Interactive Coding with Constant Round and
Communication Blowup

Klim Efremenko

Ben Gurion University, Beersheva, Israel
http://www.cs.bgu.ac.il/~klim
klimefrem@gmail.com

Elad Haramaty
Harvard University, Cambridge, MA, USA
seladh@gmail.com

Yael Tauman Kalai
Microsoft Research, Boston, MA, USA
yael@microsoft.com

—— Abstract

The problem of constructing error-resilient interactive protocols was introduced in the seminal works
of Schulman (FOCS 1992, STOC 1993). These works show how to convert any two-party interactive
protocol into one that is resilient to constant-fraction of error, while blowing up the communication
by only a constant factor. Since these seminal works, there have been many followup works which
improve the error rate, the communication rate, and the computational efficiency.

All these works only consider only an increase in communication complexity and did not consider
an increase in round complexity. This work is the first one that considers the blowup of round
complexity in noisy setting. While techniques from other papers can be easily adapted encode
protocols with arbitrarily round complexity this coding schemes will lead to large(and usually
unbounded) increase in round complexity of the protocol.

In this work, we show how to convert any protocol 11, with no a priori known communication
bound, into an error-resilient protocol II’, with comparable computational efficiency, that is resilient
to constant fraction of adversarial error, while blowing up both the communication complexity and
the round complexity by at most a constant factor. We consider the model where in each round each
party may send a message of arbitrary length, where the length of the messages and the length of
the protocol may be adaptive, and may depend on the private inputs of the parties and on previous
communication. We consider the adversarial error model, where e-fraction of the communication may
be corrupted, where we allow each corruption to be an insertion or deletion (in addition to toggle).

In addition, we try to minimize the blowup parameters: In particular, we construct such II’ with
1+0 (61/ 4)) blowup in communication and O(1) blowup in rounds. We also show how to reduce
the blowup in rounds at the expense of increasing the blowup in communication, and construct
IT" where both the blowup in rounds and communication, approaches one (i.e., no blowup) as ¢
approaches zero. We give “evidence” that our parameters are “close to” optimal.

2012 ACM Subject Classification Theory of computation — Interactive computation
Keywords and phrases Interactive Coding, Round Complexity, Error Correcting Codes
Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.7

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2018/054/.

Funding Klim Efremenko: supported by the Israel Science Foundation (ISF) through grant No.
1456/18.

© Klim Efremenko, Elad Haramaty, and Yael Tauman Kalai;

37 licensed under Creative Commons License CC-BY
11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 7; pp. 7:1-7:34

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.cs.bgu.ac.il/~klim
mailto:klimefrem@gmail.com
mailto:seladh@gmail.com
mailto:yael@microsoft.com
https://doi.org/10.4230/LIPIcs.ITCS.2020.7
https://eccc.weizmann.ac.il/report/2018/054/
https://eccc.weizmann.ac.il/report/2018/054/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Interactive Coding with Constant Round and Communication Blowup

1 Introduction

Communication over a noisy channel is a fundamental problem in computer science, engin-
eering and related fields. Starting from the seminal work of Shannon [30], this problem of
error-resilient communication has been extensively studied. Today, we have “good” error-
correcting codes — ones that achieve constant information rate as well as constant error rate.
The two main error models that were considered are the stochastic error model, where the
errors are distributed according to some distribution (such as the binary symmetric channel),
and the adversarial error model, where errors may occur adaptively and adversarially, so
long as the prescribed error rate is not exceeded. This work considers the latter (stronger)
adversarial error model. In addition, we consider (adversarial) insertion and deletion errors.

In a sequence of innovative works, Schulman [27, 28, 29] initiated the study of error-
resilience in the context of interactive protocols. Specifically, he considered the setting where
two parties are interacting via a protocol over a noisy channel, where the noise could be
stochastic or adversarial. Since Schulman’s seminal works, there have been many followup
works, that improve the error rate [9, 16, 17, 6, 1, 10], the information rate [24, 19, 12], the
computational efficiency [15, 2, 4, 3], and very recently that are been beautiful works that
generalize the error model of the adversary to allow insertions and deletions [8, 21, 31]. There
have also been several works that consider the multi-party setting [26, 23, 7, 14]. We refer
the reader to [11] for a fantastic survey on previous work on interactive coding. The focus of
this work is on the 2-party setting and the adversarial error model.

All previous works consider only an increase of total communication without looking
on number of rounds required to perform the task. In cryptography and in distributed
computing, protocols that consist of long messages are considered, and it is desirable to keep
the round complexity as low as possible. In fact, much research (in both cryptography and
distributed computing) focuses on reducing the round complexity of various protocols, as
often the round complexity is the bottleneck, and not the communication complexity. We
argue that since we consider interactive protocols, we should aim for error resilient protocols,
that not only blow up the communication by at most a constant factor, but also blow up the
number of rounds by at most a constant factor.

Our model is the typical synchronous model used in cryptography and distributed
algorithms. In our model we assume that the original protocol can be very versatile that is
each party can decide how many bit he wants to send next based on previous communication
and his private input. Therefore not only that number of rounds and communication of each
player depends not only on the communication over the channel but also on players private
input. We want to mention that more versatile original protocol is the harder it is to make a
coding scheme for it. We elaborate on this model in Section 1.1.

Moreover, we emphasize that we do not assume that the communication (or round)
complexity is fixed or a priori known. This is in contrast to all previous works, which assume
that the communication (and round) complexity T is fixed and known in advance, and that
the adversary can corrupt at most €I’ bits.! We note that such an assumption is often
unrealistic and results in protocols where the communication complexity is always worse-case.

! We mention the work of Agrawal et. al. [1], which does assume that the communication complexity of
the underlying errorless protocol is a priori known. However, with the goal of maximizing the error rate,
the communication complexity in the error-resilient protocol is not fixed and is not a priori known. We
emphasize that in our work, we do not even assume that the parties a priori know the communication
complexity in the underlying errorless protocol.

K. Efremenko, E. Haramaty, and Y. T. Kalai

In this work, we allow the communication and round complexity to differ from execution to
execution, depending on the inputs, or “types” of the parties, and construct an error-resilient
protocol that preserves this per-execution communication (and round) complexity. We note
that the fact that we allow such adaptive (and not a priori known) communication length
adds substantial technical difficulties to our work, which we elaborate on in Section 1.4.2

Our Results in a Nutshell. We show how to convert any protocol, where messages can be
of arbitrary length, and where the communication and round complexity are not a priori
known, into an error-resilient one, with comparable (computational) efficiency guarantees,
that is secure against constant fraction of adversarial error, while incurring a constant blowup
both to the communication complexity and to the round complexity. We allow the adversary
not only to toggle with the bits of communication, but also allow the adversary to insert
and delete bits. We elaborate on our communication model and error model in Section 1.1.

Moreover, we try to minimize the (constant) overhead in communication and rounds: In

particular, we obtain (1 + O(e*/4)) blowup in communication and O(1) blowup in rounds.

We also show how to reduce the blowup in rounds at the expense of slightly increasing the
blowup in communication, and construct an error-resilient protocol where both the blowup in
rounds and communication approaches one as e approaches zero. We elaborate on our results
(and on the exact parameters we obtain) in Section 1.2, we give a high-level overview of our
techniques in Section 1.4, and give “evidence” that our parameters are “close to” optimal in
Section 2.3 (after formally stating our main theorem in Section 2.2).

Our Technical Hurdles

The reader may at first think that dealing with short messages is the “hard case”, since for
long messages we can use standard error-correcting codes. We argue that this intuition is
misleading. First, when considering adversarial error, applying an error-correcting code to
each message separately does not help, since the entire message can be corrupted (even if
the message is long), and indeed in this work we focus on adversarial error. We mention,
however, that even for the case of stochastic error, dealing with messages of varying lengths,
where some messages may be short while other messages may be long, is challenging.

Before explaining the difficulties that arise in this setting, we note that if we knew a
priori the number of rounds and the communication complexity of the underlying protocol,
then we could have “smoothed” it out perfectly, so that all the messages would have been of
equal length,® and then we could have used a protocol (and analysis) from prior works.

Since we do not have such a bound, we cannot perfectly smooth out the underlying
protocol. Nevertheless, we must somehow smooth out the protocol, since a party cannot
send a long message before she is “sufficiently confident” that the transcript so far is correct,
as otherwise, this long message will be wasted (even if the adversary does not corrupt it at
all). Therefore, we “approximately” smoothen out the underlying protocol, by guaranteeing
that each message is of length at least half and at most twice the length of the previous
message. We refer the reader to Section 1.4 and Section 3 for details.

We believe (though we haven’t checked) that the tree-code based interactive coding schemes may easily
be adapted to the setting where the communication complexity is not a priori bounded, by having each
party construct an (infinitely growing) tree code. However, in tree-code based schemes the parties are
computationally inefficient and there is a large blowup to the round complexity.

This approach blows up the communication and round complexity by a constant factor. If the goal is
to optimize this blowup (as we do in this work) then one cannot afford to perfectly smoothen out the
protocol, in which case our techniques are needed.

7:3

ITCS 2020

7:4

Interactive Coding with Constant Round and Communication Blowup

We mention that in order to minimize the blowup, we consider two small constants
a, > 0 (that depend on the error rate) and guarantee that the length of each message is
at least o/ and at most %, where (is the length of the message preceding it. This is not
important for the high-level overview.

We emphasize, that even after smoothing the underlying protocol, the length of the
messages can still grow (or shrink) at an exponential rate, which brings rise to several
challenges. For example, similar to many previous works (such as[27, 2, 19]), when a party
realizes that there was an error she backtracks. In our setting we need to be extremely
cautious when we backtrack. Note that the adversary can cause us to backtrack even though
we are synchronized, by making us believe that we are out of sync. Previous works ensure
that the adversary needs to invest enough error for such backtracking, and hence such “false”
backtracking is costly for the adversary. However, in the case where messages are of varying
length, this analysis becomes extremely delicate, since the adversary can corrupt a short
message (by investing a small amount of his error budget), and thus falsely cause the parties
to backtrack and delete a previous long message. Indeed, as opposed to previous protocols,
we do not erase when we backtrack. Rather, we keep this transcript as “questionable”. We
refer the reader to Section 1.4 and Section 4 for details.

Moreover, when messages are of varying lengths, even if the protocol is (approximately)
smooth, and even if we backtrack carefully, ensuring that the round complexity does not
blow up, does not only require a careful (and significantly more complex) analysis, but also
requires additional new ideas.

For example, the protocols in previous works, perform an equality test after every chunk
of length d (for some parameter d), where in this equality test the parties check whether they
are in sync by sending each other a hash of their transcript so far. In our setting, messages
may be very long, and we cannot chop a message to chunks of d bits each, since this will
blow up the round complexity. Instead, it is tempting to simply append to each message
a hash of length that is proportional to the message length (e.g., append a hash of length
ng to a message of length ¢). However, as we show in Section 1.4 and Section 5, in order
to ensure a constant blowup in round complexity, we must not only allow the length of the
hash value to depend on the length of the message it is being appended to, but rather it
should also depend on the length of the entire history. This is the case since if the protocol
has messages of varying lengths, the adversary can corrupt a single long message, in a way
that causes many hash collisions in future short messages. Thus, by corrupting one (long)
message many rounds can be wasted.

In order to get around this problem, we allow the length of the hash to depend on the
length of the entire history. Moreover, we consider randomized (i.e., seeded) hash function,
where the party sends the hash value together with the hash seed, so that the adversary does
not know which hash function will be used ahead of time. However, with a seed of length w
one can hash messages of length at most 2, and the history may be longer than 2. Thus,
in our scheme some of the seed is chosen ahead of time and some of the seed is chosen with
each message. We refer the reader to Section 1.4 and Section 5 for details.

Moreover, the fact that the communication complexity is not a priori known creates an
additional problem. Following previous works (such as [2, 3, 19]), we first construct a protocol
in the common random string (CRS) model (this is done in Section 5), and then we remove
the CRS (in Section 6). Removing the CRS in previous work was straightforward: First
show that the CRS can be made relatively short (of size proportional to the communication
complexity) by using a d-biased source, and then argue that one of the parties can simply
send the CRS using a (standard) error correcting code. In our case this cannot be done since
we do not have an a priori bound on the communication complexity.

K. Efremenko, E. Haramaty, and Y. T. Kalai

We give an overview on how we overcome the technical hurdles mentioned above in
Section 1.4, but warn the reader that overcoming these challenges is quite difficult, and
results in a very complex analysis.

We next explain our model in more detail.

1.1 Our Model
1.1.1 The Noiseless Model

We consider 2-party protocols, between two parties, Alice and Bob. In our model, at
every round i, Alice and Bob do the following: Alice chooses £4(i) € N (greater than 0)
and a message m4 (i) € {0,114 based on her view of previous communication and her
private input, and sends m4 (i) to Bob. Similarly, Bob chooses {5 (i) € N and a message
mp(i) € {0,115 based on his view of previous communication and his private input, and
sends mp(7) to Alice. At some round, one of the parties aborts, and both parties report
an output.

More generally, we allow Bob’s message in the i’th round to depend, not only on all
previous communication and his private input, but also on Alice’s message in the ¢’th round.
This corresponds to the synchronous model where in each round ¢, Alice and Bob do not
send their messages simultaneously, but rather first Alice sends her message and only then
Bob sends his message (which may depend on Alice’s message). This model is known as
the message-passing model, and is the most common model used in cryptography (and
distributed algorithms). We note that our results also apply to the synchronous simultaneous
message model, and the choice of presenting our results in the synchronous message-passing
model was due to the fact that we think that this model is more standard.

We denote the input of Alice by x, and we denote the input of Bob by y. Note that a pair
of inputs (x,y) define £4 and ¢p for all rounds, and also define the number of rounds. Thus,
in the noiseless setting, for any protocol we can define CC(z,y), which is the communication
complexity of the protocol for the input pair (x,y). Similarly, we can define R(z,y), which is
the number of rounds for the input pair (z,y).

1.1.2 The Noisy Model

In this work, we consider the adversarial error model, and assume that the adversary can
corrupt any e-fraction of the bits, for some a priori fixed small constant € > 0. We allow the
adversary, not only to toggle with the bits, but he can also insert and delete bits.

In our model, where messages can be of arbitrary length, protecting protocols against
insertions and deletions is extremely important, since otherwise the parties can securely
encode information via the length of the messages. Specifically, in our model, where messages
can be of varying lengths, one can trivially protect protocols against (adversarial) toggle
corruptions while incurring only a constant factor blowup in the communication complexity,
albeit an unbounded blowup in the round complexity, as follows: First convert the protocol
to a protocol where each party sends a single bit in each round. Then, encode this bit as
follows: If the bit is zero then encode it via a single bit (zero or one), and if the bit is 1
then encode it via any two bits. Upon receiving an encoded message the parties will decode

without looking at the content of the message, but rather only by the length of the message.

We note that most previous work on interactive coding do not consider insertion and
deletions. Indeed, in the synchronous model, where the parties send one bit per round,
insertions and deletions are not interesting, since the parties “can tell” when an insertion or
deletion occurs.

7:5

ITCS 2020

7:6

Interactive Coding with Constant Round and Communication Blowup

An exception are the recent works of [8, 21, 31]. These works consider insertion and
deletions in the asynchronous model. More specifically, they consider an adversary who can
insert a message from one party and delete a message from the other party, and thus cause
the parties to be out-of-synch with regard to which round they are on (though similarly to
previous work, they are in the bit-by-bit model, thus their protocols incur a large blowup to
the round complexity, and they assume an a priori bound on the communication complexity).

In our work, we consider the synchronous model, where the parties always agree on
the number of speaking alternations (which in our case is exactly the number of rounds).
We emphasize, however, that the work of [21] shows a generic method for converting any
error-resilient protocol in the synchronized model into one that that is error resilient in the
asynchronized model. We believe that one can use their approach (and in particular the
use of a synchronization code [20]) to boost our result from the synchronous model to the
asynchronous model.

In the adversarial error model, in our work and in all previous works, there is an a priori
fixed constant € and it is assumed that the adversary can corrupt at most €T" bits, where T'
is the number of bits communicated. In most previous work, the value of T' was assumed to
be a priori known (and fixed). As mentioned above, in this work, we allow the length of the
protocol to depend on previous communication. This models the real world setting, where
we cannot a priori predict the length of our conversations, and it can depend on our private
inputs (or on our “types”).

In this model, care should be taken when defining the adversarial error model. One
possibility is to allow the adversary to corrupt €I bits, where T is the number of bits that
would have been transmitted assuming no error.*

We note, however, that with such a definition the adversary can use his ¢I" bits of
corruption budget, and cause the parties to abort prematurely. Namely, he can convince
both parties that the other party is “boring” (i.e., that the other party has an input such that
if they were executing the error-free protocol without error, the number of bits exchanged
would have been less than €T). In such case both parties would abort prematurely and the
adversary would “win”.

Instead, we allow the adversary to corrupt only e-fraction of the bits that were actually
communicated. We note that a similar model was used in the work of Agrawal et al. [1],
where their goal was to get optimal error-rate, and to that end, they considered error-resilient
protocols with an adaptive speaking order and where the communication complexity may
depend on the error pattern.” We emphasize that this adversarial model is stronger than
alternative (natural) models, such as the the prefix model that allows the adversary to
corrupt e-fraction of any prefix of the transcript.

In this work, we also add a bound €’ on the number of rounds that the adversary can
“fully” corrupt, where we say that a round is fully corrupt if the adversary corrupts more
than J-fraction of the bits, for some small constant § (which depends on the error bound).
We note that all previous works also had such a bound (implicitly), since in previous works
there was no distinction between rounds and communication. In contrast, in our model, a
bound on the number of bits corrupted does not imply a bound on the number of rounds that
are fully corrupted. For example, consider the protocol in which there is one long message
of length ¢, followed by e/ messages, each consisting of a single bit. In such a protocol, not
corrupting the long message gives the adversary the budget to corrupt all the short messages.

4 We note that the adversary knows T since we assume (similarly to all previous work that consider the
adversarial error model), that the adversary knows the private inputs of the parties.

5 As mentioned above, the work of [1] does assume an a priori known bound on the communication
complexity of the underlying (errorless) protocol.

K. Efremenko, E. Haramaty, and Y. T. Kalai

We emphasize that bounding the number of rounds that are fully corrupted is necessary,
since without such a bound, it is impossible to ensure a small blowup in round complexity.
This argument is deferred to Section 2.3 where we give evidence to the optimality of our
parameters.

1.2 Our Results

In what follows, we denote our error parameters by € and €', where € corresponds to the
fraction of corrupted bits, and € corresponds to the fraction of (fully) corrupted messages.
We show that for any (small enough) constants e,e¢’ > 0 there exist blowup parameters
a,a’ > 0 such that one can convert any protocol into an error resilient one (with respect to
e and €), with a blowup in communication, and essentially & blowup in rounds (with an
additional term that depends logarithmically on the communication complexity). We can set
o = O(1) we obtain a blowup of & = O (61/ *) in communication complexity. Alternatively,
one can set a,a’ such that they both approach 0 as ¢, ¢’ approach 0.

Our error-resilient protocol is randomized, even if the original protocol was deterministic.
This is similar to all previous works that construct computationally efficient interactive coding
schemes that are robust to adversarial error (starting with the work of [2]). Schulman [28]
(followed by many followup works) gave a deterministic interactive coding scheme, at the price
of computational inefficiency. The parties in the error resilient scheme run in exponential
time in T', where T is an upper bound on the length of the underlying protocol.® Recently,
Gelles et al. [13] gave a deterministic and efficient construction for the case of random error.
However, constructing a deterministic interactive coding scheme that is resilient to adversarial
error and is computationally efficient remains an interesting open problem.

We are now ready to state our main theorem. The most general theorem can be found in
Section 2, and in what follows we present our theorem in a regime of parameters that we
think is of particular interest.

In what follows, we let i, denote the minimum value for which the underlying error-free
protocol II transmits at least t,;, bits.

» Theorem 1 (Main Theorem (informal)). For any sufficiently small € > 0 and for any
€ < Y4, there exist blowup parameters o and o, and a polynomial time probabilistic oracle
machine S, such that the following holds. For any adversary A that corrupts at most e-
fraction of the bits of the simulated protocol II'y (which is the protocol II' executed with the
adversary A), and “fully” corrupts at most € -fraction of the messages of Iy, where A “fully”
corrupt a message if he corrupts at least o®-fraction of the bits of the message, we have the
following guarantees.

1. CC(ITY) > tin.

2. Pr[CC(ITy) > (1 + o)CC(II)] = exp (—CC(ITy)).

3. Pr[R(T,) > (14 &')R(II) + o’ log CC(II)] = exp (—R(IT'y)).

4. Pr[(Output(Il’y) # Trans(II))] = exp (—CC(IT'y)).

Moreover, we can choose the parameter a, o/ such that o = O(e'/*) and o/ = O(1), or we
can choose o, o’ such that a and o’ approach 0 as € approaches 0.

The purpose of t,;,. In the theorem above, without adding the restriction that CC/(S4, SB)
> tmin, the simulated protocol could have aborted as soon as more than e-fraction of error
was detected. In particular, if the first bit was noticeably corrupted, then the parties in

5 Braverman [5] showed how to improve the parties’ runtime to be sub-exponential in 7.

77

ITCS 2020

7:8

Interactive Coding with Constant Round and Communication Blowup

the simulated protocol could have safely aborted. Thus, without adding the restriction
that CC(S4,8P) > tuin, this theorem does not even generalize previous works, which
all assume an a priori fixed transcript size ¢ and assume the adversary makes at most et
corruptions. Adding this restriction, gives the adversary an initial budget of €t corruption
bits. Moreover, since the error probability is exponentially small in the actual transcript
length, the requirement CC(S4, SB) > t,,1, guarantees a low error probability.

There was a long line of works that consider the case of unknown noise of

1.3 Related Works

This work is the first one that considers the blowup of round complexity in noisy setting.
While techniques from other papers can be easily adapted encode protocols with arbitrarily
round complexity this coding schemes will lead to large(and usually unbounded) increase in
round complexity of the protocol. However there are many papers that considered models
related to our model. We want to mention that in other papers consider an effect of message
length(what mean also the round complexity) on the rate of the communication complexity
of the coding one can see it non-explicitly in [24, 19] and more explicitly in [22]. In non-noisy
setting there was a long line of works showing that reducing round complexity may cause an
exponential gap in communication complexity.

The paper [1] considered a very adaptive models of the protocols where total communica-
tion is not known in advance. There was also a large line of works considering the case when
to total amount of noisy in unknown see survey by Gelles [11] for more details.

1.4 Overview of Our Techniques

In this section we give a high-level overview of the main ideas behind our construction
and our analysis. In this overview, we do not focus on getting “optimal” parameters, and
focus on constructing an error-resilient scheme that blows up the round and communication
complexity by a constant factor. We note that all the conceptual ideas in this work are
needed even to achieve constant overhead.

We start with an arbitrary protocol II.

Smoothness. We first convert II into a smooth protocol, with the property that after a
message of length ¢ comes a message of length at most 2¢, and before a message of length /¢
comes a message of length at least £/2. We mention that in the actual protocol, to minimize
the blowup in rounds and communication, we define («, §)-smoothness, where o and 3 are
functions of the error rate e, and the guarantee is that after a message of length ¢ comes a
message of length at least o/ and at most %, and we show how to convert any protocol II
into an (a, #)-smooth protocol.

As mentioned above, the reason we need to smoothen II is that otherwise, if after receiving
a short message a party sends a long message, then the adversary by corrupting the short
message, can cause the long message to be wasted, thus effectively allowing him to corrupt
the long message by only using the budget needed to corrupt the short message.

Intuitively, we smoothen II by instructing a party who wishes to send a long message
after receiving a short message, to do so “cautiously”, by sending the long message over
several rounds, each time increasing the message length by at most a factor of 2.

To ensure that this does not cause a blowup to the round complexity, we make sure that
a party does not send a short message after receiving a long one. Otherwise, suppose Alice
always sends long messages (each of length ¢) and Bob always sends single bit messages. Then

K. Efremenko, E. Haramaty, and Y. T. Kalai

by having Alice send her messages “cautiously”, as explained above, the round complexity
will blowup by a factor of log ¢, which is too large. Instead, we instruct Bob to send longer
messages, of length af, so that the adversary will need to invest enough budget to corrupt
Bob’s message; in particular, enough to allow Alice to send her length ¢ message safely.

We refer the reader to Section 3 for the formal definition of smoothness, and to Lemma 6
for how to convert a protocol into a smooth one.

From now on we assume the protocol II is smooth, and show how to convert it into an
error resilient one.

Message adversary. We first note that we can focus our attention only on adversaries, that
rather than corrupting individual bits, corrupt messages, where the price of corrupting a
message m is the maximum between the length of m and the length of the corrupted version
of m. If the adversary chooses to corrupt a message m then he may corrupt it adversarially,

and if the adversary chooses not to corrupt a message then he cannot make any changes to it.

The reason we can focus on such adversaries is that we can easily convert any protocol
that is resilient to errors made by message adversaries into a protocol that is error resilient
to any adversary by applying an error correcting code to each message, and hence if only
a small fraction of a message is corrupted (smaller than the allowed error rate) then this
corruption can be ignored, since it is immediately corrected by the error correcting code. We
use the error correcting code of Guruswami and Li [18], that is resilient to insertion and
deletions, and has a minimal blowup of 1+ O(y/€) to the message length.

Thus, from now on, throughout this section, we ignore the layer of error correcting code,
and consider only message adversaries.

1.4.1 The Protocol in the Ideal Hash Model

We first show how to convert any protocol II into a protocol that is error resilient in the
Ideal Hash Model. As in previous works (starting with the original work of [27]), our starting
point is the idea of using hashing to check for consistency. Namely, in the protocol Alice
and Bob check equality of their partial transcripts, by sending to each other hashes of their
partial transcripts.

In the Ideal Hash Model, we assume the existence of an “ideal” hash function, that is
known to all parties and does not need to be communicated, and in the analysis we assume
that the number of hash collisions is bounded, yet adversarially chosen (where the cost for
each hash collision is proportional to the length of the hash value). We later elaborate on
how we remove this ideal model assumption, by implementing this ideal hash using a real
hash function.

For the sake of simplicity, throughout this overview we think of the parties appending to
each message they send a hash of their transcript so far. We mention however, that in the
actual protocol, since we want to optimize the communication blowup, we append a hash
only to “long enough” messages, i.e., messages of length at least d, for a carefully chosen
parameter d € N. In particular, we do not append a hash to short messages, and instead
add a hash in every round that divides d (to take care of the case where all the messages
are short).

Each party, upon receiving a message, first checks the consistency of the corresponding
hash with its current transcript. If an inconsistency occurs, the parties enter a correction mode.

7:9

ITCS 2020

7:10

Interactive Coding with Constant Round and Communication Blowup

Correction Mode. In correction mode, the parties realize that their transcripts are in-
consistent, and they need to rewind their transcript to a point where they believe they
are consistent, yet without backtracking too much. Note that once an error is detected,
the parties cannot simply rewind their transcript one round at a time, since the adversary
can cause them to completely get out of sync. Moreover, they cannot send each other the
round number they are currently simulating, as was done in [2], since this will blowup the
communication by too much. Instead, we adapt the idea of backtracking to a “meeting
point”, an idea that was originated in [27] and used in [19]. For the sake of completeness, we
explain this idea below.

Once the parties realize they are not in sync, they enter a correction mode, and once
in error mode, they send two hashes of their transcript: One hash of the entire transcript,
and the other of the transcript up until the second largest round. If a consistency was
found they go back to the point of consistency. Otherwise, they send two hashes of their
transcript until the largest, and second largest, round which is a multiple of 2. Again, if a
consistency was found they go back to the point of consistency. Otherwise, in the i’th try,
they send two hashes of their transcript until the largest, and second largest, round which is
a multiple of 2¢71,

In order to avoid the situation where the adversary invests O(1) corruptions, and causes
a party to go back 2¢ steps, and thus lose 2 bits of a possibly good transcript, the parties go
back 2¢ steps only after receiving roughly 2¢ confirmations. The confirmations cannot be in a
single round, since then the adversary could corrupt a single round and cause the parties
to go back (possibly) 2¢ rounds. Thus, instead these confirmations should span roughly 2
rounds, and each party keeps a counter of how many confirmations it has.

One important missing piece is that they can be out of sync with respect to which are the
meeting points. Thus, we also append to the message a hash of E, which denotes the number
of rounds the party is in the error mode, and this length determines where the meeting points
should be (which is roughly the power of 2 closest to E).

In previous works, once the parties backtrack, they erase the (seemingly) inconsistent
transcript and continue to simulate the actual protocol. One important point where our
protocol differs from all previous work, is that in our protocol the parties cannot afford to
erase their (seemingly) inconsistent transcripts. This is due to the fact that the messages in
the (seemingly) inconsistent part may be very long. For example, consider the case where
the last message added to the transcript is of length 1, the one prior is of length 2, the one
prior is of length 4, then length 8, and so on. Suppose no errors occurred and everything
is consistent. The adversary can corrupt the hash appended to the short (1 bit) message,
making the parties believe that their transcripts are inconsistent. The parties will backtrack,
but the adversary will continue to make them believe that they are inconsistent, so that they
erase i messages. This means erasing 2° bits of communication, which is way more than the
parties can afford to erase. Therefore, in our protocol, rather than erasing the (seemingly)
inconsistent transcript, we keep it as questionable, and enter what we call a verification mode.

Verification Mode. In the verification mode, the parties simply test whether their ques-
tionable messages are consistent. They do this round-by-round, by sending a hash of the
messages corresponding to each round. If their hashes agree, they mark the round as valid,
and continue to the next round. If they arrive to a round where their messages do not
agree, they don’t immediately erase all the questionable transcript. Rather, they erase it
only after they are “sufficiently” confident that they are inconsistent. To this end, they

K. Efremenko, E. Haramaty, and Y. T. Kalai

send longer and longer hashes until the number of bits of hash are proportional to the
(seemingly) inconsistent transcript, and if the inconsistency persists then the parties erase
their questionable transcript, and continue to simulate the underlying protocol.

This protocol is formally presented in Section 4, and the formal analysis in the Ideal
Hash Model can be found in Section 4.2 and proof will appear in full version.

1.4.2 Our Protocol in the Shared Randomness Model

We next show how to implement the ideal hash functions with a specific hash function. To
this end, we construct a function family H = {h,}, where each hash function h, is associated
with a (possibly long) seed x.

We consider the shared randomness model, where the parties are allowed to share a

(possibly long) random string. We later show how to eliminate the need for shared randomness.

But for now, we assume that the shared randomness is as long as we need. In particular,
we use a different hash function (i.e, a different seed) for each equality test, and assume
that the shared random string contains all these seeds. Since the length of the protocol is
adaptive and not a priori bounded, the length of the common random string is also not a
priori bounded.”

We emphasize that the shared randomness (and in particular the seeds) are known to the
adversary. Therefore the adversary, given a seed x, can try to skew the protocol and cause
the parties to send many messages whose hashes collide.

Note that the adversary has (:t) = 2009t (ifferent ways to corrupt the ¢ bits of the
communication. Thus, he can cause hash collisions in approximately O(e)t bits. If we
append each message of size £ with O(¢) bits of hash, the adversary will be able to cause
hash collisions in messages with total volume of O(e)t, which is within the allowed error
range. Indeed, our main challenge is to bound the number of rounds with hash collisions, a
challenge that previous works did not need to deal with since in their setting, communication
complexity and round complexity are equivalent.

If we a priori knew the length of the transcript ¢ and the number of rounds R, then
we could add U = % bits of hash to each message, and since the adversary can cause only

O(e)t bits of hash collisions, the number of rounds in which the adversary can cause a hash
collision, is bounded by é(e)R, which is again within our allowed error range.

Since we don’t have such a bound, it is tempting to append to each message sent in
round r a hash of length U, = t?, where ¢, is the communication up to the round r. But the
following example shows that such a padding does not suffice, and the adversary can still
force too many rounds with hash collisions.

Consider a protocol that consists of O(1/¢) chunks such that chunk 0 consists of k single
bit messages, and each chunk i # 0 consists of a single (long) message of length 2¢k, followed
by O(e)k single bit messages. Note that in this case, the total number of hash bits in chunk 4
is ~ 27, and thus an adversary that corrupts the long message of this chunk can cause hash
collisions in all the rounds of the chunk, resulting with a total of O(R) rounds with hash

collisions.®

7 We later show how we convert any such protocol in the unbounded shared randomness model into one
that uses only private randomness.

8 to be more precise, we need a long enough message at the end of the protocol to give the adversary
enough budget to corrupt all of the long messages.

7:11

ITCS 2020

7:12

Interactive Coding with Constant Round and Communication Blowup

To overcome this issue, the idea is to partition the protocol to chunks (which we call
regimes), and append to each message a hash of length that is proportional to the average
length of a message in the chunk. To be precise, we append to each message a hash of length
UT = maXy <r t;::f;,
can be as large as tlogt, which we cannot afford.

To overcome this issue, in each round, instead of sending all the U, bits of hash, we
send only a hash of these bits, where the seed of this (outer) hash is chosen using private
randomness. Specifically, rather than sending H,(7T') (which cousists of U, bits), the party
chooses a random seed S, and sends Hg(H,(T)), together with S. This reduces the number
of bits being communicated from U, to logU,. Since the adversary does not a priori know
the private randomness chosen by the parties, he cannot corrupt the history to cause a hash
collision in Hg in too many rounds. Moreover, since we saw that he cannot cause hash
collisions in H,(T) in too many rounds, these hash functions are “safe”. We note that a
similar idea of using a randomized hash function was used by Haeupler [19], for the sake of
improving the rate of his interactive coding scheme. We refer the reader to Section 5 formal
description of the hash function.

Finally, to conclude the analysis, we need to show that adding these (randomized) hash
functions does not blow up the communication by too much. More precisely, one needs

. Unfortunately, in this case the total amount of hash bits being added

to show that) logU, = O(t). This analysis is extremely delicate and requires several
new ideas.

1.4.3 The Protocol in the Private Randomness Model

Finally, we show how to remove the need for shared randomness, while using only the private
randomness of the parties. Namely, we show how to convert any protocol II in the shared
random string model, to one that uses only private randomness.

The basic idea is to follow the approach used in previous works (such as [2, 19]), and
replace the long shared randomness with 2-°(T)-biased randomness, where 7T is an upper
bound on the communication complexity. Such 2=9(T)-biased randomness can be generated
using only O(T) random bits. So, the basic idea is to send these O(T) bits of randomness in
advance, using an error correcting code. If we indeed had a bound T on the communication
complexity, then this idea would work, and we would be done.

However, in our setting, we do not have an a priori bound on the communication
complexity. In particular, if the communication complexity exceeds O(T'), then the adversary
has the budget to corrupt more than O(T') bits, and hence can completely corrupt the
randomness s. We overcome this problem by sending more (and “safer”) randomness as the
communication complexity increases.

The protocol starts when one of the paries, say Alice, samples the shared random string
51 € {0,1}9min) on her own (using her private randomness), and sends it to Bob. Then the
parties execute II with s; as the shared randomness. Once the communication complexity
exceeds O(tmin/€), where € is the corruption rate of the adversary, the random string s; is no
longer “safe”, and the the parties exchange a new random string so of length O(¢1), where ¢,
is the current communication complexity. In addition to sending the new random string s
the parties also resend the previous random string s;. The reason for resending previous
seeds is that by resending the seeds the goal is to ensure that if one of the seeds was ever
corrupted then the parties will “catch” the adversary, since the adversary does not have
enough budget to continue to corrupt that seed, and the first time that he does not corrupt
it, the parties will notice the inconsistency and abort, with the guarantee that the adversary
performed too many errors.

K. Efremenko, E. Haramaty, and Y. T. Kalai

In a similar way, after the communication complexity exceed to = O(t1/€) a party will
choose at random s3 such that |s1| 4 |s2| + |s3| = t2, and will send (s1, $2, 83), where t5 is the
current communication complexity, etc. As mentioned above, we ensure that if at any point,
a message encoding randomness was decoded incorrectly, then eventually the paries will
abort, and “catch” the adversary with injecting too many errors. This guarantee simplifies
the analysis: Either at some point a randomness message was decoded incorrectly, in which
case the adversary is “caught” with injecting too many errors, or all the parties always agree
on the randomness, in which case correctness follows from the correctness of the underlying
protocol in the shared randomness model.

A minor problem with the above idea is the following: a randomness message (s1, S2)
may have been corrupted and converted into a protocol message, and a few rounds later a
protocol message could have been corrupted and converted into the same randomness (s1, $2).
To ensure that the parties will notice such corruption, we add to the randomness also the
rounds rq, ..., 7, in which randomness were sent.

However, there is still a problem with the above idea, which is that in the early stage of
the protocol, the shared random string has relatively large bias since it is generated using a
short seed, and yet the adversary may have the budget to corrupt many bits, since the total
communication may be large. It can be shown that such a powerful adversary can make too
many hash collisions in the first part of the protocol.

To overcome this problem, we “enforce” that the adversary corrupts at most O(e) fraction
of any prefix of the protocol. To do so, in each time ¢;, in addition to sending (s1, ..., S;+1)
(together with (r1,...,7;)), the parties send the transcript they have seen so far. If the
parties detect that the adversary made significantly more than the allowed e fraction of error,
they abort, causing him to fail by exceeding his allotted corruption budget.

The formal protocol is described in Section 6.

2 Our Results

In this section we present our main theorem, and give an intuitive argument for why our
parameters seem to be optimal. We start by introducing notations and definitions that we
use in our theorem, and throughout the manuscript.

2.1 Notations and Definitions

For any 2-party protocol Il = (A, B), we denote by Trans(II) the transcript of II, which
consists of all the messages exchanged throughout an execution of the protocol II. We denote
by Output(II) the output of the parties after executing II. We think of the protocol II as
being a deterministic protocol with no inputs. This is without loss of generality since we
can always hard-wire the randomness and input into the protocol. We denote by CC(II) the
communication complexity of II, and we denote by R(II) its communication complexity.

We consider simulators for simulating an interactive protocols. A simulator is a prob-
abilistic oracle machine, that uses a protocol IT = (A, B) as an oracle, and produces a new
protocol I’ = (S4, SB) that outputs the transcript of II (even in the presence of error). For
any adversary A we denote by I’y the protocol II" executed with the adversary A.

» Definition 2. We say that an adversary A corrupts at most e-fraction of the bits of a protocol
I if the number of corruptions made by A is at most eCC(Il'y), where each corruption
is either a toggle, an insertion or a deletion. The adversary A can be computationally
unbounded, and its corruptions may depend arbitrarily on states of both parties in II'.

7:13

ITCS 2020

7:14

Interactive Coding with Constant Round and Communication Blowup

» Definition 3. We say that a message is y-corrupted if the adversary corrupts at least
~v-fraction of the bits of the message.

O (g(z)log® (g(x)))

We say that f(z) = (:)(g(x)) if there exists a ¢ € N such that f()=
Q =Q (g(z)log™¢ (g(z))).

and we say that f(z) = Q(g(x)) if there exists ¢ € N such that f(x

2.2 Our Main Theorem

» Theorem 4. There exists a universal constant ag > 0 such that for any blowup parameters
a < ag and o <1, there exist parameters € = (oz‘”ﬁ), € = Q(aa'3), and 6 = ao(l/a/),
and there exists a probabilistic oracle machine S, such that for any protocol Il = (A, B), in
which the parties always transmit at least tmin bits (even in the presence of error), and for
any adversary A that corrupts at most e-fraction of the bits of the simulated protocol Iy, the
protocol Iy (which is the protocol 11" executed with the adversary A), satisfies the following
properties.

1. CC(Iy) > tmin-

2. There exists to = (1 + O(a))CC(A, B) such that for all t > tg

Pr[CC(IT,) > t] <2279,

where the probability over the private randomness of S.

3. There exists 1o = (1+ O (/) R(A,B) + O (ios = log CC(A,B) + 1) such that for any

2

r > 10, if at most € -fraction of the messages are a*-corrupted, then

Pr[R(Iy) > 7] <2277,

where the probability over the private randomness of S.
4. For anyt > 0,

Pr [(Output(Tl/y) # Trans(IT)) A (CC(IT,) >t)] <2-27°

where the probability over the private randomness of S.
5. S is a probabilistic polynomial time oracle machine, and hence the computational efficiency
of S4 and S® is comparable to that of A and B, respectively.

In Section 2.3 below, we give an intuitive argument for why our parameters seem to
be optimal. Then, the rest of the manuscript is devoted to proving Theorem 4. Before,
explaining our choice of parameters, in what follows, we give a high-level overview of the
structure of the proof of Theorem 4.

Road Map. We first convert II = (A, B) into a smooth protocol Hgmeoth- We show how this
can be done in Section 3. Then, in Section 4, we show how to convert any smooth protocol
Ilsmooth into a protocol Iligea;, which is error-resilient in the ideal hash model. In this model,
we assume that the adversary is a “message adversary”, which means that if he corrupts
even a single bit of a message the price he pays for such a corruption is the length of the
entire message (more precisely, the maximum between the length of the original message and
the length of the corrupted version of it). Moreover, we assume that the number of hash
collisions is bounded and adversarially chosen. We refer the reader to Section 4 for details.

In Section 5, we show how to convert Iligea into a protocol Il;ang, , which is error resilient
in the common random string model, assuming the adversary is a “message adversary”.
Loosely speaking, this is done by instantiating the ideal hash using public (and private)

K. Efremenko, E. Haramaty, and Y. T. Kalai

randomness. In Section 6, we show how to instantiate the common random string using
private randomness, to obtain a protocol Il ang, that is error resilient against any “message
adversary”. Finally, we convert Ian4, into I’ = (S4, SB), where IT’ is the same as Il and,,
except that each message is sent encoded with the error correcting code that is resilient to
insertions and deletions. In Section 7, we “put it all together” and prove that I’ is the error
resilient protocol guaranteed in Theorem 4 above.

2.3 Intuition Behind our Parameters

In what follows, we give an intuitive argument for why our parameters seem to be optimal.

We emphasize that this is by no means a proof of optimality, but rather an intuition for
where these parameters came from.

As mentioned above, since messages can be of arbitrary length, and since we do not want
to blow up the round complexity by much, we must use an error-correcting code that is
resilient to (adversarial) insertions and deletions. To date, the maximal rate error-correcting

code that is resilient to (adversarial) insertions and deletions is due to Guruswami and Li [18].

This code blows up the message length by 1 + O(\/E) and is resilient to € fraction of errors.

Moreover, as argued in Section 1.4, in order to ensure a small blowup in communication
our error-resilient protocol must be relatively “smooth”. In other words, in the error-resilient
protocol, after a message of length ¢ we should not send a message much longer than ¢, since
then the adversary will corrupt the length ¢ message and as a result will cause the next long
message to be obsolete. Suppose for simplicity (for now) that all the messages are all of the
same length £.

Suppose our protocol has blowup 1 + O(oz) in communication complexity. Thus, we can

use the error-correcting code of [18] that blows up the message length by at most (1 + O(a)).

This code is resilient to o fraction of errors. Thus, by corrupting a?¢ bits of a message the
adversary can make the next round completely obsolete. Since the adversary can corrupt
e-fraction of the bits, he can make —Z-fraction of the rounds obsolete, which implies that it
must be the case that -5 < «, which in turn implies that o > €l/3.

Note, however, that we cannot assume that all the messages are of the same length since
this will blow up the round complexity by too much. And yet, as mentioned above, we do
need to assume that the error-resilient protocol is somewhat “smooth”, since otherwise the
communication complexity will blow up by too much. Thus, we let 5 > 0 be a parameter,
such that in the error-resilient protocol after a message of length ¢ comes a message of length
at most 3~ !/. Now, an adversary corrupting O(a2 - £) bits of a message can cause 3¢ bits
to be obsolete. Thus, intuitively, the parties may waste a2 - 57! bits of communication
per each corruption. This, together with the fact that the adversary has an e-fraction of
corruption budget and the fact that the communication blows up by at most 1 + O(a),
implies that a=2 - 37! - € < «, which in turn implies that

ol p>e (1)

Therefore, on the one hand we would like to make g as large as possible, to improve the
communication rate; on the other hand, increasing 5 blows up the round complexity. At
first it seems that requiring this smoothing condition (i.e., that after a message of length ¢

comes a message of length at most 371¢), will blow up the round complexity by too much.

The reason is the following: Consider the real world example, where each message sent by
Alice is of length ¢, and each message sent by Bob is of length 1. Thus, to ensure that Alice
is not wasting ¢ bits of communication due to a single error in Bob’s message, we need to

7:15

ITCS 2020

7:16

Interactive Coding with Constant Round and Communication Blowup

make the protocol smooth and have Alice send her message slowly, first sending the first 37!
bits, then after getting a bit of approval from Bob, Alice will send the next 52 bits of her
message, and so on. Thus, the number of rounds it will take Alice to send her message is
roughly log% (£). This will cause a blowup of roughly log% () to the round complexity, which
is way too much.

To avoid this blowup, we want to make sure that after a long message does not come a
message which is too short, since short messages may cause a blowup to the round complexity
(if the following message is long). However, this should be done while adding at most an «
fraction to the communication complexity. Thus, we also smooth the protocol in the “other
direction” and require that after a message of length ¢ comes a message of length at least
af. Thus, going back to our example above, where Alice is talkative (sends messages of
length ¢) and where Bob sends messages of length 1, we first convert this to another protocol
where Bob sends messages of length af. This does not change the round complexity at all,
and changes the communication complexity by at most an a-factor. Now, we smoothen out
this protocol, by having Alice, rather than sending her ¢ bit message in “one shot”, she will
first send B~ 'af bits, then send the next 3~2af bits, and so on. Note that this will cause
a blowup of log 1 (a~1) in the round complexity. Since we allow a blowup of at most o’ to
the round complexity (without taking into account the blowup due to error, or the additive
term), we take § so that log% (a1) < o, and thus we must take 3 such that 8 < alle,
This together with Equation (1), implies that

adti/e’ €,
as in Theorem 4 above.

It remains to explain the additive term in the round blowup and the multiplicative term
that depends on the round error-rate €. For the latter, clearly, if ¢’-fraction of the rounds
were completely corrupted, these rounds need to be redone, and this incurs a blowup of 1+ ¢’
to the round complexity. As to the former, suppose the original protocol consists of a short
message followed by a very long message, to make this protocol error resilient we will have
to blow up the round complexity by essentially log: CC, where CC is the communication
complexity of the original protocol. This is the reason we have the log additive term in the
round complexity.

Finally, we explain why € = a - poly(a’). We note that for the purpose of our application
(Theorem 1) the exact power of o’ is not important. Consider a protocol that consists of a

L younds.

single bit per round. In this case we can effort to add a hash check only every o~
In this case, the adversary can corrupt the first message of each chunk of a~! rounds, which
would render the entire chunk useless. Thus, a corruption of €-fraction of the rounds, may

result with a round blowup of € a~! < o/, which implies that indeed € < ac/.

3 Smooth Protocols

Throughout this section, we refer to “rounds” in a protocol as a one way communication.
Namely, the number of rounds in a protocol is equal to the number of messages that are sent
in the protocol. We note that in Section 4 we diverge from this interpretation, and refer
to “rounds” as a back-and-forth communication between Alice and Bob. This inconsistency
allows us to simplify the notation and the presentation. Note that these two interpretations
can be interchanged, while incurring a blowup of at most 2 in the round complexity.

Let IT be an arbitrary 2-party protocol. We denote by m,. the messages sent in the 7"
round in II. In this section we show how to convert any protocol II into a smooth protocol S™.
In what follows we denote by M, the message sent in the r*" round in S™.

K. Efremenko, E. Haramaty, and Y. T. Kalai

» Definition 5. A protocol is (a, B)-smooth if for every round r the following holds:

v e[My | [- [o} < 1M < 5 - min{|0M, o], Mol |V ol)
» Lemma 6. For any a < i and 3 < g, the following holds: Any protocol 1 can be efficiently
converted into an («, 3)-smooth protocol S such that
1. CC(S™) <o) - (1 + 50a).
2. R(S™) < R(I) - (14 8logyg a) + dlog 1 -CC(II) + 4
3. IfII is computationally efficient then so is S™.

We defer the proof of Lemma 6 to full version.

» Remark 7. In Sections 4, 5, and 6, we show how to convert a smooth protocol into an
error-resilient one. Similarly to previous error-resilient protocols in the literature, we will first
pad the smooth protocol, and only then we convert the padded protocol into an error-resilient
one. However, we will need to pad our protocol in a smooth way. This is done as follows:
Suppose we want to pad our protocol with anywhere between L and 2L bits of 0’s. Suppose
that the last message in the smooth protocol is of length ¢, then we add a message of length
L%J, followed by a message of length {éJ, and so on, until we add between 8L and L bits,
after which we add L bits (if we haven’t added so already).

Note that such a padding results in a smooth protocol, where the communication
complexity increases by at least L and at most 2L bits. The number of additional rounds
required to do this padding is at most log% L+1.

From now on, when we say that we convert a protocol II to a smooth protocol, we assume
that the resulting smooth protocol is padded appropriately.

4 Interactive Coding in the Ideal Hash Model

In this section, we show how to convert any protocol II into an error resilient protocol, and
analyze its properties in the Ideal Hash Model. This model assumes the existence of an
ideal hash. In our protocol, Alice and Bob check equality of their partial transcripts, by
sending to each other hashes of their partial transcripts. In this section, we consider the Ideal
Hash Model, where when we analyze the communication complexity of the protocol we do
not take into account the length of the hash values, and simply assume that the number of
hash collisions is bounded, yet adversarially chosen. (We explain how we bound the number
of collisions below). In Sections 5 and 6, we show how to remove this ideal model assumption,
by implementing this ideal hash using a real hash function. In these sections, we use hash
values that are short enough so the communication blowup is small, and yet we prove that
with high probability the amount of hash collisions is bounded.

Moreover, we consider an adversary that either leaves a message (and corresponding hash)
intact, or “fully” corrupts it. More precisely, we say that the hash is corrupted if and only if a
collision occurs. In the analysis of this ideal error-resilient protocol, we say that a message is
corrupted if the adversary corrupts any bit of the message (or if he corrupts the corresponding
hash). We let the budget of corrupting a message be the maximum between the original
message length, and the corrupted one. In particular, even if the adversary corrupted a
single bit of a long message of length n (or if he corrupts only the hash corresponding to this
message), we count it as n corruptions. We recall that the reason for this budgeting is that
in our actual error-resilient protocol we will apply the error correcting code of Guruswami
and Li [18] to each message (and hash) separately. Thus, in order to corrupt a message, the
adversary will need to corrupt a constant fraction of the bits in the message. We refer the
reader to Section 7 for details.

7:17

ITCS 2020

7:18

Interactive Coding with Constant Round and Communication Blowup

In what follows, we set

) 1 a1
aS0.0l,agl,dza and ﬁgmln{aa,w}. (3)

We assume for simplicity that o~ and 8! are integers. We assume without loss of
generality, that the underlying protocol II is («, 8)-smooth. This is without loss of generality
since by Lemma 6, we can convert II to an (a, §)-smooth protocol while increasing its
communication complexity by a multiplicative factor of (1 + O(«)), and increase the number
of rounds by a multiplicative factor of (1+O(c’)) and an additive factor of at most log CC(II),

as desired.

4.1 The Protocol

We note that this (ideal) protocol is quite similar to the error-resilient protocol of Haeupler [19].
The main difference being that we need to first convert the protocol into a smooth one
(whereas the protocol considered in [19] is perfectly smooth since in each round each party
sends a single bit to the other party). Moreover, and more importantly, since our protocol
is not perfectly smooth, when the parties backtrack, they do not erase the questionable
transcript (since the messages in the questionable part may grow exponentially). Instead, the
parties keep this transcript as questionable, and enter a “verification” state where they check
consistency round-by-round. We note that in [19] the questionable transcript is simply erased.

In what follows, we present the (error-resilient) protocol only from Alice’s perspective.
Bob’s perspective is symmetric. During the (error-resilient) protocol, Alice has a private
variable T4, which she believes to be a prefix of the transcript she is trying to reconstruct.
T, is initiated to (). We denote by m, the message that Alice sends in the error resilient
protocol.

In what follows, we define all the other notations (in addition to m4 and T4) that are
used in the protocol description:

SA7 RA7€A7£+a€77wA’ R,(éll)7 RE42)7

where all of these variables are defined as functions of T4 and m4.

From now on we think of each round as consisting of consecutive two messages: a message
sent by Alice and a following message sent by Bob. We note that this diverges from the way
we defined rounds in Section 3, where we thought of each round as containing a single message
(sent by one party). The only reason for this inconsistency is that it is more convenient in
terms of notations. It is important to note that this is only a notational convenience and
does not affect our final result in any way.

For each variable used in our protocol

VA € {TAamA; SA,RA,EA,ZJ'_,K_,’LUA,RS),RS)},

we denote by v4 , the value of v4 that Alice uses when sending her round r message, and we
occasionally omit r when it is clear from the context.
During the protocol Alice has a state

Sa € {Simulation, Verification} U N.

Loosely speaking, Alice is in a Simulation state when she believes that the transcript T4
that she is holding is indeed a prefix of the correct transcript.

K. Efremenko, E. Haramaty, and Y. T. Kalai 7:19

If S4 € N then we say that Alice is in a Correction state. If Alice is in Correction state,
then Sy is the first round (in the error-resilient protocol) that Alice has entered this
state. Alice enters a Correction state when she thinks her beliefs are wrong (for example,
when the hashes indicate that T4 and T are inconsistent). During this state, Alice tries
to go back to an earlier round in the transcript (corresponding to the original protocol)
which she believes to be correct. We denote this round by R4. Alice will continue the
simulation from T4[R], which denotes the truncated transcript of T4 to round R4. As
mentioned above, as opposed to the protocol of Haeupler [19], in our protocol, she does
not delete the suffix of T4, and rather she keeps this suffix as questionable. The reason
she does not erase this questionable suffix, is that it may be the correct suffix (and the
only reason it is questioned is due to an error), and in this case it may be too expensive
to delete and reconstruct, since in our case the messages in the questionable suffix may
grow at an exponential rate.

After a Correction state, Alice enters either another Correction state or a Verification
state, where she decides whether to completely delete, partially delete, or keep, the
questionable suffix. After the Verification state (assuming there were no errors), Alice
enters Simulation state again.

We define r — S to be zero, when S4 € {Simulation, Verification}.

As mentioned above, R4 denotes the round in T’y that Alice simulates. If S4 = Simulation
then R4 is equal to the number of rounds in Ty4.

Let m4 , be the message that Alice sends in round 7 (of the error resilient protocol), and
let £, denote its size. Let mp , be the message that Alice received from Bob in round r,
and let £p, denote its size. We define lpax,, = max{la,,fp,}. Note that if Bob’s

message was corrupted then g, may be arbitrarily large. However, our (error-resilient)
protocol has the property that if Bob’s message was not corrupted then /g , < Z%’T.

We define

Ly
Ej = min { -) 2£max T}
/8)

and

0 = min{&;r,max {571, aémax,r}} .

Let wy . be gllog(r=54)} jf Sar €N, and let wy , be 0 otherwise. In other words, wa , is
the number of rounds that the party has been in Correction state, rounded to the closest
power of two.

If waq = 0 then let RS) = R4. Otherwise, let RS) < R4 be maximal that divided wy4.
RY 2 RW — .
In the protocol, at each round r, Alice sends hashes to Bob if and only if »r =0 (mod d)

or {4, > d, in which case she sends five hashes, one hash corresponding to each of the
following strings:

(TalRal, TalRa + 1, Ta[R], TA[RT),)

We note that if R4 is equal to the number of rounds in T4, then Alice will not know the
partial transcript Ta[R4 + 1]. In this case we define T4[Ra + 1] = T4[R).

ITCS 2020

7:20

Interactive Coding with Constant Round and Communication Blowup

Alice in round . Upon receiving a message from Bob, parse the message as

(mByr—1,HTBr-1[RB,r-1]), HTB,r—1[RBr—1 +1]),
H(Tp,1[RY)), H(Ts,—1[RY)), H(Sp.r—1)).

We assume that in this ideal model, parsing is easy. When we implement this ideal hash
function in Section 5, we will make sure that indeed Alice will be able to parse correctly
(assuming the message was not corrupted). Denote the size of mp ,—1 by 5 ,—1.

1. If S4—1 = Simulation then do the following:

a. If a hash was sent by Bob (i.e., if £ ,_1 > d or d divides r — 1) then check that
H(SBJ-_l) = Simulation and H(TA7T_1[RA7T_1}) = H(TB,T—l[RB,r—l})-

b. Check that the (partial) transcript (Ta,—1[Rar—1],mar—1,mpr—1) satisfies the
(a, B)-smoothness condition.
c. If one of these conditions does not hold then let
mar = 06;71

Sar=r
(TA,’I”7 RA,T) = (TA,rfh RA,T71)~
d. Else, set

Tay= (TA,rflamA,rfhmB,rfl)
RA,T - RA,T*l +1

mar =1(Ta,)

Sar =54,-1 = Simulation.

2. If S4,r—1 = Verification then check if all the following conditions hold:

a. |mp,—1| > 71
b. H(SA,r_l) = H(SB,'r'—l)
c. HTar-1[Rar-1]) = HTpr—1[RBr-1]).

If one of these conditions does not hold then let
ma, = 0€T_71
Sar=r
(TA,M RA,T) = (TA,r—h RA,T—1)~

Else, do the following:

a. If number of rounds in T4 ,_ is greater than R4 ,_1 + 1, and
H(Tay-1[Rayr—1+1]) = H(Tpr—1[Rpr—1 + 1)),

then let
mar = 02;71
RA,T = RA,T—]. +1
(SarTar)=(Sar-1,Tar—1).
b. Else, if ma,—1 = mp,—1 = 1° for some £ > [Ta ,—1| — |Tar—1[Rar—1]], then set
Tar=Tar—1[Rar—1]
R4, be the number of rounds in T4
ma,r = H(TA,T)
Sa,r = Simulation.

K. Efremenko, E. Haramaty, and Y. T. Kalai

c. Else, if £ | > |Ta,—1]| — |Tar—1[Rar—1]| then let
ma, = 1£j—1
(TA,T7 RA,ra SA,T) = (TA,T—17 RA,T—].) SA,T—1)~
d. Else, let
€+
my = 0"r-1
(TA,T7 RA,T7 SA,T) = (TA,T‘717 RA,rfla SA77'71)~

3. Else, do the following:

a. Compute the values v%, v}, v? as follows:

ryYry Yr

If H(Sa,—1) # H(Sp,—1) then set v0 + v2_; + 1.

Else, if H(Ta,1[R})_,]) € {H(TByr_l[Rg,)T_l]), H(TBm_l[Rg?T_l])} then set v} ¢

vl o+ 1.

Else, if H(Ta,_1[R?._,]) € {H(TByr_l[Rgfr_l]), H(Tp,1[R!

v2 4+ 1.
b. If r — S4,,—1 is not a power of 2,2 then set
ma, = OZT_71
(TA,T7 RA,T7 SA,T) = (TA,T‘—17 RA,T—].) SA71'—1)~
c. Else, if v?_; > 1(r — Sa,—1) then let
SAJ" =T
ma,r = OZT__l
Set v = vl =02 =0.
d. Else, if v} > X(r — Sa,—1) then let
Sa,» = Verification
Ra, = RS,)r—1
MAr = 01
Set v = vl =02 =0.
e. Else, if v2 > 1(r — S4,,_1) then let
Sa,» = Verification

mA,T'ZOZT_l
0_ 1 _ .2 _
Set v, =v, =v:=0.

f. Else, set v} = v2 =0, and let

mA,T = Oer—l

(US, RA,rv SA,rv TA,T’) = (99_17 RA,rfla SA,rfla TA,r71)~

2)
B,r—1

])} then set v2 <

Send ma,, and if 7 = 0(mod d) or |ma | > d then append to m4 , also

(H(Ta [Ras]), H(Tas [Ra + 1), H(Tay [RO), H(Ta, [RS)]), H(Sa))

Remark. Bob behaves identically to Alice, except in Steps 1 and 2b, when Bob computes
his next message corresponding to the underlying protocol II, he computes it by mp, =
II(Ts r,ma,r), whereas recall that Alice computed it by m4 , = II(T4).

9 Recall that we define r — Sa4 = 0 if Sa4 € {Simulation, Verification}, and we consider 0 to be power of 2.

7:21

ITCS 2020

7:22

Interactive Coding with Constant Round and Communication Blowup

4.2 Analysis

Terminology. In what follows, we introduce terminology that we use in the analysis.

We allow the adversary to create collisions in the ideal hash function, in which case we say
that the hash was corrupted. We say that a message is corrupted if the adversary corrupts
any bit of the message, or corrupts the associated hash. We define the budget of corrupting
a message m to be the maximum between the length of m and the length of the corrupted
version of m. Thus, even if the adversary corrupts a few bits of a long message of length n
(or corrupts the associated hash), then we count it as n corruptions. On the other hand, if
the adversary corrupted a single bit message by converting it into a long n-bit message, then
we count it as n corruptions.

We analyze the correctness of the (error-resilient) protocol assuming a bound on these
message corruptions.

» Definition 8. We say that the corrupted messages have volume e if the sum of lengths
of corrupted messages (where each such length is the maximum between the length of the
original message and the length of the corrupted version of it) is e.

Using this terminology we prove the following theorem.

» Theorem 9. Let IT = (A, B) be any («, 8)-smooth protocol, and let TI' = (S, SB) be the
simulated protocol defined above. Let A be any adversary in IU', who corrupts at most ¢’
messages of total volume of at most e. Then, the protocol I, executed with the adversary A,
denoted by IT'y, satisfies the following.

1. CC(Il'y) > tmin, where tmin is a lower bound of the communication of any instance of II.
2. CO(Iy) < CC(A, B) + 183 e +20dB~'e'.

3. R(IT}) < R(A, B) + 906dlog 5e'.

4. The parties outputs transcripts of size at most CC(II'y) that agree with II on the first

cCo(Iy) — 1887 e — 20dB7 e,

many bits.
5. S is a polynomial time oracle machine.

» Remark 10. We will apply Theorem 9 with an adversary A that corrupts at most ¢/ =
O(min{e - R(IT), iCC(H;A)}) messages of total volume at most e = O(e - CC(II'y)), where
e<O(a-p)and € < d-logﬁ' Thus,

A, B)
A, B) +0(87 e - CC(ITy)) + O (d,@*lgcc*(n;t)) <
A, B)(1+ 0(a)),

R(IT) <

R(A, B) 4+ 906d log %e’ <

R(A, B) + O(dlog %e’ R(IT,)) <
R(A, B)(1+ O()),

as desired.

K. Efremenko, E. Haramaty, and Y. T. Kalai

Moreover, we will apply this theorem with a protocol II which is padded by 188 'e +
20dB~te’ = O(a- CC(1y)) zeros. Thus, Item 4 from Theorem 9 implies correctness.

For example, one can set a = O(min{\/e, (¢)}/3}), and set 8 = O(a), d= 1, o' =1, to
obtain an error resilient protocol in the ideal hash model with constant blowup in round
complexity and 1+ O(«) blowup in communication complexity.

We defer the proof of Theorem 9 to full version.

5 Hash Implementation with Shared Randomness

Recall that in Section 4, we presented an interactive coding scheme with the desired guarantees,
in the ideal hash model, where we assume that the number of hash collisions is bounded,
and where the budget for making a collision is proportional to the message length (where
the message length is the maximum between the length of the message that was sent and
the corrupted version of it). We denote this ideal protocol by II.

In this section, we show how to implement the ideal hash with a real hash function.
Loosely speaking, given a hash function h, we convert the protocol II to the protocol II*
which is identical to II, where the ideal hash function is replaced by h. In order to maintain
the desired efficiency and error-resilience guarantees, we need to ensure that, on the one
hand, these hash values are not too long; and on the other hand there are not too many hash
collisions (i.e., that these hashes form a good equality test). To ensure the latter condition
holds, it is easy to see that we cannot use a single (deterministic) hash function. Instead we
use a family of randomized hash functions.

We construct a function family H = {h,}, where each hash function h, is associated with
a (possibly long) seed x. In this section, we consider the shared randomness model, where
the parties are allowed to share a (possibly long) random string. In Section 6 we show how
to eliminate the need for shared randomness.

In this section we assume that the shared randomness is as long as we need. In particular,
we use a different hash function (i.e, a different seed) for each equality query. Since the
length of the protocol is adaptive and not a priori bounded'?, the length of the common
random string is also not a priori bounded. We assume that there is a separate segment of
the common random string for each round r, and each such segment contains five hash seeds,
since in II, in rounds that a party sends an ideal hash, the party sends five ideal hashes.

We emphasize that the shared randomness (and in particular the seeds) are known to the
adversary. Therefore the adversary, given a seed = can try to skew the protocol and cause
the parties to send many messages whose hashes collide. To get around this, we construct a
hash family, where each h, is a randomized hash function. When a party sends a hash of a
value V, the party will choose randomness S and will send (S, h,(V,S)). On the one hand,
the randomness S needs to be short, since otherwise this will blowup the communication
complexity by too much. On the other hand, the adversary cannot predict S, and thus will
not be able to skew the messages of the parties towards ones which the hashes collide. We
note that a similar idea of using a randomized hash function was used by Haeupler [19], for
the sake of improving the rate of his interactive coding scheme.

Before presenting our randomized hash family, we start with some preliminaries.

107 Section 6, we convert any such protocol in the unbounded shared randomness model into one that
uses only private randomness.

7:23

ITCS 2020

7:24

Interactive Coding with Constant Round and Communication Blowup

5.1 Preliminaries

Chernoff bounds.
» Lemma 11. For any N € N, and any N independent Bernoulli random wvariables

X1,..., XN, each with mean <, it holds that

N
Pr[z X; > 2yN] < e 57N,

=1

» Definition 12. A distribution D over FY is d-bias if for any v € Fy \ {0™}, we have that

JLE% [il vix; =0

» Lemma 13 ([25]). There exists an absolute constant C € N and an efficiently computable
function G : {0,1}* — {0,1}* such that for any size k and a uniformly random string
S € {0,1}°% | we have that G(S) € {0, 1}2k is a 27 %-biased distribution of length 2.

1
— =1 <94.
5=

» Lemma 14 (6.3 from [19]). There exists a hash family F = {FL}ren, such that for every
L € N it holds that i = {fz}seqo0,1321, and for every x € {0,1}?F, f, : {0,1}=L — {0,1}.
Moreover, for any k € N and for any vectors V{4, ..., VkA7 VE, .., V,f € {0, 1}=L the following
holds:

1. For uniform x = (x1,...,2) € ({0,1}2L)* it holds that for each i € [k], the probability
that fo,(VA) = fu,(V;B) is & whenever VA # VB, and 1 whenever VA = VB, Moreover,
for each i € [k] these probabilities are independent.

2. For 6-biased distribution x = (x1,...,x1) € ({0,1}25)%, it holds that the distribution

(1fz1(V1A)=fm1 (V) o 1f1k<va>=fzk(ka3))

is 0-close to the case where x is uniform.

5.2 Our Hash Function

We are now ready to construct our family of randomized hash functions. We first define the
randomized hash family H’ = {h/}, which uses the hash family F from Lemma 14. Recall
that the hash values of H’ should not be too long, since this will result in a large blowup in
communication complexity.

In our construction, as opposed to previous constructions [2, 3, 19], the length of each
hash value depends not only on the length of the message it is appended to, but it also
depends on the length of the entire communication up until the point that the hash was
sent. We note that if we were only concerned with the communication blowup and were not
concerned with the round blowup, then we could have the length of the hash value depend
only on the length of the message it is sent with (in similar spirit to prior work). However, as
we argue below, in order to ensure a constant blowup in round complexity, we must allow the
length of the hash value to also depend on the length of the entire history. This is illustrated
in the following example: Suppose that a short message is sent, and prior to this short
message were a few very long messages (in a way that satisfies the smoothness criterion).
By corrupting a few long messages, the adversary can cause a hash collision in many short
messages (with hash), which will result with a large blowup to the round complexity.

K. Efremenko, E. Haramaty, and Y. T. Kalai

Hence, we allow the length of the hash value, not only to depend on the length of the
message it is appended to, but also to depend on the length of the communication history.
Note that the parties do not necessarily agree on the history length even if no errors occur in
the current round, since the adversary may insert and delete bits throughout the protocol, in
which case they will fail to parse the message and hash pair correctly.

Thus, we define the hash family H = {h,}, where the output of h, includes the output
of h!, the randomness used by h!, (which is needed in order check for equality), and also the
length of the hash value. Namely, we define

he (V) = (S, h;(V7S), 1-0%),

where S is the (private) randomness used by h’, and w is the length of H.(V;.S).

We next define h!,. As we mentioned, the length of the hash values (denoted by w) may
differ from one round to the next, as they depend on the communication complexity so far,
and on the length of the current message sent. We will specify how w is defined below. But
we first, define h/, assuming w is known.

The seed z is random in ({O7 1}2L)L, where we assume that L is greater than the input V'
(which is bounded by the communication complexity of the protocol up until the point where
the hash is sent). For any y = (y1,...,yz) € ({0, 1}2L)L and for any k < L, let

where F = {f,} is the hash family from Lemma 14. The randomness for b/, is denoted by S
and is of size 2C - w. Let h/, be the randomized hash function, that takes as input a variable
V', randomness S, and outputs

ho(ViS) = fas) (2),
where

5 LU V),0) i V] > 2w
V1) if V] <2

In what follows we show how the length w of the hash values are chosen. To this end we
need to define the following variables with respect to a certain round r.

Let Q4 be the set of all rounds r in which Alice send a hash to Bob.

Note that these are exactly the set of rounds r such that r divides d or Alice send a

message of length > d.

We define QF analogously.

Let a2 be the number of messages that Alice sent with a hash until (and including)

round r. Namely,

af = |{r <rir € QM)

We define a? analogously.

Let ! be all the communication received by Alice until (and including) round r. We
define 2 analogously.

For every r, if Alice sends the message in round r then define

A4
Uy = max log —= T

g
reQAnir—1] af —al

The definition is analogous in the case that Bob sends the message in round r.

7:25

ITCS 2020

7:26

Interactive Coding with Constant Round and Communication Blowup

For every round r, let £, denote the length of the message to be sent in round 7, and let
1
wr = [l]+ Jur]+9 [log 7—‘ + 6,

where «,y > 0 are parameters of the scheme, where v < « (it will be instructive to think
of v = ¢, where € is the corruption budget of the adversary, and of « as the communication
blowup in the error-resilient protocol).

5.3 Analysis

We denote by E the set of all messages ma,, or mp, that were not corrupted but had a
hash associated with them that formed a hash collision. Recall that for any set of messages
T, we denote by |T| the volume of T (i.e., the number of bits in T'), and we denote by |T|’
the number of messages in 7.

» Lemma 15. Fir e < 0.0005. The protocol 1" defined in Section 5.2 satisfies the following:
If I consists of <t bits and < r rounds, then for any adversary that corrupts messages
with total volume at most et, we get that

— Y ¢
1. With probability > 1 —10-e 8los 5 (over the common and private randomness),
|E| < 207t.
2. With probability > 1 — 10e~ 37" (over the common and private randomness),

|E|" < 707yr.

5.4 Communication Bound

In this section we will bound the blowup of the communication of II*, defined in Section 5.2.
To this end, fix any adversary A for the protocol II*, that corrupts at most ¢/ messages of
total volume at most e. We define a corresponding adversary D for the protocol II, that
corrupts at most ¢’ message of total volume at most e, as follows:

The adversary D sends the exact same messages as A does, excluding the hash values.
Recall that for each message in Hﬁ, the part that belongs to the hash value is well-defined
by the suffix of the message 10", and hence the adversary D is well defined.

» Lemma 16.
1
CC(IT%) < (1 +50Ca) CC(Tp) + e + 600C log S k

where C' is the universal constant from Lemma 13, and k is the number of rounds with hash
m HD.

The proof of this lemma is deferred to full version.

6 Hash Implementation with Private Randomness

In this section we show how to implement the ideal hashes in protocol II, defined in Section 4,
without resorting to shared randomness, but rather using only private randomness. To this
end, we will slightly modify the protocol II, into a new protocol IT'.

K. Efremenko, E. Haramaty, and Y. T. Kalai

High-level overview of IT’. Lets first recall the approach used in previous works [2, 19].
In these works, the long shared randomness is replaced with d-biased randomness, where
d =27 and ¢t is a bound on the communication complexity. Such é-biased randomness can
be generated using only O(at) random bits. Hence, in previous works, these O(at) bits of
randomness are sent in advance (using an error correcting code). If we indeed had a bound ¢
on the communication complexity, then this idea would work, as explained below.

Recall that the randomness is used for equality testing. From Lemma 14, we know that
for any oblivious adversary (i.e., one that is independent of the randomness), the fraction of
collisions in the case where the seed is random is d-close to the fraction of collisions in the
case where the seed is d-biased. Denoting by N the number of possible oblivious adversaries,
and by taking a union bound over all possible oblivious adversaries, we conclude that the
probability that there exists an oblivious adversary that causes “too many” hash collisions
in the case where the seed is §-based is bounded by the same probability where the seed is
truly random plus an additive term of JN. We note that

N < 2H(e)t 4t — 2O(elog%t)’

and thus
SN = 9—°t. 20(6 log 1) — 2752(0415).

Therefore, the probability that there exists an oblivious adversary that causes “too many”

(¢t) | Note that we can view any (non-oblivious) adversary as

hash collisions is at most 2~
one that chooses an oblivious adversary as a function of the public randomness, and runs
this oblivious adversary. Therefore, we conclude that for any (non-oblivious) adversary the
probability that there are “too many” hash collisions is bounded by 2~2(at),

However, in our setting, we do not have an a priori bound on the communication complexity.
In particular, if we replace the CRS with §-biased randomness, where § = 27 for some t,
and if the adversary has a corruption budget of more than O(«t) bits (i.e., the communication
complexity is larger than %t), then our protocol is no longer safe. We overcome this problem
by sending more randomness as the communication complexity increases.

More specifically, the parties start by assuming that the communication complexity is
some small ti,, where ¢ty is a lower bound on the communication complexity. So, the
protocol starts when one of the paries, say Alice, chooses a random string s € {0, 1}®min
and sends it to Bob.!!

Once t; > "t% bits are sent in the protocol, the safety of this randomness could be
compromised, since the adversary has enough budget to compromise o, bits. Hence, each

party, before sending its message, will check whether sending this message will cause the

Qtmin
€

party will send new randomness. This time, the party will choose at random ss of size
at; — |s1] and send (s1, s2). If this randomness is inconsistent with the first randomness sent
(s1) then the party receiving the randomness aborts.

Once the communication complexity is to > O‘Ttl, again the safety of the previous ran-
domness could have been compromised, and hence as above, if a party is about to send
a message that will cause the communication complexity to exceed “’Ttl, then instead of
sending the message, the party will choose at random s3 such that |s1| + [s2| + |s3] = ats,

communication complexity to exceed . If so, then instead of sending the message, the

11 As before, we ignore the error-correcting code, since we consider only message adversaries, that corrupt
messages as opposed to bits, and the budget for corrupting a message is the length of the message (or
the length of the corrupted message, whichever is longer).

7:27

ITCS 2020

7:28

Interactive Coding with Constant Round and Communication Blowup

and will send (s1, s2,s3), etc. If at any point the randomness received is inconsistent with
the previous random string then the party aborts. We refer to these special messages that
transmit randomness by system messages.

There is a slight problem with this idea: How does Bob know which message sent by
Alice corresponds to a message in the initial protocol II, and which is a system message?
We fix this problem by appending 1’s to system messages, and appending 0’s to messages
corresponding to II. However, recall, that we do not want to blowup the communication
complexity. Hence we only append these bits to long messages. This is enough, since system
messages are always long.

Note that according to our protocol the parties first receive randomness s, then they
receive new randomness (s1,$2), and so on. We ensure that if at any point, a system
message was decoded incorrectly, then eventually the paries will abort, and “catch” the
adversary with injecting too many errors. This guarantee simplifies the analysis: Either
at some point a system message was decoded incorrectly, in which case the adversary is
“caught” with injecting too many errors, or all the parties always agree on the randomness, in
which case correctness follows from the correctness of the underlying protocol in the shared
randomness model.

To ensure that indeed the parties will always notice when a system message was corrupted,
we add to the system message the rounds rq, ..., in which system messages were sent. This
is done to circumvent the case where the message (s1, s2) was corrupted and converted into
a protocol message, and a few rounds later a protocol message was corrupted and converted
into the same system message (s1,s2). If we do not include the round number then the
parties may never notice that there was a point in the protocol where they did not agree on
the shared randomness. In order to avoid dealing with such cases, we simply include the
round numbers of the system messages.

Finally, we notice that even though we ensure that the parties always agree on the shared
randomness (assuming the adversary does not inject too many errors), there is still a subtle
issue. Note that the first random string s; is d-biased for § = 27*min, As we saw in previous
work, this suffices if the number of oblivious adversaries, restricted to the first ¢,,;,-bits,
is bounded by 2°(¢min) However, in our setting, since the total communication may be
significantly larger than t¢,,;,, the number of such oblivious adversaries can be as large as
2tmin in which case the number of rounds with hash collisions can be large. To overcome this
problem, we ensure that in the first ¢,;, bits of communication, the adversary cannot inject
too many errors (without being “caught”). This is done by re-sending the first ¢y, bits
after tmin/a bits of the protocol were transmitted, and the parties abort if these i, bits are
e¢/a-far from the first ¢y, bits of the transcript. More precisely, to each system message sent
after t bits of the protocol were communicated, we append the first ot bits of the transcript.

In what follows we present our protocol II'. For the sake of simplicity, after each system
message is sent, the party receiving a system message replies with an “echo” message, by
simply repeating the system message. The purpose of this “echo” message is simply to allow
the other party to send his protocol message (which he didn’t have the budget to send in the
previous round).

The protocol II'. Let b > 2, and let a < where C' is the constant defined in
Lemma 13. Fix any d € N and v > 0 such that
log L

1
<min<{ =,27° d d> oy 4
'y_mm{d, } an Z ()

_1
3200C°

For convenience the reader can think of b =2 and v = é.

K. Efremenko, E. Haramaty, and Y. T. Kalai

Let IT be the protocol, in the ideal hash model, defined in Section 4, instantiated with
a and d as above, and with any o’ > 0. Let t,,;, be a lower bound on the communication
complexity of II, where

tmin > max{a~2,250Ca* log d}, (5)
and let
W = Oétmin.

Let H be the hash family defined in Section 5. The protocol IT' makes oracle access to the
protocol IT* (defined in Section 5).

In protocol IT', each party maintains a transcript 7" initialized to (), an integer k initialized
to 0, k strings si, ..., s, k partial transcripts Pi,..., P, and k rounds rq, ..., that will be
determined during the protocol. Intuitively, T is the transcript corresponding to Protocol 117,
S1,...,8k are k seeds that are used to generate the hash function implementing the ideal

hash, and 71, ..., correspond to rounds in II" where the common randomness changes.

Similarly to IT (and I1*), in II’ we interpret the (partial) transcripts as strings.'? .

In IT, if a party aborts, it always waits until at least t,,;, bits are sent before aborting
the protocol, so as to fulfill the requirement that the communication complexity of II’ is at
least tmin-

In the first round of II’ Alice does the following:

1. Choose 51 €5 {0,1}", and let k=1, r; =0, and P, = ().
2. Send (51, 131,’/‘17 1)

We next describe the protocol from Alice’s point of view, given her private state
(T, K, 81y SkyT1ye ey Ty Py oy Pr).

Bob’s view is symmetric (by switching between A and B). Upon receiving a message mp,

Alice does the following

1. If in the previous round Alice computed her message in step 4(e)ii of the protocol (or if
the previous round was the first round of the protocol) then check that mp is an echo
of (i.e., equal to) the message sent by Alice in the previous round. If not then halt, and
otherwise goto Step 4c.

2. Otherwise, denote £ = |mp|.

3. If £ > b*W and the least significant bit of mp is 1, then do the following:

a. If there exists s, P,r € {0, 1}"W where 7 is a binary representation of [T, such that
(S1y ey Sky Sy Py ey Py Py, ooy 7, 7, 1) = mip,

and such that P can be obtained from a prefix of T' by corrupting messages of volume

%, then define sx41 = s, define 141 =7, Pry1 = P, update k < k+ 1,

and send (an echo message) mp.

at most

b. Else, abort the protocol.

12 This is done by standard encoding, where after each bit of the transcript we add a bit that represents
whether the message ended or not. Thus, a transcript of length ¢ can be described by a string of length
2.

7:29

ITCS 2020

7:30 Interactive Coding with Constant Round and Communication Blowup

4. Else, do the following;:
a. If £ > b*W then let m’z be the message mp when the least significant bit of mp is
truncated. Otherwise, let mly = mp.
b. Update T < T'U {m/z}
c. Define my = II*(T), using = x(s1,...,8k,71,-..,7%) as the shared randomness,
where the exact function z is defined later. If there is no m4 to send then abort.
d. If TUma| < 41’(;:3% then do the following:
i. Update T < T'U{ma}.
ii. Let £ = |muyl.
iii. If £ < b*W then send m 4, and otherwise send (m.4,0).
e. Else,
i. Let sgt1, Pet1, k41 € {0, 1}ka such that si11 is a uniformly chosen random string,
Py 11 consists of the first bW bits of T' (where T is viewed as string) and 7411 is a
binary representation of |T’.13
ii. Send

(81,...,Sk,Sk+1,P1,..‘,Pk-,PkJrl,'rl,...,Tk;,rk+1,1).
iil. k< k+1.

» Theorem 17. Fiz any adversary A for II' that corrupts € R(II'y) of the messages of total

volume at most eCC(IT'y), for e < bdl“m, where I’y denotes the protocol II' executed with

the adversary A. Then there exists an adversary D for the protocol 11, that corrupts at most

¢ R(Ilp) + 2¢€ log, CC(Ilp) messages of total volume at most 2eCC(Ilp),** such that the

following holds:

1. H:ct always sends at least tmin bits.

2. CC(IT'y) < (14 2600C«) CC(IIp).

3. R(Il'y) < R(Ilp) + 2log, CC(Ilp).

4. When I’y ends, both Alice and Bob (separately) can efficiently compute their view of the
transcript of llp.

5. The adversary D chooses the hash collisions in a probabilistic manner such that for every
t and every r, with probability > 1 — 20 -2~ 3at, the volume of hash collisions in the first t

’YS

bits of llp is at most 35yt, and with probability > 1 — 80r - 2’7TT, the number of rounds
with hash collisions in the first v rounds of llp is at most 100yr.
6. II' is efficiently computable if 11 is efficiently computable.

The proof of Theorem 17 is deferred to full version.

7 Putting it all Together

In this section, we prove our main theorem (Theorem 4), using the theorems from previous
sections. We restate our main theorem for the sake of convenience.

» Theorem 18. There exists a universal constant ag > 0 such that for any blowup parameters
a < ag and o <1, there exist parameters € = (oz“ﬁ), € = Q(aa'g), and 6 = ao(l/a/),

and there exists a probabilistic oracle machine S, such that for any protocol 11 = (A, B),

13 The binary representation of |T|’ has length < b*W since b*W > 1 and so log |T|" < log kaW < bW
115 denotes the protocol II executed with the adversary D.

K. Efremenko, E. Haramaty, and Y. T. Kalai

in which the parties always transmit at least tyi, bits (even in the presence of error), and
for any adversary A that corrupts at most e-fraction of the bits of the simulated protocol
II' = (S4,8P), the protocol Iy (which is the protocol I ezecuted with the adversary A),
satisfies the following properties.

1. CC(ITy) > tmin.

2. There exists to = (1 4+ O(a))CC(A, B) such that for all t > to

Pr[CC(IT) > 1] <2-27%

where the probability over the private randomness of S.
3. There exists ro = (1+0 (o)) R(4, B) + O (125 1og CC(A, B) + 1) such that for any
ol 9

r > 1q, if at most € -fraction of the messages are a*-corrupted, then

Pr[R(ITy) > 7] <2-27°"

where the probability over the private randomness of S.
4. For anyt > 0,

Pr [(Output(TT'y) # Trans(IT)) A (CC(IT,) >t)] <2-27%

where the probability over the private randomness of S.
5. S is a probabilistic polynomial time oracle machine, and hence the computational efficiency
of SA and S®B is comparable to that of A and B, respectively.

In the proof of this theorem, we use an error correcting code from a recent work of
Guruswami and Li [18].

» Theorem 19 ([18]). For every o > 0 there is an explicit encoding scheme Enc,Dec :

{0,1}* — {0,1}* with the following properties:

1. For any m € {0,1}* we have |[Enc(m)| = (1 + O(a))|m]|.

2. For any m € {0,1}* and any y that can be obtained from Enc(m) by o? - |Enc(m)|
insertions and deletions, Dec(y) = m.

3. Enc and Dec are computable by a polynomial time Turing machine.

In the proof of Theorem 18 we use the following padding claim.

> Claim 20. Let o, 8 < 0.1, and Ly > a~!. Then any (a,23)-smooth protocol II can be
efficiently converted into an (a, §)-smooth protocol II' such that

IT can be computed from the first (1 — 2 fraction of bits of IT'.

CO(I) + Lo < CC(T) < (1 + 13a)CCAL) + 3Lo.

R(I') < R(IT) + logy CC(IT) + logy Lo+ 1.

The proof of this claim is deferred to full version.

Proof of Theorem 18. Fix any a < ag and o’ < 1. Let C be the constant from Lemma 13

(see Section 5). Let Enc, Dec be the encoding scheme from Theorem 19 with the parameter a.

Recall that for all m, |Enc(m)| = (1 + O(a))|m|. Let a; be the maximal constant that
satisfies,

VYm : [Enc(m)| < 2|m]. (6)

We define ap = min{a;, ﬁ}. Given «a, o’ define,

1 4 1
oo Y 2 log ;
v

320l0g” L * 7 T 210 T

, Ly = 250Ca~2logd ,

7:31

ITCS 2020

7:32 Interactive Coding with Constant Round and Communication Blowup

PNV

© LN oo

a’ 3B . ad®
=—mnl{-—w— —=2 = — and =+~
‘ mm{?bdlogd’ 320} T g 1 M g

o

These parameters were chosen to satisfy the following claim.

Claim 21. Our parameters satisfy the following:'®

€= Q(a3+$) € =Qaa’®) and § = a0/,

a < i and 3 < 3.

a,8<0.1and Lo > o™ %

a<001l , /<1, dzé and ﬂgmin{aﬁ,ﬁ}.

v <min{% 27%} d> loi%7 and Ly > max{a~2,250Ca~!logd}.
o < fatega

18871 (35y + 45) + 20dB~1 (357 + 4€) < a.
(1007 +¢€') - 906dlog% < o' and 1812dlog %e’ <t

log%'

0 < i and for all z > 0 we have that

1
100 1+10)Lo’
2.27% > min {1, 120d o 2a N71T 2—3’78””} :
v

The protocol IT’ is defined as follows:

. Convert IT into a (a, 28)-smooth protocol Hgmeoth by applying Lemma 6 (Section 3) to

I1, with respect to parameters («,23). These parameters satisfy the requirements in
Lemma 6 by Item 2.

. Convert Igmeoth into Ilp.g using Claim 20 (above) with parameters c«, 3, Lo. These

parameters satisfy the requirements in Claim 20 by Item 3.

. Convert Ilp,q to the error-resilient protocol Iligear, which is error-resilient in the ideal

hash model, by applying the protocol from Section 4 to II,,q, with parameters «, o/, 3, d.
Jumping ahead, note that by Item 4, these parameters satisfy Equation (3) which is
required in order to apply Theorem 9.

. Convert Ijgea to the protocol Il,.,4, which is obtained by instantiating the ideal hash

using private randomness, obtained by applying the protocol described in Section 6 to
Iigear. Jumping ahead, note that by Items 5 and 6, imply that Equations (4) and (5) are
satisfied and the requirements of Theorem 17 are satisfied with respect to any adversary A
that corrupts messages of total volume < %CC((Hrand)A).

. Convert II,ang to II' = (SA7 SPB), where II’ is the same as Il ,ng, except that each message

is sent encoded with the error correcting code from Theorem 19 with parameter «.
Lemma 22. The protocol Tl = (84, SB) satisfies the conditions of Theorem 18.

The proof of Lemma 22 is deferred to full version. |

15 Bach of the following items will later be used to apply a different theorem from previous sections.

K. Efremenko, E. Haramaty, and Y. T. Kalai

—— References

1

10

11

12

13

14

15

16

17

Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interactive communication.
In IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, July
10-15, 2016, pages 595-599, 2016. doi:10.1109/ISIT.2016.7541368.

Zvika Brakerski and Yael Tauman Kalai. Efficient Interactive Coding against Adversarial Noise.
In 58rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 160-166, 2012. doi:10.1109/F0CS.2012.22.
Zvika Brakerski, Yael Tauman Kalai, and Moni Naor. Fast Interactive Coding against
Adversarial Noise. J. ACM, 61(6):35:1-35:30, 2014. doi:10.1145/2661628.

Zvika Brakerski and Moni Naor. Fast Algorithms for Interactive Coding. In Proceedings of the
2/th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages 443-456, 2013.
Mark Braverman. Towards deterministic tree code constructions. In Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 161-167, 2012.
doi:10.1145/2090236.2090250.

Mark Braverman and Klim Efremenko. List and Unique Coding for Interactive Communication
in the Presence of Adversarial Noise. In Proceedings of the IEEE Symposium on Foundations
of Computer Science, FOCS 14, pages 236-245, 2014.

Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate coding
for multiparty interactive communication is impossible. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 999-1010, 2016. doi:10.1145/2897518.2897563.

Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for Interactive
Communication Correcting Insertions and Deletions. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages
61:1-61:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.61.

Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive commu-
nication. In Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC
’11, pages 159-166, New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993659.
Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Maximal Noise in Interactive Com-
munication Over Erasure Channels and Channels With Feedback. IEEE Trans. Information
Theory, 62(8):4575-4588, 2016. doi:10.1109/TIT.2016.2582176.

Ran Gelles. Coding for Interactive Communication: A Survey. Foundations and Trends in
Theoretical Computer Science, 13(1-2):1-157, 2017. doi:10.1561/0400000079.

Ran Gelles and Bernhard. Capacity of Interactive Communication over Erasure Channels and
Channels with Feedback. SIAM J. Comput., 46(4):1449-1472, 2017. doi:10.1137/15M1052202.
Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson. Towards
Optimal Deterministic Coding for Interactive Communication. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1922—-1936, 2016. doi:10.1137/1.9781611974331.ch135.
Ran Gelles and Yael Tauman Kalai. Constant-Rate Interactive Coding Is Impossible, Even In
Constant-Degree Networks. FElectronic Colloquium on Computational Complezity (ECCC),
24:95, 2017. URL: https://eccc.weizmann.ac.il/report/2017/095.

Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and Explicit Coding for Interactive
Communication. In Proceeding of the IEEE Symposium on Foundations of Computer Science,
FOCS 11, pages 768-777, 2011.

Mohsen Ghaffari and Bernhard Haeupler. Optimal Error Rates for Interactive Coding II:
Efficiency and List Decoding. CoRR, abs/1312.1763, 2013. arXiv:1312.1763.

Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates for interactive
coding I: adaptivity and other settings. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 201/, pages 794-803, 2014. doi:10.1145/2591796.
2591872.

7:33

ITCS 2020

https://doi.org/10.1109/ISIT.2016.7541368
https://doi.org/10.1109/FOCS.2012.22
https://doi.org/10.1145/2661628
https://doi.org/10.1145/2090236.2090250
https://doi.org/10.1145/2897518.2897563
https://doi.org/10.4230/LIPIcs.ICALP.2016.61
https://doi.org/10.1145/1993636.1993659
https://doi.org/10.1109/TIT.2016.2582176
https://doi.org/10.1561/0400000079
https://doi.org/10.1137/15M1052202
https://doi.org/10.1137/1.9781611974331.ch135
https://eccc.weizmann.ac.il/report/2017/095
http://arxiv.org/abs/1312.1763
https://doi.org/10.1145/2591796.2591872
https://doi.org/10.1145/2591796.2591872

7:34

Interactive Coding with Constant Round and Communication Blowup

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion codes for high-noise
and high-rate regimes. In IEEE International Symposium on Information Theory, ISIT 2016,
Barcelona, Spain, July 10-15, 2016, pages 620624, 2016. doi:10.1109/ISIT.2016.7541373.
Bernhard Haeupler. Interactive Channel Capacity Revisited. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 226235, 2014. doi:10.1109/F0CS.2014.32.

Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: codes for insertions
and deletions approaching the Singleton bound. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 33-46, 2017. doi:10.1145/3055399.3055498.

Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. Synchronization Strings:
Channel Simulations and Interactive Coding for Insertions and Deletions. CoRR,
abs/1707.04233, 2017. arXiv:1707.04233.

Bernhard Haeupler and Ameya Velingker. Bridging the Capacity Gap Between Interactive
and One-Way Communication. CoRR, abs/1605.08792, 2016. arXiv:1605.08792.

Abhishek Jain, Yael Tauman Kalai, and Allison Lewko. Interactive Coding for Multiparty
Protocols. In Proceedings of the 6th Conference on Innovations in Theoretical Computer
Science, ITCS ’15, pages 1-10, 2015.

Gillat Kol and Ran Raz. Interactive channel capacity. In STOC ’13: Proceedings of the 45th
annual ACM symposium on Symposium on theory of computing, pages 715-724, New York,
NY, USA, 2013. ACM. doi:10.1145/2488608.2488699.

Joseph Naor and Moni Naor. Small-Bias Probability Spaces: Efficient Constructions and
Applications. SIAM J. Comput., 22(4):838-856, 1993. doi:10.1137/0222053.

Sridhar Rajagopalan and Leonard Schulman. A coding theorem for distributed computation.
In STOC ’94: Proceedings of the twenty-sizth annual ACM symposium on Theory of computing,
pages 790-799, New York, NY, USA, 1994. ACM. doi:10.1145/195058.195462.

Leonard J. Schulman. Communication on noisy channels: a coding theorem for computation.
Foundations of Computer Science, Annual IEEE Symposium on, pages 724—733, 1992. doi:
10.1109/SFCS.1992.267778.

Leonard J. Schulman. Deterministic coding for interactive communication. In STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 747756,
New York, NY, USA, 1993. ACM. doi:10.1145/167088.167279.

Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on Informa-
tion Theory, 42(6):1745-1756, 1996.

Claude E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3-55, 2001. Originally appeared in Bell System
Tech. J. 27:379-423, 623-656, 1948.

Alexander A. Sherstov and Pei Wu. Optimal Interactive Coding for Insertions, Deletions,
and Substitutions. FElectronic Colloquium on Computational Complezity (ECCC), 24:79, 2017.
URL: https://eccc.weizmann.ac.il/report/2017/079.

https://doi.org/10.1109/ISIT.2016.7541373
https://doi.org/10.1109/FOCS.2014.32
https://doi.org/10.1145/3055399.3055498
http://arxiv.org/abs/1707.04233
http://arxiv.org/abs/1605.08792
https://doi.org/10.1145/2488608.2488699
https://doi.org/10.1137/0222053
https://doi.org/10.1145/195058.195462
https://doi.org/10.1109/SFCS.1992.267778
https://doi.org/10.1109/SFCS.1992.267778
https://doi.org/10.1145/167088.167279
https://eccc.weizmann.ac.il/report/2017/079

	Introduction
	Our Model
	The Noiseless Model
	The Noisy Model

	Our Results
	Related Works
	Overview of Our Techniques
	The Protocol in the Ideal Hash Model
	Our Protocol in the Shared Randomness Model
	The Protocol in the Private Randomness Model

	Our Results
	Notations and Definitions
	Our Main Theorem
	Intuition Behind our Parameters

	Smooth Protocols
	Interactive Coding in the Ideal Hash Model
	The Protocol
	Analysis

	Hash Implementation with Shared Randomness
	Preliminaries
	Our Hash Function
	Analysis
	Communication Bound

	Hash Implementation with Private Randomness
	Putting it all Together
	Bibliography

