuits) that have been achieved do not match the parameters of [19]: Trevisan [31, 8]
improving on his previous work [30] showed that we can amplify hardness from 1/poly(n) to
1/2− 1/polylog(n) for NP against randomized polynomial time algorithms (later extended to
deterministic algorithms in [18]). However, it is important to note that all these hardness
amplification results are for decision problems, and this leads us to our next question, do we
gain anything by moving to search problems, or more precisely to the focus of this paper, to
optimization problems?

Can we improve our hardness amplification results for optimization problems?
Can we prove stronger uniform hardness amplification results for MaxSAT?

Arguably, optimization problems are as natural as decision problems, but are strictly
harder from the point of view of computational complexity. Does this mean we can either
give simpler proofs of hardness amplification for optimization problems or prove stronger
results? We address the above questions in Section 1.2.2.

ITCS 2020
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We now shift our focus to the class P. As mentioned earlier, we have strong worst-case
to average-case results established for problems in P [4, 17]. The drawback however is that
they are all for counting problems. This is indeed inherent as the underlying technique these
works use are the same as the one used to show worst-case to average-case reduction for the
permanent problem. While counting the number of k-cliques (the problem considered in [17])
is a natural problem, and therefore hardness amplification for that problem is interesting, it
still leaves the door open for proving hardness amplification for the search problem of just
finding one k-clique in a graph (an easier problem and thus harder to amplify hardness).

Can we prove hardness amplification results for natural search problems in P?

Moreover, there is a barrier [1] to using the algebraic techniques of [4, 17] to obtain
hardness amplification for important problems studied in fine-grained complexity such as
computing the Longest Common Subsequence (LCS) and Edit Distance (Edit-Distance) for a
pair of strings. In particular, if these string problems can be represented using low-degree
polynomials, then we could obtain small speedups by using the polynomial method [11],
which would imply new circuit lower bounds [2]. This suggests we might need to look beyond
these algebraic techniques for proving hardness amplification for these string problems. Is
there a different technique to prove hardness amplification in P? We address these aforestated
questions in Section 1.2.3.

1.2 Our Results
Our main contribution is a general hardness amplification theorem for optimization problems
which we state in Section 1.2.1. Next, we apply our main theorem to various problems. In
Section 1.2.2 we state our hardness amplification theorems for various NP-hard problems such
as Knapsack and MaxSAT. In Section 1.2.3 we state our hardness amplification theorems
for various string problems in P such as LCS and Edit-Distance. Finally, in Section 1.2.4 we
state our hardness amplification theorems for various problems in TFNP (believed to not be
in P) such as Factoring and computing Nash equilibrium.

1.2.1 Hardness Amplification of Optimization Problems
Aggregation is a key tool in the field of hardness amplification. If a function f is hard to
compute on a tiny fraction of the domain, then, intuitively, computing multiple instances
of f in one shot should be hard on a larger fraction of the inputs. More formally, for a
function f : [N ] → Σ and k ∈ N, its k-direct product encoding is defined as a function
f (k) : [N ]k → Σk mapping each tuple (x1, . . . , xk) into (f(x1), . . . , f(xk)). Using standard
techniques one can show a “direct product theorem” stating that if f is hard against t(n)
running-time algorithms on α(n)-fraction of the domain, then f (k) is hard against t′(n)
running-time algorithms on ≈ k · α(n)-fraction of its domain. But in order to utilize such a
direct product result, we need to be able to stitch k-instances into a single (larger) instance.
To address this task we introduce the following notion of direct product feasibility.

I Definition 1 (Direct Product Feasibility; Informal statement). Let Π be an optimization
problem. We say that Π is (S, T )-direct product feasible2 if the exists a pair of deterministic
algorithms (Gen,Dec) satisfying the following:

2 In the formal definition of direct product feasibility, it is defined for a pair of optimization problems
(Π,Λ) for technical reasons which will be addressed later in Section 1.2.3. In the case Π = Λ we formally
call it as self direct product feasible and this notion coincides with the informal definition given here.
For most of the applications given in this paper, self direct product feasibility notion suffices.
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Gen takes as input k instances (I1, . . . , Ik) of Π each of size n and outputs an instance I ′
of Π of size S(n, k).
Dec gets as input (I1, . . . , Ik), the instance I ′ which is the output of Gen on input
(I1, . . . , Ik), an optimal solution for I ′, and i ∈ [k]. It outputs an optimal solution for the
instance Ii.
The running time of Gen and Dec is bounded by T (n, k).

Our main theorem is about hardness amplification for an arbitrary direct product feasible
problem Π. In particular we show that if Π is hard against t(n) running time randomized
algorithms on a tiny fraction of the domain, then Π is hard on a much larger fraction of the
domain against randomized algorithms with a similar running time.

I Theorem 2 (Informal Statement). Let Π be (S, T )-direct product feasible. Let D(n) be an
efficiently samplable distribution over the instances of Π of size n. Assume the following:

Any t(n) running-time algorithm with success probability at least 2/3 fails to compute an
optimal solution on at least α(n)-fraction of the inputs sampled from D.
Fix k = poly((α(n))−1). Then we have T (n, k) = o(t(n)).
We can (deterministically) decide the optimality of a given solution to any instance in
o(t(n)) time.

Then there exists an efficiently samplable distribution D′(S(n, k)) over instances of Π of
size S(n, k) such that every t(n) running-time algorithm with success probability at least 2/3
fails to compute an optimal solution on at least 99% of the inputs sampled from D′.

Naturally, the distribution D′ is defined as follows: Draw k independent samples I1, . . . , Ik

from D, and output Gen(I1, . . . , Ik). The proof of our main theorem is based on a reduction
using an oracle access to an algorithm that solves D′ on 1% of the inputs, we convert it into
an algorithm solving D on greater than 1 − α(n) fraction of the inputs. The reduction is
uniform, so in case that the algorithms (Gen,Dec) are uniform we get a uniform hardness
amplification result.

Another key point is that our hardness amplification is a self-reduction, i.e., if a problem
is somewhat hard against one distribution D, then the same problem is much harder against
a different distribution D′.

To the best of our knowledge, this is the first result to study hardness amplification for
optimization problems. It opens avenues to prove results in various subclasses as we will see
in subsequent subsections.

1.2.2 Hardness Amplification for NP-hard Problems

In the NP world, we generalize the results of [28, 31] to optimization problems. In particular
we show that if MaxSAT is hard to solve on 1/poly(n) fraction of the inputs of samples drawn
from some samplable distribution D. Then there exists a samplable distribution D′ such
that solving MaxSAT on D′ is hard on at least 99/100-fraction of the samples.

I Theorem 3 (Informal Statement). Let D(n) be a distribution over 3-CNF formulas with n
variables and poly(n) clauses, such that for every randomized algorithm A running in time
poly(n), we have:

Pr
Ψ∼D

[A finds a optimal assignment for Ψ w.p. ≥ 2/3] ≤ 1− 1/poly(n).

ITCS 2020
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Then there exists a distribution D′(n′) over 3-CNF formulas with n′ variables poly(n′)
clauses, such that for every randomized algorithm A′ running in time poly(n′), we have:

Pr
Ψ′∼D′

[A′ finds a optimal assignment for Ψ′ w.p. ≥ 2/3] ≤ 0.01.

Moreover, if D(n) is poly(n)-samplable then D′(n′) is poly(n′)-samplable.

Observe that the failure probability on D′ is much larger than in [28, 31] and can even
tend to 0 for a proper choice of our parameters. This can be achieved since we deal with
optimization problems instead of decision problems.

We also remark that our reduction and the proof correctness are much simpler, and in
particular we do not rely the hard core set lemma [20], a powerful and non-trivial key tool in
the previous known proofs.

Our result easily extends into other NP-hard problems such as finding the largest clique
in a graph, or finding smallest dominating set or vertex cover of a graph, etc.

However, there are other NP-hard problems for which establishing a hardness amplification
result through Theorem 2 is not easy. A special highlight is that of proving such a result
for the Knapsack problem, as it isn’t immediately clear if it’s direct product feasible for
reasonable range of parameters. This is because, for the Knapsack problem, when we
aggregate instances in the natural way, optimal solutions of one instance may interfere with
other instances. Nonetheless, with some care, the direct product feasibility of Knapsack
problem was established.

The Exponential Time Hypothesis (ETH) [22, 23, 10] asserts that that we cannot decide
whether a given 3-CNF is satisfiable in time which is sub-exponential in the number of
variables. That is a worst case assumption, and it raises a natural question arises: Can we
prove stronger hardness amplification result based on ETH? In fact, can we prove a worst
case to an average case hardness amplification based on ETH?

Our next theorem is a step towards proving such a worst-case to an average case reduction
for MaxSAT.

I Theorem 4 (Informal Statement). Let D(n) be a distribution over 3-CNF instances with
n variables and O(n)-clauses, such that for every randomized algorithm A running in time
2o(n), we have:

Pr
Ψ∼D

[A finds an optimal assignment for Ψ w.p. ≥ 2/3] ≤ 1− 1
2o(n) .

Then there exists a distribution D′(n′) over 3-CNF instances with n′ variables and 2o(n′)

clauses, such that for every polynomial time randomized algorithm A′, we have:

Pr
Ψ′∼D′

[A′ finds an optimal assignment for Ψ′ w.p. ≥ 2/3] ≤ 0.01.

Heally et al. [19] proved a similar result for the non-uniform case. Our result is stronger
in the sense that we use a weaker assumption: we rely on the ETH that is assuming that
every uniform algorithm fails on 1/2o(n)-fraction of inputs. While Heally et al. use similar
assumption against non-uniform algorithms.

1.2.3 Hardness Amplification in P
We investigate hardness amplification in P and can show results for string problems, such as
LCS and Edit-Distance, which were not possible in previous works.
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I Theorem 5 (Informal statement). Fix ε > 0. Let D(n) be an efficiently samplable distribu-
tion over the instances of LCS/Edit-Distance of length n. Assume that any n2−ε running-time
algorithm with success probability at least 2/3 fails to compute an optimal alignment on
at least 1/no(1)-fraction of the inputs sampled from D. Then for some ε′ > 0 there exists
an efficiently samplable distribution D′(n1+o(1)) over instances of LCS/Edit-Distance of size
n1+o(1) such that every n2−ε′ running-time algorithm with success probability at least 2/3
fails to compute an optimal solution on at least 99% of the inputs sampled from D′.

Recall from earlier in this section that Abboud [1] had pointed out a barrier to obtaining a
result such as above, through algebraic techniques. Another similarity search problem that is
studied along with LCS and Edit-Distance, is the problem of computing the Fréchet distance
between two (discrete) curves. Strangely, this problem resists all natural approaches to show
that it is direct product feasible. Therefore, it is an interesting question as to whether it
is possible to show that it is direct product feasible (for relevant range of parameters) or
whether it is a candidate for a problem that is not direct product feasible.

Additionally, we show hardness amplification for a very different kind of problem, that of
computing the product of two matrices. We highlight this problem, as it does not directly
follow from our main theorem (i.e., Theorem 2). Elaborating, a detail that was brushed
under the carpet while discussing Theorem 2 was that, given an instance of an optimization
problem and a candidate solution, we need to able to efficiently compute the value of the
objective of the candidate solution for that instance. This naturally holds for all the problems
considered in this paper except the task of computing the product of two matrices, i.e., we do
not know a way to deterministically verify if the product of two matrices is equal to a given
third matrix, which is significantly faster than actually multiplying the two given matrices
and checking if it’s equal to the third matrix [25, 33]. Nonetheless, we modify the proof of
Theorem 2 to handle this issue.

1.2.4 Hardness Amplification in TFNP
Total problems (with not necessarily efficient verification of totality) are essentially equivalent
to Optimization problems. The class TFNP is special as it is in an informal sense the
intersection of Search NP and Optimization problems. Problems in TFNP capture problems
in various areas such as game theory, cryptography, computational geometry, etc. We show
that our general theorem can be applied to TFNP problems as well, and as an example
show it for the Factoring problem and the End of a Line problem. The latter hardness
amplification result directly implies the hardness amplification of various problems in game
theory such as computing an approximate Nash equilibrium.

1.3 Open Problems
Our work leaves open several questions. We state a few of them below.

1.3.1 Stronger Hardness Amplification
In Theorem 4 we showed that if MaxSAT is hard to compute on 1− 1/2o(n)-fraction of inputs
for sub-exponential time algorithm, then there exists a distribution on which it is hard on a
constant fraction of inputs for algorithms running in time nω(1). A natural open question is
the following:

Can we improve Theorem 4 and get hardness amplified against sub-exponential time
algorithms (instead of super-polynomial time algorithms)?

ITCS 2020
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It seems to us that derandomized direct product theorems may serve as the key tool to
address the above question (for example, see [21]). In particular, if one can prove a (strongly)
derandomized version of [14] then it might be possible to both aggregate sub-exponentially
many instances succinctly and sample from the (derandomized) direct product distribution
efficiently.

1.3.2 Direct Product Feasibility
In this paper, we were able to show direct product feasibility for certain problems quite easily
(for example, see Theorems 3 and 5), but had to work harder to prove them for some other
problems (for example, Knapsack and Matrix Multiplication), and in some problem(s) were
unable to establish the property of direct product feasibility (for example, computing Fréchet
distance). This leads us to the following question.

Can we pinpoint what property of a problem makes it possible to establish
direct product feasibility?

1.3.3 Gap Amplification versus Hardness Amplification
Direct Product theorems are key ingredients for both gap amplification and hardness ampli-
fication. Also, there are many philosophical similarities in the techniques known in literature
of the aforementioned two kinds of amplifications. Thus we can ask the following (ambitious)
question:

Can we obtain a trade-off between gap amplification and hardness amplification?

In particular, can we show that if one problem is hard to approximate on worst case within
some factor α > 0, then it is hard to approximate within a factor α/100 on average? We
note here that Feige [13], did answer the converse of this question, i.e., he used average case
hardness assumptions to prove hardness of approximation results for various problems in NP.

It seems to us that analyzing the operation of performing a small perturbation on the
given instance may be the right direction to proceed. Elaborating, consider a (worst case)
hard distribution over gap instances of some problem. If we build a new distribution, which
samples from the aforementioned distribution, then performs a small perturbation on the
sampled gap instance, and outputs the perturbed instance, then we would still retain most
of the gap in the instance sampled from the new distribution, but on the other hand, the
fraction of instances on which it is hard to solve the problem should increase significantly. It
would be interesting if this intuition/approach could be made to work.

A related question is to ask if we can improve our result in Theorem 4 (for example, by
making progress on the question detailed in Section 1.3.1) using Gap-ETH [12, 27] (instead
of ETH)?

1.3.4 Average Case Hard Problems in P
In this paper, we looked at average case hardness of some problems in P against some
efficiently sampleable distribution but one can ask if we can achieve more.

Can we show for some natural problem in P that it is hard to solve for the
uniform distribution?

Another important question stemming from cryptography [4] is whether we can construct
a fine-grained one way function from worst case assumptions?
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2 Proof Overview

We provide a proof overview for our hardness amplification result for the problem of finding
the maximum clique in a graph and then in the subsequent section we will show how our
general result (i.e., Theorem 2) would follow.

2.1 Hardness Amplification for Max Clique
To illustrate the main ideas behind our scheme let us focus on MaxCLIQUE, the problem of
finding the largest clique in a given graph G.

Assume the existence of a distribution D over graphs on n vertices which is somewhat
hard to compute. That is for every randomized algorithm A running in time poly(n), we have

Pr
G∼D

[A finds max-clique in G w.p. ≥ 2/3] ≤ 1− 1/n. (1)

We would like to prove the existence of a new distribution D′ over graphs on poly(n)
vertices which is much harder to compute. That is, for every randomized algorithm A′
running in time poly(n′), we have:

Pr
G′∼D′

[A′ finds max-clique in G′ w.p. ≥ 2/3] ≤ 0.01. (2)

Moreover if D is poly(n)-time samplable, then so is D′.

Construction of New Distribution

D′ samples a graph H as follows:
1. Independently sample G1, . . . , Gk from D, where k = poly(n).
2. Define V (H) = V (G1)∪̇ · · · ∪̇V (Gk).
3. For every i ∈ [k], connect the vertices in V (Gi) using the original edges in Gi.
4. For every i, j ∈ [k] such that i 6= j, insert all the possible edges between Gi and Gj .
5. Output H.
Clearly, if D is poly(n)-time samplable, then so is D′. Now assume for sake of contradiction,
that there exists A′ running in time poly(n′), violating Equation (2). We show the existence
of an algorithm A running in time poly(n) violating Equation (1).

The algorithm A on input graph G with n vertices is defined as follows:
1. Let S be an empty set.
2. Repeat following O(n) times.

a. Pick randomly i ∈ [k].
b. Independently sample G1, . . . , Gi−1, Gi+1, . . . Gk from D.
c. Construct H setting Gi to be G.
d. Find clique in H using A′.
e. Restrict clique in H to the vertices of G and add it to S.

3. Output the largest clique in S.

Clearly, the running time of A is poly(n), as n′ = poly(n) and the running time of A′ is
poly(n′). Our first observation is that for any graph H constructed by A, and for every
i ∈ [k] the restriction of a maximal clique in H into Gi, is a maximal clique for Gi.

Let A0 be one iteration of step 2 of A. If we show that A0 outputs maximum clique w.p.
Ω(1/n) on 1− 1/n fraction of samples from D then, A outputs maximum clique w.p. 2/3 on
1− 1/n fraction of samples from D.

ITCS 2020
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Now, observe that if instead of planting the given input graph G as the i-th subgraph
of H, we were planting a uniformly random sample of D, then we get a graph H which is
drawn according to D′. Consequently, if that was the case, then the success probability of
A0 was equal the probability of A′ and we were done.

Let D′G denote the marginal distribution over H, where the graph G is planted at a
random coordinate i ∈ [k]. We conclude the proof by showing that for 1− 1/n-fraction of
instances G drawn from D we have:

Pr
G′∼D′

G

[A′ finds max-clique in G′ w.p. ≥ 2/3]

≥ PrG′∼D′ [A′ finds max-clique in G′ w.p. ≥ 2/3]
2 .

Towards this goal we use a result by Feige and Kilian [14] that was proven in the context of
parallel repetition. Under minor manipulations their result can be stated as follows:

Let X be a universe and T be a distribution over X. Let f : Xk → {0, 1}. Define

µ = E
xk∼T k

[
f
(
xk
)]
,

µx = E
i∈[k],x1,...,xi−1,xi+1,...,xk∼T

[f(x1, . . . , xi−1, x, xi+1, . . . xk)] .

Pr
x∼T

[
|µx − µ| ≥ k−1/6

]
≤ k−1/6, (3)

To conclude the result, set X as the set of graphs with n vertices, and T be the distribution
D. We have D′ = Dk. Define f : Xk → {0, 1} by:

f(G′) = 1 ⇐⇒ A′ finds a maximal clique in G w.p. ≥ 2/3.

In these notations,

µ = Pr
G′∼D′

[A′ finds max-clique in G′ w.p. ≥ 2/3]

µx = Pr
G′∼D′

G

[A′ finds max-clique in G′ w.p. ≥ 2/3] .

By an application of (3), and a proper choice of k, we get that for all but at most k1/6-fraction
of graphs G drawn according to D, the success probability of A′ on D′G is Ω(n), as claimed.

2.2 Abstraction
In the previous subsection, we showed the main ingredients used for proving hardness
amplification for the task of finding a maximal clique in a given graph. What were the
properties of MaxCLIQUE that we utilized to prove the result?

One property that we used was that if we are given k input graphs G1, . . . , Gk, there
exists an efficient way to construct a large graph H such that a maximal clique in H induces
a maximal clique on each of the graphs Gi. The second property was that given a maximal
clique in H there exists an efficient algorithm to construct a maximal clique on each of the
graphs Gi.

These two properties are captured in Definition 1: The first property of a problem Π being
Direct Product feasible is the existence of an efficient algorithm Gen stitching k instances
I1, . . . , Ik of Π into a larger instance I ′ of Π, such that: an optimal solution for I ′ induces
an optimal solution for each of the instances Ii. The second property the existence of an
efficient algorithm Dec converting an optimal solution for I ′ into an optimal solution of I ′.
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Once we show Π is Direct Product feasible then the rest of the proof goes through. Indeed,
assuming the existence of a distribution D on instances of Π for which any efficient algorithm
fails to compute on 1− 1/n fraction of inputs, we define the distribution D′,D′I as follows:
D′ is the k-product distribution of D, where we pick k random samples from D′ inde-
pendently.
D′I is the distribution where we pick uniformly at random i ∈ [k], and independently
sample I1, . . . , Ii−1, Ii+1, . . . Ik from D. Finally, we construct I ′ by setting Ii to be I.

Now we can use [14] to show that for most instances I ∼ D to connect the success
probability of A′ on D′ and D′I , to conclude the proof.

Remark about Direct Product results and Hardness Amplification

The direct product lemma at the heart of most hardness amplification results is the XOR
lemma [34]. But here we critically use the fact the problem is total, so at the surface at least,
our results are incomparable to the hardness amplification results for NP and EXP obtained
via XOR lemmas.
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