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Abstract
We study the problem of finding a mapping f from a set of points into the real line, under ordinal
triple constraints. An ordinal constraint for a triple of points (u, v, w) asserts that |f(u)− f(v)| <
|f(u)− f(w)|. We present an approximation algorithm for the dense case of this problem. Given an
instance that admits a solution that satisfies (1−ε)-fraction of all constraints, our algorithm computes
a solution that satisfies (1−O(ε1/8))-fraction of all constraints, in time O(n7) + (1/ε)O(1/ε1/8)n.
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1 Introduction

Geometric methods provide several tools for the analysis of complicated data sets, such as
nearest-neighbor search, clustering, and dimensionality reduction. The key abstraction is to
encode a set of objects by mapping each object to a point in some metric space, such that
the distance between points quantifies the pairwise dissimilarity between the corresponding
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objects. The success of this paradigm crucially depends on the metrical representation used
to encode the data. Motivated by this fact, metric learning aims at developing methods
for discovering an underlying metric space from proximity information (we refer the reader
to [23, 17] for a detailed exposition). There are several different formulations of the metric
learning problem that have been considered in the literature. Here, we focus on the popular
case of ordinal constraints. In this case, the input consists of a set of points X = [n], together
with a set T of ordered triples (u, v, w) of points, representing the fact that u is more similar
to v than to w. The goal is to find a mapping f : X → Y , for some host metric space (Y, ρ),
such that for all (u, v, w) ∈ T , we have

ρ(f(u), f(v)) < ρ(f(u), f(w)). (1)

In general, there might be no mapping f that satisfies all constraints of the form (1), so
we are interested in the algorithmic problem of computing a mapping that minimizes the
fraction of violated constraints. We focus on the case where the host space is the real line,
so the objective can be formulated as computing a mapping f : [n] → R, where for each
(u, v, w) ∈ T we have the constraint

|f(u)− f(v)| < |f(u)− f(w)|. (2)

We refer to this problem as Line Learning with Ordinal Constraints (LLOC).

1.1 Our contribution

We present an approximation algorithm for learning a line metric space under ordinal
constraints, for the case of dense instances. Here, the density condition means that all
ordinal information is given, i.e. for any distinct u, v, w ∈ [n], we have either (u, v, w) ∈ T ,
or (u,w, v) ∈ T . Our main result is summarized in the following.

I Theorem 1.1. There exists an algorithm that given an instance of LLOC that admits
a solution satisfying (1 − ε)-fraction of all constraints, outputs a solution that satisfies
(1−O(ε1/8))-fraction of all constraints, in time O(n7) + (1/ε)O(1/ε1/8)n.

Brief overview of our approach

The main idea used to obtain Theorem 1.1 is to first compute an ordering that is close to
the ordering of the points in the optimal solution. This is done by “guessing” a point p∗ that
lies within the few left-most points in an optimal solution, and such that p∗ is not involved
in many violated constraints. We show that the ordinal constraints involving p∗ can be used
to order the points by first solving an instance of the Minimum Feedback Arc Set problem
on a tournament, and then computing a topological ordering of the remaining acyclic graph.
We use this ordering to partition the points into “buckets”, and we show that for almost all
buckets, almost all their points must be mapped inside an interval that does not contain
many other points. This property allows us to define a smaller instance of the problem by
contracting each bucket into a single point. This new smaller instance can be solved exactly,
and its solution can be pulled back to the original problem.



B. Fan, D. Ihara, N. Mohammadi, F. Sgherzi, A. Sidiropoulos, and M. Valizadeh 45:3

1.2 Related work
Metric learning

Another popular formulation of the metric learning problem uses contrastive constraints. In
this case, the input consists of a set of points X = [n], together with sets S,D ⊆

(
X
2
)
, where

S contains pairs labeled as similar, and D contains pairs labeled as dissimilar. The goal is
to find a mapping f : X → Y , for some host metric space (Y, ρ), such that for all {u, v} ∈ S,

ρ(f(u), f(v)) ≤ `,

and for all {u, v} ∈ D,

ρ(f(u), f(v)) ≥ h,

for some given threshold values `, h > 0. This problem is easily seen to be a generalization
of Correlation Clustering. It has been studied for the case dense instances, when the host
metric space is either Euclidean or a tree [13]. The main result of [13] is a FPTAS for the
case where there exists a mapping that satisfies all constraints, that is allowed to violate the
constraints by a small multiplicative factor which is referred to as contrastive distortion. In
contrast, in the present work, we do not introduce any distortion, and we do not need to
assume that there exists a mapping satisfying all the constraints.

We also note that the case of arbitrary instances (i.e., not necessarily dense) under
contrastive constraints has been studied for the setting of learning Mahalanobis metric spaces
(i.e., when X is a set of points in d-dimensional Euclidean space, and f is required to be
linear) [12]. This version of the problem is related to the theory of LP-type problems.

Embedding into the line

The problem of computing a geometric representation of a data set into the real line has been
studied extensively in various forms. This is arguably the simplest instance of dimensionality
reduction, which is also a prototypical unsupervised metric learning task. Various objectives
have been studied, including multiplicative [19, 20, 6, 5, 7, 11], additive [3], and average [10, 22]
distortion. We refer the read to [14] for a detailed exposition. A related notion is ordinal
embeddings, where one seeks to obtain mappings that approximately preserve the relative
ordering of pairwise distances [2, 4]. We remark that a key difference between these works
and our result is that they seek to minimize the ordinal distortion, which is a multiplicative
factor of violation of the ordinal constraints, while we are interested in minimizing the number
of violated ordinal constraints (without introducing ordinal distortion).

Betweenness

In the Betweenness problem we are given some set X = [n] and a set T of ordered triples
(a, b, c) ∈ [n]3. The goal is to find a bijection g : [n]→ [n] such that for any (a, b, c) ∈ T , g(b)
appears between g(a) and g(c). This problem has been studied extensively in the literature.
It is known to be MAXSNP-hard [9] (see also [21]), and remains hard to approximate even
on dense instances [1]. The case of tournaments has been shown to admit a PTAS [15], while
the best approximation algorithm for general instances is the 1/3-approximation obtained
by taking a uniformly random ordering, assuming the Unique Games conjecture [8] (see
also [18]).

The Betweenness problem is conceptually similar to the Line Learning with Ordinal
Constraints problem studied here. However, as we now explain, the two problems have some
important differences. A first difference is that the ordinal constraint (2) does not imply any

APPROX/RANDOM 2020
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ordering constraint1. A second difference is that the solution space to the Line Learning with
Ordinal Constraints problem that we study is larger. In other words, the ordering of the
points is not always enough to recover a nearly-optimal constraint. For example, consider
the instance on X = {0, 2, 4, . . . , 2k, 2k + 1, . . . , 3k}, with all constraints (u, v, w) ∈ X3, such
that |u− v| < |u−w|. Clearly, setting f to be the identity results in a solution that satisfies
all constraints. However, just the ordering of the points in f is not enough to obtain a good
solution: setting g(ui) = i, where g(u1) < g(u2) < . . . < g(un) results in a solution g that
violates a constant fraction of all constraints.

1.3 Organization
The rest of the paper is organized as follows. Section 2 presents, as a warm up, an
exact polynomial-time algorithm for the case where there exists a solution that satisfies all
constraints. Section 3 presents the algorithm for the general case. Section 4 presents the
analysis. Section 5 gives the proof of a technical Lemma which is used in the proof of the
main result.

2 Warm up: An exact algorithm with no violations

We now describe an exact polynomial-time algorithm for the case where there exists an
optimal solution that satisfies all constraints. This algorithm is significantly simpler than
the one used to prove our main result. However, it illustrates the main idea of using the
constraints involving some point p to deduce an ordering of all points, and then using this
ordering to obtain an embedding into the line. The algorithm is summarized in the following.

I Theorem 2.1. Let ε∗ be the fraction of violated constraints, then there exists a polynomial-
time algorithm which given an instance ([n], T ) of the LLOC problem, either computes a
mapping f : [n] → R that satisfies all the constraints, or correctly decides that no such
mapping exists.

Proof. Fix some optimal mapping f∗ : [n]→ R, that satisfies all constraints in T . We guess
p = arg min

x∈[n]
f∗(x). For all i, j ∈ [n], let di,j = |f∗(xj) − f∗(xi)|. We first determine the

ordering of all the points on the real line, and then we compute the mapping using their
distance constraints and solving some LP.

Suppose that [n] = {x1, . . . , xn}, such that

f∗(p) = f∗(x1) < f∗(x2) < . . . < f∗(xn).

Since ε∗ = 0, it follows that for all i < j ∈ [n], we have d1,i < d1,j , and (1, i, j) ∈ T .
Therefore, for any q, q′ ∈ [n], we can decide whether f∗(q) < f∗(q′) or f∗(q′) < f∗(q) based
on whether (p, q, q′) ∈ T or (p, q′, q) ∈ T . Therefore, we can compute the ordering x1, . . . , xn
of [n] by running a sorting algorithm using pairwise comparisons.

We now compute a mapping using an LP. For any i < j ∈ {1, . . . , n}, we have |f∗(xi)−
f∗(xj)| =

∑j−1
t=i dt,t+1. Therefore for each (xi, xj , xk) ∈ T , the constraint |f∗(xi)−f∗(xj)| <

|f∗(xi)− f∗(xk)| can be written as
∑j−1
t=i dt,t+1 <

∑k−1
t=i dt,t+1. Thus computing the desired

mapping f can be done by computing a feasible solution to the following LP:

1 For example, the constraint (u, v, w) is satisfied by both solutions f(u) = 1, f(v) = 2, f(w) = 3, and
f(u) = 2, f(v) = 1, f(w) = 4, however the former solution implies the ordering f(u) < f(v) < f(w),
while the latter implies f(v) < f(u) < f(w)
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di,j ≥ 0 for all i < j ∈ [n]
j−1∑
t=i

dt,t+1 <

k−1∑
t=i

dt,t+1 for all (xi, xj , xk) ∈ T

This concludes the proof. J

3 The algorithm for the general case

In this Section we present the algorithm for the general case of the problem. The algorithm
uses as a subroutine an exact algorithm for a generalized weighted version of the problem.
This exact algorithm is used on small instances that are constructed via a process which we
refer to as a retraction.

3.1 Retractions
We now define a weighted version of the metric learning problem, where each constraint is
associated with some weight, and the goal is to maximize the total weight of all satisfied
constraints. Formally, an input to the Weighted Line Learning with Ordinal Constraints
(WLLOC) problem is defined by a tuple ([b], T , w), where b ∈ N, and T are as before, and
w : T → R is a weight function. The goal is to find a solution f : [b]→ [0, 1] that minimizes
the total weight of violated constraints.

I Theorem 3.1. There exists an exact algorithm for the WLLOC problem with running time
O(n3n).

Proof. We identify the space of possible solutions with [0, 1]n, by mapping each solution
f : [b] → [0, 1] to the vector xf = (f(1), . . . , f(n)) ∈ [0, 1]n. For any (i, j, k) ∈ T , we have
the constraint

|f(i)− f(j)| < |f(i)− f(k)|.

The feasible region for this constraint is thus defined as a union of certain cells in an
arrangement A(i,j,k) of a constant number of open halfspaces in Rn. Let A be the arrangement
obtained as the union of all halfspaces for all (i, j, k) ∈ T . It is known that any arrangement
of a halfspaces in Rb has complexity O(ab) (see [24] and references therein), and thus A has
complexity O(|T |n) = O(n3n). By enumerating all the cells in this arrangement, we find
a solution that satisfies a set of constraints of maximum total weight, which results in an
algorithm with running time O(n3n). J

As mentioned earlier, the exact algorithm from Theorem 3.1 will be used as a subroutine on
smaller instances. The following Definition describes a process for mapping large unweighted
instances to smaller weighted ones.

I Definition 3.2 (Retraction). Given an instance φ = ([n], T ) of the LLOC problem, and
some partition B = {B1, . . . , Bb} of [n], we define the B-retraction of φ to be the instance
φ′ = ([b], T ′, w) of the WLLOC problem where for any (i, j, k) ∈ T ′, we have

w((i, j, k)) = |T ∩ (Bi ×Bk ×Bj)| .

APPROX/RANDOM 2020
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3.2 The algorithm
The last ingredient we need is an approximation algorithm for the Minimum Feedback Arc
Set problem on tournaments, which is summarized in the following.

I Theorem 3.3 (Kenyon-Mathieu & Schudy [16]). There exists a randomized algorithm
for the Minimum Feedback Arc Set problem on weighted tournaments. Given ε > 0, it
outputs a solution with expected cost at most (1 + ε)OPT. The expected running time is
O(1/ε)n6 + 2Õ(1/ε)n2 + 22Õ(1/ε)

n.

We are now ready to describe the general algorithm. Let Tn denote the set of all ordered
triples of distinct elements in [n]. Recall that the input consists of a set T ⊆ Tn, such that
for any set of distinct i, j, k ∈ [n], we have that exactly one of the triples (i, j, k) and (i, k, j)
is contained in T .

The algorithm proceeds in the following steps:

Step 1: Exhaustively computing a left-most point. Iterate Steps 2–5 for all values p ∈ [n].
Step 2: Cycle removal. Construct a tournament G(p) = ([n], A(p)), where

A(p) = {(i, j) : (p, i, j) ∈ T }.

Compute an O(1)-approximate minimum feedback arc set, F (p) ⊂ A(p), in G(p), using
the algorithm in Theorem 3.3.

Step 3: Ordering. Compute a topological ordering z(p)
1 , . . . , z

(p)
n of G(p) \ F (p).

Step 4: Retraction. Let b = O(ε−1/8). For any i ∈ [b], let

B(p)
i =

in/b⋃
j=(i−1)n/b+1

{z(p)
j }.

Let ψ(p) be the B(p)-retraction of φ(p).
Step 5: Extension. Using the algorithm from Theorem 3.1, we compute an optimal solution

g(p) : [b]→ [0, 1] for the instance ψ(p) of WLLOC. We define f (p) : [n]→ [0, 1] by setting
for any i ∈ [n], f (p)(i) = g(p)(j), where j ∈ [b] such that i ∈ B(p)

j . The algorithm outputs
the solution f (p).

Step 6: Return the best solution found among f (1), . . . , f (n).

This completes the description of the algorithm.

4 Analysis of the algorithm

This Section presents the analysis of the algorithm, which is the proof of Theorem 1.1.
For the remainder of the analysis, let us fix some optimal solution fOPT : [n]→ [0, 1] for

the instance ([n], T ) of the LLOC problem. Fix a numbering {x1, . . . , xn} = [n], such that

fOPT(x1) ≤ fOPT(x2) ≤ . . . ≤ fOPT(xn).

For any f : [n]→ [0, 1], for any i ∈ [n], and for any α ∈ [0, 1], we say that i is α-good in
f , if at least α-fraction of the constraints of the form (i, j, k) ∈ T are satisfied; i.e.:

|{(i, j, k) ∈ T : |f(i)− f(j)| < |f(i)− f(k)|}| ≥ α
(
n− 1

2

)
.

We first argue that there exists a (1− ε1/2)-good point that is close to the left-most point
in the optimal solution:
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I Lemma 4.1. There exists i∗ ∈ [2ε1/2n], such that xi∗ is (1− ε1/2)-good in fOPT.

Proof. Let ξ be the total number of constraints violated by fOPT. We have ξ ≤ ε · |T | =
εn
(
n−1

2
)
. Suppose that there exists no i ∈ [2ε1/2n] such that xi is (1− ε1/2)-good. Therefore

every i ∈ [2ε1/2n] participates in at least ε1/2(n−1
2
)
violated constraints of the form (i, j, k),

for some j, k ∈ [n]. Thus the total number of violated constraints is at least ξ ≥ 2nε
(
n−1

2
)
,

which is a contradiction, concluding the proof. J

For the remainder of this section, fix some i∗ ∈ [2ε1/2n], such that xi∗ is (1− ε1/2)-good,
as in Lemma 4.1. Let f ′ be the embedding obtained from fOPT by exchanging the images of
x1 and xi∗ , that is for all i ∈ [n],

f ′(xi) =


fOPT(xi∗) if i = 1
fOPT(x1) if i = i∗

fOPT(xi) otherwise

We next show that f ′ is near-optimal.

I Lemma 4.2. The total number of violated constraints in f ′ is at most (ε+O(1/n))n
(
n−1

2
)
.

Proof. Let T1 ⊆ T be the set of constraints that are violated in f ′ and in fOPT. Let T2 ⊆ T
be the set of constraints that are violated in f ′ but not in fOPT. We have |T1| ≤ εn

(
n−1

2
)
.

Since fOPT and f ′ differ only on x1 and xi∗ , it follows that every constraint (i, j, k) ∈ T2
must contain at least one of 1 and i∗. There are at most 6n2 such constraints. Thus
|T2| ≤ 6n2. We conclude that the total number of constraints violated in f ′ is at most
|T1|+ |T2| ≤ (ε+O(1/n))n

(
n−1

2
)
, which concludes the proof. J

The next Lemma shows that xi∗ remains (1−O(ε1/2))-good in f ′.

I Lemma 4.3. We have that xi∗ is (1−O(ε1/2))-good in f ′.

Proof. Let γ = (xi∗ , j, k) ∈ T , and suppose that γ is satisfied in fOPT. If

fOPT(xi∗) ≤ fOPT(j) ≤ fOPT(k),

then, since f ′(j) = fOPT(j), and f ′(k) = fOPT(k), it follows that

f ′(xi∗) ≤ f ′(j) ≤ f ′(k),

and thus γ is also satisfied in f ′.
Thus, the only possible constraints of the form (xi∗ , j, k) ∈ T , that are not violated in fOPT,

but are violated in f ′, must satisfy either fOPT(j) < fOPT(xi∗), or fOPT(k) < fOPT(xi∗). In
other words, we must have {j, k}∩ {x1, . . . , xi∗−1} 6= ∅. Therefore, there are at most 2ε1/2n2

such constraints. Since xi∗ is (1−ε1/2)-good in fOPT, it follows that xi∗ is (1−O(ε1/2))-good
in f ′, which concludes the proof. J

Let F ′ = {(j, k) ∈ A(i∗) : (xi∗ , j, k) ∈ T and f ′ violates (xi∗ , j, k)}. The next Lemma shows
F ′ is a valid feedback arc set for G(i∗).

I Lemma 4.4. F ′ is a feedback arc set for G(i∗), with |F ′| ≤ (O(ε1/2))
(
n−1

2
)
.

APPROX/RANDOM 2020
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Proof. By Lemma 4.3, xi∗ is (1−O(ε1/2))-good, and thus |F ′| ≤ (O(ε1/2))
(
n−1

2
)
. Thus, it

suffices to show that F ′ is a feedback vertex set. For any (j, k) ∈ A(i∗) \ F ′, we have that
(xi∗ , j, k) is satisfied in f ′. Since xi∗ is mapped to the left-most point in f ′, it follows that
f ′(j) < f ′(k). Thus,

xi∗ , x2, x3, . . . , xi∗−1, x1, xi∗+1, xi∗+2, . . . , xn

is a topological ordering of G(i∗) \ F ′, and thus F ′ is a feedback arc set, which concludes the
proof. J

If the instance admits a solution with no violations, then it can be shown that the
bucketing B(i∗) computed by the algorithm agrees with a partition of the optimal solution
to contiguous disjoint intervals. In the following, we show that, in the general case, the
bucketing is “close” to such a partition. First, we introduce a notion of “stability” which
formalizes what it means for a bucket to be close to an optimal interval.

I Definition 4.5 (Stability). Let i ∈ [b]. We say that i is stable if there exists some interval
I ⊂ R, such that∣∣∣I ∩ f ′ (B(i∗)

i

)∣∣∣ ≥ (1− ε1/8) · n/b,

and∣∣∣I ∩ f ′ ([n] \B(i∗)
i

)∣∣∣ ≤ ε1/8 · n/b,

We also say that i is I-stable. We say that i is unstable (I-unstable) if it is not stable
(I-stable).

The following Lemma gives a characterization of unstable buckets.

I Lemma 4.6. Suppose that i ∈ [b] is unstable. Then there exist pairwise disjoint intervals
I1, I2, I3 ⊂ R, that appear in this order from left to right in the line, such that∣∣∣I1 ∩ f ′

(
B

(i∗)
i

)∣∣∣ ≥ nε1/8/(2b),∣∣∣I3 ∩ f ′
(
B

(i∗)
i

)∣∣∣ ≥ nε1/8/(2b),

and∣∣∣I2 ∩ f ′
(

[n] \B(i∗)
i

)∣∣∣ > ε1/8 · n/b,

Proof. Let I1 ⊂ R be the minimal interval that contains the nε1/8/(2b) left-most points in
f ′(B(i∗)

i ), and let I3 ⊂ R be the minimal interval that contains the nε1/8/(2b) right-most
points in f ′(B(i∗)

i ). Let I2 ⊂ R be the maximal interval that is contained between I1 and I3.
Since ε1/8 < 1, we have that I1 ∩ I3 = ∅, and therefore, all intervals I1, I2, I3 are well-defined
and pairwise disjoint. By construction, I1 and I3 each contains exactly nε1/8/(2b) points
in f ′(B(i∗)

i ). Therefore, it remains to show that I2 contains more than ε1/8n/b points in
f ′([n] \B(i∗)

i ). Suppose, for the sake of contradiction, that I2 contains at most ε1/8n/b in
f ′([n] \ B(i∗)

i ). Then, I2 contains exactly (1 − ε1/8)n/b points in f ′(B(i∗)
i ), and at most

ε1/8n/b points in f ′([n] \B(i∗)
i ), implying that Bi is stable, which is a contradiction. This

concludes the proof. J
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We next show that for each unstable bucket, the feedback arc set must contain many
edges incident to vertices in the bucket.

I Lemma 4.7. Let i ∈ [b] be unstable. Then, F (i∗) ∪ F ′ contains at least ε1/4n2/(2b2) arcs
having exactly one endpoint in B(i∗)

i .

Proof. Let I1, I2, I3 ⊂ R be the intervals given by Lemma 4.6. Let v ∈ [n] \B(i∗)
i , such that

f ′(v) ∈ I2. Pick j ∈ [b], such that v ∈ B(i∗)
j . We consider two cases:

Case 1: Suppose that j < i. Let u ∈ B(i∗)
i , such that f ′(u) ∈ I1. If (v, u) ∈ A(i∗), then it

follows that f ′ violates (xi∗ , v, u), and thus (v, u) ∈ F ′. Otherwise, we have (u, v) ∈ A(i∗).
Since u appears after v in the topological sort of G(i∗) \ F (i∗), it follows that (u, v) ∈ F (i∗).
Thus, in either case, F (i∗) ∪ F ′ contains either (u, v) or (v, u). Therefore, F (i∗) ∪ F ′ contains
at least nε1/8/(2b) arcs having u as an endpoint.

Case 2: Suppose that j > i. This case is similar to Case 1, and is included for completeness.
Let u ∈ B(i∗)

i , such that f ′(u) ∈ I3. If (u, v) ∈ A(i∗), then it follows that f ′ violates (xi∗ , u, v),
and thus (u, v) ∈ F ′. Otherwise, we have (v, u) ∈ A(i∗). Since u appears before v in the
topological sort of G(i∗) \ F (i∗), it follows that (v, u) ∈ F (i∗). Thus, in either case, F (i∗) ∪ F ′
contains either (u, v) or (v, u). Therefore, F (i∗) ∪ F ′ contains at least nε1/8/(2b) arcs having
u as an endpoint.

We conclude that, in either case, for any u ∈ B(i∗)
i , F (i∗) ∪F ′ contains at least nε1/8/(2b)

arcs having u as an endpoint. Summing over all u ∈ B(i∗)
i , we obtain that F (i∗) ∪F ′ contains

at least ε1/4n2/(2b2) arcs having an endpoint in B(i∗)
i . This concludes the proof. J

Next, we bound the number of unstable buckets.

I Lemma 4.8. Let J = {i ∈ [b] : i is unstable}, we have |J | ≤ O(ε1/4)2b2.

Proof. By Lemma 4.3 we have that xi∗ is (1−O(ε1/2))-good in f ′, and by Lemma 4.4 we
have that G(i∗) admits a feedback arc set of size at most (O(ε1/2))

(
n−1

2
)
. Thus, by Theorem

3.3, the algorithm computes some feedback arc set F (i∗) ⊂ A(i∗), with |F (i∗)| = O(ε1/2n2).
We note that here we only use Theorem 3.3 to obtain a O(1)-approximation. By Lemma 4.7,

|J | ≤ |F (i∗) ∪ F ′|/(ε1/4n2/(2b2))

≤ O(ε1/4)2b2,

which concludes the proof. J

For any stable i ∈ [b], let Ii ⊂ R be the interval that contains at least (1 − ε1/8)n/b
points in f ′(B(i∗)

i ), and at most ε1/8n/b other points. Let also Ji ⊂ Ii be an open interval
that contains all but the ε1/8n/b leftmost points in f ′(B(i∗)

i )∩ Ii, and the ε1/8n/b rightmost
points in f ′(B(i∗)

i ) ∩ Ii. Thus, |Ji ∩ f ′(B(i∗)
i )| ≥ (1 − 3ε1/8)n/b. It follows that for any

i 6= j ∈ [b], such that both i and j are stable, we have Ji ∩ Jj = ∅.
Intuitively, we intend to find a solution that satisfies a nearly-optimal fraction of con-

straints, while ignoring all constraints that involve points that are mapped outside the
intervals Ji, where i ∈ [b] is stable. To that end, we define a small set of points that the
analysis can safely “ignore”:

XNoise =
⋃

i∈[b]:i stable

{
v ∈ B(i∗)

i : f ′(v) /∈ Ji
}
.
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Since |Ji ∩ f ′(B(i∗)
i )| ≥ (1− 3ε1/8)n/b, it follows that

|XNoise| ≤ 3ε1/8n (3)

Let also, for any i ∈ [b],

B̄
(i∗)
i = B

(i∗)
i \XNoise.

We identify a set of triples (i, j, k) ∈ [b]3 for which, intuitively, it is difficult to satisfy at
least some significant fraction of all constraints with one point from each of the clusters B(i∗)

i ,
B

(i∗)
j , and B(i∗)

k . Formally, we say that some (i, j, k) ∈ [b]3 is brittle if there exist u, u′ ∈ Ji,
v, v′ ∈ Jj , and w,w′ ∈ Jk, such that

|u− v| < |u− w|,

and

|u′ − v′| > |u′ − w′|.

Intuitively, the above property implies that if for all t ∈ [b], all points in B̄(i∗)
t get mapped

to the same point pt ∈ Jt, then there exist choices for the points {pt}t, such that some
constraint in B̄

(i∗)
i × B̄

(i∗)
j × B̄

(i∗)
k is violated; in other words, if a triple (i, j, k) is not

brittle, then the choice of the points pt does not affect the satisfiability of the constraints in
B̄

(i∗)
i × B̄(i∗)

j × B̄(i∗)
k .

We are now ready to show that the retraction computed by the algorithm admits a
solution of low total cost.

I Lemma 4.9. The instance ψ(i∗) of WLLOC constructed in Step 4 admits a solution that
satisfies constraints of total weight at least |T | · (1−O(ε1/8)).

Proof. We define a mapping g : [b]→ [0, 1], and g′ : [b]→ [0, 1], as follows. For each i ∈ [b],
pick vi ∈ B(i∗)

i , arbitrarily, and set

g′(i) = f ′(vi).

For any j ∈ [b], we set

g(j) = g′(i),

where i ∈ [b] is the unique integer such that i ∈ B(i∗)
i . By the definition of the WLLOC

instance ψ(i∗), the total weight of the constraints violated by g′ equals the total number of
constraints violated by g. It therefore suffices to upper bound the number of constraints in
T that are violated by g.

We define a partition T = T0 ∪ T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5, where

T0 = {(u, v, w) ∈ T : f ′ violates (u, v, w)},

T1 = {(u, v, w) ∈ T : at least two of u, v, w are in the same cluster in B(i∗)},

T2 = {(u, v, w) ∈ T : u ∈ B(i∗)
i , v ∈ B(i∗)

j , w ∈ B(i∗)
k , at least one of i, j, k is unstable},

T3 = {(u, v, w) ∈ T : u ∈ B(i∗)
i , v ∈ B(i∗)

j , w ∈ B(i∗)
k , and (i, j, k) is brittle},

T4 = {(u, v, w) ∈ T : {u, v, w} ∩XNoise 6= ∅},
T5 = T \ (T0 ∪ T1 ∪ T2 ∪ T3 ∪ T4).
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By Lemma 4.2 we have

|T1| ≤ (ε+O(1/n))n
(
n− 1

2

)
.

Since every cluster in B(i∗) has n/b points, we have

|T1| ≤ 3n3/b2. (4)

In order to bound |T3| we need a bound on the number of brittle triples. This is done in
Lemma 4.8, which appears in Section 5. We thus have

|T2| ≤ O(ε1/4)2n3b. (5)

By Lemma 5.5 we have

|T3| ≤ n3/b. (6)

By (3) we have

|T4| ≤ O(ε1/8)n3 (7)

Let (u, v, w) ∈ T5. By the definition of T5, we have that u ∈ B̄
(i∗)
i , v ∈ B̄

(i∗)
j , and

w ∈ B̄
(i∗)
k , for some distinct i, j, k ∈ [b], such that (i, j, k) is not brittle, and f ′ satisfies

(u, v, w), that is

|f ′(u)− f ′(v)| < |f ′(u)− f ′(w)|.

By the definition of a brittle triple we get

|g(u)− g(v)| < |g(u)− g(w)|,

and thus g satisfies (u, v, w). We obtain that g satisfies all constraints in T5. Thus, by
(4)–(7), the number of constraints violated by g is at most |T0| + . . . + |T4| ≤ n3O(ε1/8),
which concludes the proof. J

We are now ready to prove our main result.

Proof of Theorem 1.1. By Lemma 4.9 we have that WLLOC instance ψ(i∗) = ([b], T ′, w)
constructed at Step 4 of the algorithm, admits a mapping g′ : [b]→ R, such that the total
weight of the constraints in T ′ violated by g′ is at most O(ε1/8n3). Therefore, in Step 5,
using the exact algorithm from Theorem 3.1, we compute a mapping g : [b]→ R, violating
the same total weight as g′. By the definition of retraction, it follows that the mapping f (i∗)

computed in Step 5 violates at most O(ε1/8n3) constraints in T , as required.
It remains to bound the running time. Step 2 uses the algorithm from Theorem 3.3 to

obtain a O(1)-approximate minimum feedback arc set, and thus takes time O(n6). Step 3
takes time O(n) and Step 4 takes time O(n2). Step 5 runs the algorithm from Theorem 3.1
on an input of size b, and thus takes time O(b3b) + O(n). Step 6 requires computing the
number of violated constraints in each of the n solutions, and thus takes total time O(n4).
Due to Step 1, the Steps 2–5 are repeated n times, and thus the total running time is at
most O(n7 + b3bn) = O(n7) + (1/ε)O(1/ε1/8)n, which concludes the proof. J
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5 Bounding the number of brittle triples

This Section is devoted to proving an upper bound on the number of brittle triples. We
begin by deriving a simple condition that is a consequence of brittleness.

I Lemma 5.1. Let j < i < k ∈ [b]. We have that if (i, j, k) is brittle, then there exist pi ∈ Ji,
pj ∈ Jj, pk ∈ Jk, such that

pi − pj = pk − pi.

Proof. If (i, j, k) is brittle, it is easy to see that Ji must be located between Jj and Jk;
otherwise, any representative point chosen in Ji must be closer to all the points in Jj than
those in Jk, or vice versa. By definition, there exist pi ∈ Ji, p′j ∈ Jj , p′k ∈ Jk, such that

pi − p′j ≥ p′k − pi,

and p′′j ∈ Jj , p′′k ∈ Jk, such that

pi − p′′j < p′′k − pi.

Without loss of generality, assume p′j < p′′j and p′k < p′′k , and define δ ∈ [0, 1]. Comparing
dij(δ) = pi− (p′j + δ(p′′j −p′j)) and dik(δ) = (p′k + δ(p′′k−p′k))−pi, we have dij(0)−dik(0) ≥ 0
and dij(1)− dik(1) < 0. There exist δ′ ∈ [0, 1], s.t. dij(δ′)− dik(δ′) = 0.

Define pj = (p′j + δ′(p′′j − p′j)) ∈ Ji and pk = (p′k + δ′(p′′k − p′k)) ∈ Jj , we have

pi − pj = pk − pi,

which concludes the proof. J

I Lemma 5.2. Let i1, i2, i3, j1, j2, j3, k1, k2, k3 ∈ R, with i1 < i2 < i3, j1 < j2 < j3,
k1 < k2 < k3. For any α, β, γ ∈ {1, 2}, let Hα,β,γ be the axis-parallel parallelepiped defined
by

Hα,β,γ := CH({(iα+α′ , jβ+β′ , kγ+γ′) : α′, β′, γ′ ∈ {0, 1}}).

Let h be any plane in R3. Then, there exist α∗, β∗, γ∗ ∈ {0, 1}, such that h does not intersect
the interior of Hα∗,β∗,γ∗ .

Proof. For any d ≥ 2, any d-dimensional halfspace containing the origin must also contain
at least one d-orthant. The assertion follows immediately from the case d = 3. J

I Lemma 5.3. Let i, j, k ∈ [b], with j+1 < i, and i+1 < k. Then, there exist i′, j′, k′ ∈ {0, 1}
such that (i+ i′, j + j′, k + k′) is not brittle.

Proof. Define the plane

h = {(xI , xJ , xK) ∈ R3 : xI − xJ = xK − xI}.

By Lemma 5.1, we have that if (i + i′, j + j′, k + k′) is brittle, then h must intersect
the hyperrectangle Ji+i′ × Jj+j′ × Jk+k′ . However, by Lemma 5.2, it follows that there
exist i′, j′, k′ ∈ {0, 1}, such that h does not intersect Ji+i′ × Jj+j′ × Jk+k′ , and thus
(i+ i′, j + j′, k + k′) is not brittle, which concludes the proof. J

I Lemma 5.4 (Brittle convexity). Let {e1, e2, e3} be the standard orthonormal basis in R3.
Let v ∈ [b− 2]3, and let w ∈ {e1, e2, e3}, such that v and v+ 2w are both brittle. Then, v+w

is also brittle.
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Proof. By Lemma 5.1, there exist pi ∈ Ji, pj ∈ Jj , pk ∈ Jk, such that

pi − pj = pk − pi. (8)

Let w = (i′, j′, k′). Similarly, there exist qi ∈ Ji+2i′ , qj ∈ Jj+2j′ , qk ∈ Jk+2k′ , such that

qi − qj = qk − qi. (9)

For any α ∈ [0, 1], let

z
(α)
i = (1− α)pi + αqi,

z
(α)
j = (1− α)pj + αqj ,

z
(α)
k = (1− α)pk + αqk.

Let us assume that w = e1. The cases w = e2 and w = e3 can be handled in a similar
manner. We have that for all α ∈ [0, 1], z(α)

j ∈ Jj , and z(α)
k ∈ Jk. Moreover, z(0)

i ∈ Ji, and
z

(1)
i ∈ Ji+2, which implies that there exists some α∗ ∈ [0, 1], such that z(α∗)

i ∈ Ji+1. We
have

z
(α∗)
i − z(α∗)

j = (1− α∗)pi + α∗qi − (1− α∗)pj − α∗qj
= (1− α∗)(pi − pj) + α∗(qi − qj)
= (1− α∗)(pk − pi) + α∗(qk − qi)
= (1− α∗)pk + α∗qk − (1− α∗)pi − α∗qi
= z

(α∗)
k − z(α∗)

i ,

which by Lemma 5.1 implies that v + w is brittle, and concludes the proof. J

We are now ready to bound the number of brittle triples, which is the main result of this
Section.

I Lemma 5.5. The number of brittle triples is at most O(b2).

Proof. Let B ⊆ [b]3 be the set of all brittle triples, and let B′ = [b]3 \B. For any s ∈ {0, 1}3,
let

Us = s · b/2 + [b/2]3,

and Bs = B ∩ Us. Since B =
⋃
sBs, and there are only 8 different values for s, it suffices to

show that for any s ∈ {0, 1}3, |Bs| = O(b2). We shall prove this for the case s = (0, 0, 0). All
remaining cases can be handled in a similar manner.

For the remainder for the proof, let s = (0, 0, 0). By Lemma 5.3, it follows that for any
v ∈ B3

s , there exists v′ ∈ B′, with v′ − v ∈ {0, 1}3. This implies that there exists u ∈ B, and
u′ ∈ B′, with u− v ∈ {0, 1}3, u′ − v ∈ {0, 1}3, and u′ − u ∈ {e1, e2, e3}, where {e1, e2, e3} is
the standard orthonormal basis in R3. Let t = u′− u. By Lemma 5.4, it follows by induction
that for any i ∈ {1, . . . , b/2}, the triple u+ i · t is brittle. Let

Rv =
b/2⋃
i=1
{u+ c · i}.

Thus Rv ⊆ B′. Note that, since s = (0, 0, 0), we have

|Rv| ≥ b/2. (10)
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For any j ∈ {1, 2, 3}, we say that v is type-j, if t = ej .
Let

Bs,j = {v ∈ Bs : v is type-j}.

Let j∗ ∈ {1, 2, 3}, such that |Bs,j∗ | ≥ |Bs|/3.
By the above construction, it follows that for any v, w ∈ Bs,j∗ , with ‖v − w‖∞ ≥ 2,

we have Rv ∩ Rw = ∅. We greedily construct some C ⊆ Bs,j∗ as follows. We start with
C := ∅, and D := Bs,j∗ . While D 6= ∅, we pick any v ∈ D, and we set C := C ∪ {v}, and
D := D \ Ball∞(v, 1), where Ball∞(v, r) denotes the `∞-ball of radius r centered at v. For
every v added to C, we delete at most 9 elements from D, and thus

|C| ≥ |Bs,j∗ |/9 ≥ |Bs|/27.

Since for any v, w ∈ C, we have ‖v − w‖∞, it follows that Rv ∩ Rw = ∅. Combining with
(10), we get

b3 ≥ |B′| ≥

∣∣∣∣∣ ⋃
v∈C

Rv

∣∣∣∣∣ =
∑
v∈C
|Rv| ≥ |C| · b/2 ≥ |Bs| · b/54,

and thus |Bs| ≤ 54b2, which concludes the proof. J
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