Solving Word Equations (And Other Unification
Problems) by Recompression

Artur Jez

University of Wroctaw, Poland
http://www.ii.uni.wroc.pl/~aje
aje@cs.uni.wroc.pl

—— Abstract

In word equation problem we are given an equation u = v, where both u and v are words of letters
and variables, and ask for a substitution of variables by words that equalizes the sides of the equation.
This problem was first solved by Makanin and a different solution was proposed by Plandowski only
20 years later, his solution works in PSPACE, which is the best computational complexity bound
known for this problem; on the other hand, the only known lower-bound is NP-hardness. In both
cases the algorithms (and proofs) employed nontrivial facts on word combinatorics.

In the paper I will present an application of a recent technique of recompression, which simplifies
the known proofs and (slightly) lowers the complexity to linear nondeterministic space. The technique
is based on employing simple compression rules (replacement of two letters ab by a new letter c,
replacement of maximal repetitions of a by a new letter), and modifying the equations (replacing
a variable X by bX or Xa) so that those operations are sound and complete. In particular, no
combinatorial properties of strings are used.

The approach turns out to be quite robust and can be applied to various generalizations and
related scenarios (context unification, i.e. equations over terms; equations over traces, i.e. partially
ordered words; ...).

2012 ACM Subject Classification Theory of computation — Formal languages and automata
theory; Theory of computation — Formalisms; Theory of computation — Grammars and context-
free languages; Theory of computation — Design and analysis of algorithms; Theory of computation
— Tree languages

Keywords and phrases word equation, context unification, equations in groups, compression
Digital Object Identifier 10.4230/LIPIcs.CSL.2020.3
Category Invited Talk

Funding Work supported under National Science Centre, Poland project number 2017/26/E/ST6/
00191.

1 Introduction

1.1 Word equations

The word equation problem, i.e. solving equations in the algebra of words, was first investigated
by Markov in the fifties. In this problem we get as an input an equation of the form

u=v

where u and v are strings of letters (from a fixed alphabet) as well as variables and a solution
is a substitution of words for variables that turns this formal equation into a true equality of
strings of letters (over the same fixed alphabet). It is relatively easy to show a reduction of
this problem to the Hilbert’s 10-th problem, i.e. the question of solving systems of Diophantine
equations. Already then it was generally accepted that Hilbert’s 10-th problem is undecidable
and Markov wanted to show this by proving the undecidability of word equations.

© Artur Jez;
37 licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernandez and Anca Muscholl; Article No. 3; pp. 3:1-3:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4321-3105
http://www.ii.uni.wroc.pl/~aje
mailto:aje@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.CSL.2020.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Solving Word Equations (And Other Unification Problems) by Recompression

Alas, while Hilbert’s 10-th problem is undecidable, the word equation problem is decidable,
which was shown by Makanin [36]. The termination proof of his algorithm is very complex and
yields a relatively weak bound on the computational complexity, thus over the years several
improvements and simplifications over the original algorithm were proposed [21, 56, 27, 19].
Simplifications have many potential advantages: it seems natural that simpler algorithm can
be generalised or extended more easily (for instance, to the case of equations in groups) than
a complex one. Moreover, simpler algorithm should be more effective in practical applications
and should have a lower complexity bounds.

Subcases. It is easy to show NP-hardness for word equations, so far no better computational
complexity lower bound is known. Such hardness stimulated a search for a restricted subclasses
of the problem for which efficient (i.e. polynomial) algorithms can be given [2]. One of such
subclasses is defined by restricting the amount of different variables that can be used in an
equation: it is known that equations with one [13, 29] and two [2, 20, 12] variables can be
solved in polynomial time. Already for three variables it is not known, whether they are in
NP or not [50] and partial results require nontrivial analysis [50].

Generalisations. Since Makanin’s original solution much effort was put into extending his
algorithm to other structures. Three directions seemed most natural:

adding constraints to word equations;

equations in free groups;

partial commutation;

equations in terms.

Constraints From the application point of view, it is advantageous to consider word equations
that can also use some additional constraints, i.e. we require that the solution for X
has some additional properties. This was first done for regular constraints [56], on the
other hand, for several types of constraints, for instance length-constraints, it is still open,
whether the resulting problem is decidable or not (it becomes undecidable, if we allow
counting occurrences of particular letter in the substitutions and arithmetic operations
on such counts [1]).

Free groups From the algebraic point of view, the word equation problem is solving equations
in a free semigroup. It is natural to try to extend an algorithm from the free semigroup
also to the case of free groups and then perhaps even to a larger class of groups (observe,
that there are groups and semigroups for which the word problem is undecidable). The
first algorithm for the group case was given by Makanin [37, 38], his algorithm was not
primitively-recursive [28]. Furthermore, Razborov showed that this algorithm can be
used to give a description of all solutions of an equation [48] (more readable description
of the Razborov’s construction is available in [25]). As a final comment, note that such a
description was the first step in proving the Tarski’s Conjecture for free groups (that the
theory of free groups is decidable) [26].

Partial commutation Another natural generalization is to allow partial commutation between
the letters, i.e. for each pair of letters we specify, whether ab = ba or not. Such partially
commutative words are usually called traces, after Mazurkiewicz, and the corresponding
groups are usually known as Right-Angled Artin Groups, RAAGs for short. Decidability
for trace equations was shown by Matiyasevich [39] and for RAAGs by Diekert and
Muscholl [11]. In both cases the main step in the proof was a reduction from a partially
commutative case to a no-commutative one.

A. Jez

Terms We can view words as very simple terms: each letter is a function symbol of
arity 1. In this way word equations are equations over (very simple) terms. It is
known, that term unification can be decided in polynomial time, assuming that variables
represent closed (full) terms [49]; thus such a problem is unlikely to generalise word
equations.

A natural generalisation of term unification and word equations is a second-order uni-
fication, in which we allow variables to represent functions that take arguments (which
need to be closed terms). However, it is known that this problem is undecidable, even
in many restricted subcases [18, 14, 30, 32]. Context unification [4, 5, 51] is a natural
problem “in between”: we allow variables representing functions, but we insist that they
use their argument exactly once. It is easy to show that such defined problem generalises
word equations, on the other hand, the undecidability proofs for second-order unification
do not transfer directly to this model.

Being a natural generalisation is not enough to explain the interest in this problem,
more importantly, context unification has natural connections with other, well-studied
problems (equality up to constraints [40], linear second-order unification [33, 30], one-step
term rewriting [41], bounded second order unification [53], ...). Unfortunately, for over
two decades the question of decidability of context unification remained open. Despite
intensive research, not much is known about the decidability of this problem: only results
for some restricted subcases are known: [5, 52, 31, 30, 55, 54, 34, 17].

1.2 Compression and word equations

For more than 20 years since Makanin’s original solution there was very small progress in
algorithms for word equations: the algorithm was improved in many places, in particular
this lead to a better estimation of the running time; however, the main idea (and the general
complexity of the proof) was essentially the same.

The breakthrough was done by Plandowski and Rytter [47], who, for the first time, used
the compression to solve word equations. They showed, that the shortest solution (of size N)
of the word equation (of size n) has an SLP! representation of size poly(n,log N); using the
algorithm for testing the equality of two SLPs [43] this easily yields a (non-deterministic)
algorithm running in time poly(n,log N). Unfortunately, this work did not provide any
bound on N and the only known bound (4 times exponential in n) came directly from
Makanin’s algorithm, together those two results yielded a 3NEXPTIME algorithm. Soon after
the bound on the size of the shortest solution was improved to triply exponential [19], which
immediately yielded an algorithm from class 2NEXPTIME, however, the same paper [19]
improved Makanin’s algorithm, so that it workd in EXPSPACE.

Next, Plandowski gave a better (doubly exponential) bound on the size of the shortest
solution [44] and thus obtained a NEXPTIME algorithm, in particular, at that time this was
the best known algorithm for this problem. The proof was based on novel factorisations
of words. By better exploiting the interplay between factorisations and compression, he
improved the algorithm so that it worked in PSPACE [45].

It is worth mentioning, that the solution proposed by Plandowski is essentially different
than the one given by Makanin. In particular, it allowed generalisations more easily: Diekert,
Gutiérrez and Hagenah [8] showed, that Plandowski’s algorithm can be extended to the case

LA Straight Line Programme (SLP for short), is simply a context free grammar generating exactly one
word.

3:3

CSL 2020

3:4

Solving Word Equations (And Other Unification Problems) by Recompression

in which we allow regular constraints in the equation (i.e. we want that the word substituted
for X is from a regular language, whose description by a finite automaton is part of the
input) and inversion; such an extended algorithm still works in polynomial space. It is easy
to show that solving equations in free groups reduces to the above-mentioned problem of
word equations with regular constraints and inversion [8] (it is worth mentioning, that in
general we do not know whether solving equations in free groups is easier or harder than
solving the ones in a free semigroup).

On the other hand, Plandowski showed, that his algorithm can be used to generate a
finite representation of all solutions of a word equation [46], which allows solving several
decision problems concerning the set of all solutions (finiteness, boundedness, boundedness of
the exponent of periodicity etc.). It is not known, whether this algorithm can be generalised
so that it generates all solutions also in the case of regular constraints and inversion (or in a
free group).

The new, simpler algorithm for word equations and demonstration of connections between
compression and word equations gave a new hope for solving the context unification problem.
The first results were very promising: by using “tree” equivalents of SLPs computational
complexity of some problems related to context unification was established [17, 31, 6].
Unfortunately, this approach failed to fully generalise Plandowski’s algorithm for words: the
equivalent of factorisations that were used in the algorithm were not found for trees.

It is worth mentioning, that the approach proposed by Rytter and Plandowski, in which we
compress a solution using SLPs (or in the non-deterministic case — we guess the compressed
representation of the solution) and then perform the computation directly on the SLP-
compressed representations using known algorithm that work in polynomial time, turned out
to be extremely fruitful in many branches of computer science. The recent survey by Lohrey
gives several such successful applications [35].

» Remark. As this is an informal survey presentations, most of the proofs are only sketched
or omitted.

2 Recompression for word equations

We begin with a formal definition of the word equations problem: Consider a finite alphabet
3 and set of variables X’; during the algorithm ¥ will be extended by new letters, but it will
always remain finite. Word equation is of a form “u = v”, where u,v € (X U X)* and its
solution is a homomorphism S : ¥ U X — ¥*, which is constant on ¥, that is S(a) = a, and
satisfies the equation, i.e. words S(u) and S(v) are equal. By n we denote the size of the
equation, i.e. |u| 4+ |v|. The algorithm requires only small improvements so that it applies
also to systems of equations, to streamline the presentation we will not consider this case.

Fix any solution S of the equation u = v, without loss of generality we can assume that
this is the shortest solution, i.e. the one minimising |S(u)|; let N denote the length of the
solution, that is |S(u)|. By the earlier work of Plandowski and Rytter [47] we know that S(u)
(and also S(X) for each variable X) has an SLP (of size poly(n,log N)), in fact the same
conclusion can be to drawn from the later works of Plandowski [44, 45, 46]. Regardless of the
form of S and SLP, we know, that at least one of the productions in this SLP is of the form
¢ — ab, where ¢ is a nonterminal of the SLP while a,b € 3 are letters. Let us “reverse” this
production, i.e. replace in S(u) all pairs of letters ab by c. It is relatively easy to formalise
this operation for words, it is not so clear, what should be done in case of equations, so let
us inspect the easier fragment first.

A. Jez

Algorithm 1 PairComp(ab, w) Compression of pair ab.

1: let ¢ € ¥ be an unused letter
2: replace all occurrences of ab in w by ¢

Consider an explicitly given word w. Performing the “ab-pair compression” on it is easy
(we replace each pair ab by ¢), as long as a # b: replacing pairs aa is ambiguous, as such
pairs can “overlap”. Instead, we replace mazimal blocks of a letter a: block a’ is mazimal,
when there is no letter a to left and to the right of it (in particular, there could be no letter
at all).

Formally, the operations are defined as follows:

ab pair compression For a given word w replace all occurrences of ab in w by a fresh

letter c.

a block compression For a given word w replace all occurrences of maximal blocks a’ for

¢ > 1 in w by fresh letters ay.

We always assume, that in the ab-pair compression the letters a and b are different.

Observe, that those operations are indeed “inverses” of SLP productions: replacing ab
with ¢ corresponds to a production ¢ — ab, similarly replacing a’ with a, corresponds to
a production a; — a’.

Algorithm 2 BlockComp(a,w) Block compression for a.

1: for £ > 1 do
2: let ay € ¥ be an unused letter
3: replace all maximal blocks a’ in w by a,

Iterating the pair and blocks compression results in a compression of word w, assuming
that we treat the introduced symbols as normal letters. There are several possible ways
to implement such iteration, different results are obtained by altering the order of the
compressions, exact treatment of new letters and so on. Still, essentially each “reasonable”
variant works.

Observe, that if we compress two words, say w; and ws, in parallel then the resulting
words w] and w}, are equal if and only if wy and wy are. This justifies the usage of compression
operations to both sides of the word equation in parallel, it remains to show, how to do that.

Let us fix a solution S, a pair ab (where a # b); consider how does a particular occurrence
of ab got into S(u).

» Definition 1. For an equation u = v, solution S and pair ab an occurrence of ab in S(u)
(or S(v)) is

explicit, if it consists solely of letters coming from u (or v);

implicit, if it consists solely of letters coming from a substitution S(X) for a fized

occurrence of some variable X ;

crossing, otherwise.
A pair ab is crossing (for a solution S) if it has at least one crossing occurrence and
non-crossing (for a solution S) otherwise.

We similarly define explicit, implicit and crossing occurrences for blocks of letter a; a is
crossing, if at least one of its blocks has a crossing occurrence. (In other words: aa is
crossing).

3:5

CSL 2020

3:6

Solving Word Equations (And Other Unification Problems) by Recompression

» Example 2. Equation
aaXbbabababa = X aabbY abX

has a unique solution S(X) = a, S(Y) = abab, under which sides evaluate to
aaabbabababa = aaabbabababa .

Pair ba is crossing (as the first letter of S(Y) is a and first Y is preceded by a letter b,
moreover, the last letter of S(Y') is b and the second Y is succeeded by a letter a), pair ab is
non-crossing. Letter b is non-crossing, letter a is crossing (as X is preceded by a letter a on
the left-hand side of the equation and on the right-hand side of the equation X is succeeded
by a letter a).

Algorithm 3 PairComp(ab, ‘u = v’) Pair compression for ab in an equation v = v.

1: let ¢ € ¥ be a fresh letter
2: replace all occurrences of ab in ‘u = v’ by ¢

Algorithm 4 BlockComp(a, ‘u = v’) Block compression for a letter a in an equation ‘u = v’.

1: for £ > 1 do
2: let ay € ¥ be a fresh letter
3: replace all occurrences of maximal blocks a’ in ‘u = v’ by ay

Fix a pair ab and a solution S of the equation u = v. If ab is non-crossing, performing
PairComp(ab, S(u)) is easy: we need to replace every explicit occurrence (which we do directly
on the equation) as well as each implicit occurrence, which is done “implicitly”; as the solution
is not stored, nor written anywhere. Due to the similarities to PairComp we will simply
use the name PairComp(ab, ‘u = v’), when we make the pair compressions on the equation.
The argument above shows, that if the equation had a solution for which ab is non-crossing
then also the obtained equation has a solution. The same applies to the block compression,
called BlockComp(a, ‘u = v’) for simplicity. On the other hand, if the obtained equation has
a solution, then also the original equation had one (this solution is obtained by replacing
each letter ¢ by ab, the argument for the block compressions the same).

» Lemma 3. Let the equation u = v have a solution S, such that ab is non-crossing for S.
Then v’ = v' obtained by PairComp(ab, ‘u = v’) is satisfiable.
If the obtained equation u’' = v’ is satisfiable, then also the original equation u = v is.
The same applies to BlockComp(a, ‘u = v’).

Unfortunately Lemma 3 is not enough to simulate Compression(w) directly on the equation:
In general there is no guarantee that the pair ab (letter a) is non-crossing, moreover, we
do not know what are the pairs that have only implicit occurrences. It turns out, that the
second problem is trivial: if we restrict ourselves to the shortest solutions then every pair
that has an implicit occurrence has also a crossing or explicit one, a similar statement holds
also for blocks of letters.

» Lemma 4 ([47]). Let S be a shortest solution of an equation ‘u = v’. Then:
If ab is a substring of S(u), where a # b, then a, b have explicit occurrences in the
equation and ab has an explicit or crossing occurrence.
If a* is a mazimal block in S(u) then a has an explicit occurrence in the equation and a*
has an explicit or crossing occurrence.

A. Jez

The proof is simple: suppose that a pair (block) has only implicit occurrences. Then we
could remove them and the obtained solution is shorter, contradicting the assumption.

Getting back to the crossing pairs (and blocks), if we fix a pair ab (letter a), then it is
easy to “uncross” it: by Definition 1 we can conclude that the pair ab is crossing if and only
if for some variables X and Y (not necessarily different) one of the following conditions holds
(we assume that the solution does not assign an empty word to any variable — otherwise we
could simply remove such a variable from the equation):

(CP1) aX occurs in the equation and S(X) begins with b;
(CP2) Y occurs in the equation and S(Y) ends with a;
(CP3) Y X occurs in the equation, S(X) begins with b while b S(Y") ends with a.

In each of these cases the “uncrossing” is natural: in (CP1) we “pop” from X a letter b

to the left, in (CP2) we pop a to the right from Y, in (CP3) we perform both operations.

It turns out that in fact we can be even more systematic: we do not have to look at the
occurrences of variables, it is enough to consider the first and last letter of S(X) for each
variable X:
If S(X) begins with b then we replace X with bX (changing implicitly the solution
S(X) = bw to §'(X) = w), if in the new solution S(X) = ¢, i.e. it is empty, then we
remove X from the equation;
if S(X) ends with a then we apply a symmetric procedure.
Such an algorithm is called Pop.

Algorithm 5 Pop(a, b, ‘u = v’).

1: for X: variable do

2 if the first letter of S(X) is b then > Guess
3: replace every X w ‘u = v’ by bX

> Implicitly change solution S(X) = bw to S(X) = w
4: if S(X) = ¢ then > Guess
5 remove X from w and v

> Perform a symmetric operation for the last letter and a

It is easy to see, that for appropriate non-deterministic choices the obtained equation has
a solution for which ab is non-crossing: for instance, if aX occurs in the equation and S(X)
begins with b then we make the corresponding non-deterministic choices, popping b to the
left and obtaining abX; a simple proof requires a precise statement of the claim as well as
some case analysis.

» Lemma 5. If the equation ‘u = v’ has a solution S then for an appropriate run of
Pop(a, b, ‘u = v’) (for appropriate non-deterministic choices) the obtained equation u' = v’
has a corresponding solution S’, i.e. S(u) = S'(u'), for which ab is a non-crossing pair.

If the obtained equation has a solution then also the original equation had one.

Thus, we know how to proceed with a crossing ab-pair compression: we first turn ab into
a non-crossing pair (Pop) and then compress it as a non-crossing pair (PairComp).

We would like to perform similar operations also for block compression. For non-crossing
blocks we can naturally define a similar algorithm BlockComp(a, ‘u = v’). It remains to show
how to “uncross” a letter a. Unfortunately, if aX occurs in the equation and S(X) begins
with @ then replacing X with aX is not enough, as S(X) may still begin with a. In such
a case we iterate the procedure until the first letter of X is not a (this includes the case in

3:7

CSL 2020

3:8

Solving Word Equations (And Other Unification Problems) by Recompression

which we remove the whole variable X). Observe, that instead of doing this letter by letter,
we can uncross a in one step: it is enough to remove from variable X its whole a-prefix and
a-suffix of S(X) (if w = a’w’a”, where w’ does not begin nor end with a, a-prefix w is a*

and a-suffix is a”; if w = a’ then a-suffix is empty). Such an algorithm is called CutPrefSuff.

Algorithm 6 CutPrefSuff(a,‘u = v’) Popping prefixes and suffixes.

1: for X: variable do
2: guess the lengths ¢, r of a-prefix and suffix of S(X) > S(X) = a‘wa”
> If S(X) = a* then 7 =0

3: replace occurrences of X in u and v by a*Xa" > af, a” are stored in a compressed
way

4: > Implicitly change the solution S(X) = a‘wb” to S(X) = w

5: if S(X) =€ then > Guess

6 remove X from u and v

Similarly as in Pop we can show that after an appropriate run of CutPrefSuff the obtained
equation has a (corresponding) solution for which a is non-crossing. Unfortunately, there is
another problem: we need to write down the lengths ¢ and r of a-prefixes and suffixes. We can
write them as binary numbers, in which case they use O(log ¢+logr) bits of memory. However
in general those still can be arbitrarily large numbers. Fortunately, we can show that in some
solution those values are at most exponential (and so their description is polynomial-size).
This easily follows from the exponential bound on exponent of periodicity [27]. For the
moment it is enough that we know that:

» Lemma 6 ([27]). In the shortest solution of the equation ‘u = v’ each a-prefix and a-suffix
has at most exponential length (in terms of |u| + |v]).

Thus in Pop we can restrict ourselves to a-prefixes and suffixes of at most exponential
length.

» Lemma 7. Let S be a shortest solution of ‘u=v’. After some run of CutPrefSuff(a, ‘u = v’)
(for appropriate non-deterministic choices) the obtained equation ‘v’ = v’ has a corresponding
solution S', such that S'(u') = S(u), and a is a non-crossing letter for S', moreover, the
ezplicit a blocks in ‘u’ = v"’ have at most exponential length.

If the obtained equation has a solution then also the original equation had one.

After Pop we can compress a-blocks using BlockComp(a, ‘u = v’), observe that afterwards
long a-blocks are replaced with single letters.

We are now ready to simulate Compression directly on the equation. The question is, in
which order we should compress pairs and blocks? We make the choice nondeterministically:
if there are any non-crossing pairs or letters, we compress them. This is natural, as such
compression decreases both the size of the equation and the size of the length-minimal
solution of the equation. If all pairs and letters are crossing, we choose greedily, i.e. the one
that leads to the smallest equation (in one step). It is easy to show that such a strategy keeps
the equation quadratic, more involved strategy, in which we compress many pairs/blocks in
parallel, leads to a linear-length equation.

Call one iteration of the main loop a phase.

The correctness of the algorithm follows from the earlier discussion on the correctness of
BlockComp, CutPrefSuff, PairComp and Pop. In particular, the length of the length-minimal
solution drops by at least 1 in each iteration, thus the algorithm terminates.

A. Jez

Algorithm 7 WordEqSAT Deciding the satisfiability of word equations.

1: while |u| > 1 or [u] > 1 do > The equation is nontrivial
2 L + list of letters in u,v > Occurring in the equation
3 Choose a pair ab € P? or a letter a € P

4: if it is crossing then

5 uncross it

6 compress it

7

Solve the problem naively > The problem is simple when both sides have length 1

» Lemma 8. Algorithm WordEqSAT has O(N) phases, where N is the length of the shortest
solution of the input equation.

Let us try to bound the space needed by the algorithm: we claim that for appropriate
nondeterministic choices the stored equation has at most 8n? letters (and n variables). To
see this, observe first that each Pop introduces at most 2n letters, one at each side of the
variable. The same applies to CutPrefSuff (formally, CutPrefSuff introduces long blocks
but they are immediately replaced with single letters, and so we can think that in fact we
introduce only 2n letters). By (CP1)—(CP3) we know that there are at most 2n crossing
pairs and crossing letters (as each crossing pair / each crossing letter corresponds to one
occurrence of a variable and one “side” of such an occurrence). If the equation has m letters
(and at most n occurrences of variables) and there is an occurrence of a non-crossing pair
or block then we choose it for compression. Otherwise, there are m letters in the equation
and each is covered by at lest one pair/block, so for one of 2n choice at least - letters is
covered, so at least 7' letters are removed. Thus the new equation has at most

m

m - + 2n <8n?—2n+2n

4dn
previous ~~ popped
removed

=8n? ,
where the inequality follows by the inductive assumption that m < 8n2. Going for the
bit-size, each symbol requires at most logarithmic number of bits, and so
» Lemma 9. WordEqSAT runs in O(n?logn) space.

With some effort we can make the above if analysis much tighter:

» Theorem 10 ([24]). The recompression based algorithm (nondeterministically) decides
word equations problem in O(nlogn) bit-space; moreover, the stored equation has linear
length.

As a reminder: a PSPACE algorithm for this problem is already known [45]. Its memory
consumption is not stated explicitly in that work, however, it is much larger than O(nlogn):
the stored equations are of length O(n?) and during the transformations the algorithm uses
essentially more memory.

3 Similar applications

Generating a representation of all solutions

So far we have only considered the satisfiability of word equations. In general, there can be
many solutions of such an equation and it is desirable to have a (finite) representation of

3:9

CSL 2020

3:10

Solving Word Equations (And Other Unification Problems) by Recompression

all of them. The first such description was given by Plandowski [46], his algorithm works
in PSPACE and generates an exponential representation of all solutions. We show that a
similar description can be created using the recompression approach. It is easy to believe
that the compression of pairs and blocks “preserves” the set of solutions: if S is a solution of
an equation u = v then we can compress the pairs (or blocks) in the word S(u) and simulate
such a compression directly on the equation v = v obtaining «’ = v’ with a “corresponding”
solution S’(u’). In this way we naturally obtain a graph: its nodes are labelled with equations
and an edge between equations v = v and v’ = v’ will describe how to transform the solutions
of v/ = v’ into solutions of v = v (note that a node labelled with u = v can have several
edges to many other nodes). The mentioned description is fairly natural: we replace a letter
¢ by a pair ab or replace a, with a’ or prepend or append some letters to S(X). It remains
to guarantee that both the nodes and the edges have reasonable size description (in our case:
polynomial).

Unfortunately, there is a problem: consider an equation a XX XX = XaYY, it has
solutions of the form S(X) = a’*, S(Y) = a’", where additionally 4¢x + 1 = £x + 1 + 20y
There are infinitely many such solutions and replacing X by a’* during the CutPrefSuff
can use arbitrarily large memory and transform this equation into an infinite number
of other equations. On the other hand, as a next step we replace a-blocks of length
4lx +1=/Lx + 1+ 20y by a new letter and the precise length of those blocks is unimportant,
what matters is that they are of the same length. In general, we can improve the block
compression so that it uses numerical parameters (for lengths) instead of concrete values
of prefixes and suffixes. As a first step, in CutPrefSuff when we pop an a-prefix of length
a’> from X, the (x is not a number, but rather a numerical parameter, the same applies
to the a-suffix rx. Next we (non-deterministically) identify maximal blocks of the same
length and verify, whether indeed such blocks can be of equal length. The guessed equalities
correspond to a system of linear Diophantine equations. Moreover, each solution of such
a system corresponds to a solution of the word equation and vice-versa. In this way we
no longer need to consider large numbers and long equations and can guarantee that the
considered equations are always of polynomial length (observe that this modification in fact
removes the necessity of using the bound on the ¥-exponent of periodicity). Unfortunately,
as a side effect we get that the edges in our graph representation of all solutions are labelled
with systems of linear Diophantine equations and each solution of such a system corresponds
to one transformation of the solution of the word equation.

» Theorem 11 ([24]). Using the recompression based algorithm we can compute (in PSPACE)
a finite graph representation of all solutions of a word equation. Fach node and edge have
a polynomial description, the whole graph has at most exponential number of nodes and edges.

As in the case of the decision variant, the recompression-based algorithm has much
lower space consumption, than previously known [46], the same applies to the size of the
constructed representation.

The above characterization is combinatorial in nature. On the other hand, it is natural
to characterize the class of languages that can be obtained as sets of solutions of a word
equation. For instance, the question of whether it is an indexed language, in the sense of Aho,
was posed a long time ago. Using extensions of the recompression technique and interpreting
it in the algebraic setting it can be shown that the language of all solutions of a given word
equation is an EDTOL language [3] (so, in particular, an index language). This is by no
means an easy task, in particular, the block compression needs to be redesigned essentially
from scratch.

A. Jez

» Theorem 12 ([3]). The set of solutions of a given word equtaion is an EDTOL language.

Equations with one variable

As already mentioned, one of the investigated subclasses of word equations are the equations
with one variable. It is easy to show that they can be decided in O(n?®) and improving
to quadratic running time requires only a couple of observations [7]. The first nontrivial
algorithm for this problem had an O(nlogn) running time [42], while Dabrowski and
Plandowski gave an algorithm with O(n + # x logn) running time [13], where # x denotes
the number of occurrences of a variable X in the original equation.

It is easy to see that the recompression based algorithm becomes deterministic in case of
one variable equations: it makes the following non-deterministic choices:

What is the first (last) letter of S(X)?

What is the length of the a-prefix a* (suffix a”) of S(X)?
When the equation has only one variable, answers to both of those questions can be easily
obtained from the equation.

» Lemma 13. Without loss of generality word equation with one variable are of the form
AogXAy.. . Ap 1 XAy =XB;...By_1XBy , (1)

where Ag is a non-empty word and exactly one of the words Ay, By is empty.
Let the first letter of Ao be a. Each solution S(X) ¢ a™ has the same a-prefiz as Ap;
symmetric fact holds also for a-suffizes.

Lemma 13 yields a simple recompression based algorithm: in each phase we identify candidate
solutions from a®, where a is the first letter of Ay, and verify whether indeed such a candidate
is a solution. Next we perform recompression: all remaining solutions have the same a-prefix
(and suffix).

A natural implementation of this algorithm has the same running time as the algorithm
by Dabrowski and Plandowski, i.e. O(n + #x logn). It is possible to improve the running
time to linear, this requires several non-trivial improvements of the algorithm and usage of
efficient data structures (suffix arrays with a structure for computing the longest common
prefiz, i.e. lep). In particular:

Instead of one equation the algorithm actually stores a system of equations and sometimes

splits one equation into two smaller ones, in this way we save space.

We keep track, which words are the same and for set of identical words we store one copy

and represent all of them by pointers.

We prove that for a certain class of solutions the algorithm reports such solutions within

O(1) phases. In many places of the proofs we show that the corresponding solution is

from this class.

We improve the testing procedure: some of the candidate solutions are rejected based

on their structural properties, moreover we use a much more precise cost analysis: we

calculate for each word separately, whether it took part in a particular test or not. In
this way we can establish that some tests took less time than linear (which is the time
needed for reading the whole equation).

» Theorem 14 ([23]). Using a recompression based algorithm we can in linear time return
all solutions of a word equation with one variable.

3:11

CSL 2020

3:12

Solving Word Equations (And Other Unification Problems) by Recompression

Equations with regular constraints and inversion; equations in free groups

As already mentioned, it is natural and important to extend the word equations by regular
constraints and inversion, in particular this leads to an algorithm for equations in free
groups [8] (the reduction between those two problems is fully syntactical and does not depend
on the particular algorithm for solving word equations). Note that it is unknown, whether
the algorithm generating a representation of all solutions can be also extended by regular
constraints and inversion. Thus the only previously known algorithm for representation of
all solutions of an equation in a free group was due to Razborov [48], and it was based on
Makanin’s algorithm for word equations in free groups.

Adding the regular constraints to the recompression based algorithm WordEqSAT is fairly
standard: We can encode all constraints using one non-deterministic finite automaton (the
constraints for particular variables differ only in the set of accepting states). For each letter
¢ we store its transition function, i.e. a function f, : Q — 29, which says that the automaton
in state g after reading a letter ¢ reaches a state in f.(q). This function is naturally extended
to words: it still defines which states can be reached from ¢ after reading w. Formally
fwa = (fwo fa)(q@) ={p|3d € fu(q)ip € fu(¢')} for a letter a. If we introduce a new letter
¢ (which replaces a word w) then we naturally define the transition function f. + f,,. We
can express the regular constraints in terms of this function: saying that S(X) is accepted
by an automaton means that fg(x)(qo) is one of the accepting states. So it is enough to
guess the value of fg(x) which satisfies this condition; in this way we can talk about the
value fx for a variable X. Popping letters from a variable means that we need to adjust the
transition function, i.e. when we replace X by aX then fx = f, o fx+, we similarly define
fx when we pop letters to the right.

More problems are caused by the inversion: intuitively it corresponds to taking the
inverse element in the group and on the semigroup level we this is simulated by requiring that
a = a for each letter @ and @ias ... Gy = @y - . . G2a71. This has an impact on the compression:
when we compress a pair ab to ¢, then we should also replace ab = ba by a letter ¢. At the
first sight this looks easy, but becomes problematic, when those two pairs are not disjoint,
i.e. when @ = a (or b = b); in general we cannot exclude such a case and if it happens, in
a sequence bab during the pair compression for ba we want to simultaneously replace ba
and ab, which is not possible. Instead, we replace maximal fragments that can be fully
covered with pairs ab or ba, in this case this: the whole triple bab. In the worst case (when
a=a and b = b) we need to replace whole sequences of the form (ab)™, which is a common
generalisation of both pairs and blocks compression.

As in the case of semigroups, this representation can be interpreted in the algebraic
setting, which is even more natural, and can be used to show that the set of solutions is an
EDTOL language.

» Theorem 15 ([10], [3]). A recompression based algorithm generates in polynomial space
the description of all solutions of a word equation in free semigroups with inversion and
reqular constraints. This in particular provides a similar description in case of free groups
with regular constraints and shows that the set of solutions is an EDTOL language.

Trace equations. For our purposes it is better to view partially commuting words, i.e.
traces, in terms of resources of letters: we equip letters of the alphabet ¥ with resources,
formally there is a function p : ¥ — R, where R is some finite set. Then two different letters
commute if and only if they do not share a resource, i.e. ab = ba for a # b if and only if
p(a) N p(b) = 0. Tt is easy to see the equivalence of words with resources and traces.

A. Jez

Figure 1 A context and the same context applied on an argument.

It is difficult to apply compression operations in trace equation to letters of different
resources. On the other hand, when the set of resources of some letters are the same, they
behave exactly like ordinary non-commuting words and the recompression approach can be
applied to them. A natural approach to solving trace equation using recompression involves
also another operation of “lifting” letters, i.e. increasing the set of resources of a letter. In
this way the trace is partially “linearized”, as part of the commutation is removed.

It turns out that this approach can be implemented, and the algorithm alternates the
lifting and compression operations, which is in contrast to previous approaches to trace
equations, which linearized the trace once at the beginning. In particular, the results
concerning the involution, regular constraints and equations in the corresponding groups,
which are the well-known Right-angled Artin groups, also generalize to traces. The details
are rather technical and are beyond the scope of a survey aimed at presenting recompression
technique.

» Theorem 16 ([9]). The set of solutions of trace equation (with involution and regular
constraints) is an EDTOL, its nonemptiness can be decided in PSPACE.
The same results holds also for Right-angled Artin Groups.

Context unification

Recall that the context unification is a generalisation of word equations to the case of
terms. What type of equations we would like to consider? Clearly we consider terms over a
fixed signature (which is usually part of the input), and allow occurrences of constants and
variables. If we allow only that the variables represent full terms, then the satisfiability of
such equations is decidable in polynomial time [49] and so probably does not generalise the
word equations (which are NP-hard). This is also easy to observe when we look closer at a

word equation: the words represented by the variables can be concatenated at both ends, i.e.

they represent terms with a missing argument.

We arrive at a conclusion that our generalisation should use variables with arguments, i.e.

the (second-order) variables take an argument that is a full term and can use it, perhaps
several times. Such a definition leads to a second-order unification, which is known to be
undecidable even in very restricted subcases [18, 14, 30, 32].

Thus we would like to have a subclass of second order unification that still generalises
word equations. In order to do that we put additional restriction on the solutions: each
argument can be used by the term exactly once. Observe that this still generalise the word
equations: using the argument exactly once naturally corresponds to concatenation.

Formally, in the context unification problem [4, 5, 51], we consider an equation v = v in
which we use variables (representing closed terms), which we denote by letters x,y, as well
as context variables (representing terms with one “hole” for the argument, they are usually

3:13

CSL 2020

3:14

Solving Word Equations (And Other Unification Problems) by Recompression

Figure 2 Term f(h(c,c,c), f(c, f(c,c))) represented as a tree, f is of arity 2, h arity 3, while c¢: 0.

called contexts), which we denote by letters X, Y. Syntactically, u and v are terms that use
letters from signature ¥ (which is part of the input), variables and context variables, the
former are treated as symbols of arity 0, while the latter as symbols of arity 1. A substitution
S assigns to each variable a closed term over % and to each context variable it assigns a
context, i.e. a term over X U{Q} in which the special symbol § has arity 0 and is used exactly
once. (Intuitively it corresponds to a place in which we later substitute the argument). S is
extended to u, v in a natural way, note that for a context variable X the term S(X(t)) is
obtained by replacing in S(X) the unique symbol Q by S(t). A solution is a substitution
satisfying S(u) = S(v).

» Example 17. Consider a signature {f, ¢, '}, where f has arity 2 while ¢, ¢’ have arity 0
and consider an equation X (¢) = Y(¢’), where X and Y are context variables. The equation
has a solution S(X) = f(Q,), S(Y) = f(c,Q) and then S(X(c)) = f(e,) = S(Y ().

We try to apply the main idea of the recompression also in the case of terms: we iterate
local compression operations and we guarantee that the word (term) equation is polynomial
size. Since several term problems were solved using compression-based methods [17, 31, 6,
15, 16], there is a reasonable hope that our approach may succeed.

Pair and block compression easily generalise to sequences of letters of arity 1 (we can think
of them as words), unfortunately, there is no guarantee that a term has even one such letter.
Intuitively, we rather expect that it has mostly leaves and symbols of larger arity. This leads
us to another local compression operation: leaf compression. Consider a node labelled with f
and its ¢-th child that is a leaf. We want to compress f with this child, leaving other children
(and their subtrees) unchanged. Formally, given f of arity at least 1, position 1 < i < ar(f)
and a letter ¢ of arity 0 the LeafComp(f,1,c,t) operation (leaf compression) replaces in term
t nodes labelled with f and subterms #1,...,%;_1,¢,tit1,. .., ta(s) (Where ¢ and position i
are fixed, while other terms t1,...,%;_1,%i11,...,ta(s) — varying) by a term labelled with f’
and subterms t7,...,t;_,,ti q,... ,t;r(f) that are obtained by applying recursively LeafComp
to terms t1,...,t;_1,tiy1,. .., tar(s); in other words, we first change the label from f to f’
and then remove the i-th child, which has a label ¢ and we apply such a compression to all
occurrences of f and c¢ in parallel.

The notion of crossing pair generalizes to this case in a natural way and the uncrossing
replaces a term variable with a constant or replaces X (t) with X (f(z1,...,zi,t, Tiy1,...,T0)).
Note that this introduces new variables.

Now the whole algorithm looks similar as in the case of word equations, we simply use
additional compression operation. However, the analysis is much more involved, as the new
uncrossing introduces fresh term variables. However, their number at any point can be
linearly bounded and the polynomial upper-bound follows.

» Theorem 18 ([22]). Recompression based algorithm solves context unification in non-
deterministic polynomial space.

A. Jez

—— References

1

10

11

12

13

14

15

16

17

18

19

20

Julius Richard Biichi and Steven Senger. Definability in the existential theory of concatenation
and undecidable extensions of this theory. Mathematical Logic Quarterly, 34(4):337-342, 1988.
doi:10.1002/malq.19880340410.

Witold Charatonik and Leszek Pacholski. Word equations with two variables. In IWWERT,
pages 43-56, 1991. doi:10.1007/3-540-56730-5_30.

Laura Ciobanu, Volker Diekert, and Murray Elder. Solution sets for equations over free groups
are EDTOL languages. IJAC, 26(5):843-886, 2016. doi:10.1142/S0218196716500363.
Hubert Comon. Completion of rewrite systems with membership constraints. Part I: Deduction
rules. J. Symb. Comput., 25(4):397-419, 1998. doi:10.1006/jsco.1997.0185.

Hubert Comon. Completion of rewrite systems with membership constraints. Part II: Constraint
solving. J. Symb. Comput., 25(4):421-453, 1998. doi:10.1006/jsco.1997.0186.

Carles Creus, Adria Gascén, and Guillem Godoy. One-context unification with STG-compressed
terms is in NP. In Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques
and Applications (RTA’12), volume 15 of LIPIcs, pages 149-164, Dagstuhl, Germany, 2012.
Schloss Dagstuhl — Leibniz Zentrum fuer Informatik. doi:10.4230/LIPIcs.RTA.2012.149.
Volker Diekert. Makanin’s Algorithm. In M. Lothaire, editor, Algebraic Combinatorics on
Words, chapter 12, pages 342-390. Cambridge University Press, 2002.

Volker Diekert, Claudio Gutiérrez, and Christian Hagenah. The existential theory of equations
with rational constraints in free groups is PSPACE-complete. Inf. Comput., 202(2):105-140,
2005. doi:10.1016/j.ic.2005.04.002.

Volker Diekert, Artur Jez, and Manfred Kufleitner. Solutions of word equations over partially
commutative structures. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,
and Davide Sangiorgi, editors, ICALP, volume 55 of LIPIcs, pages 127:1-127:14. Schloss
Dagstuhl—Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.127.
Volker Diekert, Artur Jez, and Wojciech Plandowski. Finding all solutions of equations in free

groups and monoids with involution. Inf. Comput., 251:263-286, 2016. doi:10.1016/j.ic.

2016.09.009.

Volker Diekert and Anca Muscholl. Solvability of equations in free partially commutative groups
is decidable. International Journal of Algebra and Computation, 16:1047-1070, 2006. Confer-
ence version in Proc. ICALP 2001, 543-554, LNCS 2076. doi:10.1142/50218196706003372.
Robert Dabrowski and Wojciech Plandowski. Solving two-variable word equations. In ICALP,
pages 408-419, 2004. doi:10.1007/978-3-540-27836-8_36.

Robert Dabrowski and Wojciech Plandowski. On word equations in one variable. Algorithmica,
60(4):819-828, 2011. doi:10.1007/s00453-009-9375-3.

William M. Farmer. Simple second-order languages for which unification is undecidable. Theor.
Comput. Sci., 87(1):25-41, 1991. doi:10.1016/50304-3975(06)80003-4.

Adria Gascén, Guillem Godoy, and Manfred Schmidt-Schaufl. Context matching for compressed
terms. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer
Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 93-102. IEEE Computer
Society, 2008. doi:10.1109/LICS.2008.17.

Adria Gascén, Guillem Godoy, and Manfred Schmidt-Schauf3. Unification and matching on
compressed terms. ACM Trans. Comput. Log., 12(4):26, 2011. doi:10.1145/1970398.1970402.
Adria Gascén, Guillem Godoy, Manfred Schmidt-Schauf3;, and Ashish Tiwari. Context
unification with one context variable. J. Symb. Comput., 45(2):173-193, 2010. doi:
10.1016/j.jsc.2008.10.005.

Warren D. Goldfarb. The undecidability of the second-order unification problem. Theor.
Comput. Sci., 13:225-230, 1981. doi:10.1016/0304-3975(81)90040-2.

Claudio Gutiérrez. Satisfiability of word equations with constants is in exponential space. In
FOCS, pages 112-119, 1998. doi:10.1109/SFCS.1998.743434.

Lucian Ilie and Wojciech Plandowski. Two-variable word equations. ITA, 34(6):467-501, 2000.
doi:10.1051/ita:2000126.

3:15

CSL 2020

https://doi.org/10.1002/malq.19880340410
https://doi.org/10.1007/3-540-56730-5_30
https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.4230/LIPIcs.RTA.2012.149
https://doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.4230/LIPIcs.ICALP.2016.127
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/s00453-009-9375-3
https://doi.org/10.1016/S0304-3975(06)80003-4
https://doi.org/10.1109/LICS.2008.17
https://doi.org/10.1145/1970398.1970402
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1109/SFCS.1998.743434
https://doi.org/10.1051/ita:2000126

3:16

Solving Word Equations (And Other Unification Problems) by Recompression

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Joxan Jaffar. Minimal and complete word unification. J. ACM, 37(1):47-85, 1990.

Artur Jez. Context unification is in PSPACE. In Elias Koutsoupias, Javier Esparza, and
Pierre Fraigniaud, editors, ICALP, volume 8573 of LNCS, pages 244-255. Springer, 2014. full
version at http://arxiv.org/abs/1310.4367. doi:10.1007/978-3-662-43951-7_21.

Artur Jez. One-variable word equations in linear time. Algorithmica, 74:1-48, 2016. doi:
10.1007/s00453-014-9931-3.

Artur Jez. Recompression: a simple and powerful technique for word equations. J. ACM,
63(1):4:1-4:51, March 2016. doi:10.1145/2743014.

Olga Kharlampovich and Alexei Myasnikov. Irreducible affine varieties over a free group. ii:
Systems in triangular quasi-quadratic form and description of residually free groups. Journal
of Algebra, 200:517—-570, 1998.

Olga Kharlampovich and Alexei Myasnikov. Elementary theory of free non-abelian groups.
Journal of Algebra, 302:451-552, 2006.

Antoni Koécielski and Leszek Pacholski. Complexity of Makanin’s algorithm. J. ACM,
43(4):670-684, 1996. doi:10.1145/234533.234543.

Antoni Koscielski and Leszek Pacholski. Makanin’s algorithm is not primitive recursive. Theor.
Comput. Sci., 191(1-2):145-156, 1998. doi:10.1016/50304-3975(96)00321-0.

Markku Laine and Wojciech Plandowski. Word equations with one unknown. Int. J. Found.
Comput. Sci., 22(2):345-375, 2011. doi:10.1142/S0129054111008088.

Jordi Levy. Linear second-order unification. In Harald Ganzinger, editor, RTA, volume 1103
of LNCS, pages 332—-346. Springer, 1996. doi:10.1007/3-540-61464-8_63.

Jordi Levy, Manfred Schmidt-Schauf}, and Mateu Villaret. On the complexity of bounded
second-order unification and stratified context unification. Logic Journal of the IGPL, 19(6):763—
789, 2011. doi:10.1093/jigpal/jzq010.

Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Inf. Comput.,
159(1-2):125-150, 2000. doi:10.1006/inco.2000.2877.

Jordi Levy and Mateu Villaret. Linear second-order unification and context unification with
tree-regular constraints. In Leo Bachmair, editor, RTA, volume 1833 of LNCS, pages 156-171.
Springer, 2000. doi:10.1007/10721975_11.

Jordi Levy and Mateu Villaret. Currying second-order unification problems. In Sophie
Tison, editor, RTA, volume 2378 of LNCS, pages 326-339. Springer, 2002. doi:10.1007/
3-540-45610-4_23.

Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity
Cryptology, 4(2):241-299, 2012.

Gennadii Makanin. The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik, 2(103):147-236, 1977. (in Russian).

Gennadii Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math. 46:1199-1273,
1983. English transl. in Math. USSR Izv. 21 (1983).

Gennadii Makanin. Decidability of the universal and positive theories of a free group. Izv.
Akad. Nauk SSSR, Ser. Mat. 48:735-749, 1984. In Russian; English translation in: Math. USSR
Tzvestija, 25, 75-88, 1985.

Yuri Matiyasevich. Some decision problems for traces. In Sergej Adian and Anil Nerode,
editors, LFCS, volume 1234 of LNCS, pages 248-257. Springer, 1997. Invited lecture.
Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. On equality up-to constraints over
finite trees, context unification, and one-step rewriting. In William McCune, editor, CADE,
volume 1249 of LNCS, pages 34—48. Springer, 1997. doi:10.1007/3-540-63104-6_4.
Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. A uniform approach to underspe-
cification and parallelism. In Philip R. Cohen and Wolfgang Wahlster, editors, ACL, pages
410-417. Morgan Kaufmann Publishers / ACL, 1997. doi:10.3115/979617.979670.

S. Eyono Obono, Pavel Goralcik, and M. N. Maksimenko. Efficient solving of the word
equations in one variable. In MFCS, pages 336-341, 1994. doi:10.1007/3-540-58338-6_80.

https://doi.org/10.1007/978-3-662-43951-7_21
https://doi.org/10.1007/s00453-014-9931-3
https://doi.org/10.1007/s00453-014-9931-3
https://doi.org/10.1145/2743014
https://doi.org/10.1145/234533.234543
https://doi.org/10.1016/S0304-3975(96)00321-0
https://doi.org/10.1142/S0129054111008088
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1093/jigpal/jzq010
https://doi.org/10.1006/inco.2000.2877
https://doi.org/10.1007/10721975_11
https://doi.org/10.1007/3-540-45610-4_23
https://doi.org/10.1007/3-540-45610-4_23
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.3115/979617.979670
https://doi.org/10.1007/3-540-58338-6_80

A. Jez

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Wojciech Plandowski. Testing equivalence of morphisms on context-free languages. In
Jan van Leeuwen, editor, FSA, volume 855 of LNCS, pages 460-470. Springer, 1994. doi:
10.1007/BFb0049431.

Wojciech Plandowski. Satisfiability of word equations with constants is in NEXPTIME. In
STOC, pages 721-725. ACM, 1999. doi:10.1145/301250.301443.

Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. J. ACM,
51(3):483-496, 2004. doi:10.1145/990308.990312.

Wojciech Plandowski. An efficient algorithm for solving word equations. In Jon M. Kleinberg,
editor, STOC, pages 467-476. ACM, 2006. doi:10.1145/1132516.1132584.

Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings to the solution
of word equations. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors,
ICALP, volume 1443 of LNCS, pages 731-742. Springer, 1998. doi:10.1007/BFb0055097.
Alexander A. Razborov. On Systems of Equations in Free Groups. PhD thesis, Steklov
Institute of Mathematics, 1987. In Russian.

John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23-41, 1965.

Aleksi Saarela. On the complexity of Hmelevskii’s theorem and satisfiability of three unknown
equations. In Volker Diekert and Dirk Nowotka, editors, Developments in Language Theory,
volume 5583 of LNCS, pages 443-453. Springer, 2009. doi:10.1007/978-3-642-02737-6_36.
Manfred Schmidt-Schaufl. Unification of stratified second-order terms. Internal Report 12/94,
Johann-Wolfgang-Goethe-Universitét, 1994.

Manfred Schmidt-Schauf3. A decision algorithm for stratified context unification. J. Log.
Comput., 12(6):929-953, 2002. doi:10.1093/logcom/12.6.929.

Manfred Schmidt-Schaufl. Decidability of bounded second order unification. Inf. Comput.,
188(2):143-178, 2004. doi:10.1016/j.ic.2003.08.002.

Manfred Schmidt-Schaufl and Klaus U. Schulz. On the exponent of periodicity of minimal
solutions of context equation. In RTA, volume 1379 of LNCS, pages 61-75. Springer, 1998.
doi:10.1007/BFb0052361.

Manfred Schmidt-Schaufl and Klaus U. Schulz. Solvability of context equations with two context
variables is decidable. J. Symb. Comput., 33(1):77-122, 2002. doi:10.1006/jsco.2001.0438.
Klaus U. Schulz. Makanin’s algorithm for word equations—two improvements and a generaliz-
ation. In Klaus U. Schulz, editor, IWWERT, volume 572 of LNCS, pages 85-150. Springer,
1990. doi:10.1007/3-540-55124-7_4.

3:17

CSL 2020

https://doi.org/10.1007/BFb0049431
https://doi.org/10.1007/BFb0049431
https://doi.org/10.1145/301250.301443
https://doi.org/10.1145/990308.990312
https://doi.org/10.1145/1132516.1132584
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/978-3-642-02737-6_36
https://doi.org/10.1093/logcom/12.6.929
https://doi.org/10.1016/j.ic.2003.08.002
https://doi.org/10.1007/BFb0052361
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1007/3-540-55124-7_4

	Introduction
	Word equations
	Compression and word equations

	Recompression for word equations
	Similar applications

