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Abstract

We consider the online carpooling problem: given n vertices, a sequence of edges arrive over time.
When an edge et = (ut, vt) arrives at time step t, the algorithm must orient the edge either as
vt → ut or ut → vt, with the objective of minimizing the maximum discrepancy of any vertex, i.e.,
the absolute difference between its in-degree and out-degree. Edges correspond to pairs of persons
wanting to ride together, and orienting denotes designating the driver. The discrepancy objective
then corresponds to every person driving close to their fair share of rides they participate in.

In this paper, we design efficient algorithms which can maintain polylog(n, T ) maximum discrep-
ancy (w.h.p) over any sequence of T arrivals, when the arriving edges are sampled independently
and uniformly from any given graph G. This provides the first polylogarithmic bounds for the
online (stochastic) carpooling problem. Prior to this work, the best known bounds were O(

√
n logn)-

discrepancy for any adversarial sequence of arrivals, or O(loglogn)-discrepancy bounds for the
stochastic arrivals when G is the complete graph.

The technical crux of our paper is in showing that the simple greedy algorithm, which has
provably good discrepancy bounds when the arriving edges are drawn uniformly at random from the
complete graph, also has polylog discrepancy when G is an expander graph. We then combine this
with known expander-decomposition results to design our overall algorithm.
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1 Introduction

Consider the following edge orientation problem: we are given a set V of n nodes, and
undirected edges arrive online one-by-one. Upon arrival of an edge {u, v}, it has to be
oriented as either u → v or v → u, immediately and irrevocably. The goal is to minimize
the discrepancy of this orientation at any time t ∈ [T ] during the arrival process, i.e., the
maximum imbalance between the in-degree and out-degree of any node. Formally, if we let
χt to denote the orientation at time t and δ−t (v) (resp. δ+

t (v)) to denote the number of
in-edges (resp. out-edges) incident to v in χt, then we want to minimize

max
t

disc(χt) := max
t

max
v
|δ−t (v)− δ+

t (v)|.

If the entire sequence of edges is known up-front, one can use a simple cycle-and-path-peeling
argument to show that any set of edges admit a discrepancy of at most 1. The main focus of
this work is in understanding how much loss is caused by the presence of uncertainty, since
we don’t have knowledge of future arrivals when we irrevocably orient an edge.

This problem was proposed by Ajtai et al. [1] as a special case of the carpooling problem
where hyperedges arrive online, each representing a carpool where one person must be
designated as a driver. The “fair share” of driving for person i can be defined as

∑
e:i∈e 1/|e|,

and we would like each person to drive approximately this many times. In the case of graphs
where each carpool is of size |e| = 2, this carpooling problem is easily transformed into the
edge-orientation problem.

Ajtai et al. showed that while deterministic algorithms cannot have an o(n) discrepancy,
they gave a randomized “local greedy” which has an expected discrepancy (for any T ≥ 1) of
O(
√
n logn) for any online input sequence of T arrivals. Indeed, note that the discrepancy

bound is independent of the length of the sequence T , and depends only on the number
of nodes, thus giving a non-trivial improvement over the naive random assignment, which
will incur a discrepancy of O(

√
T logn). Intriguingly, the lower bound they show for online

algorithms is only Ω((logn)1/3) – leaving a large gap between the upper and lower bounds.
Given its apparent difficulty in the adversarial online model, Ajtai et al. proposed a

stochastic model, where each edge is an independent draw from some underlying probability
distribution over pairs of vertices. They considered the the uniform distribution, which is
the same as presenting a uniformly random edge of the complete graph at each time. In
this special case, they showed that the greedy algorithm (which orients each edge towards
the endpoint with lower in-degree minus out-degree) has expected discrepancy Θ(loglogn).
Their analysis crucially relies on the structure and symmetry of the complete graph.

In this paper, we consider this stochastic version of the problem for general graphs:
i.e., given an arbitrary simple graph G, the online input is a sequence of edges chosen
independently and uniformly at random (with replacement) from the edges of this graph G1.
Our main result is the following:

I Theorem 1 (Main Theorem). There is an efficient algorithm for the edge-orientation
problem that maintains, w.h.p, a maximum discrepancy of O(poly log(nT )) on input sequences
formed by i.i.d. draws from the edges of a given graph G.

1 It is possible to extend our results, by losing a log T factor, to edge-weighted distributions where an edge
is drawn i.i.d. with probability proportional to its weight. Since this extension uses standard ideas like
bucketing edges with similar weights, we restrict our attention to arrivals from a graph G for simplicity.
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1.1 Our Techniques
Let us fix some notation. Given a (multi)graph G = (V,E) with |V | = n, the algorithm is
presented with a vector vt at each time as follows. A uniformly random edge (u, v) ∈ G is
sampled, and the associated characteristic vector vt = eu − ev is presented to the algorithm,
where eu ∈ Rn has all zeros except index u being 1. The algorithm must immediately sign
vt with χt ∈ {−1, 1}, to keep the discrepancy bounded at all times t. Here the discrepancy
of node u at time t is the uth entry of the vector

∑
s≤t χ

svs (which could be negative), and
the discrepancy of the algorithm is the maximum absolute discrepancy over all vertices, i.e.,∥∥∥∑s≤t χ

svs
∥∥∥
∞

.
A natural algorithm is to pick a uniformly random orientation for each arriving edge. This

maintains zero expected discrepancy at each node. However, the large variance may cause
the maximum discrepancy over nodes to be as large as Ω(

√
T ), where T the total number

of edges (which is the same as the number of time-steps). For example, this happens even
on T parallel edges between two nodes. In this case, however, the greedy algorithm which
orients the edge from the vertex of larger discrepancy to that of smaller discrepancy works
well. Indeed it is not known to be bad for stochastic instances. (Since it is a deterministic
algorithm, it can perform poorly on adversarial inputs due to known o(n) lower bounds [1].)

Building on the work of Ajtai et al. who consider stochastic arrivals on complete graphs,
the first step towards our overall algorithm is to consider the problem on expander graphs. At
a high level, one hurdle to achieving low discrepancy in the stochastic case is that we reach
states where both endpoints of a randomly-chosen edge already have equally high discrepancy.
Then, no matter how we orient the edge, we increase the maximum discrepancy. But this
should not happen in expander graphs: if S is the set of “high” discrepancy vertices, then
the expansion of the graph implies that |∂S| must be a large fraction of the total number of
edges incident to S. Therefore, intuitively, we have a good chance of reducing the discrepancy
if we get edges that go from S to low-degree nodes. To make this idea formal, we relate
the greedy process on expander graphs G to the so-called (1 + β)-process over an easier
arrival sequence where the end-points of a new edge are chosen from a product distribution,
where the probability of choosing a vertex is proportional to its degree in G. However, in the
(1 + β)-process2, the algorithm orients a new edge greedily with only probability β for some
small value of β, and does a random orientation with the remaining probability (1− β).

Indeed, we compare these two processes by showing that (a) the expected increase of a
natural potential Φ :=

∑
v cosh(λ discrepancy(v)) – which can be thought of as a soft-max

function – is lower for the greedy algorithm on expanders when compared to the (1 + β)-
process on the product distribution, and (b) the same potential increases very slowly (if at
all) on the product distribution. A similar idea was used by Peres et al. [13] for a related
stochastic load balancing problem; however, many of the technical details are different.

The second component of the algorithm is to decompose a general graph into expanders.
This uses the (by-now commonly used) idea of expander decompositions. Loosely speaking,
this says that the edges of any graph can be decomposed into some number of smaller graphs
(each being defined on some subset of vertices), such that (a) each of these graphs is an
expander, and (b) each vertex appears in only a poly-logarithmic number of these expanders.
Our arguments for expanders require certain weak-regularity properties – namely the degrees
of vertices should not be too small compared to the average degree – and hence some care is
required in obtaining decompositions into such expanders. These details appear in the full
version.

2 The name (1 + β)-process stems from the notion for an analogous load-balancing (or) balls-and-bins
setting [13], this process would be like the (1 + β)-fractional version of the power-of-two choices process.

FSTTCS 2020
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Our overall algorithm can then be summarized in Algorithm 1.

Algorithm 1 DivideAndGreedy (graph G = (V,E)).

1: run the expander-decomposition algorithm in Theorem 19 (in Section 2.5) on G to obtain
a collection P = {G1, G2, . . . , Gk} of edge-disjoint expander graphs.

2: initialize H = {H1, H2, . . . Hk} to be a collection of empty graphs, where Hi is the
directed multi-graph consisting of all edges which have arrived corresponding to base
graph Gi, along with their orientations assigned by the algorithm upon arrival.

3: for each new edge e ≡ {u, v} that arrives at time-step t do
4: let i denote the index such that e ∈ Gi according to our decomposition.
5: add e to Hi, and orient e in a greedy manner w.r.t Hi, i.e., from u to v if discHi

(u) ≥
discHi(v), where discH(w) = δin

Hi
(w)− δout

Hi
(w) is the in-degree minus out-degree of any

vertex w in the current sub-graph Hi maintained by the algorithm.
6: end for

1.2 Related Work

The study of discrepancy problems has a long history; see the books [12, 8] for details on the
classical work. The problem of online discrepancy minimization was studied by Spencer [14],
who showed an Ω(

√
T ) lower bound for for adaptive adversarial arrivals. More refined lower

bounds were given by Bárány [6]; see [4] for many other references. Much more recently,
Bansal and Spencer [5] and Bansal et al. [4] consider a more general vector-balancing problem,
where each request is a vector vt ∈ Rn with ‖vt‖∞ ≤ 1, and the goal is to assign a sign
χt ∈ {−1, 1} to each vector to minimize ‖

∑
t χ

tvt‖∞, i.e., the largest coordinate of the
signed sum. Imagining each edge et = {u, v} to be the vector 1√

2 (eu − ev) (where this initial
sign is chosen arbitrarily) captures the edge-orientation problem up to constant factors.
Bansal et al. gave an O(n2 log(nT ))-discrepancy algorithm for the natural stochastic version
of the problem under general distributions. For some special geometric problems, they gave
an algorithm that maintains poly(s, log T, logn) discrepancy for sparse vectors that have
only s non-zero coordinates. These improve on the work of Jiang et al. [11], who give a
sub-polynomial discrepancy coloring for online arrivals of points on a line. A related variant
of these geometric problems was also studied in Dwivedi et al. [9].

Very recently, an independent and exciting work of Alweiss, Liu, and Sawhney [2] gave a
randomized algorithm that maintains a discrepancy of O(log(nT )/δ) for any input sequence
chosen by an oblivious adversary with probability 1− δ, even for the more general vector-
balancing problem for vectors of unit Euclidean norm (the so-called Kómlós setting). Instead
of a potential based analysis like ours, they directly argue why a carefully chosen randomized
greedy algorithm ensures w.h.p. that the discrepancy vector is always sub-Gaussian. A
concurrent work of Bansal et al. [3] also obtains similar results for i.i.d. arrivals, but they
use a very different potential than our expander-decomposition approach. It is an interesting
open question to extend our approach to hypergraphs and re-derive their results.

1.3 Notation

We now define some graph-theoretic terms that are useful for the remainder of the paper.
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I Definition 2 (Volume and α-expansion). Given any graph G = (V,E), and set S ⊆ V its
volume is defined to be vol(S) :=

∑
v∈S degree(v). We say G is an α-expander if

min
S⊆V

|E(S, V \ S)|
min{vol(S), vol(V \ S)} ≥ α.

We will also need the following definition of “weakly-regular” graphs, which are graphs
where every vertex has degree at least a constant factor of the average degree. Note that the
maximum degree can be arbitrarily larger than the average degree.

I Definition 3 (γ-weakly-regular). For γ ∈ [0, 1], a graph G = (V,E) is called γ-weakly-regular
if every vertex v ∈ V has degree at least γ ·

∑
u∈V degree(u)/|V |.

I Definition 4 (Discrepancy Vector). Given any directed graph H = (V,A) (representing all
the oriented edges until any particular time-step), let d ∈ Z|V | represent the discrepancy
vector of the current graph, i.e. the vth entry of d, denoted by dv is the difference between
the number of in-edges incident at v and the number of out-endges incident at v in H.

2 The Greedy Algorithm on Expander Graphs

In this section, we consider the special case when the graph G is an expander. More formally,
we show that the greedy algorithm is actually good for such graphs.

I Definition 5 (Expander Greedy Process). The greedy algorithm maintains a current dis-
crepancy dtv for each vertex v, which is the in-degree minus out-degree of every vertex among
the previously arrived edges. Initially, d1

v = 0 for every vertex v at the beginning of time-step
1. At each time t ≥ 1, a uniformly random edge e ∈ G with end-points {u, v} is presented
to the algorithm, and suppose w.l.o.g. dtu ≥ dtv, i.e., u has larger discrepancy (ties broken
arbitrarily). Then, the algorithm orients the edge from u to v. The discrepancies of u and v
become dt+1

u = dtu − 1 and dt+1
v = dtu + 1, and other vertices’ discrepancies are unchanged.

I Theorem 6. Consider any γ-weakly-regular α-expander G, and suppose edges are arriving
as independent samples from G over a horizon of T time-steps. Then, the greedy algorithm
maintains a discrepancy dtv of O(log5 nT ) for every time t in [0 . . . T ] and every vertex v, as
long as α ≥ 6λ, γ ≥ λ1/4, where λ = O(log−4 nT ).

For the sake of concreteness, it might be instructive to assume α ≈ γ ≈ O( 1
logn ), which

is roughly what we will obtain from our expander-decomposition process.

2.1 Setting Up The Proof
Our main idea is to introduce another random process called the (1+β)-process, and show that
the (1 +β)-process stochastically dominates the expander-greedy process in a certain manner,
and separately bound the behaviour of the (1 + β)-process subsequently. By combining these
two, we get our overall analysis of the expander-greedy process.

To this end, we first define a random arrival sequence where the end-points of each new
edge are actually sampled independently from a product distribution.

I Definition 7 (Product Distribution). Given a set V of vertices with associated weights
{wv ≥ 0 | v ∈ V }, at each time t, we select two vertices u, v as two independent samples
from V , according to the distribution where any vertex v ∈ V is chosen with probability

wv∑
v′∈V

wv′
, and the vector vt := χu − χv is presented to the algorithm.

FSTTCS 2020
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We next define the (1 + β)-process, which will be crucial for the analysis.

I Definition 8 ((1 + β)-process on product distributions). Consider a product distribution
over a set of vertices V . When presented with a vector vt := χu − χv from this product
distribution at time t, the (1 + β)-process assigns a sign to the vector vt as follows: with
probability (1− β), it assigns it uniformly ±1, and only with the remaining probability β it
uses the greedy algorithm to sign this vector.

Note that setting β = 1 gives us back the greedy algorithm, and β = 0 gives an algorithm
that assigns a random sign to each vector.
I Remark 9. The original (1 + β)-process was in fact introduced in [13], where Peres et al.
analyzed a general load-balancing process over n bins (corresponding to vertices), and balls
arrive sequentially. Upon each arrival, the algorithm gets to sample a random edge from a
k-regular expander3 G over the bins, and places the ball in the lighter loaded bin among the
two end-points of the edge. They show that this process maintains a small maximum load,
by relating it to an analogous (1 +β)-process, where instead of sampling an edge from G, two
bins are chosen uniformly at random, and the algorithm places the ball into a random bin
with probability 1− β, and the lesser loaded bin with probability β. Note that their analysis
inherently assumed that the two vertices are sampled from the uniform distribution where all
weights wu are equal. By considering arbitrary product distributions, we are able to handle
arbitrary graphs with a non-trivial conductance, i.e., even those that do not satisfy the
k-regularity property. This is crucial for us because the expander decomposition algorithms,
which reduce general graphs to a collection of expanders, do not output regular expanders.

Our analysis will also involve a potential function (intuitively the soft-max of the vertex
discrepancies) for both the expander-greedy process as well as the (1 + β)-process.

I Definition 10 (Potential Function). Given vertex discrepancies d ∈ Z|V |, define

Φ(d) :=
∑
v

cosh(λdv), (1)

where λ < 1 is a suitable parameter to be optimized.

Following many prior works, we use the hyperbolic cosine function to symmetrize for positive
and negative discrepancy values. When d is clear from the context, we will write Φ(d) as Φ.
We will also use dt to refer to the discrepancy vector at time t, and dtu to the discrepancy of
u at time t. We will often ignore the superscript t if it is clear from the context.

We are now ready to define the appropriate parameters of the (1 + β)-process. Indeed,
given the expander-greedy process defined on graph G, we construct an associated (1 + β)-
process where for each vertex v, the probability of sampling any vertex in the product
distribution is proportional to its degree in G, i.e., wv = degreeG(v) for all v ∈ V . We also
set the β parameter equal to α, the conductance of the graph G.

2.2 One-Step Change in Potential
The main idea of the proof is to use a majorization argument to argue that the expected
one-step change in potential of the expander process can be upper bounded by that of
the (1 + β)-process, if the two processes start at the same discrepancy configuration dt.
Subsequently, we bound the one-step change for the (1 + β)-process in Section 2.4.

3 Actually their proof works for a slightly more general notion of expanders, but which is still insufficient
for our purpose.
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To this end, consider a time-step t, where the current discrepancy vector of the expander
process is dt. Suppose the next edge in the expander process is (i, j), where dti > dtj . Then
the greedy algorithm will always choose a sign such that di decreases by 1, and dj increases
by 1. Indeed, this ensures the overall potential is non-increasing unless di = dj . More
importantly, the potential term for other vertices remains unchanged, and so we can express
the expected change in potential as having contributions from precisely two terms, one due
to di → di− 1 (called the decrease term), and denoted as ∆−1(t), and one due to dj → dj + 1
(the increase term), denoted as ∆+1(t):

E(i,j)∼G[∆Φ] = E(i,j)∼G

[
Φ(dt+1)− Φ(dt)

]
= E(i,j)

[
cosh(λ(di − 1))− cosh(λ(di))

]
︸ ︷︷ ︸

=:∆−1(dt)

+E(i,j)

[
cosh(λ(dj + 1))− cosh(λ(dj))

]
︸ ︷︷ ︸

=:∆+1(dt)

.

Now, consider the (1 + β)-process on the vertex set V , where the product distribution is
given by weights wu = deg(u) for each u ∈ V , starting with the same discrepancy vector dt as
the expander process at time t. Then, if u and v are the two vertices sampled independently
according to the product distribution, then by its definition, the (1 + β)-process signs this
pair randomly with probability (1 − β), and greedily with probability β. For the sake of
analysis, we define two terms analogous to ∆−1(dt) and ∆+1(dt) for the (1 + β)-process. To
this end, let i ∈ {u, v} denote the identity of the random vertex to which the (1 + β)-process
assigns +1. Define

∆̃+1(dt) := E(u,v)∼w×w

[
cosh(λ(di + 1))− cosh(λ(di))

]
, (2)

where w×w refers to two independent choices from the product distribution corresponding
to w. Similarly let j ∈ {u, v} denote the identity of the random vertex to which the
(1 + β)-process assigns −1, and define

∆̃−1(dt) := E(u,v)∼w×w

[
cosh(λ(dj − 1))− cosh(λ(dj))

]
. (3)

In what follows, we bound ∆−1(dt) ≤ ∆̃−1(dt) through a coupling argument, and similarly
bound ∆+1(dt) ≤ ∆̃+1(dt) using a separate coupling.

A subtlety: the expected one-step change in Φ in the expander process precisely equals
∆−1(dt)+∆+1(dt). However, if we define an analogous potential for the (1+β)-process, then
the one-step change in potential there does not equal the sum ∆̃−1(dt) + ∆̃+1(dt). Indeed,
we sample u and v i.i.d. in the (1 + β)-process, it is possible that u = v and therefore the
one-step change in potential is 0, while the sum ∆̃−1(dt) + ∆̃+1(dt) will be non-zero. Hence
the following lemma does not bound the expected potential change for the expander process
by that for the (1 + β)-process (both starting from the same state), but by this surrogate
∆̃−1(dt) + ∆̃+1(dt), and it is this surrogate sum that we bound in Section 2.4.

2.3 The Coupling Argument
We now show a coupling between the expander-greedy process and the (1+β)-process defined
in Section 2.1, to bound the expected one-step change in potential for the expander process.

I Lemma 11. Given an α-expander G = (V,E), let dt ≡ (dv : v ∈ V ) denote the current
discrepancies of the vertices at any time step t for the expander-greedy process. Consider a
hypothetical (1 + β)-process on vertex set V with β = α, the weight of vertex v ∈ V set to
wv = deg(v), and starting from the same discrepancy state dt. Then:

FSTTCS 2020
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(a) ∆−1(dt) ≤ ∆̃−1(dt), and (b) ∆+1(dt) ≤ ∆̃+1(dt).
Hence the expected one-step change in potential E[Φ(dt+1)− Φ(dt)] ≤ ∆̃−1(dt) + ∆̃+1(dt).

Proof. We start by renaming the vertices in V such that dn ≤ dn−1 ≤ . . . ≤ d1. Suppose the
next edge in the expander process corresponds to indices i, j where i < j. We prove the lemma
statement by two separate coupling arguments, which crucially depend on the following
claim. Intuitively, this claim shows that a −1 is more likely to appear among the high
discrepancy vertices of G in the expander process than the (1 + β)-process (thereby having
a lower potential), and similarly a +1 is more likely to appear among the low discrepancy
vertices of G in the expander process than in the (1 + β)-process. Peres et al. [13] also prove
a similar claim for stochastic load balancing, but they only consider uniform distributions.

B Claim 12. For any k ∈ [n], if Sk denotes the set of vertices with indices k′ ∈ [k] (the k
highest discrepancy vertices) and Tk denotes V \ Sk, then

Pr
(i,j)∼G

[−1 ∈ Sk] ≥ Pr
(u,v)∼w×w

[−1 ∈ Sk] and Pr
(i,j)∼G

[+1 ∈ Tk] ≥ Pr
(u,v)∼w×w

[+1 ∈ Tk] .

Above, we abuse notation and use the terminology “−1 ∈ Sk” to denote that the vertex
whose discrepancy decreases falls in the set Sk in the corresponding process.

Proof. Fix an index k, and let ρ := vol(Sk)
vol(V ) be the relative volume of Sk, i.e., the fraction of

edges of G incident to the k nodes of highest degree. First we consider the (1 + β)-process
on V . With (1− β), probability we assign a sign to the input vector uniformly at random.
Therefore, conditioned on this choice, a vertex in Sk will get a −1 sign with probability

1
2 · Pr[u ∈ Sk] + 1

2 Pr[v ∈ Sk] = vol(Sk)
vol(V ) = ρ,

where u and v denote the two vertices chosen by the (1+β)-process process. With probability
β, we will use the greedy algorithm, and so −1 will appear on a vertex in Sk iff at least one
of the two chosen vertices lie in Sk. Putting it together, we get

Pr
(u,v)∼w×w

[−1 ∈ Sk] = (1− β) · vol(Sk)
vol(V ) + β · Pr

(u,v)∼w×w
[{u, v} ∩ Sk 6= ∅]

= (1− β) · ρ+ β ·
(
1− (1− ρ)2) = (1 + β − β · ρ) · ρ. (4)

Now we consider the expander process. A vertex in Sk gets -1 iff the chosen edge has at
least one end-point in Sk. Therefore,

Pr
(i,j)∼G

[−1 ∈ Sk] = Pr[i ∈ Sk] = |E(Sk, Sk)|+ |E(Sk, V \ Sk)|
|E|

=
(
2|E(Sk, Sk)|+ |E(Sk, V \ Sk)|

)
+ |E(Sk, V \ Sk)|

2|E| = vol(Sk) + |E(Sk, V \ Sk)|
vol(V ) .

Recalling that β = α, and that G is an α-expander, we consider two cases:
Case 1: If vol(Sk) ≤ vol(V \ Sk), we use

Pr
(i,j)∼G

[−1 ∈ Sk] = vol(Sk) + |E(Sk, V \ Sk)|
vol(V )

≥ (1 + α)vol(Sk)
vol(V ) = (1 + β)ρ ≥ Pr

(u,v)∼w×w
[−1 ∈ Sk].
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Case 2: If vol(Sk) > vol(V \ Sk), we use

Pr
(i,j)∼G

[−1 ∈ Sk] = vol(Sk) + |E(Sk, V \ Sk)|
vol(V ) ≥ vol(Sk) + α · vol(V \ Sk)

vol(V )

≥
(

1 + β · vol(V \ Sk)
vol(V )

)
· ρ = Pr

(i,j)∼w×w
[−1 ∈ Sk],

where the last equality uses (4).
This completes the proof of Pr(i,j)∼G[−1 ∈ Sk] ≥ Pr(i,j)∼w[−1 ∈ Sk]. One can similarly show
Pr(i,j)∼G[+1 ∈ Tk] ≥ Pr(u,v)∼w×w[+1 ∈ Tk], which completes the proof of the claim. C

Claim 12 shows that we can establish a coupling between the two processes such that
if −1 belongs to Sk in (1 + β)-process, then the same happens in the expander process. In
other words, there is a joint sample space Ω such that for any outcome ω ∈ Ω, if vertices va
and vb get sign −1 in the expander process and the (1 + β)-process respectively, then a ≤ b.

Let d and d̃ denote the discrepancy vectors in the expander process and the (1+β)-process
after the -1 sign has been assigned, respectively. Now, since both the processes start with the
same discrepancy vector dt, we see that for any fixed outcome ω ∈ Ω, the vector d̃ majorizes
d in the following sense.

I Definition 13 (Majorization). Let a and b be two real vectors of the same length n. Let
−→a and

−→
b denote the vectors a and b with coordinates rearranged in descending order

respectively. We say that a majorizes b, written a � b, if for all i, 1 ≤ i ≤ n, we have∑i
j=1
−→a j ≥

∑i
j=1
−→
b j .

One of the properties of majorization [10] is that any convex and symmetric function of
the discrepancy vector (which Φ is) satisfies that Φ(d) ≤ Φ(d̃). Thus, for any fixed outcome
ω, the change in potential in the expander process is at most that of the surrogate potential
in the (1 + β)-process. Since ∆−1(dt) and ∆̃−1(dt) are just the expected change of these
quantities in the two processes (due to assignment of -1 sign), the first statement of the
lemma follows. Using an almost identical proof, we can also show the second statement.
(Note that we may need to redefine the coupling between the two processes to ensure that if
vertices va, vb get sign +1 as above, then b ≤ a.) J

2.4 Analyzing One-Step ∆Φ of the (1 + β)-process
Finally we bound the one-step change in (surrogate) potential of the (1 + β)-process starting
at discrepancy vector dt; recall the definitions of ∆̃−1(dt) and ∆̃+1(dt) from Section 2.2.

I Lemma 14. If Φ(dt) ≤ (nT )10, and if the weights wv are such that for all v, wv∑
v′
wv′
≥ γ

n

(i.e., the minimum weight is at least a γ fraction of the average weight), then we have that

∆̃−1(dt) + ∆̃+1(dt) ≤ O(1),

as long as β ≥ 6λ, γ ≥ 16λ1/4, and λ = O(log−4 nT ).

Proof. Let u be an arbitrary vertex in V , and we condition on the fact that the first vertex
chosen by the (1 + β)-process is u. Then, we show that

Ev∼w

[
cosh(λ(di − 1))− cosh(λ(di)) + cosh(λ(dj + 1))− cosh(λ(dj))

∣∣∣u is sampled first
]
,
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is O(1) regardless of the choice of u, where we assume that i is the random vertex which is
assigned −1 by the (1 + β)-process, and j is the random vertex which is assigned +1. The
proof of the lemma then follows by removing the conditioning on u.

Following [5, 4], we use the first two terms of the Taylor expansion of cosh(·) to upper
bound the difference terms of the form cosh(x+ 1)− cosh(x) and cosh(x− 1)− cosh(x). To
this end, note that, if |ε| ≤ 1 and λ < 1, we have that

cosh(λ(x+ ε))− cosh(λx) ≤ ελ sinh(λx) + ε2

2!λ
2 cosh(λx) + ε3

3!λ
3 sinh(λx) + . . .

≤ ελ sinh(λx) + ε2λ2 cosh(λx).

Using this, we proceed to bound the following quantity (by setting ε = −1 and 1 respectively):

Ev∼w

[
−λ
(

sinh(λdi)− sinh(λdj)
)︸ ︷︷ ︸

=:−L

+λ2( cosh(λdi) + cosh(λdj)
)︸ ︷︷ ︸

=:Q

∣∣∣u is sampled first
]
.

We refer to L = λ
(

sinh(λdi)− sinh(λdj)
)
and Q = λ2( cosh(λ(di)) + cosh(λdj)

)
as the linear

and quadratic terms, since they arise from the first- and second-order derivatives in the
Taylor expansion.

To further simplify our exposition, we define the following random variables:
(i) u> is the identity of the vertex among u, v with higher discrepancy, and u< is the other
vertex. Hence we have that du> ≥ du< .
(ii) G denotes the random variable λ

(
sinh(λdu>

) − sinh(λdu<
)
)
, which indicates an

analogous term to L, but if we exclusively did a greedy signing always (recall that the
greedy algorithm would always decrease the larger discrepancy, but the (1 + β)-process
follows a uniformly random signing with probability (1− β) and follows the greedy rule
only with probability β).
Finally, for any vertex w ∈ V , we let Danger(w) = {v : |dw − dv| < 2

λ} to denote the set
of vertices with discrepancy close to that of w, where the gains from the term corresponding
to βG are insufficient to compensate for the increase due to Q.

We are now ready to proceed with the proof. Firstly, note that, since the (1 + β)-process
follows the greedy algorithm with probability β (independent of the choice of the sampled
vertices u and v), we have that

Ev[L | u is sampled first] = (1− β)0 + βEv[G | u is sampled first]. (5)

Intuitively, the remainder of the proof proceeds as follows: suppose du>
and du<

are
both non-negative (the intuition for the other cases are similar). Then, Q is proportional to
λ2 cosh(λdu>

). Now, if du>
−du<

is sufficiently large, then G is proportional to λ sinh(λdu>
),

which in turn is close to λ cosh(λdu>). As a result, we get that as long as λ = O(β), the
term −βG+Q can be bounded by 0 for each choice of v such that du>

− du<
is large.

However, what happens when du>
− du<

is small, i.e., when v falls in Danger(u)? Here,
the Q term is proportional to λ2 cosh(λdu), but the G term might be close to 0, and so we
can’t argue that −βG+Q ≤ O(1) in these events. Hence, we resort to an amortized analysis
by showing that (i) when v /∈ Danger(u), −βG can not just compensate for Q, it can in fact
compensate for 1√

λ
Q ≥ 1√

λ
· λ2 cosh(λdu), and secondly, (ii) the probability over a random

choice of v of v /∈ Danger(u) is at least
√
λ, provided Φ is bounded to begin with. The overall

proof then follows from taking an average over all v.
Hence, in what follows, we will show that in expectation the magnitude of βG can

compensate for a suitably large multiple of Q when v /∈ Danger(u).
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B Claim 15. Let β ≥ 6λ. For any fixed choice of vertices u and v such that v /∈ Danger(u),
we have G := λ

(
sinh(λdu>

)− sinh(λdu<
)
)
≥ λ

3 (cosh(λdu) + cosh(λdv)− 4).

Proof. The proof is a simple convexity argument. To this end, suppose both du, dv ≥ 0.
Then since sinh(x) is convex when x ≥ 0 and its derivative is cosh(x), we get that

sinh(λdu>
)− sinh(λdu<

) ≥ λ cosh(λdu<
) · |du − dv| ≥ 2 cosh(λdu<

),

using v /∈ Danger(u). But since
∣∣| sinh(x)| − cosh(x)

∣∣ ≤ 1, we get that

sinh(λdu>
)− sinh(λdu<

) ≥ 2 sinh(λdu<
)− 2.

Therefore, sinh(λdu<) ≤ 1
3 (sinh(λdu>) + 1). Now substituting, and using the monotonicity

of sinh and its closeness to cosh, we get G is at least

2λ
3 (sinh(λdu>)− 1) ≥ λ

3 (sinh(λdu>) + sinh(λdu<)− 2) ≥ λ

3

(
cosh(λdu)+cosh(λdv)−4

)
.

The case of du, dv ≤ 0 follows from setting d′u = |du|, d′v = |dv| and using the above
calculations, keeping in mind that sinh is an odd function but cosh is even. Finally, when
du< is negative but du> is positive,

G = λ(
(

sinh(λdu>
)− sinh(λdu<

)
)

= λ
(

sinh(λdu>
) + sinh(λ|du<

|)
)

≥ λ

3
(

cosh(λdu>) + cosh(λdu<)− 2
)
≥ λ

3

(
cosh(λdu) + cosh(λdv)− 4

)
. J

B Claim 16. Let β ≥ 6λ. For any fixed choice of vertices u and v such that v /∈ Danger(u),
we have −βG+

(
1 + 1√

λ

)
Q ≤ O(1).

Proof. Recall that G = λ
(

sinh(λdu>
) − sinh(λdu<

)
)
. Now, let A denote cosh(λdu) +

cosh(λdv). Then, by definition of Q and from Claim 15, we have that

−βG+
(

1 + 1√
λ

)
Q ≤ −βλ3 (A−4)+

(
1 + 1√

λ

)
λ2A ≤ 4λβ

3 +
(
λ2 + λ

3
2 − λβ

3

)
A ≤ λβ

is at most O(1), assuming β ≥ 6λ ≥ 3(λ+
√
λ), and recalling that λ, β are at most 1. C

We now proceed with our proof using two cases:
Case (i): |du| ≤ 10

λ . In this case, note that the Q term is

Ev[Q | u is sampled first]
= Ev[Q | v ∈ Danger(u), u is sampled first] · Pr[v ∈ Danger(u) | u is sampled first]

+ Ev[Q | v /∈ Danger(u)u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first]
≤ O(1) + Ev[Q | v /∈ Danger(u), u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first].

Here the inequality uses v ∈ Danger(u) and |du| ≤ 10
λ to infer that that both |du| and

|dv| are ≤ 12
λ . Hence the Q term in this scenario will simply be a constant.

Next we analyze the L term. For the following, we observe that the algorithm chooses
a random ±1 signing with probability (1 − β), and chooses the greedy signing with
probability β, and moreover, this choice is independent of the random choices of u and
v. Hence, the expected L term conditioned on the algorithm choosing a random signing
is simply 0, and the expected L term conditioned on the algorithm choosing the greedy
signing is simply the term E[G]. Hence, we can conclude that:
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Ev[−L | u is sampled first]
= Ev[−L | v ∈ Danger(u), u is sampled first] · Pr[v ∈ Danger(u) | u is sampled first]

+ Ev[−L | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first]
≤ Ev[−βG | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first].

Adding the inequalities and applying Claim 16, we get Ev[−L+Q |u is sampled first] ≤
O(1).

Case (ii): |du| > 10
λ . We first prove two easy claims.

B Claim 17. Suppose v ∈ Danger(u). Then cosh(λdv) ≤ 8 cosh(λdu).

Proof. Assume w.l.o.g. that du, dv ≥ 0. Also, assume that dv ≥ du, otherwise there is
nothing to prove. Now dv ≤ du + 2

λ . So
cosh(λdv)
cosh(λdu) ≤ supx

cosh(x+2)
cosh(x) . The supremum on

the right happens when x→∞, and then the ratio approaches e2 < 8. C

B Claim 18. For any discrepancy vector dt such that Φ(dt) ≤ O((nT )10), and for any u
such that |du| > 10

λ , we have Pr[v /∈ Danger(u)] ≥ 8
√
λ, as long as λ = O(log−4 nT ).

Proof. We consider the case that du > 10
λ ; the case were du < − 10

λ is similar.
Assume for a contradiction that Pr[v ∈ Danger(u)] ≥ 1−8

√
λ, and so Pr[v /∈ Danger(u)] ≤

8
√
λ. We first show that the cardinality of the set |w /∈ Danger(u)| is small. Indeed,

this follows immediately from our assumption on the minimum weight of any vertex in
the statement of Lemma 14 being at least γ/n times the total weight. So we have that
for every w, the probability of sampling w in the (1 + β)-process is at least πw ≥ γ/n,
implying that the total number of vertices not in Danger(u) must be at most 8

√
λ·n
γ . This

also means that the total number of vertices in Danger(u) ≥ n
2 since γ ≥ λ1/4 ≥ 16

√
λ

for sufficiently small λ.
Since du > 10

λ , we get that any vertex v ∈ Danger(u) satisfies dv ≥ du− 2
λ ≥

8
λ . Moreover,

since
∑
v dv = 0, it must be that the negative discrepancies must in total compensate

for the total sum of discrepancies of the vertices in Danger(u). Hence, we have that∑
w:dw<0 |dw| ≥

∑
v∈Danger(u) dv ≥ |{v : v ∈ Danger(u)}| · 8

λ ≥ 0.5n · 8
λ .

From the last inequality, and since |{w : dw < 0}| ≤ |{w : w 6∈ Danger(u)}| ≤ 8
√
λn
γ ,

we get that there exists a vertex w̃ s.t d
w̃
< 0 and |d

w̃
| ≥ γ

8
√
λn
· 4n
λ = γ

2λ3/2 . But this

implies Φ(dt) ≥ cosh(λd
w̃

) ≥ cosh
(

γ

2
√
λ

)
> (nT )10, using that λ = O(log−4 nT ) and

that γ ≥ λ1/4. So we get a contradiction on the assumption that Φ(dt) ≤ (nT )10. C

Returning to the proof for the case of |du| ≥ 10
λ , we get that

Ev[Q | u is sampled first]
= Ev[Q | v ∈ Danger(u) , u is sampled first] · Pr[v ∈ Danger(u) | u is sampled first]

+ Ev[Q | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first]

≤ 8λ2 cosh(λdu)
+ E[Q | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first],

where the first term in inequality follows from Claim 17.
Next we analyze the L term similarly:
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Ev[−L | u is sampled first]
= Ev[−L | v ∈ Danger(u), u is sampled first] · Pr[v ∈ Danger(u)u is sampled first]

+ Ev[−L | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u)u is sampled first]
≤ Ev[−βG | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first],

where the last inequality follows using the same arguments as in case (i). Adding these
inequalities and applying Claim 16, we get that

Ev[−L+Q | u is sampled first] ≤ O(1) + 8λ2 cosh(λdu)

− 1√
λ
· Ev[Q | u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first].

To complete the proof of Lemma 14, we note that Q ≥ λ2 cosh(λdu), and use Claim 18
to infer that Pr[v /∈ Danger(u)] ≥ 8

√
λ. This implies

Ev[−L+Q | u is sampled first] ≤ O(1) + 8λ2 cosh(λdu)− 8λ2 cosh(λdu) ≤ O(1).J

We now can use this one-step expected potential change for the (1 + β)-process to get
the following result for the original expander process:

Proof of Theorem 6. Combining Lemma 14 and Lemma 11, we get that in the expander
process, if we condition on the random choices made until time t, if Φ(dt) ≤ (nT )10, then
E[Φ(dt+1) − Φ(dt)] ≤ C for some constant C. The potential starts off at n, so if it ever
exceeds C T (nT )5 in T steps, there must be a time t such that Φ(dt) ≤ C t (nT )5 and
the increase is at least C(nT )5. But the expected increase at this step is at most C, so
by Markov’s inequality the probability of increasing by C(nT )5 is at most 1/(nT )5. Now
a union bound over all times t gives that the potential exceeds C T (nT )5 ≤ (nT )10 with
probability at most T/(nT )5 = 1/ poly(nT ). But then cosh(λdtv) ≤ (nT )10, and therefore
dtv ≤ O(λ log(nT )10) = O(log3 nT ) for all vertices v and time t. J

In summary, if the underlying graph is γ-weakly-regular for γ ≥ Ω(log−1 nT ), and has
expansion α ≥ Ω(log−2 nT ), the greedy process maintains a poly-logarithmic discrepancy.

2.5 Putting It Together
We briefly describe the expander decomposition procedure and summarize the final algorithm.

I Theorem 19 (Decomposition into Weakly-Regular Expanders). Any graph G = (V,E) can
be decomposed into an edge-disjoint union of smaller graphs G1 ] G2 . . . ] Gk such that
each vertex appears in at most O(log2 n) many smaller graphs, and (b) each of the smaller
subgraphs Gi is a α

4 -weakly regular α-expander, where α = O(1/ logn).

The proof is in the full version. So, given a graph G = (V,E), we use Theorem 19 to
partition the edges into a union of α4 -weakly regular α-expanders, namely H1, . . . ,Hs, where
α = O(1/ logn). Further, each vertex in V appears in at most O(log2 n) of these expanders.
For each graph Hi, we run the greedy algorithm independently. More formally, when an edge
e arrives, it belongs to exactly one of the subgraphs Hi. We orient this edge with respect to
the greedy algorithm running on Hi. Theorem 6 shows that the discrepancy of each vertex in
Hi remains O(log5(nT )) for each time t ∈ [0 . . . T ] with high probability. Since each vertex
in G appears in at most O(log2 n) such expanders, it follows that the discrepancy of any
vertex in G remains O(log7 n+ log5 T ) with high probability. This proves Theorem 1.
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