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Abstract
How do rational agents self-organize when trying to connect to a common target? We study this
question with a simple tree formation game which is related to the well-known fair single-source
connection game by Anshelevich et al. (FOCS’04) and selfish spanning tree games by Gourvès and
Monnot (WINE’08). In our game agents correspond to nodes in a network that activate a single
outgoing edge to connect to the common target node (possibly via other nodes). Agents pay for
their path to the common target, and edge costs are shared fairly among all agents using an edge.
The main novelty of our model is dynamic edge costs that depend on the in-degree of the respective
endpoint. This reflects that connecting to popular nodes that have increased internal coordination
costs is more expensive since they can charge higher prices for their routing service.

In contrast to related models, we show that equilibria are not guaranteed to exist, but we
prove the existence for infinitely many numbers of agents. Moreover, we analyze the structure of
equilibrium trees and employ these insights to prove a constant upper bound on the Price of Anarchy
as well as non-trivial lower bounds on both the Price of Anarchy and the Price of Stability. We
also show that in comparison with the social optimum tree the overall cost of an equilibrium tree
is more fairly shared among the agents. Thus, we prove that self-organization of rational agents
yields on average only slightly higher cost per agent compared to the centralized optimum, and
at the same time, it induces a more fair cost distribution. Moreover, equilibrium trees achieve a
beneficial trade-off between a low height and low maximum degree, and hence these trees might
be of independent interest from a combinatorics point-of-view. We conclude with a discussion of
promising extensions of our model.
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1 Introduction

Network Design is an important optimization problem where for a given weighted host graph
and a given set of terminal pairs the cheapest subgraph which connects all terminal pairs
has to be found. Besides an abundance of research works with an optimization point-of-view,
e.g. see the survey by Magnanti and Wong [28], a strategic version of the Network Design
problem [5, 4] has kindled significant interest in recent years. In the connection game, a
weighted host graph H is given and n agents with given terminal node pairs (si, ti), for
1 ≤ i ≤ n, strategically select si-ti-paths in H to connect their respective terminal nodes.
The union of the selected paths forms a subgraph G of H which constitutes the actually
designed network. The usage cost of each edge of H corresponds to its weight, and agents
using some edge e in H have to pay this cost. If an edge e is used by more than one agent,
then a cost-sharing protocol determines how the usage cost of e is split among its users. One
of the most common cost-sharing protocols is Shapley cost-sharing where each agent pays a
fair share of the edge cost, i.e., the cost-share is the edge cost divided by the number of users.
This game-theoretic setting, called fair connection game, was investigated by Anshelevich et
al. [4] and has since become an influential paper in Algorithmic Game Theory. An important
special case is the setting in which all the strategic agents want to connect to a common
source node. This variant, where t1 = · · · = tn and where every other node is a terminal
node of some agent, is usually denoted as the (fair) single-source connection game, with
the interpretation that all the agents want to connect to a common source node to receive
broadcast messages and that the edge cost for connecting to the common source is paid by
the downstream users.

A similar related game-theoretic setting are selfish spanning tree games [21]. There a
weighted complete host graph with n+ 1 nodes, consisting of a common target node r and n
nodes which correspond to selfish agents, is given and every selfish agents now selects an
incident edge to connect to the common target node r either directly or indirectly via selected
edges of other agents. The cost of an agent is then determined by its unique path to r. Thus,
in any equilibrium the subgraph of all selected edges forms a spanning tree rooted at r.

This paper sets out to investigate a game-theoretic Network Design model that is closely
related to the fair single-source connection game and to selfish spanning tree games. The main
novel feature of our model is the twist that the cost of the edges in the formed spanning tree
depend on its topology. In particular, we consider dynamic edge costs which are proportional
to the in-degree of the node they connect to. Network nodes with high in-degree can be
considered as popular, and we assume that connecting to popular nodes is more expensive
than connecting to unpopular nodes. These dynamic edge costs can also be understood as
the internal cost of a node for coordinating data traffic coming from different connections.
A node with many incoming edges and thus higher internal coordination cost can charge
higher prices for serving each of the incoming edges.

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.15
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To the best of our knowledge, we define and analyze the first (game-theoretic) Network
Design model where the edge costs depend on the topology of the formed network. We
believe that this model sheds light on settings where the actual charges for establishing links
are determined by supply and demand and the agents act strategically to optimize their cost
for receiving their desired service.

1.1 Model, Definition, Notation
We consider a strategic game called fair tree connection game with topology-dependent edge
cost, or tree connection game (TCG) for short. In the TCG we will consider a given unweighted
complete directed host graph H = (V,E), where V is the set of nodes and E is the set of
edges of H. The host graph H consists of n+ 1 nodes V = {r, v1, . . . , vn} where node r is
the common target node, also called the root, and every node vi, for 1 ≤ i ≤ n, corresponds
to a selfish agent i striving to be connected to the root r. For this, every agent i strategically
activates a single incident edge (vi, si), where si ∈ V \ {vi}. Hence, the strategy space of
each agent is the set of other nodes to connect to. Given a strategy profile s = (s1, . . . , sn),
i.e., an n-dimensional vector where the j-th entry corresponds to the node to which agent
j wants to activate her edge, we consider the directed network T (s) = (V,E(s)) which is
induced by all the activated edges, i.e., E(s) = {(vi, si) | 1 ≤ i ≤ n}. We will see later that
T (s) is a spanning tree rooted at r if s is an equilibrium state of the TCG, hence the name.

The cost of agent i in the network T (s) depends on its unique path Pi in T (s) to the
root r (if such a path exists). In case of existence, the path Pi must be unique, since the
out-degree of every node in T (s) is at most 1. More precisely, let Pi be the directed path
from vi to r in T (s), let indegT (s)(v) denote the number of edges with endpoint v in T (s),
let T (u) denote the subgraph of T (s) rooted at node u, i.e., the subgraph of T (s) induced by
the nodes u and every node which has a directed path to u and let |T (u)| denote the number
of nodes in T (u). See Figure 1.
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The cost of agent i in T (s) then is costT (s)(i) :=
∑

(u,v)∈Pi

indegT (s)(v)
|T (u)| , if Pi exists and ∞

otherwise. This cost function has the following very natural interpretation: the cost of
activating edge (u, v) from node u to node v is equal to node v’s in-degree, and this cost is
fairly shared by all agents who use edge (u, v) on their path towards the root r, i.e., by all
agents in T (u). We assume that each agent activates a single edge strategically to minimize
its cost in the induced network T (s). Clearly, since every agent i can activate the edge (vi, r),
i can enforce finite cost by enforcing that the path Pi exists.
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Consider a strategy profile s = (s1, . . . , si−1, si, si+1, . . . , sn). We say that agent i has
an improving move in s if i has some alternative strategy s′i 6= si such that for the induced
strategy profile s′ = (s1, . . . , si−1, s

′
i, si+1, . . . , sn) we have costT (s′)(i) < costT (s)(i), i.e.,

agent i can strictly decrease its cost by activating a different outgoing edge. With this, we
define the strategy profile s to be in pure Nash equilibrium (NE) or to be stable if no agent
has an improving move in s. If the context is clear, we use strategy profiles and their induced
network interchangeably, i.e., we say that the network T (s) is in NE or stable, if s is in NE.
Moreover, when we refer to some network T (s) we will from now on omit the reference to the
strategy profile s and call the network simply T . Every stable network T must be a spanning
tree rooted at r, since every agent i can activate the edge (vi, r) to achieve finite cost.

The social cost SC(T ) of a network T is simply the sum over all agents’ costs, i.e.,

SC(T ) =
n∑

i=1

costT (i) =
∑

vi∈V

∑
(u,v)∈Pi

indegT (v)
|T (u)| =

∑
(u,v)∈E

indeg(v)
|T (u)| · |T (u)| =

∑
v∈V

(indeg(v))2.

Note that SC(T ) nicely reflects the overall cost impact of the nodes’ popularity or coordi-
nation costs which scales quadratically with the in-degree of a node. For a given number
of agents n, let OPTn denote the network which minimizes the social cost. Moreover, if
stable networks exist for n agents, we let worstNEn denote the stable network with the
highest social cost and bestNEn the stable network with the lowest social cost. We define
the Price of Anarchy (PoA) [27] as PoA = supn

SC(worstNEn)
OPTn

and the Price of Stability
(PoS) [4] as PoS = supn

SC(bestNEn)
OPTn

, where the supremum is taken over all n that admit
a stable network. Besides the PoA and the PoS, that both focus on the overall cost and
compare with the cost of a centrally designed social optimum network, we use a measure of
the quality of networks which focuses on the cost distribution among the agents, called the
Fairness Ratio (FR), analogously to the utility uniformity introduced in [19]. For a given
network T , the FR(T ) is the ratio between the maximum and the minimum cost incurred
by any agent, i.e.,FR(T ) := maxvi∈V costT (i)

minvi∈V costT (i) .
Finally, we introduce some additional notation for arguing about the designed networks

T (s). (See Fig. 1 for an illustration). For our analysis we use directed paths in T (s) which
start at some non-root node z and end at the root r. Let P be such a path of length ` ∈ N.
We denote by uPj the node on P which is at distance j to r, hence the root r is denoted
by uP0 and node z by uP` . Moreover, let TPj := T (uPj ) and we use dPj for the in-degree of a
node with distance j from the root r on path P , hence, dPj := indegT (s)(uPj ). We omit the
reference to path P whenever it is clear from the context.

1.2 Related Work
Our model is closely related to several models that have been intensively studied.

We start with the (fair) single-source connection game [5, 4] which we already briefly
discussed in the introduction. The key feature of this game is that agents strategically select
a set of edges to connect their respective terminals. The cost of each edge is shared among
all the agents who selected the respected edge. While in [5] and later also in [24] arbitrary
cost sharing is considered, the paper [4] focuses on fair cost sharing which can be derived
from the Shapley value [33]. For this Anshelevich et al. [4] show that stable networks always
exist since the game is a potential game [32], additional they prove that the PoA is n and the
PoS is upper bounded by Hn, where Hn is the n-th harmonic number. For a given directed
host graph this bound on the PoS is tight but the case for undirected host networks is still
a major open problem. More is known for single-source connection games on undirected
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networks. Chekuri et al. [12] show that the PoA is in O(
√
n log2 n) if the agents join the

game sequentially and play their respective best response. A PoS in O(log logn) was proven
by Fiat et al. [20] for the special case where all nodes of the given network correspond to a
terminal of some agent. Finally, Bilò et al. [8] prove a constant PoS for the fair single-source
connection game on undirected networks. Moreover, Albers and Lenzner [1] show that the
optimum is a Hn-approximate Nash equilibrium for the fair single-source connection game.
In contrast to our model, the cost of an edge in the (fair single-source) connection game is
given via a positively weighted host network. Hoefer and Krysta [25] investigate a variant
with edge weights derived from a geometry.

Also selfish spanning tree games [21] are close to our model and we already briefly
discussed them in the introduction. The key difference to our model is that a weighted
complete network is given and that the cost of an agent is defined differently. Gourvès and
Monnot [21] define three variants of the agents’ cost function: either it is the weight of the
first edge on the path to the common root r, or the minimum or maximum weight edge on
the entire path towards r. Cost sharing is not considered. The authors prove bounds on the
PoA which vary from unbounded to 1 depending on the exact setting. The games in [21] are
inspired by the classical problem of allocating the cost of a spanning tree among its nodes
by Claus and Kleitman [13] and its variant from cooperative game theory considered by
Bird [10]. Later, Granot and Huberman [22, 23] considered minimum cost spanning tree
games and different cost allocation protocols for this have been considered by Escoffier et
al. [17]. The key difference of all these models to our model is that a cooperative game is
considered which is a stark contrast to our non-cooperative setting. Also game-theoretic
topology control problems are related to spanning tree games and our model. Eidenbenz et
al. [16] consider a setting where a set of agents which correspond to wireless devices want to
connect terminal nodes, whereas Mittal et al. [31] consider wireless access point selection by
selfish agents.

Also classical network formation games [26, 6, 18] are related to our model. There the
agents correspond to nodes in a network and every agent buys a set of incident edges to
connect to other agents. The goal of each agent is to create a connected network and to
occupy a central position in this network. For the influential network creation game of
Fabrikant et al. [18], that has a parameter α for the trade-off between edge cost and distance
costs, the PoA was shown to be constant for almost all values of α [14, 2]. For high values
of α all equilibrium networks of these games are known to be trees [30, 29, 7]. A variant
of the network creation game where agents can only buy a single edge was considered by
Ehsani et al. [15]. Most notably, the topology dependent edge costs that we employ in our
model were proposed by Chauhan et al. [11] for the network creation game [18]. To the best
of our knowledge, this is the only setting where topology dependent edge costs have been
considered.

1.3 Our Contribution
We study a novel game-theoretic model for the formation of a tree network which is related
to the well-known fair single-source connection game by Anshelevich et al. [4, 5] and to
selfish spanning tree games by Gourvès and Monnot [21]. The key difference of our model is
that we consider dynamic edge costs which depend on the topology of the created spanning
tree. In particular, the cost of an edge is equal to the in-degree of its endpoint. This specific
choice was proposed in [11] for the classical network creation game [18] and we transfer this
idea to the Network Design domain. Our analysis holds for any edge cost function of the
form α times the in-degree of the target node, for any constant α. However, our general
approach is valid also for edge cost functions that depend non-linearly on the degrees of the
involved nodes.

FSTTCS 2020



15:6 Fair Tree Connection Games with Topology-Dependent Edge Cost

Regarding the existence of stable trees we show that our model is in stark contrast to the
models in [4, 18, 21] since in our model stable trees may not exist. In particular, we show
that our game has no NE for n = 16 and n = 18 which implies that the TCG cannot admit
a potential function. This is contrasted with a proof that for infinitely many n stable trees
do exist, and we conjecture that we have found all examples for NE non-existence. Towards
investigating the quality of the equilibrium networks of our model, we first provide a rigorous
study of the structural properties of stable trees. We show that every stable tree consists
of stable subtrees and that the height of any stable tree is in O

(
logn

log logn

)
. For the root r,

which turns out to be the node with the highest in-degree in any stable network, we show
that its in-degree is between Ω

(
logn

log logn

)
and 2O

(√
logn

)
. This shows that the maximum

internal coordination overhead of a single node in any stable tree is rather small.
Our main results are on the quality of equilibrium trees. By using the established

structural properties and a connection to the Riemann zeta function we obtain an upper
bound on the PoA of 8.62 which is contrasted with a lower bound of 2.4317. For the PoS
we derive a lower bound of 7

5 − ε. Moreover, we give for an infinite number of values for n
an upper bound of 2.83 on the PoS. Regarding the Fairness Ratio, we first show that the
socially optimal tree is rather unfair, i.e., having a Fairness Ratio of n ·Hn. In contrast, we
prove that any equilibrium tree has a Fairness Ratio in o(n).

This shows that stable trees have only slightly higher social cost compared to the social
optimum. In particular, on average every agent pays only a constant factor more than the
trivial lower bound for any spanning tree. At the same time stable trees are more fair, have
low height and low in-degrees.

We conclude with a brief discussion of the path version extension of our model, where
agents select paths as strategies as in [5, 4]. This extension seems promising for future work
since we show that allowing a richer strategy space yields a larger set of equilibria and we
give equilibria for n = 16 and n = 18. Hence, in the path-version equilibria may always exist,
but the PoA could be higher.

We refer to [9] for all details which were omitted due to space constraints.

2 Structure and Properties of Equilibrium Trees

It is clear that each agent can compute her best response in polynomial time as the number
of possible strategies for an agent is n, and the agent can easily compute her cost in linear
time. In the following we show that any stable tree consists of stable subtrees, we prove an
upper bound of O

(
logn

log logn

)
to the number of edges of any leaf-to-root path of any stable

network, and in the end, we provide bounds on the degree of the root. We start with the
statement that any stable tree consists of stable subtrees.

I Lemma 1. If T is stable, then any subtree T (x) is stable in the corresponding subgame.

Next, we will consider the height of a stable network and need the following technical lemmas.

I Lemma 2. Let k ∈ N be the length of a fixed leaf-to-root-path P in a stable network T .
Then, for every 1 < i < k, di−1 ≥

|Ti|
|Ti| − |Ti+1|

(di − 1).

Since |Ti+1| > 0, Lemma 2 yields that the sequence d0, d1, . . . , dk, is monotonically decreasing.
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I Corollary 3. Let k ∈ N be the length of a leaf-to-root-path P in a stable network T . Then,
for every 1 < i < k, di ≥ di+1.

The next lemma shows that the in-degree of nodes strictly decreases after a constant number
of hops.

I Lemma 4. Let k ∈ N be the length of a fixed leaf-to-root-path P in a stable network T .
Then, for every subtree T (v) with |T (v)| > 4 and for every 1 < i < k−2 we have di−1 > di+1.

In the following we investigate upper and lower bounds on the in-degree of the root in
stable trees. More precisely, we show an upper bound of 2O(

√
logn) and a lower bound of

Ω(logn/ log logn).

I Theorem 5. The in-degree of the root in a stable network T is at least
ln
(

4
√
n/5
)

ln ln
(

4
√
n/5
) .

To give an upper bound on the in-degree of the root, we first have to provide the following
technical lemmas. The first technical lemma bounds the in-degree of the parent of any leaf.

I Lemma 6. In a stable network T the in-degree of the parent of any leaf is 1.

The second technical lemma shows how the in-degrees of two sibling nodes are related.

I Lemma 7. Consider a subtree T (x) of a stable network T . Then indeg(x) ≤ indeg(v) ·(
1 + |T (u)|

|T (v)|

)
+ 1, where v and u are different children of x.

From Lemma 7, we derive the following remark and corollary.
I Remark 8. Consider a subtree T (x) in a stable network T . Then indeg(x) ≤ 2 · indeg(v)+1,
where v is a root of the second smallest subtree of T (x).

I Corollary 9. If T is a stable network, then every node u in T has at least indeg(u) − 1
children of in-degree at least (indeg(u)− 1)/2.

Now we can prove an upper bound to the in-degree of the root of any stable tree.

I Theorem 10. The in-degree of the root in a stable network T is 2O
(√

logn
)
.

Proof. Let T be a stable tree of height h. Let vh, . . . , v0 be a leaf-to-root path. Note that the
in-degree of the root v0 is maximal if the in-degree of each node in the vh-v0-path is maximal,
i.e., by Lemma 7 and 6, it corresponds to the in-degree sequence D := (0, 1, dh−2, . . . , d0),
where di−1 = 2di + 1.

Next, we show that nodes at distance h− 2 from the root can have an in-degree of at
most 2. Assume to the contrary that there is a node u having an edge to a node x such that
indeg(x) = 3 and x is at distance h− 2 from the root v0. As we have proved above, the in-
degree of all children of x is at most 1. Thus, u can swap to any leaf node of the subtree T (x).
Let T ′ be the tree obtained after u swapped. If u swaps to a child of x, it decreases its cost by
costT (u)−costT ′(u) = 3

2−
1
2−

2
3 > 0, i.e., it is an improving move. The swap to a leaf node at

distance 2 from x implies an improvement by costT (u)−costT ′(u) = 3
2 −

1
2 −

1
3 −

2
4 > 0, i.e., it

is an improvement. Since T is stable, we get a contradiction. Thus, D = (0, 1, 2, 5, 11, . . . , d0),
i.e.,

di = 3 · 2h−i−2 − 1 for i ≤ h− 3, where dh = 0, dh−1 = 1, dh−2 = 2. (1)

FSTTCS 2020



15:8 Fair Tree Connection Games with Topology-Dependent Edge Cost

We now estimate the minimum possible number of nodes in the tree T . By Corollary 9 if
the in-degree of a node is equal to k, then it has at least k − 1 children with an in-degree of
at least (k − 1)/2. Thus, starting from the root, the in-degrees of the nodes on each level
decrease no more than twice. Hence, the total size of the tree is at least

h−1∑
i=1

di
i−1∏
j=0

(dj − 1)

 >

h−1∑
i=1

i−1∏
j=0

2h−j−2 > 2
∑h−3

j=0
(h−j−2) = 2

(h−1)(h−2)
2 ,

where h is the height of T . Thus, h <
3+
√

1+8 logn
2 . With equation (1), this implies

d0 ∈ 2O
(√

logn
)
. J

Now we are able to show that the length of any node-to-root path is O
(

logn
log logn

)
.

I Theorem 11. If T is a stable network, then its height h ∈ O
(

logn
log logn

)
.

Proof. Consider a leaf-to-root path P in T . We show that there are O
(

logn
log logn

)
indices

such that |TPi | − |TPi+1| ≥ 3
√

logn · |TPi+1| and O
(

logn
log logn

)
indices such that |TPi | − |TPi+1| <

3
√

logn · |TPi+1|.
Let k be the number of indices i that satisfy |TPi | − |TPi+1| ≥ 3

√
logn · |TPi+1|. Then we

have that |TPi | = |TPi | − |TPi+1| + |TPi+1| > 3
√

logn · |TPi+1|. Since |TPi | > |TPi+1| for every i,
and because |TPi | ≤ n, we have that |TP0 | > (logn)k/3 and |TP0 | = n + 1, from which we
derive (logn)k/3 ≤ n, i.e., k = O

(
logn

log logn

)
.

By Lemma 4 and Corollary 3, there are O( 3
√

logn) = O
(

logn
log logn

)
indices i such that

dPi ≤ 4 3
√

logn. We now prove that there are O
(

logn
log logn

)
indices such that |TPi | − |TPi+1| <

3
√

logn·|TPi+1| and such that dPi ≥ 4 3
√

logn. By Lemma 2 and using the fact that dPi ≥ 4 3
√

logn
and n ≥ 2, we have that

dPi−1 ≥
|TPi |

|TPi | − |TPi+1|
(dPi − 1) ≥ 1 + 3

√
logn

3
√

logn
(dPi − 1) ≥

√
1 + 3
√

logn
3
√

logn
dPi .

By Corollary 3 we have that dPi−1 ≥ dPi for every i. Hence d0 ≥
(

1+ 3
√

logn
3
√

logn

)k/2
. More-

over, by Theorem 10, dP0 ≤ 2α
√

logn for some constant α > 0. As a consequence,

we have that
(

1+ 3
√

logn
3
√

logn

)k/2
≤ 2α

√
logn, i.e., 2

k
2 log 1+ 3√log n

3√log n ≤ 2α
√

logn, which implies,

k ≤ 2α
√

logn
log
(

1+1/ 3
√

logn
) .

We complete the proof by showing that
√

logn

log 1+ 3√log n

3√log n

≤ 3 logn
log logn , i.e., we have to show that

log logn ≤ 3
√

logn · log 1+ 3
√

logn
3
√

logn
. Let M = 3

√
logn. We have to prove that

logM ≤M3/2 log 1 +M

M
= log

(
1 +M

M

)M3/2

. (2)

By Bernoulli’s inequality,
(
1 + 1

M

)M3/2

≥ 2M1/2 ≥ M for M ≥ 16. Thus, inequality (2) is
satisfied. J
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3 Existence of Equilibrium Trees

In this section we analyze whether the TCG admits equilibrium trees for all agent numbers
n. We first show that in general equilibrium existence is not guaranteed since for n = 16 and
n = 18 no stable tree exists. We contrast this negative result with a NE existence proof for
infinitely many agent numbers n. This positive result is achieved for so-called balanced trees,
i.e., trees where all nodes with the same distance to the root have the same in-degree. We
believe that our positive results can be strengthened to proving that stable trees exist for
all n except n = 16 and n = 18, and we leave this as an intriguing open problem. Figure 2
shows sample equilibrium trees for small n.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12

n = 13 n = 14 n = 15 n = 17 n = 19 n = 19

(0, 1, 2) (0, 1, 1, 2) (0, 1, 1, 1, 2) (0, 1, 1, 3) (0, 1, 2, 2)

(0, 1, 1, 2, 2) (0, 1, 2, 3)

Figure 2 Sample equilibrium trees for n = 4 to n = 19. All depicted trees for n < 19 are the
unique equilibria for the respective n. For n = 19 two equilibrium trees exist. No stable tree exists
for n = 16 and n = 18. The stable trees for n = 4, 6, 8, 9, 10, 14, 15 are balanced trees and are
annotated with their identifying in-degree sequence of all leaf-to-root paths. (See Section 3.1 for
definitions.)

I Theorem 12. For n = 16 there exists no stable network.

The non-existence of a stable tree for n = 16 directly implies that the TCG cannot have
the finite improvement property, which states that every sequence of improving moves must
be finite, i.e., reaches a Nash equilibrium. Thus, since the finite improvement property is
equivalent to the game admitting a potential function [32] this implies the following statement.

I Corollary 13. The TCG is not a potential game.

I Remark 14. By computational experiments we have obtained equilibrium trees for the TCG
for 1 ≤ n ≤ 100, except for n = 16 and n = 18. For n = 18 we have verified via a brute-force
search over all possible trees that no stable tree exists. Interestingly, for n ≥ 19 equilibrium
trees are no longer unique and in general the number of non-isomorphic equilibrium trees
grows as n grows.

3.1 Balanced Trees
Despite the negative result of the non-existence of a stable tree for n = 16, in this section we
prove the existence of NE’s for infinitely many values of n. We prove this result by showing
an interesting set of conditions for ruling out potential edge swaps; the proved conditions
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altogether allow us to show that there are infinitely many (balanced) trees that are stable.
More precisely, we say that T is balanced if any two nodes at the same distance from the
root r have equal in-degrees. Note, that any balanced tree T of height h can be uniquely
encoded by a sequence of node degrees (0, dh−1, . . . , d0), where di is an in-degree of nodes at
level i, i.e., at distance i from the root. In this section we show that all the balanced trees of
the form (0, 1, 2, 4, dh−4, . . . , d0) such that di < di−1 ≤ 2di + 1, for every 1 ≤ i ≤ h− 4 are
stable. (See Figure 3 for an example.)

n = 190
(0, 1, 2, 4, 9)

Figure 3 Sample of an extremal balanced tree with degree sequence (0, 1, 2, 4, 9).

I Theorem 15. The balanced tree T with degree sequence (0, 1, 2, 4, dh−4, . . . , d0), where
dj+1 < dj ≤ 2dj+1 + 1 for every j ≤ h− 4, is stable.

From Theorem 15 we derive the following corollary.

I Corollary 16. The TCG with n agents admits a NE for infinitely many values of n ∈ N.

By Corollary 16, we observe that NE exists for all n that admit an existence of a balanced
tree. Intuitively, a minor modification of a balanced tree, e.g., removing a subset of leaf nodes,
keep the tree stable. Moreover, for n ≥ 19 we have found several non-isomorphic equilibrium
trees in each case. The number of non-isomorphic equilibria grows with n, which indicates
that for growing n also the number of possibilities how to combine suitable equilibrium trees
into larger equilibrium trees grows. Therefore, we conjecture the existence of stable trees
for all values of n except for n = 16 and n = 18. We believe that this conjecture can be
proven by a dynamic programming approach that exploits the different possibilities of how
equilibrium sub-trees can be combined into larger equilibrium trees.

I Conjecture 1. For any n ∈ N, with n 6= 16 and n 6= 18 a pure NE exists in the TCG.

4 Quality of Equilibrium Trees

In this section we provide results on the quality of stable networks. In particular, we prove a
constant upper bound on the PoA and give lower bounds on the PoA and PoS. Furthermore,
we prove an upper bound on the PoS for certain balanced trees. We first observe that
any network in which at least one node has in-degree 2 is not a social optimum. Hence, a
Hamilton path is the social optimum.

I Theorem 17. Any Hamiltonian path having the root r as one endnode is a social optimum.

4.1 Price of Anarchy
In every network T for all v ∈ V , indegT (v) ≤ n, since there are exactly n edges. Hence, the
cost of an agent is upper bounded by n and the star graph yields a trivial upper bound of n
for the PoA. However, we prove next a constant upper bound on the PoA.
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I Theorem 18. The PoA is at most 8.62.

Proof. Consider a stable network T = (V,E). By Theorem 17, the social optimum is a path
of cost n. Hence, it is enough to show that in T the maximum cost of an agent is upper
bounded by a constant. We clearly have that the cost incurred by a non-leaf agent is strictly
smaller than the cost incurred by any of its descendants. Therefore, the maximum costs is
achieved by a leaf agent.

Consider two leafs u and v in T such that u pays the maximum cost. Let Pv be the
node-to-root path starting from the parent of v. Since T is stable, costT (u) < 1 + 1/2 +∑

(i,j)∈Pv

indeg(j)
|T (i)| = 1/2 + costT (v). Therefore, we only have to show that there exists a leaf

agent v with a constant cost value.
We now prove that such a leaf agent always exists. By Corollary 9, each node of in-degree d

has at least d − 1 children of in-degree at least d(d − 1)/2e. Consider a root-to-leaf path
P = (r = v0, . . . , vh = v) where each next hop goes always towards the smallest appended
subtree where the root has an in-degree of at least half of the node’s in-degree minus one,
i.e., for any vi ∈ P , vi+1 = argmin{|T (w)| : (w, vi) ∈ E and indeg(w) ≥ (indeg(vi)− 1)/2}.
Then for every 0 ≤ i ≤ h− 1, |T (vi)| ≥ (indeg(vi)− 1)|T (vi+1)|+ 2.

Denote by |tk| the size of the minimum stable tree with a root of in-degree k. Then by
Corollary 9 and Lemma 6 it holds that

|t0| ≥ 1, |t1| ≥ 2, tk ≥ (k − 1) · |td(k−1)/2e|+ 2. (3)

We show via induction that for any k ≥ 11, |tk| ≥ (2k + 1)k2. Indeed, it holds that
|tk+1| ≥ k · |tdk/2e| + 2 > (k + 1)k3/22 ≥ (2(k + 1) + 1)(k + 1)2, where the last inequality
holds for all k ≥ 11.

The overall cost incurred by the leaf v is at most the costs incurred by v for all edges
(vi, vi−1) ∈ P where in-degree of vi−1 is less than the cost incurred by v for all other edges
in P plus 2.

By Lemma 4, each leaf-to-root path has at most three nodes of in-degree 1, which implies
that v pays at most p1 := 11

6 for all edges ending in a node with in-degree equals 1.
By Lemma 4, the in-degrees of the nodes in the leaf-to-root path P strictly increase

with at least every second hop. This implies that for i ≤ h− 4− (11− 1) · 2 = h− 24 it is
guaranteed that indeg(vi) ≥ 11. Hence, starting from the first node having in-degree at least
11 in P , agent v pays

p2 :=
h−24∑
i=1

indeg(vi−1)
|T (vi)|

≤
h−24∑
i=1

2indeg(vi) + 1
|tindeg(vi)|

≤
h−24∑
i=1

1
(indeg(vi))2

≤ 2 ·
∞∑
i=11

1
i2
< 2

(
ζ(2)−

10∑
i=1

1
i2

)
,

where ζ(s) is the Riemann zeta function. Hence, p2 < 0.2.
Finally, we need to evaluate the cost of the path P for all nodes vi with the in-degree

2 ≤ indeg(vi) ≤ 10. Since for every 0 ≤ i ≤ h − 1, |T (vi)| ≥ (indeg(vi) − 1)|T (vi+1)| + 2,
each edge (vi, vi+1) in the path P costs at most

2indeg(vi) + 1
|T (vi)|

≤ 2indeg(vi) + 1
(indeg(vi)− 1)|T (vi+1)| = 2

|T (vi+1)| + 3
(indeg(vi)− 1)|T (vi+1)| .

By applying the inequality (3) and since the in-degrees of the nodes in P increase at
most with every second level, it holds that the total cost of the subpath is at most p3 :=
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2
9∑
i=2

2
ti

+ 2
t1

+ 2
t10

+
10∑
i=2

(
3

(i−1)ti−1
+ 3

(i−1)ti

)
< 3.12 + 2.975 < 6.01. Therefore, the total cost

of the path P payed by an agent v is strictly less than p1 + p2 + p3 < 8.12. This implies that
the PoA is at most 8.62. J

We now prove a lower bound to the PoA using the extremal stable balanced trees of
Theorem 15. (See Figure 3.) For the rest of this section, let Th denote the extremal balanced
tree of height h ≥ 1 and degree sequence dh = 0, dh−1 = 1, dh−2 = 2 (if h ≥ 2), dh−3 = 4 (if
h ≥ 3), and di = 2di+1 + 1 for every i ≤ h− 4. We will denote by sch and nh the social cost
and the number of nodes (root included) of Th.

I Theorem 19. The PoA is at least 2.4317.

Next, we prove an upper bound to the average agent’s cost in Th and provide an interesting
conjecture. We define ah := sch/(nh − 1) as the average agent’s cost in Th.

I Lemma 20. For every h ≥ 1, ah ≤ 2.4318.

I Conjecture 2. The PoA is equal to limh→∞ ah.

4.2 Price of Stability
We now turn our focus to the PoS and prove a lower bound.

I Theorem 21. The PoS is at least 7
5 − ε, for ε ∈ Θ(1/n).

Next, we investigate the PoS in certain balanced trees and prove an upper bound which is
strictly better than the upper bound on the PoA.

I Theorem 22. For all n ∈ N such that there is a balanced tree T of size n with the in-degree
sequence (0, 1, 2, 4, dh−4, . . . , d0), where di ≤ 2di+1 + 1 for i ≤ h− 4, the PoS is at most 2.83.

4.3 Fairness measure
We investigate the Fairness Ratio which considers the cost distribution among the agents.
We show that stable trees damit a more fair cost-sharing compared with the social optimum.

I Theorem 23. The Fairness Ratio for OPTn is nHn, where Hn =
n∑
i=1

1
i is the n-th harmonic

number.

We now turn our focus to the analysis of the class of all stable trees and prove that the FR
is in o(n).

I Theorem 24. The Fairness Ratio for any NE is at most 8.62(n−2)·ln ln(4
√
n/5)

ln(4
√
n/5)

− 213 ·

(
1− 2 ln ln(4

√
n/5)

ln(4
√
n/5)

)
·
(

ln(4
√
n/5)

ln ln(4
√
n/5)

)log
(√

ln(4
√

n/5)
ln ln(4

√
n/5)

)
−5.5

, which is at most

8.62 · (n−2)·ln ln(4
√
n/5)

ln(4
√
n/5)

.
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Figure 4 Left: A path-TCG NE that is not a TCG NE for n = 16. Middle: A path-TCG NE
that is not a TCG NE for n = 18. Right: A TCG NE that is not a strong path-TCG NE.

I Theorem 25. The Fairness Ratio for a stable tree is at least n · 2−2
√

2 log(n).

Finally, we investigate the class of stable balanced trees and prove a more precise upper
bound.

I Theorem 26. The Fairness Ratio for a stable balanced tree with the in-degree sequence

(0, 1, 2, 4, dh−4, . . . , d0), where di ≤ 2di+1 + 1 for i ≤ h− 4, is at most
2.4318n·

(
ln ln(4

√
n/5)

)2(
ln(4
√
n/5)

)2 .

5 Extensions for Future Work: The Path Version and Coalitions

A natural extension of our model is to allow for a richer strategy space. Instead of selecting
a single outgoing edge, agents could strategically select a complete path towards the root
r. This version, called the path-TCG, is closer to the fair single-source connection game by
Anshelevich et al. [5, 4]. See the full version [9] for a formal definition of the path-TCG.

We give some preliminary results relating the equilibria of the TCG to the equilibria
of the path-TCG. Our results indicate that studying the path-TCG, in particular its PoA
and PoS, is a promising next step. We start with showing that also in the path-TCG all
equilibria must be trees.

I Lemma 27. Any equilibrium network in the path-TCG is a tree.

Now we show that the TCG can be considered as a special case of the path-TCG since all
equilibrium trees of the TCG are equilibria in the path-TCG but not vice versa.

I Theorem 28. The set of NE in the path-TCG is a superset of the set of NE in the TCG.

We showed for the TCG that for n = 16 and n = 18 there exists no stable network. We
contrast this negative result with a NE existence proof for the path-TCG for the corresponding
values. Figure 4 (left and middle) show equilibrium trees for the path-TCG for n = 16 and
n = 18, respectively.

I Theorem 29. For n = 16 and n = 18 there exists a stable network for the path-TCG.

Together with Theorem 29 and since any NE in the TCG is a NE in the path-TCG, we
go along with Conjecture 1 and believe that for all values of n stable trees exist for the
path-TCG.

I Conjecture 3. For any n ∈ N a pure NE exists in the path-TCG.
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An agent a in the TCG benefits from the fact that if a changes her strategy and switches her
edge towards another node the costs of the new edge is also shared among all of a’s ancestors.
It seems natural to consider a strategy change in the TCG as a coalitional strategy change
in the path-TCG by the coalition consisting of agent a and all her ancestors. So NE in the
TCG could be in strong NE [3] for the pathTCG. However, we show that this is not true,
see Figure 4 (right).

I Theorem 30. There is a NE in the TCG which is not in strong NE for the path-TCG.

6 Conclusion

We have studied a tree formation game to investigate how selfish agents self-organize to
connect to a common target in the presence of dynamic edge costs that are sensitive to
node degrees. This mimics settings in which nodes can charge prices for offering their
routing service and where these prices are guided by supply and demand, i.e., more popular
nodes with higher in-degree can charge higher prices to make up for their increased internal
coordination cost.

Our main findings are that our game admits equilibrium trees with intriguing properties
like low height, low maximum degree, almost optimal cost, and a somewhat fair distribution
of the total cost among the agents. The set of equilibrium trees seems to be combinatorially
rich, and characterizing stable trees that are not balanced seems an exciting and challenging
problem for future research. It would also be interesting to study the degree distribution in
stable trees and to evaluate possible connections with power-law degree distributions which
are ubiquitous in real-world networks.

We note in passing that our model can easily be generalized to settings with more than
one target node as long as every possible incident edge may be activated. In this case, several
disjoint trees, one for each target node, will be formed. Things change if target nodes and
agent nodes may be co-located, and exploring this variant might be interesting.
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