
Constructing Large Matchings via Query Access
to a Maximal Matching Oracle
Lidiya Khalidah binti Khalil
Department of Computer Science, University of Bristol, UK
lb17727@bristol.ac.uk

Christian Konrad1

Department of Computer Science, University of Bristol, UK
http://people.cs.bris.ac.uk/~konrad/
christian.konrad@bristol.ac.uk

Abstract
Multi-pass streaming algorithm for Maximum Matching have been studied since more than 15 years
and various algorithmic results are known today, including 2-pass streaming algorithms that break
the 1/2-approximation barrier, and (1−ε)-approximation streaming algorithms that run in O(poly 1

ε
)

passes in bipartite graphs and in O((1
ε
) 1

ε) or O(poly(1
ε
) · logn) passes in general graphs, where

n is the number of vertices of the input graph. However, proving impossibility results for such
algorithms has so far been elusive, and, for example, even the existence of 2-pass small space
streaming algorithms with approximation factor 0.999 has not yet been ruled out.

The key building block of all multi-pass streaming algorithms for Maximum Matching is the
Greedy matching algorithm. Our aim is to understand the limitations of this approach: How many
passes are required if the algorithm solely relies on the invocation of the Greedy algorithm?

In this paper, we initiate the study of lower bounds for restricted families of multi-pass streaming
algorithms for Maximum Matching. We focus on the simple yet powerful class of algorithms that in
each pass run Greedy on a vertex-induced subgraph of the input graph. In bipartite graphs, we
show that 3 passes are necessary and sufficient to improve on the trivial approximation factor of 1/2:
We give a lower bound of 0.6 on the approximation ratio of such algorithms, which is optimal. We
further show that Ω(1

ε
) passes are required for computing a (1− ε)-approximation, even in bipartite

graphs. Last, the considered class of algorithms is not well-suited to general graphs: We show that
Ω(n) passes are required in order to improve on the trivial approximation factor of 1/2.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Maximum matching approximation, Query model, Streaming algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.26

1 Introduction

The Greedy matching algorithm is the key building block of most published streaming
algorithms for approximate Maximum Matching [16, 26, 13, 25, 2, 14, 21, 24]. Given a graph
G = (V,E), Greedy scans the set of edges E in arbitrary order and inserts the current edge
e ∈ E into an initially empty matching M if possible, i.e., if both endpoints of e are not yet
matched by an edge in M . Greedy produces a maximal matching, which is known to be at
least half as large as a matching of largest size.

The Greedy matching algorithm is well-suited for implementation in the streaming model
of computation. A streaming algorithm processing a graph G = (V,E) with |V | = n receives
a potentially adversarially ordered sequence of the edges of the input graph, and the objective

1 Corresponding author

© Lidiya Khalidah binti Khalil and Christian Konrad;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lb17727@bristol.ac.uk
https://orcid.org/0000-0003-1802-4011
http://people.cs.bris.ac.uk/~konrad/
mailto:christian.konrad@bristol.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

is to solve a graph problem using as little space as possible. Many graph problems require
space Ω(n logn) to be solved in the streaming model [28], and streaming algorithms that
use space O(npoly logn) are referred to as semi-streaming algorithms. Multi-pass streaming
algorithms process the input stream multiple times. Observe that Greedy constitutes a
one-pass semi-streaming algorithm for Maximum Matching with approximation factor 1

2 .
The Maximum Matching problem is the most studied graph problem in the streaming model,

and despite intense research efforts, the Greedy algorithm is the best one-pass streaming
algorithm known today, even if space O(n2−δ) is allowed, for any δ > 0. Performing multiple
passes over the input allows improving the approximation factor. The main questions
addressed in the literature are: (1) What can be achieved in p passes, for small p (e.g.
p ∈ {2, 3}), and (2) How many passes are required in order to obtain a (1− ε)-approximation,
for any ε > 0. See Table 1 for an overview of the currently best results.

Table 1 State of the art semi-streaming algorithms for Maximum Matching.

passes Approximation det/rand Reference See also
Bipartite Graphs
1 1

2 deterministic Greedy, folklore
2 2−

√
2 ≈ 0.5857 randomized Konrad [24] [25, 14, 21]

3 0.6067 randomized Konrad [24] [14, 21]
2
3ε

2
3 − ε deterministic Kale and Tirodkar [21] [16]

O(1
ε2 log log ε) 1− ε deterministic Ahn and Guha [2] [13]

General Graphs
1 1

2 deterministic Greedy, folklore
2 0.53125 deterministic Kale and Tirodkar [21] [25]
1
ε

O(1
ε

) 1− ε deterministic Tirodkar [29] [26]
O(1

ε4 logn) 1− ε deterministic Ahn and Guha [2]

Only few lower bounds are known: We know that one-pass semi-streaming algorithms
cannot have an approximation factor larger than 1− 1

e [22] (see also [18]). The only multi-
pass lower bound known addresses the exact version of Maximum Matching, showing that
computing a maximum matching in p passes requires space n1+Ω(1/p)/pO(1) [20]. No lower
bound is known for multiple passes and approximations, and, for example, the existence of a
2-pass 0.999-approximation semi-streaming algorithm has not yet been ruled out.

The Greedy algorithm is the key building block of all algorithms referenced in Table 1
(including those mentioned in the “See also” column). In many cases, the presented algorithms
collect edges by solely executing Greedy on specific subgraphs in each pass and output
a large matching computed from the edges produced by Greedy. In this paper, we are
interested in the limitations of this approach: How large a matching can be computed if
Greedy is executed at most p times?

Known streaming algorithms apply Greedy in different ways. For example, the 2-pass
and 3-pass algorithms by Konrad [24] run Greedy on randomly sampled subgraphs that
depend on a previously computed maximal matching. The multi-pass algorithms by Ahn and
Guha [2] maintain vertex weights ∈ [0, 1] over the course of the algorithm and run Greedy
on a threshold subgraph, i.e., on the set of edges uv so that the sum of the current weights
associated with u and v is at most 1. The algorithm by Eggert et al. [13] runs Greedy on
an edge-induced subgraph in order to find augmenting paths.

In this paper, we initiate the study of lower bounds for restricted families of multi-pass
streaming algorithms for Maximum Matching that are based on Greedy. We start this
line of research by addressing the probably simplest and most natural approach, which is

L. K. b. Khalil and C. Konrad 26:3

nevertheless surprisingly powerful: the class of deterministic algorithms that run Greedy
on a vertex-induced subgraph in each pass. Two known streaming algorithms fit our model:

1. A 3-pass 0.6-approximation streaming algorithm for bipartite graphs that is implicit in [16],
explicitly mentioned in [25], and analyzed in [21]. Given a bipartite graph G = (A,B,E),
the algorithm first computes a maximal matching in G, i.e., M ← Greedy(G). Then, the
algorithm attempts to find length-3 augmenting paths by invoking Greedy twice more:
ML ← Greedy(G[A(M) ∪B(M)]), where A(M) are the matched A-vertices and B(M)
are the unmatched B-vertices. Last, MR ← Greedy(A(M), B′), where B′ ⊆ B(M) are
those matched B vertices that are endpoints in length-2 paths in ML ∪M . Kale and
Tirodkar showed that M ∪ML ∪MR contains a 0.6-approximate matching [21]. We will
denote this algorithm by 3RoundMatch.

2. The (1 − ε)-approximation O(1
ε5)-passes streaming algorithm for bipartite graphs by

Eggert et al. [13] can be adapted to fit our model using O(1
ε6) invocations of Greedy.

We abstract this approach as a game between a player and an oracle: Let G be a graph
with vertex set V . The player initially knows V . In each round i the player sends a query
query(Vi) to the oracle, where Vi ⊆ V . The oracle returns a maximal matching in the
vertex-induced subgraph G[Vi]. For this model to yield lower bounds for the streaming model,
we impose that the oracle is streaming-consistent, i.e., there exists a stream of edges π so
that the oracle’s answers to the queries (query(Vi))i equal runs of Greedy on the respective
substream of edges G[Vi] of π (see preliminaries for a more detailed definition). We denote
this model as the vertex-query model (as opposed to an edge-query model, where the player
may ask for maximal matchings in a subgraph spanned by a subset of edges).

Player Oracle

query(Vr)

response: maximal matching in G[Vr]

Figure 1 Illustration of the game between the player and oracle in the vertex-query model.

Our Results. In bipartite graphs, we show that at least 3 rounds are required to improve
on the approximation factor of 1/2, and we give a lower bound of 0.6 on the approximation
factor of 3 round algorithms. This is optimal, as demonstrated by the previously mentioned
algorithm 3RoundMatch. We also show that Ω(1

ε) rounds are required for computing a
(1− ε)-approximation. This polynomial lower bound is in line with the poly 1

ε rounds upper
bound by Eggert et al. [13]. Last, we demonstrate that our query model is not well-suited to
general graphs: We show that improving on a factor of 1/2 requires Ω(n) rounds.

Further Related Work. Besides the adversarial one-pass and multi-pass streaming models,
Maximum Matching has also been studied in the random order [25, 24, 17, 4, 15, 8] and the
insertion-deletion settings [23, 9, 6, 12]. In the random order model, where edges arrive in
uniform random order, Konrad et al. [25] were the first to give a semi-streaming algorithms
with approximation ratio above 1/2. Very recently, Bernstein showed that an approximation
ratio of 2/3 can be achieved in random order streams [8]. In light of the lower bound

FSTTCS 2020

26:4 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

by Kapralov [22], this result separates the adversarial and the random order settings. In
insertion-deletion streams, edges that have previously been inserted may be deleted again.
Assadi et al. [6] showed that, up to sub-polynomial factors, space n2−3ε is necessary and
sufficient for computing a nε-approximation (see [12] for a slightly improved lower bound).

Many works allow only query access to the input graph. For example, cross-additive
queries, bipartite independent set queries, additive queries, cut-queries, and edge-detection
queries have been considered [19, 3, 11, 10, 7, 27, 1], however, mainly for graph reconstruction
problems. Very recently, linear queries and or-queries have been considered for graph
connectivity [5].

Outline. In Section 2, we give notation and definitions. We also define the vertex-query
model and provide a construction mechanism that ensures that our oracles are streaming-
consistent. Then, in Section 3 we prove that 3 rounds are required to improve on 1/2 and
give a lower bound of 0.6 on the approximation ratio achievable in three rounds. In Section 4,
we show that Ω(1

ε) rounds are needed for computing a (1−ε)-approximation, and in Section 5
we show that improving on 1

2 in general graphs requires Ω(n) rounds. Finally, we conclude
in Section 6 and give open questions.

2 Preliminaries

Matchings. Let G = (V,E) be a graph with |V | = n. A matching M ⊆ E is a subset of
vertex-disjoint edges. Matching M is maximal if for every e ∈ E \M : M ∪ {e} is not a
matching. A maximum matching is one of largest cardinality. If the size of a matching M is
n/2, i.e., it matches all vertices of the graph, then M is a perfect matching.

Notation. We write V (M) to denote the set of vertices incident to the edges of a matching
M . For a subset of vertices V ′ ⊆ V , we denote by G[V ′] the vertex-induced subgraph of G
by vertices V ′, i.e., G[V ′] = (V ′, (V ′ × V ′) ∩ E). For a set of edges E′ ⊆ E, we denote by
OPT (E′) the size of a maximum matching in the subgraph of G spanned by the edges E′.
For an integer n, we define [n] := {1, 2, . . . , n}.

The Vertex-query Model. In the vertex-query model, a player and an oracle play a rounds-
based matching game on a vertex set V of size n that is initially known to both parties. Over
the course of the game, the oracle makes up a graph G = (V,E). The objective of the player
is to learn a large matching in G. The way the player learns edges is as follows:

In each round 1 ≤ i ≤ r, where r is the total number of rounds played, the player submits
a query query(Vi) to the oracle, for some Vi ⊆ V . The oracle then determines a set of edges
Mi, which is guaranteed to be a maximal matching in the vertex-induced subgraph G[Vi].
Observe that in doing so, the oracle not only commits to the fact that Mi ⊆ E, but also
that the vertices Vi \ V (Mi) form an independent set (which follows from the fact that Mi is
maximal). Furthermore, we impose that the answers to all queries are consistent with graph
G and that G has a perfect matching.

After the r query rounds, the player reports a largest matching MP that can be formed
using the edges ∪i≤rMi. The approximation ratio of the solution obtained is |MP |/(1

2n).
We are interested in oracles that are consistent with the streaming model. We say that

an oracle is streaming-consistent, if there exists an ordering π of the edges E so that, for
every round i, Mi is produced by running Greedy on the substream of π consisting of the
edges of G[Vi]. We will ensure that all our oracles are streaming-consistent.

L. K. b. Khalil and C. Konrad 26:5

Construction of Streaming-consistent Oracles. We will construct streaming-consistent
oracles as follows. Upon query V1, the oracle answers withM1 and placesM1 in the beginning
of the stream π. Next, given query Vi, for some i ≥ 2, the oracle first runs Greedy on
the substream of π consisting of the edges G[Vi] which produces an intermediate matching
M ′, thereby attempting to match Vi using edges of previous matchings ∪j<iMj . The oracle
then extends M ′ to a matching Mi. Edges Mi \M ′ are then introduced at the end of the
stream π. This construction procedure guarantees that our oracles are streaming-consistent.
Furthermore, it allows us to simplify our arguments, since it is enough to restrict our
considerations to queries with the following property:

I Observation 1. Suppose that the oracle is constructed as above. Then, given the sequence
of queries V1, . . . , Vr and matchings M1, . . . ,Mr, there exists a sequence of queries Ṽ1, . . . , Ṽr
that produces matchings M̃1, . . . , M̃r such that:

The player learns the same set of edges, i.e., for every i ≤ r :
⋃
j≤iMj =

⋃
j≤i M̃j, and

No query Ṽi contains a pair of vertices u, v such that uv ∈ ∪j<iM̃j.

We can therefore assume that the player never includes a pair of vertices u, v into a query
so that the edge uv is contained in a previous answer from the oracle.

3 Lower Bound for Few Round Algorithms in Bipartite Graphs

In this section, we show that the player cannot produce an approximation ratio better than 1
2

in two rounds, even on bipartite graphs. We also show that three rounds do not allow for an
approximation ratio better than 0.6, which is achieved by the algorithm 3RoundMatching.

In order to keep track of the information learned by the player, we will make use of
structure graphs, which we discuss first.

3.1 Structure Graphs
Observe that when the oracle answers the query query(Vi) and returns a maximal matching
Mi, the player not only learns that the edges Mi are contained in the input graph G, but
also learns that the vertices Vi \ V (Mi) form an independent set in G (due to the maximality
of Mi). We maintain the structure learned by the player and the structure committed to by
the oracle (which do not have to be identical) using structure graphs:

I Definition 2 (Structure graph). A 4-tuple (A,B,E, F) is a bipartite structure graph if:
A,B are disjoint sets of vertices,
E,F are disjoint sets of edges such that (A,B,E) and (A,B, F) are bipartite graphs,
The structure graph admits a perfect matching, i.e., there exists a set of edges M∗ such
that M∗ ∩ F = ∅ and M∗ is a perfect matching in the bipartite graph (A,B,E ∪M∗) .

From the perspective of the player, the set E corresponds to the edges returned by the
oracle so far, i.e., E = ∪j≤iMj , and the set F corresponds to guaranteed non-edges, i.e.,
F = ∪j≤iC(Vi \ V (Mi)), where C(V ′) denotes a biclique (respecting the bipartition A,B)
among the vertices V ′.

In the following, we will denote the structure graph after round i learned by the player
by H̃i = (A,B, Ẽi, F̃i), i.e., Ẽi = ∪j≤iMj and F̃i = ∪j≤iC(Vi \ V (Mi)). The oracle will
also maintain a sequence of structure graphs (Hi)i with Hi = (A,B,Ei, Fi) such that Hi

dominates H̃i, for every 1 ≤ i ≤ r. We say that a structure graph H = (A,B,E, F) dominates
a structure graph H̃ = (A,B, Ẽ, F̃), if Ẽ ⊆ E and F̃ ⊆ F . This notion allows the oracle
to commit to edges and non-edges that the player has not yet learned. This domination
property allows us to simplify our arguments.

FSTTCS 2020

26:6 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

Bout Ain Bin Aout

MM∗L M∗R

Figure 2 Illustration of the structure graph
H1 on a graph on 16 vertices. The matching M
is half the size of the matchingM∗ = M∗

L∪M∗
R.

Bout Ain Bin Aout

MM∗L M∗R

Figure 3 Matching M2 (in red) returned by
the oracle. The red vertices constitute A2 ∪B2,
i.e., the vertices of the second query. The case
|Ain2 | ≥ |Bin2 | is illustrated here. We see that no
edges from Bin × Aout are returned, and that
M2 does not allow us to increase the size of M .

In our lower bound arguments, we make use of the following two assumptions:

I Assumption 1. After round i, the player knows the structure graph Hi.

This is a valid assumption since Hi dominates H̃i and thus contains at least as much
information as H̃i. This assumption therefore only strengthens the player. Furthermore, we
will also assume a slightly strengthened property of the property discussed in Observation 1:

I Assumption 2. For every 1 ≤ i ≤ r, we assume that query Vi does not contain a pair of
vertices u, v ∈ Vi such that uv ∈ Ei−1.

This is a valid assumption, since if such a pair u, v of vertices existed in Vi, the oracle
could simply match u to v in Mi and the algorithm would not learn any new information.

Last, observe that the approximation ratio of the player’s strategy is completely determined
by Hr, the oracle’s structure graph after the last round. Since Hr dominates H̃r, the player’s
largest matching is of size at most OPT (Er). Since by definition of a structure graph, Hr

admits a perfect matching, the approximation ratio achieved is 2 ·OPT (Er)/n.

3.2 Lower Bound for Two Rounds
Assume that n is a multiple of 4. The player and the oracle play the matching game on a
bipartite vertex set V = A ∪̇ B with |A| = |B| = n/2. Consider the structure graph:

H1 = (Ain ∪Aout, Bin ∪Bout,M,Aout ×Bout) ,

where |Ain| = |Aout| = |Bin| = |Bout| = n/4, and M is a perfect matching between Ain and
Bin. Observe that there exists anM∗ outside Aout×Bout such thatM∗ is a perfect matching
in (A,B,M ∪M∗), namely, M∗ consists of the two perfect matchings M∗L connecting Bout
to Ain and M∗R connecting Bin to Aout. See Figure 2 for an illustration.

We have:

I Lemma 3. There is a structure graph isomorphic to H1 that dominates H̃1.

Proof. Denote the first query by A1, B1 (A1 ⊆ A, and B1 ⊆ B). We will argue that we can
relabel the sets Ain, Aout, Bin, Bout so that H1 dominates H̃1:

L. K. b. Khalil and C. Konrad 26:7

If A1 ≤ n/4 then let Ain be an arbitrary subset of the A vertices of size n/4 that contains
A1, and let Aout be the remaining A-vertices. If A1 > n/4 then let Aout be an arbitrary
subset of A vertices of size n/4 that contains A \A1, and let Ain be the remaining A-vertices.
Proceed similarly for B1. The oracle returns the subset M1 ⊆ M where each edge has
one endpoint in A1 and one endpoint in B1, which is clearly maximal given that edges in
Aout ×Bout are forbidden. J

Since OPT (M) = |M | = 1
4n, Lemma 3 implies the unsurprising fact that no one round

algorithm has an approximation ratio better than 2· 14n
n = 1

2 . We argue now that an additional
round does not help with increasing the approximation factor.

I Theorem 4. The best approximation ratio achievable in two rounds is 1/2.

Proof. Let A2, B2 be the vertices of the second query. By Lemma 3, H1 dominates H̃1, and
by Assumption 1 we can assume that the player already knows H1. Let Ain2 = A2 ∩ Ain,
Aout2 = A2 ∩Aout and define Bin2 and Bout2 similarly.

Suppose first that |Ain2 | ≥ |Bin2 |. Then the oracle returns a matching M2 that matches
an arbitrary subset of Ain2 of size |Bin2 | to Bin2 , and matches max{|Bout2 |, |Ain2 | − |Bin2 |} of
the remaining Ain2 vertices arbitrarily to vertices in Bout2 . In doing so, either all Ain2 vertices
or all B2 vertices are matched. Since H1 indicates that there are no edges connecting the
“out”-vertices, M2 is therefore maximal.

Observe further that M ∪M2 does not match any vertex in Aout, and, hence, only half
of the A-vertices are matched in M ∪M2. The player thus cannot report any matching of
size larger than |M |, which constitutes a 1/2-approximation.

Last, the case |Ain2 | < |Bin2 | is identical with roles of A and B vertices reversed. J

3.3 Lower Bound for Three Rounds
In this section, we work with a vertex set V = A ∪̇ B with |A| = |B| = 5 (and thus
|V | = n = 10). By choosing disjoint copies of this vertex set, our result can be extended to
graphs with an arbitrarily large number of vertices.

First Query. Similar to the two round case, we define the structure graph H1 = (Ain ∪
Aout, Bin∪Bout,M,Aout×Bout), however, this time |Ain| = |Bin| = 3 and |Aout| = |Bout| = 2.
The matching M matches Ain to Bin, see Figure 4a.

It shall be convenient to assign labels to the vertices in our structure graph. In our
arguments below, in order to avoid symmetric cases, we relabel the vertices of our structure
graph as we see fit, however, we always ensure that the structure graph after relabeling is
isomorphic to the structure graph before the relabeling.

First, similar to Lemma 3, it is not hard to see that a structure graph isomorphic to H1
dominates H̃1 (proof omitted).

I Lemma 5. There is a structure graph isomorphic to H1 that dominates H̃1.

Second Query. We assume that the player knows H1 after the first query (Assumption 1).
Next, we define structure graph H2 = (Ain ∪ Aout, Bin ∪ Bout,M ∪ E2, Aout × Bout ∪ F2),
where E2 = {a1b5, a2b3}, and F2 = {a2b4, a3b4}. It is easy to see that H2 is indeed a structure
graph (see Figures 4b and 4c).

We shall prove that there is a structure graph isomorphic to H2 that dominates H̃2.
Lemma 6 considers the case when the second query V2 contains exactly three “in”-vertices, i.e.,
vertices from Ain ∪Bin, and Lemma 7 considers the case when there are fewer “in”-vertices.

FSTTCS 2020

26:8 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

M

(a) H1: The blue edges constitute
a perfect matching that does not
use any edges connecting Aout to
Bout.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(b) H2: black edges are inM , red
edges in E2, gray edges in F2.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(c) H2: The blue dotted edges
and the edge a2b3 constitute a
maximum matching.

Figure 4 Illustrations of structure graphs H1 and H2.

By Assumption 2, we do not need to consider the cases when more than three “in”-vertices
are contained in V2 since then V2 necessarily contains a pair of vertices u, v such that uv ∈M .

I Lemma 6. If the player queries exactly 3 “in”-vertices (i.e., vertices from Ain ∪Bin) in
their second query then there exists a structure graph isomorphic to H2 that dominates H̃2.

Proof. The player can either query more vertices in Ain or in Bin, and these cases are
symmetrical. Hence we only consider the case when the player queries more vertices in Ain.
Due to Assumption 2, for queries that contain vertices in both Ain and Bin, we assume these
vertices do not form any edges seen in M .

Since we will not match any vertices in Aout, we do not need to distinguish between cases
where the player queries different numbers of vertices in Aout. We distinguish between the
following cases:
1. Player queries all vertices in Ain and the query includes b5: the oracle returnsM2 = {a1b5}.
2. Player queries all vertices in Ain and only b4 in Bout: relabel b4 as b5 and proceed as in

case (1).
3. Player queries all vertices in Ain and no vertices in Bout: the oracle returns M2 = ∅.
4. Player queries two vertices in Ain, one vertex in Bin and the query includes b5: relabel

the “in” vertices so that after relabeling the vertices a1, a2 and b3 are included in the
query. The oracle returns M2 = E2.

5. Player queries two vertices in Ain, one vertex in Bin and only b4 in Bout: relabel b4 as b5
and proceed as in case (4).

6. Player queries two vertices in Ain, one vertex in Bin and no vertices in Bout: relabel “in”
vertices so that after relabeling the vertices a2 and b3 are included in the query. The
oracle returns M2 = {a2b3}.

In all cases considered, observe that M2 ⊆ E2. Further, edges F2 ensure that M2 is
maximal. J

We argue now that querying three “in”-vertices in the second round is best possible in
the sense that querying fewer (or more) “in”-vertices does not yield more information.

I Lemma 7. If the player queries fewer than 3 “in”-vertices (i.e., vertices from Ain ∪Bin)
then there exists a structure graph isomorphic to H2 that dominates H̃2.

Proof. Clearly if the player does not query any “in”-vertices, no matching will be found
i.e. M2 = ∅. If the player queries exactly one vertex in Ain, we can relabel this vertex as
a1 and if the query contains a vertex in Bout, relabel this one to be b5. Then the matching

L. K. b. Khalil and C. Konrad 26:9

found will be a subset of E2. If the player queries exactly two “in” vertices there are two
cases to consider. If they are both in Ain, we ensure one of these vertices is a1 by relabeling,
and, if at least one vertex in Bout is queried, potentially relabel this vertex to be b5 and
return the edge a1b5. If the player queried one vertex in Ain and one in Bin, we relabel these
vertices as a2, b3 and return the edge between them, a2b3. Hence the edges learned by the
player are always a subset of E2. In all cases considered, edges F2 ensure that matching M2
is maximal. J

Third Query. We assume that the player knows structure graph H2. Similar to the second
query, we distinguish between the cases where the player queries exactly three “in”-vertices
and fewer “in”-vertices. Again, by Assumption 2, we do not need to consider the case where
the player queries more than three “in”-vertices. In the following proofs, we will define
different structure graphs H3 that depend on the individual query.

I Lemma 8. If the player queries exactly 3 “in”-vertices in the third round, then the player
cannot output a matching of size larger than 3.

Proof. We provide the oracle’s answers when the player queries exactly three “in”-vertices.
Among those cases, there are three cases to consider where the player queries more vertices
in Bin than in Ain:
1. Case 1: Player queries b1, b2, b3. The oracle defines H3 = (A,B,E3, F3) such that

E3 = M ∪E2∪{a4b2, a5b3} and F3 = Aout×Bout∪F2. If the player queried both vertices
in Aout, the oracle returns M3 = {a4b2, a5b3}. Otherwise M3 would consist of one or zero
edges depending on the player’s query. In particular, we have M3 ⊂ E3.
In cases 2 and 3, we do not define any edges involving vertices from Aout or Bout, so the
oracle proceeds regardless of which vertices in Aout, Bout the player queried.

2. Case 2: Player queries a1, b2, b3. The oracle defines H3 = (A,B,E3, F3) such that
E3 = M ∪ E2 ∪ {a1b2} and F3 = Aout × Bout ∪ F2 ∪ {a4b3, a5b3}. The oracle returns
M3 = {a1b2}.

3. Case 3: Player queries b1, b2, a3. The oracle defines H3 = (A,B,E3, F3) such that
E3 = M ∪ E2 ∪ {a3b2} and F3 = Aout × Bout ∪ F2 ∪ {a4b1, a5b1}. The oracle returns
M3 = {a3b2}.

Observe that the case b1, a2, b3 ∈ V3 is not relevant, since a2b3 ∈M2 and Assumption 2.
Figure 5 shows that in these three cases, H3 is a structure graph and the largest matching
that the player thus able to return is of size 3.

If the player queries more vertices in Ain than in Bin, we will argue that the player will
not learn any edges connecting to vertices in Aout, and since the player then only holds edges
incident to 3 of the 5 A-vertices, the player cannot report a matching larger than of size 3.

If the player queries all three vertices in Ain then he clearly cannot learn any edges
connecting to Aout. If the player queries a vertex in Bin, note that we can match it with a
vertex queried in Ain, and there will be no vertices left to match with vertices in Aout (see
Figure 6). Since no more non-edges are defined, it is easy to see that edges can be added to
create a perfect matching. J

I Lemma 9. If the player queries fewer than three “in”-vertices in the third round, then the
player cannot output a matching of size larger than 3.

FSTTCS 2020

26:10 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(a) Case 1: Query V3 includes {b1, b2, b3}.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(b) Case 1: blue dashed edges together with a4b2, a2b3
constitute a perfect matching.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(c) Case 2: Query V3 includes {a1, b2, b3}.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(d) Case 2: blue dashed edges together with a2b3
constitute a perfect matching.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(e) Case 3: Query V3 includes {b1, b2, a3}.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(f) Case 3: blue dashed edges form a perfect match-
ing.

Figure 5 Round 3 cases. Green vertices are queried by the player in round 3. Red edges are in
E2 \E1, orange is E3 \E2, grey is F3. The blue dashed edges can be added to the graph to create a
perfect matching.

Proof. We distinguish the following cases:
1. If the player queries no “in” vertices, this is obvious, and we would have M3 = ∅.
2. If the player queries exactly one “in” vertex, the only possible way to obtain a larger

matching than one of size 3 is to find an edge incident to b1, i.e., by querying b1, but we
can define F3 = Aout ×Bout ∪ F2 ∪ {a4b1, a5b1} and then M3 = ∅.

3. If the player queries one vertex in Ain and one in Bin, we can connect them by an edge,
say e, and then M3 = {e} does not help increasing the size of a matching.

4. If the player queries two vertices in Ain, the player will not be able to learn any edges to
vertices in Aout, and so Aout remains unmatched, which implies that the player cannot
return a matching of size larger than 3.

5. If the player queries two vertices in Bin, the oracle defines H3 as in Case 1 of Lemma 8,
and the matching returned is a subset of E3. J

Hence we have shown that no matter what queries are made in the second and third
rounds, the player cannot increase the size of the matching learned within the 10-vertex
subgraph. This then holds for a graph with |A| = |B| = n where 5|n and the theorem follows.

L. K. b. Khalil and C. Konrad 26:11

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

Figure 6 An example of how the oracle behaves when the player queries more vertices in Ain
than in Bin during the third round. Green vertices are queried by the player. Red edges are in
E2 \E1, orange is E3 \E2, gray is F3. The player learns no edges incident to Aout and can therefore
only report a matching of size 3.

I Theorem 10. The best approximation factor achievable in three rounds is 3/5.

4 (1 − ε)-approximation in Bipartite Graphs Requires Ω(1
ε
) Rounds

Let Gc = (A,B,E) with A = B = [c] be the semi-complete graph on 2c vertices, i.e., vertices
a ∈ A and b ∈ B are connected if and only if b ≥ a. Observe that Gc has a unique perfect
matching M∗ = {(i, i) ∈ E | i ∈ [c]}.

Let G be the disjoint union of n/(2c) copies of Gc (assuming for simplicity that n is a
multiple of 2c). We will refer to a copy of Gc in G as a gadget. We now show that computing
a (1− ε)-approximation requires Ω(1

ε) queries on G.

I Theorem 11. Any query algorithm with approximation factor 1− ε requires at least 1
ε − 1

queries, even in bipartite graphs.

Proof. Let c = 1
ε − 1. We consider the graph G. First, suppose that the algorithm does not

compute a perfect matching in any of the n/(2c) gadgets. Then, the computed matching is
of size at most c−1

c
n
2 and thus constitutes at best a c−1

c = 1− ε
1−ε < 1− ε approximation.

The algorithm therefore needs to compute a perfect matching in at least one gadget. Since
all gadgets are disjoint, we now argue that it requires at least c queries in order to compute a
perfect matching in one gadget. Consider thus the gadget Gc and denote by M∗ the perfect
matching in Gc. We claim that each query may produce at most one edge of the perfect
matching M∗ in Gc:

Indeed, let A′ = {a1, a2, . . . , ak} ⊆ A and B′ = {b1, b2, . . . , b`} ⊆ B be so that A′ ∪ B′
is any query submitted to the oracle. Further, suppose that a1 < a2 < · · · < ak and
b1 < b2 < · · · < b`. The oracle will return the following matching M :

M = {aib`+1−i | i ∈ [min{k, `}]} ∩ E .

We will now argue thatM is maximal and |M∩M∗| ≤ 1. To this end, let j be the largest index
such that ajb`+1−j ∈ E, which is equivalent to j being the largest index so that aj ≤ b`+1−j .
Observe that since the (ai)i and (bi)i are increasing, we have aj′b`+1−j′ ∈ E ⇔ j′ ≤ j, which
also implies that vertices aj′ are matched, for every j′ ≤ j. Consider now a vertex aq, for
some q > j. Since aj+1 > b`−j and aq ≥ aj+1, it follows that there is no edge between aq
and any of the unmatched B′-vertices {b1, b2, . . . , b`−j}. This implies that the matching M
is maximal. Next, suppose that M contains at least one edge from M∗ and let q be the
smallest index such that aq = b`+1−q, i.e., (aq, b`+1−q) ∈M∗. Then, for any q′ > q, we have

aq′ > aq = b`+1−q > b`+1−q′ ,

FSTTCS 2020

26:12 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

which implies that aq′ 6= b`+1−q′ . Hence, at most one edge from M∗ is returned per query.
Last, we argue that the oracle can be made streaming-consistent: Consider any ordering

of the edges so that edge ij arrives before edge ik, for every k < j. J

Using the oracle described in the previous proof on a single gadget Gn/2, we obtain the
following corollary:

I Corollary 12. Any query algorithm that produces a maximum matching requires at least
n/2 queries (on a graph on n vertices), even on bipartite graphs.

5 Improving on 1/2 in General Graphs Requires Ω(n) Queries

Let G be a bomb graph on n (n even) vertices U ∪ V with |U | = |V | = [n/2], where G[V]
is a clique, G[U] is an independent set, and u ∈ U and v ∈ V are connected if and only if
u = v (U and V are connected via a perfect matching). Denote by M∗ the perfect matching
between U and V and by C the edges of the clique G[V].

In the next lemma, we show that any large matching in G must contain a large number
of edges from M∗.

I Lemma 13. Let M be a matching in G. Then: |M | ≤ n
4 + 1

2 |M ∩M
∗| .

Proof. Observe that |M | = |M ∩M∗|+ |M ∩C|, and since there are n/2−|M ∩M∗| vertices
in V that are not matched to a vertex in U , we have |M ∩C| ≤ (n/2− |M ∩M∗|)/2. Hence:

|M | = |M ∩M∗|+ |M ∩ C| ≤ |M ∩M∗|+ (n/2− |M ∩M∗|)/2 = n

4 + 1
2 |M ∩M

∗| . J

I Theorem 14. Any r-round query algorithm on general graphs has approximation ratio at
most 1

2 + r
n (on an n-vertex input graph).

Proof. Consider an arbitrary query U ′ ∪ V ′ so that U ′ ⊆ U and V ′ ⊆ V . The oracle returns
the following matching: First, the oracle arbitrarily pairs up all vertices of V ′ except possibly
one in case |V ′| is odd. Let M denote this matching. If |V ′| is even then M is returned.
Suppose now that |V ′| is odd and let v ∈ V ′ be the vertex that is not matched in M . Then,
if v’s partner u ∈ U in M∗ is contained in U ′, then return M ∪ {uv}, otherwise return M .

It is easy to see that, by construction, the returned matching is maximal and contains
at most one edge from M∗. Hence, in r-rounds the algorithm can learn at most r edges
from M∗. By Lemma 13, the returned matching is therefore of size at most n

4 + 1
2r, which

constitutes a 1
2 + r

n -approximation.
The oracle can be made streaming-consistent: Consider any edge order where we first

have edges C in arbitrary order followed by M∗ in arbitrary order. J

6 Conclusion

In this paper, we introduced a new query model that allows us to prove lower bounds for
streaming algorithms for Maximum Matching that repeatedly run the Greedy matching
algorithm on a vertex-induced subgraph of the input graph. We showed that the three
rounds algorithm 3RoundMatch with approximation factor 0.6 is optimal for this class
of algorithms. We also showed that computing a (1− ε)-approximation in bipartite graphs
requires Ω(1

ε) rounds, and computing an approximation strictly better than 1
2 in general

graphs requires Ω(n) rounds. We conclude with open questions:

L. K. b. Khalil and C. Konrad 26:13

Can we prove that computing a maximum matching in the vertex-query model in bipartite
graphs requires Ω(n2) rounds, or is there an algorithm that requires only o(n2) rounds?
Can we prove a Ω(1

ε2) lower bound for computing a (1− ε)-approximation in bipartite
graphs?

References
1 Hasan Abasi and Nader H. Bshouty. On learning graphs with edge-detecting queries. In

Aurélien Garivier and Satyen Kale, editors, Algorithmic Learning Theory, ALT 2019, 22-24
March 2019, Chicago, Illinois, USA, volume 98 of Proceedings of Machine Learning Research,
pages 3–30. PMLR, 2019. URL: http://proceedings.mlr.press/v98/abasi19a.html.

2 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Information and Computation, 222:59–79,
2013. 38th International Colloquium on Automata, Languages and Programming (ICALP
2011). doi:10.1016/j.ic.2012.10.006.

3 Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning a
hidden matching. SIAM J. Comput., 33(2):487–501, 2004. doi:10.1137/S0097539702420139.

4 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff
Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs.
In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1616–1635. SIAM, 2019. doi:10.1137/1.9781611975482.98.

5 Sepehr Assadi, Deeparnab Chakrabarty, and Sanjeev Khanna. Graph connectivity and single
element recovery via linear and or queries, 2020. arXiv:2007.06098.

6 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364. SIAM,
2016. doi:10.1137/1.9781611974331.ch93.

7 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge Estimation with Independent Set Oracles. In Anna R. Karlin, editor,
9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 38:1–38:21, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2018.38.

8 Aaron Bernstein. Improved Bounds for Matching in Random-Order Streams. In Artur
Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020), volume 168 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1–12:13, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2020.12.

9 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344.
SIAM, 2016. doi:10.1137/1.9781611974331.ch92.

10 Sung-Soon Choi. Polynomial time optimal query algorithms for finding graphs with arbitrary
real weights. In Shai Shalev-Shwartz and Ingo Steinwart, editors, COLT 2013 - The 26th
Annual Conference on Learning Theory, June 12-14, 2013, Princeton University, NJ, USA,
volume 30 of JMLR Workshop and Conference Proceedings, pages 797–818. JMLR.org, 2013.
URL: http://proceedings.mlr.press/v30/Choi13.html.

11 Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs.
In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC

FSTTCS 2020

http://proceedings.mlr.press/v98/abasi19a.html
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1137/1.9781611975482.98
http://arxiv.org/abs/2007.06098
https://doi.org/10.1137/1.9781611974331.ch93
https://doi.org/10.4230/LIPIcs.ITCS.2018.38
https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://doi.org/10.1137/1.9781611974331.ch92
http://proceedings.mlr.press/v30/Choi13.html

26:14 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

’08, page 749–758, New York, NY, USA, 2008. Association for Computing Machinery. doi:
10.1145/1374376.1374484.

12 Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover in
dynamic graph streams. In 35th Computational Complexity Conference, CCC 2020, LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

13 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1–2):490–508, June 2012.

14 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large
matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi,
Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE
International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 608–614. IEEE Computer Society, 2016. doi:10.1109/ICDMW.
2016.0092.

15 Alireza Farhadi, MohammadTaghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Proceedings of the Thirty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, page 1773–1785, USA,
2020. Society for Industrial and Applied Mathematics.

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, December
2005. doi:10.1016/j.tcs.2005.09.013.

17 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC ’19, page 491–500, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3293611.3331603.

18 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 468–485. SIAM, 2012. doi:10.1137/1.9781611973099.41.

19 Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the
additive model. Algorithmica, 28(1):104–124, 2000. doi:10.1007/s004530010033.

20 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. Algorithmica, 76(3):654–683, 2016. doi:10.1007/s00453-016-0138-7.

21 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more
passes over graph streams. In Klaus Jansen, José D. P. Rolim, David Williamson, and
Santosh S. Vempala, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, volume 81 of LIPIcs, pages 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.15.

22 Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev Khanna,
editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697.
SIAM, 2013. doi:10.1137/1.9781611973105.121.

23 Christian Konrad. Maximum matching in turnstile streams. In Nikhil Bansal and Irene
Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages
840–852. Springer, 2015. doi:10.1007/978-3-662-48350-3_70.

24 Christian Konrad. A Simple Augmentation Method for Matchings with Applications to
Streaming Algorithms. In Igor Potapov, Paul Spirakis, and James Worrell, editors, 43rd
International Symposium on Mathematical Foundations of Computer Science (MFCS 2018),
volume 117 of Leibniz International Proceedings in Informatics (LIPIcs), pages 74:1–74:16,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.MFCS.2018.74.

https://doi.org/10.1145/1374376.1374484
https://doi.org/10.1145/1374376.1374484
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1007/s004530010033
https://doi.org/10.1007/s00453-016-0138-7
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1007/978-3-662-48350-3_70
https://doi.org/10.4230/LIPIcs.MFCS.2018.74
https://doi.org/10.4230/LIPIcs.MFCS.2018.74

L. K. b. Khalil and C. Konrad 26:15

25 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and
Rocco A. Servedio, editors, Approximation, Randomization, and Combinatorial Optimiz-
ation. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th
International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Pro-
ceedings, volume 7408 of Lecture Notes in Computer Science, pages 231–242. Springer, 2012.
doi:10.1007/978-3-642-32512-0_20.

26 Andrew McGregor. Finding graph matchings in data streams. In Proceedings of the 8th Interna-
tional Workshop on Approximation, Randomization and Combinatorial Optimization Problems,
and Proceedings of the 9th International Conference on Randamization and Computation:
Algorithms and Techniques, APPROX’05/RANDOM’05, page 170–181, Berlin, Heidelberg,
2005. Springer-Verlag. doi:10.1007/11538462_15.

27 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing Exact Minimum
Cuts Without Knowing the Graph. In Anna R. Karlin, editor, 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 39:1–39:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2018.39.

28 Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion
Streams. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015), volume 40 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 435–448, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.435.

29 Sumedh Tirodkar. Deterministic Algorithms for Maximum Matching on General Graphs in
the Semi-Streaming Model. In Sumit Ganguly and Paritosh Pandya, editors, 38th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018), volume 122 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 39:1–39:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.FSTTCS.2018.39.

FSTTCS 2020

https://doi.org/10.1007/978-3-642-32512-0_20
https://doi.org/10.1007/11538462_15
https://doi.org/10.4230/LIPIcs.ITCS.2018.39
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.39

	Introduction
	Preliminaries
	Lower Bound for Few Round Algorithms in Bipartite Graphs
	Structure Graphs
	Lower Bound for Two Rounds
	Lower Bound for Three Rounds

	(1-epsilon)-approximation in Bipartite Graphs Requires Omega(1/epsilon) Rounds
	Improving on 1/2 in General Graphs Requires Omega(n) Queries
	Conclusion

