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—— Abstract

In a graph G = (V, FE) with an edge coloring ¢ : E — C and two distinguished vertices s and ¢,
a colored (s,t)-cut is a set C C C such that deleting all edges with some color ¢ € C' from G
disconnects s and t. Motivated by applications in the design of robust networks, we introduce a
family of problems called colored cut games. In these games, an attacker and a defender choose
colors to delete and to protect, respectively, in an alternating fashion. It is the goal of the attacker
to achieve a colored (s, t)-cut and the goal of the defender to prevent this. First, we show that for an
unbounded number of alternations, colored cut games are PSPACE-complete. We then show that,
even on subcubic graphs, colored cut games with a constant number ¢ of alternations are complete
for classes in the polynomial hierarchy whose level depends on i. To complete the dichotomy, we
show that all colored cut games are polynomial-time solvable on graphs with degree at most two.
Finally, we show that all colored cut games admit a polynomial kernel for the parameter k + &,
where k denotes the total attacker budget and, for any constant r, x, is the number of vertex
deletions that are necessary to transform G into a graph where the longest path has length at
most r. In the case of r = 1, k1 is the vertex cover number vc of the input graph and we obtain a
kernel with O(VCZKQ) edges. Moreover, we introduce an algorithm solving the most basic colored cut
game, COLORED (s,t)-CuT, in 2°°7*n%M time.

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms; Theory of computation — Graph algorithms analysis; Theory of computation —
Problems, reductions and completeness

Keywords and phrases Labeled Cut, Labeled Path, Network Robustness, Kernelization, PSPACE,
Polynomial Hierarchy

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2020.30

Funding Nils Morawietz: Partially supported by the Deutsche Forschungsgemeinschaft (DFG),
project OPERAH, KO 3669/5-1.

Frank Sommer: Supported by the Deutsche Forschungsgemeinschaft (DFG), project MAGZ,
KO 3669/4-1.

Acknowledgements Some of the results of this work are also contained in the first author’s Master
thesis [21].

© Nils Morawietz, Niels Griittemeier, Christian Komusiewicz, and Frank Sommer;
37 licensed under Creative Commons License CC-BY
40th TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 30; pp. 30:1-30:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:morawietz@informatik.uni-marburg.de
https://orcid.org/0000-0002-6789-2918
mailto:niegru@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-4034-525X
mailto:fsommer@informatik.uni-marburg.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2

Colored Cut Games

s O

5

Figure 1 A colored cut game of two rounds on an edge-colored graph with seven colors: In round
one, the defender may protect one color and the attacker may attack two colors. In round two, the
defender can protect two colors, and the attacker can attack one color. For example, the defender
may protect color 1, then the attacker may attack colors 2 and 3, then in round two, the defender
may protect colors 4 and 5. The resulting graph has two (s, t)-paths containing the colors 1,4, 5,6
and 1,4,5,7, respectively. Since the attacker may now only attack either 6 or 7, the defender wins.

1 Introduction

Many classic computational graph problems are motivated by applications in network
robustness. A famous example is the problem of computing a minimum cut between two
given vertices s and ¢ in a simple undirected graph G = (V, E) [12, 17]. In some applications,
a more realistic model for the robustness of a given network can be obtained by considering
edge-colored graphs. Here, the input graph G comes with a coloring ¢ : E — C' of the edges,
where C' is the set of colors. For example, in multilayer networks a failure of some link in a
basic network layer may result in a failure of many seemingly unrelated links in a virtual
network layer, because all of the virtual links rely on paths in the basic network that use
the failed link [7]. This can be modeled by assigning edge colors. A failure of the resource
represented by a color ¢ then destroys all edges with color ¢. Thus, whether a failure scenario
disconnects two given vertices depends directly on the colors of C' that fail. More precisely,
given s € Vandt € V,aset C C C is a colored (s,t)-cut in G if every (s,t)-path contains at
least one edge that has a color of C'. For example, the color set {2,3,4} is a colored (s, t)-cut
in Figure 1.

The size of the smallest colored (s, t)-cut then becomes an important network robustness
parameter in scenarios modeled by colored graphs. Motivated by this fact, the problem of
computing such a colored cut, called COLORED (s,t)-CUT in the following, has been studied
intensively [4, 7, 8, 15, 22, 28, 31]. In contrast to the classic problem on uncolored graphs,
COLORED (s,t)-CuT is NP-complete [7]. We may view COLORED (s,t)-CuUT as formulated
from the perspective of an attacker whose aim is to disconnect s and ¢ using a minimum
number of edge colors. A related (s, t)-connectivity problem is LABELED PATH, where we ask
for a smallest color set C' C C such that there is an (s,t)-path whose edges are only colored
with colors from C' [7, 15, 29]. LABELED PATH is NP-complete in general [29]; when every
edge color occurs at most once it is simply SHORTEST PATH and thus solvable in polynomial
time. In our scenario, LABELED PATH can be seen as motivated from the perspective of a
defender who wants to secure a minimum number of edge colors in order to guarantee that s
and t are connected.

We study colored cut games in which defender and attacker interact. This is motivated
by typical studies in network security where an attacker (sometimes called red team) plays
against a defender (sometimes called blue team) [20]. Such scenarios can be modelled
using game-theoretic formalizations [14, 19, 25] as we do in this work. In the standard
nomenclature [25], we study dynamic games with perfect information where the aim is to
complete or to prevent a colored cut.



N. Morawietz, N. Griittemeier, C. Komusiewicz, and F. Sommer

More precisely, we assume that there are two players that alternatingly choose colors.
The colors chosen by the attacker are deleted from the graph while the colors chosen by
the defender become safe which means that the attacker may not choose these colors in
subsequent turns. In our model, for each turn the attacker and the defender have a fixed
budget limiting the number of colors that they may choose. We study different versions of
this game, Figure 1 shows an example. We distinguish, for example, whether the number of
alternations between defender and attacker is constant or unbounded, whether the defender
or the attacker starts, and whether we are interested in a winning strategy for the defender
or the attacker. We refer to the family of these games as colored cut games.

COLORED (s,t)-CuUT is the colored cut game where the attacker has one turn, the defender
has none, and we ask if the attacker has a winning strategy. LABELED PATH can be seen
as the colored cut game where the defender starts with a limited budget, followed by the
attacker with unlimited budget, and we ask if the defender has a winning strategy. When
the number of alternations between defender and attacker is unbounded, then we refer to
the game as (DA)* COLORED (s,?)-CuT ROBUSTNESS ((DA)*-CCR). The well-known
SHANNON SWITCHING GAME [5, 6] which is polynomial-time solvable is the special case of
(DA)*-CCR where every edge color appears at most once and each player may choose one
color in every turn.

Our Results. We study the complexity of colored cut games. In Section 3, we show that,
in contrast to SHANNON SWITCHING GAME, (DA)*-CCR is PSPACE-complete, and that
for an increasing but constant number of alternations between the agents, the colored cut
games are complete for complexity classes of increasing levels of the polynomial hierarchy.

In Section 4.1, we study how the structure of the input graph influences the complexity
of the games. We show, for example, that all colored cut games are polynomial-time solvable
on graphs with degree at most two and hard for different levels of the polynomial hierarchy
on bipartite planar subcubic graphs. Finally, in Section 4.2 and Section 4.3 we study the
parameterized complexity of colored cut games. Our main result is a polynomial-size problem
kernel for all colored cut games parameterized by k+ k,.. Here k is is the sum of all budgets of
the attacker and k, is the number of vertex deletions that are needed to transform the input
graph G into a graph where the longest path has length at most r (thus, x; is the vertex
cover number vc of G). More precisely, we show that for every constant r we can reduce any
instance of a colored cut game in polynomial time to one with O((k,)2k"*!) edges. This
general kernelization result is somewhat surprising because for most parameters (including
the vertex cover number, k, or |C|) even the basic colored cut games COLORED (s,t)-CUT
and LABELED PATH are unlikely to admit a polynomial kernelization [15, 18, 22, 31]; the first
nontrivial kernelization for COLORED (s,t)-CUT (with respect to a rather large parameter)
was provided, to the best of our knowledge, in our companion work on COLORED (s, t)-
CuT [22]. We are not aware of other studies of kernelization for PSPACE-hard problems.
In addition to the kernelization, we develop an algorithm solving COLORED (s,t)-CUT
in 2°*pOM) time. One of the main tools in our hardness proofs and algorithms is the
notion of colored-cut-equivalence. This notion may be of general interest for the study of
colored cuts in graphs. We define colored-cut-equivalence in Section 2, where we give the
formal definition of the colored cut games. Due to lack of space, several proofs are deferred
to a long version of this article.
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2 Basic Definitions and Colored-Cut-Equivalence

Notation. For integers j and k,j < k, we denote with [j, k] the set {r | j < r < k}. For
a set S and an integer k, we let (i) denote the family of all size-k subsets of S. A (simple
undirected) graph G = (V, E) consists of a finite set of vertices V(G) := V and a set of
edges E(G) := E C (‘2/) and we denote n := |V| and m := |E|. For V' C V, we denote
with G[V'] .= (V', EnN (‘g')) the subgraph of G induced by V' and with G — V' := G[V \ V']
the graph obtained from G by deleting V'. Analogously, we let G — E’ := (V, E'\ E’) denote
the graph obtained by deleting the edge set E/ C E. We denote with Ng(v) :={w € V|
{v,w} € E} the neighborhood of a vertex v in G and we denote with degq(v) := |Ng(v)| the
degree of v in G. If G is clear from the context, we may omit the subscript.

A sequence of vertices P = (v1,...,vg) is a path or (v1,vk)-path of length k in G
if {v;,vi41} € E(G) for all 1 <i < k. If v; # v; for all i # j, then we call P vertez-simple.
If not mentioned otherwise, we only consider vertex-simple paths. We denote with V(P)
the vertices of P and with E(P) the edges of P. A subset V' C V is called a connected
component of G if V' is a maximal set of vertices such that there is at least one (u, v)-path
in G for pairwise distinct u,v € V.

Parameterized Complexity. For the definition of classical complexity classes such as
PSPACE or ¥, we refer to the literature [2]. Parameterized complexity theory aims
at a fine-grained analysis of the computational complexity of hard problems [9, 11, 16, 24].
A parameterized problem L is a subset of ¥* x IN, where the first component is the input
and the second is the parameter. A parameterized problem is fixed-parameter tractable
(FPT) if every instance (I, k) can be solved in f(k) - |I|°(1) time where f is a computable
function depending only on k; an algorithm with this running time is called FPT algorithm.
A parameterized problem is in XP if every instance can be solved in |I[9¢%) time for some
computable function g. The complexity classes W[1] and W[2] are basic classes of presumed
parameterized intractability, that is, it is assumed that problems that are hard for W[1] or
W/[2] have no fixed-parameter algorithm. Hardness for W[1] or W[2] is shown via parameter-
ized reductions. A parameterized reduction of a parameterized problem L to a parameterized
problem L’ is an algorithm that for each instance (I, k) of L computes in f(k) - [I|°M) time
an equivalent instance (I’, k") of L’ such that k¥’ < g(k) for some computable function g. A
parameterized reduction is a polynomial parameter transformation if g(k) is a polynomial
function.

A main tool to achieve fixed-parameter algorithms is reduction to a problem kernel or
problem kernelization. A problem kernelization for a parameterized problem L is a polynomial-
time algorithm that computes for every instance (I, k) an equivalent instance (I’, k") such
that |I'| < g(k) and k' < f(k) for computable functions f and g. If g and f are polynomials
then, we call it a polynomial problem kernelization.

Colored Cut Games. An edge-colored graph with terminals (or colored graph) is a 5-
tuple H = (G = (V,E),s,t,C,{) where G is an undirected graph, s € V and t € V
are the terminals, C is a set of colors and ¢ : E — C is an edge coloring. We denote
with |H| := |G| + |C| + |¢| = |V| + 2| E| 4 |C| the size of a colored graph.

For a graph G = (V, E) and two vertices s € V and ¢t € V, we call an edge set E' C F an
(s,t)-(edge-)cut in G if s and t are in different connected components in G — E’. Let H =
(G, s,t,C, L) be a colored graph. For a path P in G, we let £(P) := ¢(E(P)) denote the set of
colors of the edges on this path. We say that C' C C'is a colored (s, t)-cut in G if £(P)NC #
for every (s,t)-path P in G. We say that C' C C' is a colored (s,t)-connector in G if there is
an (s, t)-path P in G with ¢(P) C C.
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We now formally define all colored cut games. Since the outcome of the game is decided
after the last turn of the attacker, all colored cut games end with a turn of the attacker. In the
most general problem variant, stated below, we allow an unbounded number of alternations
between the defender D and the attacker A.

(DA)* COLORED (s,t)-CuT ROBUSTNESS ((DA)*-CCR)
Input: A colored graph (G = (V, E), s,t,C, {), and two vectors d := (di,...,d;) € IN?
and a := (ay,...,a;) € N* such that Z;:I(dj +a;) <|C|.
Question: Is it true that 3D; € ((Z).VAl € (C\Dl).HDQ € (C\(DJQUAI)). -+ VYA; €

ai

i—1 .
(C\(szl(g_jUAﬂ')UDi)) : the set (Jj_, A; is not a colored (s,t)-cut in G?

n (DA)*-CCR we ask if the defender has a winning strategy. When the number
of turns i > 1 is a constant and not part of the input, we define the problems (DA)?
COLORED (s,t)-CuT ROBUSTNESS ((DA)!-CCR).

If the attacker starts the game, that is, if d; = 0, we define the problems A(DA)?
COLORED (s,t)-CUT ROBUSTNESS (A(DA)*-CCR) for all constant i > 0. For all these
problems we also define the complement problems in which we ask if there is a winning
strategy for the attacker.

(DA)* COLORED (s,t)-CUT VULNERABILITY ((DA)*-CCV)

Input: A colored graph (G = (V, E), s,t,C, {), and two vectors d:= (dy,...,d;) € N
and @ := (ay,...,a;) € N' such that Z;Zl(dj +a;) <|C|.

Question: Is it true that VD, € (g).EIAl € (C(\LDI).VDQ € (C\(DI;QUA”). ... dJA; €

1

i—1 .
(C\(U.y‘:l(i)_jUAj)UDi)) : the set [ Jj_, A4; is a colored (s, ¢)-cut in G?

i

Analogously, if the number of alternations is a constant, then we define the variants (DA )*-

CCV and A(DA)-CCV. We refer to all problems defined above as colored cut games.
COLORED (s,t)-CUT is equivalent to A(DA)-CCV and LABELED PATH is the special

case of (DA)-CCR where a; = |C| — d;. Moreover, for all i > 1, A(DA)"1-CCR is

the special case of (DA)*-~-CCR where the budget of the first defender turn is zero and

(DA)*-CCR is the special case of A(DA)*-CCR where the budget of the first attacker turn

is zero. Hence, COLORED (s,t)-CUT is a special case of all the problems (DA)*-CCV and

A(DA)i-CCV.

Colored-Cut-Equivalence. We let C(H) := {{(P) | P is an (s,t)-path in G} denote the
family of color sets of (s,t)-paths in G.

» Observation 2.1. The set of colors C C C is a colored (s,t)-cut in G if and only if C is
a hitting set for C(H), that is, if C N C" # 0 for all C" € C(H).

Moreover, C' is a colored (s,t)-connector in G if and only if there is C' € C(H) such
that C' C C.

To argue concisely that two instances of some colored cut game are equivalent, we
introduce the following definition.

» Definition 2.1. Two colored graphs H = (G, s,t,C, L) and H' = (G', s',t',C, ') are colored-
cut-equivalent if for every Ly € C(H) UC(H') there exists some Ly € C(H) NC(H') such
that LQ Q Ll.

30:5
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Observe that H and H’ are colored-cut-equivalent if for every (s,t)-path P in G there is

n (¢',t')-path P’ in G’ such that ¢'(P’) C ¢£(P) and vice versa. Thus, intuitively, only the

color sets in C(H) NC(H’) are relevant for colored (s,t)-cuts. The following lemma shows
that Definition 2.1 gives us the intended property.

» Lemma 2.2. Let H = (G, s,t,C,¢) and H' = (G',s',t',C, ") be two colored-cut-equivalent
graphs, then C' C C' is a colored (s,t)-cut in G if and only if C is a colored (s',t')-cut in G'.

Proof. Due to symmetry, we only show one direction. Let C be a colored (s, t)-cut in G,
then C'N Ly # 0 for all Ly € C(H) NC(H'). We show C N Ly # O for all L1 € C(H').
Let Ly € C(H'), then there is some Ly € C(H) N C(H') with Ly C Ly since H and H' are
colored-cut-equivalent. Hence, L; N C' D Ly N C # () and therefore C is a colored (s, t')-cut
in G'. <

» Corollary 2.3. Two instances I = (H,d,a) and I' = (H',d,a) of any colored cut game are
equivalent if H and H' are colored-cut-equivalent.

The following lemmas will be useful for proving hardness on restricted input graphs.

» Lemma 2.4. For every colored graph H = (G, s,t,C,t), one can compute in polynomial
time a colored-cut-equivalent graph H' = (G',s',t',C, ") such that G’ is bipartite.

» Lemma 2.5. Let H = (G, s,t,C,¢) be a colored graph and let o € C be a color that occurs
on every (s,t)-path in H. Then, one can compute in polynomial time a colored-cut-equivalent
graph H' = (G, s',t',C,¥') such that G' has a mazimum degree of three.

3 Classic Complexity of Colored Cut Games

3.1 Unbounded Number of Alternations

We first show that colored cut games are PSPACE-complete if the number of alternations
between attacker and defender is unbounded by reducing from the PSPACE-complete
COMPETITIVE HITTING SET [26].

» Theorem 3.1. (DA)*-CCR and (DA)*-CCV are PSPACE-complete on planar graphs

even if each budget is one.

Proof. (DA)*-CCR and (DA)*-CCV can obviously be solved within polynomial space by
a standard search tree algorithm that alternately chooses the colors for the defender and the
attacker. Thus, it remains to show PSPACE-hardness. To this end we give a polynomial-time
reduction from a competitive version of HITTING SET which is PSPACE-complete [26].

COMPETITIVE HITTING SET (CHS)
Input: A universe Y with || = 2i and a collection F of non-empty subsets of U.
Question: Is it true that Vd; € U.Jay € U\ {d1}.Vdy € U\ {d1,a1}. --- Fa; €

U\ (U;;ll{dj,aj}u{di}) cFn{a; |1<j<i}#0forall FeF?

This problem can be seen as a game between two agents where every agent selects
an unselected element of the universe in each turn. The game ends when there is no
unselected element of the universe remaining and the second player wins if he intersects every
subset F' € F with the elements he chose. Otherwise, the first player wins. We ask if the
second player has a winning strategy.
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Given an instance I = (U, F) of COMPETITIVE HITTING SET, we describe how to
construct an equivalent instance I' = (G = (V, E), s,t,C, £) of (DA)*-CCV in polynomial

time. We set C' := U and start with an empty graph only containing distinct vertices s and t.

For every F' € F we add an (s, t)-path Pp such that ¢(Pr) = F and where all vertices of Pp

except s and t are new. Thus, for every (s,t)-path P in G there is F' € F such that {(P) = F.

Consequently, A C U intersects every F € F if and only if A is a colored (s,t)-cut in G.
Hence, a winning strategy for the attacker in the (DA)*-CCYV instance I’ is also a winning

strategy for the second player in the COMPETITIVE HITTING SET instance I and vice versa.

Therefore, I is a yes-instance of COMPETITIVE HITTING SET if and only if I’ is a yes-instance
of (DA)*-CCV. Since the class of PSPACE-complete problems is closed under complement,
(DA)*-CCR where the budget in every turn is one is also PSPACE-complete. <

3.2 Bounded Number of Alternations

Next, we analyze the complexity of (DA)*-CCR and A(DA)*-CCR. To this end, recall that

(DA)*-CCR asks if the defender has a winning strategy when the defender starts and both
agents have exactly ¢ turns for some constant .

» Lemma 3.2. For alli>1, (DA)'-CCV is 1Y, -hard and (DA)*-CCR is X5, -hard even
on planar graphs.

To prove Lemma 3.2, we reduce QSAT9; which we will state using the following notation.
For a set of boolean variables Z, we define the set of literals L(Z) :=Z U {-z|z€ Z}. A
subset of literals Z C £(Z) is an assignment of Z if |{z,—~2} N Z| =1 for all z € Z. For a
subset X C Z of variables, we denote with 77(X) :== X U{-z |z € Z\ X} the assignment
of Z where all variables of X occur positively and all variables of Z \ X occur negatively.
Given an assignment Z and a clause ¢ € (L(SZ)) we say that Z satisfies ¢ (denoted by Z = ¢)
if N Z # 0. Analogously, Z satisfies a set ® C (“/Z)) of clauses (denoted by Z = @)
if Z ¢ forall ¢ € ®.

Proof sketch. We reduce QSATs;, which is I1Y;-hard [2], to (DA)*-CCV.

QSATy;

Input: A set ® of clauses in 3-CNF over the set of variables Z and a parti-
tion (X1,Y1,...,X;,Y;) of Z.

Question: Is it true that VX; € X;.3Y; C Y;.--- VX, C X,.3Y; C Y; : Tz(Xl uY; U
L UX;UY) 97

QSAT9; can be seen as a two-player game where Player 1 and Player 2 choose an
assignment for X; and Yj, respectively, in their jth turn. We ask if Player 2 has a winning
strategy, that is, if the combined assignment satisfies ®.

Given an instance I’ = (Z,®, X1, Y7, ..., X;,Y;) of QSAT,;, we construct an instance I =
(#,d, a) of (DA)-CCV as follows. Let X; = {21 |1 <k < |X;|},Y; = {y] |1 <k <|Y;|}
for all 1 < j < and let £ := L(Z). We can assume without loss of generality that |X;| > 2
for all j € [2,i] and |Y;| > 2 for all j € [1,14].

We set C':= L and force the defender and the attacker to choose an assignment of the
variables of X; and X; UY;, respectively, in their jth turn, otherwise they will lose.

The graph consists of three parts: the variable gadgets for the defender, the variable
gadgets for the attacker and a gadget for the evaluation of the clauses. To this end, we
define G := (V, E) with V :=V, UV, UVg and E := E; U E, U Eg where Vy, Eq and V,, E,
are the variable gadgets for the defender and attacker, respectively, and Vg, F¢ is the gadget

30:7
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I T3 T3 T

Figure 2 (a) The gadget for the defender for the variables of X; with |X;| = 4. (b) The
graph Gp = (Vp, Ep) where |X1| =2, | X2| =3, and | X3| = 1.

for the evaluation of the clauses. First, we introduce the variable gadget for the defender,
shown in Figure 2:

Va={r{ | 1< <i}u{r], T, L5 11<j<i1<k<|X,|}

Eyi= {{rl Ly TO A A AT (] 1< < i <k < ),

(] T = (T} =,
({r-ys L33) = (L, }) = —ay,
where er = rOH for all 1 < j < 4. In the following, let s := s° := r} and s/ := T‘X for

all j € [1,]. The vertex s; is a common vertex of the gadgets for the attacker and defender.
The idea is that in his jth turn the defender has to choose an assignment of the variables

0.

of X, or otherwise the attacker wins by taking at most two colors in his next turn. Next,
we define the gadgets for the attacker:

Vo :i={t} U{vs |z € Z},

By = {{s),v:}, {ve,t} |1 < j <dyw € X; UYS),

(({s7,v,}) :== z, and £({vy,t}) ==~z for all j € [1,4],2 € X; UY].

The idea is that either the color set chosen by the attacker in his jth turn is an assignment
of the variables of X; UY}, or the defender wins by choosing two colors in his next turn.
Since a player can only choose colors that were not chosen before, the assignment for the
variables of X; of the attacker is the complement of the assignment on the variables of X of
the defender.

Finally, we define the clause gadget. To model each clause ¢ € ®, we add an (s*,t)-path P
with ¢(P) = ¢. Formally, the gadget is defined as follows. We fix an ordering on every
clause ¢; € ® and denote with ¢;(y) the yth literal of ¢; and add

Vo i={b],b | 1< j < |®[},

Eg := {{5 ’bjl}’ {bivbg}a{b%’t} | I<j< |(I)|}7

(({s",b1}) = ;(1),

E({b{7 bé}) = ¢j(2)7 and

(({b3. t}) = ¢;(3)-

The final graph can be seen in Figure 3. We set d; := |Xj| and a; := |X;| + |Y;| for
all j € [1,4]. This completes the construction.
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Figure 3 The construction for an instance with |®| =4, |X1| = |Y3| = 2, |Y1| = |Y2| = | X3| =1,
and | X2| = 3. Solid edges belong to F4, dotted edges belong to E,, dashed edges belong to Fg. The
clause gadget is connected with s® and ¢.

Before we show the equivalence between I and I’, we make some observations about
winning strategies. The following establishes the link between sensible choices of color sets
and partial assignments for variables in Z: Let j € [1,4] and let D; C C be the set of
colors the defender chooses in his jth turn. We call D; nice if D; is an assignment for X’
Analogously, let A; C C be the set of colors the attacker chooses in his jth turn. We call A;
nice if A; is an assignment for X; U Y}.

> Claim 3.3. For both players, it is never part of a winning strategy to be the first to choose
a set of colors which is not nice.

Hence, we can assume that both players will only choose nice sets of colors.

> Claim 3.4. Let D;, A; be nice for all j € [1,i] and A := U;Zl A;, then A is a colored (s, t)-
cut in G if and only if A = ®.

Using these claims, we show that the QSAT5; instance is a yes-instance if and only if the
constructed (DA)?*-CCYV instance is a yes-instance.

(i) Assume that VXl - XlElffl - Yl. s VXl - X,ED;; - Y;'.Tz(Xluf/iU' . UXlUY/;) ':
® is true. Then, there are functions f : P(U?Zl X;) — P(Y}) for all k& € [1,i] such
that VXl Cc Xq.--- VXZ - Xi.Tz(Xl U fl(Xl) u---u Xz U fi(U;;:l Xk)) ): d is true [3]
Herein, IP denotes the powerset. The functions fi,..., f; are called Skolem functions and
can be seen as the winning strategy of Player 2 in the QSATj,; instance. We will use
these functions to describe a winning strategy for the attacker in the (DA)*-CCYV instance
iteratively. Let Dy be the color set chosen by the defender in his first turn. If D; is not nice
then, due to Claim 3.3, the attacker has a winning strategy. So, we assume that D is nice.
Then, D; is an assignment for X;. Let Dy := X; \ Dy, that is, the complement assignment
of D1 N X;1. We set Ay := Tx,0y, (D1 U f1(D1)) which is nice and disjoint from D;.

After this initial choice, the winning strategy for the attacker works as follows. Let j € [2, ]
such that D, and A, are nice for all r € [1, —1]. Let D; be the color set chosen by the defender
in his jth turn. If D; is not nice then, due to Claim 3.3, the attacker has a winning strategy.
So, we assume that D; is nice. Then, D; is an assignment for X;. Let D, := X,.\ D,., that is,
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the complement assignment of D, for all r € [1,j]. We set A; := 7x,uy, (D; U fj(UqJ;:1 D,)).
Observe that A; is also nice. Hence, we can assume that D; is nice and A; is nice and
defined as described for all j € [1,1].

It remains to show that A; := U§':1 Aj; is a colored (s,t)-cut in G. Since we assumed
that VXl Q Xl. ce VXl Q Xi.Tz(Xl Ufl(Xl)U . UXlufl(U;€=1 Xk)) ': P is true, it follows
that A; = 72(D,U f1(D1)U---UD; Ufi(U;ﬂ Dy)) | ®. Therefore, A; is a colored (s, t)-cut
in G due to Claim 3.4. Hence, the attacker has a winning strategy.

(«<=) The proof of this direction is deferred to the the long version of this article.

Hence, I is a yes-instance of (DA)*-CCV if and only if I’ is a yes-instance of QSATS;.
Therefore, (DA)*-CCV is II},-hard. Since (DA)*-CCR is the complement problem of
(DA):-CCV, it follows that (DA)-CCR is X5 ,-hard. <

Lemma 3.2 is the main step to prove the following.

» Theorem 3.5. For alli >0, A(DA)'-CCR is I1}; | -complete and for all i > 1, (DA)"-
CCR is X5.-complete even on planar graphs.

4 Restricted Instances and Parameterizations

We now take a closer look at the classic complexity of (DA)?, A(DA)? and (DA)*-CCR on
restricted instances. First, we obtain a complexity dichotomy with regard to the maximum
degree and strengthen our hardness results from Section 3.1 to restricted graph classes.
Second, we analyze a restricted class of colored graphs for which COLORED (s,t)-CUT is
polynomial-time-solvable and show that DA-CCR is NP-complete on these restricted colored
graphs. Finally, we investigate the parameterized complexity and describe how to obtain
polynomial kernel for all colored cut games by combining the budget with structural graph
parameters.

4.1 Restricted Instances

First, we show that the classic complexity of all colored cut games is the same even on
bipartite planar graphs. Second, we show that (DA)*-CCR, A(DA)*-CCR, i > 1, and
(DA)*-CCR can be solved in polynomial time on graphs with maximum degree at most two
but cannot be solved in polynomial time on graphs with maximum degree at least three,
unless P = NP.

By Theorem 3.5, (DA)*-CCV and A(DA)!-CCV are hard even on planar graphs. Given
a planar graph, we can replace it with a bipartite planar colored-cut-equivalent graph in
polynomial time due to Lemma 2.4. By Corollary 2.3, this gives an equivalent instance.

» Corollary 4.1. For alli > 1, (DA)!-CCYV is 115, -complete and for alli > 0, A(DA)!-CCV
18 E§i+1-complete even on bipartite planar graphs.

» Theorem 4.2. Leti > 1. The problems (DA)'-CCR, A(DA)*-CCR, and (DA)*-CCR
can be solved in polynomial time on graphs with a mazimum degree of at most two. On bipartite
planar graphs with a mazimum degree of at least three, (DA)*-CCR and A(DA)*-CCR
are ¥.-hard and (DA)*-CCR is PSPACE-hard.

Second, we analyze the complexity of (DA)!-CCR on instances where every color appears
in at most two (s,t)-paths. In this case, COLORED (s,t)-CUT can be solved in polynomial
time [7, 17, 27]. In contrast, we will show that (DA)!-CCR is NP-complete. Hence, for
any i > 1, (DA)*-CCR and A(DA)*CCR cannot be solved in polynomial time on these
restricted colored graphs, unless P = NP. We show NP-completeness via reduction from

MATCHING INTERDICTION which is NP-hard [30].
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» Theorem 4.3. (DA)'-CCR is NP-complete and W[1]-hard when parameterized by dy even
if every color appears in at most two (s,t)-paths.

4.2 Parameterization by the Full Budget and the Number of Colors

In this section we analyze the parameterized complexity of the colored cut games. Next, we
investigate budget-related parameters. For an instance I = (H, d, Ei) of a colored cut game we
denote with b(I) := Zi:1(dw + a;) the sum of all budgets and with k := Zizl a, the total
budget of the attacker. First, we investigate the parameter b(I). COLORED (s,t)-CUT is
W/[2]-hard when parameterized by k = b(I) [7]. We extend this hardness result to all colored
cut games. Moreover, we show that all colored cut games are fixed-parameter tractable and

do not admit polynomial kernels when parameterized |C/|.

» Proposition 4.4. (DA)-CCR, i > 1, A(DA)!-CCR, i > 0, and (DA)*-CCR parameter-
ized by b(I) are coW[2]-hard and can be solved in O(|C|*D) (n +m)) time.

By definition, b(I) < |C|. Hence, the described algorithm of Proposition 4.4 with a
running time of O(|C|*)(n4m)) also implies an FPT-algorithm when parameterized by |C!.

» Corollary 4.5. (DA)'-CCR, A(DA)""'-CCR, i > 1, and (DA)*-CCR can be solved in
time O(min(|C|I€1, 221C1 (n +m)) and do not admit a polynomial kernel when parameterized

by |C], unless NP C coNP/poly.

4.3 Polynomial Kernels by Combining Budget with Structural Graph
Parameters

Finally, we investigate colored cut games from the viewpoint of kernelization. By the above,
natural parameterizations by b(I) or even |C| will not give a kernel. Moreover, COLORED (s, t)-
Cur is NP-hard even if the vertex cover number of the input graph is at most two [28]. Hence,
for most structural graph parameters there is little hope to obtain polynomial kernels. We
will show that, however, all colored cut games admit polynomial kernels when parameterized
by the total attacker budget k and the vertex cover number. In fact, we show polynomial
kernels for smaller parameters. To this end, we consider generalizations of vertex covers.

» Definition 4.6. For a graph G, we let Ip(G) denote the length of a longest path in G.
We call a vertex set S C V an r-lp-modulator in G if Ip(G — S) < r. The size of a
smallest r-lp-modulator of a graph G is the r-Ip-deletion number x,. of G.

Thus, an r-lp-modulator is a vertex set whose deletion results in a graph that has no simple
paths of length at least r + 1. Clearly, the r-Ip-deletion number of G is monotonically
decreasing with r. Note that the vertex cover number is exactly the 1-Ip-deletion number.
More generally, if every connected component of a graph has order at most r, then Ip(G) < r.
Thus, the r-Ip-deletion number of a graph is never larger than the so-called r-COC number,
the smallest size of a vertex set whose deletion results in a graph where every connected
component has order at most r.

To show the correctness of the kernelization, we need to argue that an attacker can
achieve a colored cut in the kernel if and only if he can achieve it in the input instance. Thus,
we only need to consider colored cuts of bounded size in the correctness proof. Motivated by
this, we generalize the notion of colored-cut-equivalence as follows.

» Definition 4.7. Let © be an integer. Two colored graphs H = (G,s,t,C,¢) and H' =
(G, s, t,C, ") are z-colored-cut-equivalent if for all C C C of size at most x it holds that C
is a colored (s,t)-cut in G if and only if C is a colored (s',t')-cut in G'.
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Since the total attacker budget is an upper bound for the size of the colored (s, t)-cut the
attacker can choose, we obtain the following.

» Corollary 4.8. Two instances I = (H,d,a) and I' = (H',d, a) of any colored cut game are
equivalent if H and H' are k-colored-cut-equivalent where k =" _| a,.

Now, we show that we can compute in polynomial time a k-colored-cut-equivalent graph
which (k + #,)9(") edges.

» Lemma 4.9. LetH = (G = (V,E),s,t,C,¥) be a colored graph with r-lp-deletion number k.
and let k < |C| be an integer. Then, one can compute in |H|°") time a k-colored-cut-
equivalent graph H' = (G' = (V', E'),s',t',C, ') with at most ((T+1)2”’+2) A(r+1)(r+ 1)kt
edges.

The idea of the algorithm is the following: First, we approximate an r-lp-modulator I'
containing both s and ¢ and compute for each pair {x,y} of vertices of I" the collection Ay, . of
all color sets of (x,y)-paths not containing other vertices of I'. For each such pair, we compute
the HITTING SET-instance (A(; 4}, k) and kernelize it to a HITTING SET-instance (A7, . k)
with |A’{x7y}| < (r+ 1)!k"*! by using the Sunflower Lemma [13]. Finally, we construct a
colored graph H' such that I" is an r-lp-modulator of G’ and such that for each pair {z,y}
of vertices of I, the collection of all color sets of (z,y)-paths not containing other vertices
of T" is precisely A'{_T’y}. This can be done with \A’{Ty}| paths for each A’{I,y}. Hence, the
resulting graph has bounded size.

We now describe in detail how to construct H’. First, we compute an r-lp-modulator T' of
size at most k,(r+ 1)+ 2 containing s and ¢ via the following (r + 1)-approximation algorithm:
Start with an empty set IV. While the graph G — I'” contains a path of length at least r + 1,
add the r + 1 vertices of this path to I. Afterwards, we set I' := T U {s,t}. By construction,
I' is an 7-lp-modulator and it has size at most ,(r + 1) + 2 since every r-lp-modulator
contains at least one vertex of each path of length at least r + 1.

Since G — I' has no paths of length at least r + 1, we know that every path between
two vertices of I'; which does not contain a third vertex of I', has at most r» + 1 edges. We
compute for every {a,b} € (g) the family of all color sets Ay 4y of (a,b)-paths in G, ) =
G — (I'\ {a,b}). That is, Arqy = C(H{ap}), where Hyqpy := (Gapy,a,b,C, ). Hence, for
every color set C' C C' it holds that C' is a colored (a,b)-cut in Gy, 3 if and only if C' is a
hitting set for Ay, ). Note that Ay, ;) contains only color sets of size at most 7+ 1. Next, we
reduce each of the sets Ay, ;) to a size of at most (r+1)!- k™! using a well known reduction
rule for (r 4+ 1)-HITTING SET. This reduction rule uses the famous Sunflower Lemma [13].

» Lemma 4.10. If A,y has size more than (r +1)!- k™1, then there are k + 1 distinct
sets S1,...,Sky1 € Aqapy that can be computed in polynomial time such that S; N Sj =
Ni<i<hir S =2 S for all distinct j,j' € [1,k + 1].

» Rule 4.1. If [Afqpy| > (r+1)!- k™Y, then compute sets Si,...,Spy1 € Agapy and S with
the property of Lemma 4.10.

If S =0, then remove all sets of Agqpy except {S1,...,Sks1}.

Otherwise, remove Si, ..., Sky1 from Ay, and add the set S.

Next, we show that the rule is correct in the following sense.

» Proposition 4.11. Let C C C be a set of size at most k.
If S # 0, then C is a hitting set for Agapy if and only if C is a hitting set for {S} U
Ay \{Si |1 <i<k+1}).
If S =0, then C is a hitting set for A,y if and only if C' is a hitting set for {S; | 1 <
1 <k+1}.
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Let A’{a’b} be the set obtained after exhaustively applying Rule 4.1 to A, ;). By the
definition of Rule 4.1, A, has size at most (r + 1)!- k™+1. Moreover, by the definition
of Ay, and Proposition 4.11, we obtain that every color set C C C of size at most k is a
colored (a, b)-cut in Gy, if and only if C' is a hitting set for Af{a,b}.

Finally, we define the colored graph H’'. We start with a graph G’ containing only the
vertices of T" and set s’ = s and ¢’ = ¢. Next, for every set {a,b} € (g) and every color
set L € AY,;,, we add an (a,b)-path P with max(1,[L[ — 1) new internal vertices to G’ and
color the edges of P in such a way that ¢/(P}) := L, where P} := a - P, - b. This finishes
the definition of H’. We may now show the correctness and the running time of the data
reduction and the size bound of the resulting graph H’.

Proof of Lemma 4.9. Note that C( f{a,b}) = A@,b}: where Gf{mb} =G — (T'\ {a,b})
and H{{a,b} = (Gf{ayb},a, b,C,¢"). Hence, we obtain that every color set C' C C' of size at
most k is a colored (a,b)-cut in G’{%b} if and only if C is a hitting set for A’{a,b}. By the
above, this is the case if and only if C'is a colored (a,b)-cut in Gy, ). Consequently, Hiq 51
and "Hf{a’b} are k-colored-cut-equivalent.

Now, we use this fact to prove that H and H’ are k-colored-cut-equivalent. Let C be

a colored (s,t)-cut of size at most k in G. We show that C is a colored (s,t)-cut in G'.

Assume towards a contradiction, that this is not the case. Then, there is an (s,t)-path P’ =
(u1,...,uq) in G’ with u; = s and u, = t such that ¢ (P')NC = 0. Let u;,,...,u;. be the
vertices of I in P’ in the ordering of the traversal of the path. Recall that s € I" and t € T,
which implies that u;, = u1 and u;, = ug. Now, let P} = (wi;, wij 41,5 Ui,y 15 Wig )
denote the subpath of P’ connecting u;; and wu;, , for all j € [1,z —1]. Due to the
fact that ¢'(P") N C = 0, it follows that ¢'(P]) N C = 0 for all j € [1,z — 1]. Thus, for
each j € [1,z — 1] it holds that C' is not a colored (u;,,u;,,,)-cut in G{{uij;uij+1}-
are k-colored-cut-equivalent, it follows

Moreover,

since for each j € [1,2—1], Hiui, i, and Hl{uij wigo}

that there is an (u;;,u;;,, )-path P; in G{uij R such that £(P;)NC = (). By connecting all
paths P; —o --- — P,_j, we get an (s, t)-path P in G with ¢{(P)NC = sz;i(é(P]) nC) = 0.
This contradicts the assumption that C' is a colored (s, t)-cut in G. The opposite direction
can be shown analogously.

Next, we show the running time of the construction. Since paths of length at least r + 1
can be computed in 20 - [V|9() time [1], we can compute the set I' in the same running
time. Moreover, since no (a, b)-path in G, ;) has length more than r + 2, we can compute
all the sets Agqpy in O((lg‘) - [V|r+OM) time. Since each application of Rule 4.1 takes
only polynomial time and reduces the size of A,y by at least one, all the sets A{[a,b}

can be computed in O((lgl) |V |"tOM) time as well. Thus, the complete construction
takes (’)((‘gl) 200 |V r+OM) time.

Finally, we show the size of the kernel. By construction, G’ contains for every {a,b} € (g)
at most A}, 1] < (r+ 1)!k"+1 paths with at most r + 1 edges each. Consequently, G’

contains at most (lg‘) ~(r+1)(r+1)1k"*! edges. Since |T'| has size at most (r + 1)x,. + 2, we
obtain the stated kernel size. <

Corollary 4.8 and Lemma 4.9 lead to the following kernelization.

» Theorem 4.12. For each constant r > 1, every colored cut game admits a polynomial kernel
with at most ((T+1)2”T'+2) “(r+1)(r+ Dk"L edges when parameterized by the r-lp-deletion
number k, of G and the total attacker budget k.
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» Corollary 4.13. FEvery colored cut game admits a polynomial kernel with at most (2"62""2) -4k?
edges when parameterized by the vertex cover number vc of G and the total attacker budget k.

A further parameter to consider in this context is the treedepth of G [23]: The treedepth td(G)
of a graph is at least log(lp(G)) [23]. Thus, Theorem 4.12 also implies the following result
for modulators to graphs with treedepth at most r. Herein A, denotes the size of a smallest
treedepth r-modulator.

» Corollary 4.14. For any constant v > 1, every colored cut game admits a polynomial
kernel when parameterized by the size A, of a smallest treedepth r-modulator and the total
attacker budget k.

The size of the kernel is (\,)2k®(?") and thus the guarantee is not of practical interest even
for rather moderate values of k and the treedepth bound r. However, these kernelization
results are optimal in the following two ways: First, COLORED (s,t)-CuUT does not admit
a kernel with respect to k even on graphs with treewidth two [15]. Hence, we may not
replace r-lp-modulators or treedepth-r modulators by treewidth-r modulators. Moreover,
the standard reduction from (r + 1)-HITTING SET to COLORED (s,t)-CUT gives graphs
in which s and ¢ are connected only via vertex disjoint paths of length at most r + 2.
Hence, Ip(G — {s,t}) < r and, thus, x, < 2. Moreover, k is exactly the budget of the
HiTTING SET instance. Thus, since (r + 1)-HITTING SET does not admit a compression of
bitsize k" *17¢ unless NP C coNP/poly [10], COLORED (s,¢)-CUT does not admit a kernel of
size k"T17¢ even if it has a r-Ip-deletion number of size two. Since in these simple graphs
produced by the reduction, we have td(G) € ©(loglp(G)), we can also not improve on the
doubly exponential dependence on r in the exponent of the kernelization for treedepth.

Based on these kernel results, it also follows that all colored cut games admit FPT-
algorithms when parameterized by %, + k. In the following, we describe FPT-algorithms for
COLORED (s,t)-CuT and DA-CCV when parameterized by , + k with a better running
time than a simple brute-force on the kernel.

» Theorem 4.15. For any constant r > 1, COLORED (s,t)-CUT can be solved in (25 (r +
DF 4+ (r+1)%) - n®") time, where k, denotes the r-lp-deletion number of G and k denotes
the budget of the attacker.

Proof. First, we compute an r-lp-modulator IV of size s, in (r + 1)””no(r) time using a
search tree algorithm that checks whether a graph contains a simple path of length r» 4+ 1
and branches on the possibilities to destroy this path via vertex deletion. Afterwards, we
check for each of the 2%~ many partitions (S,T) of T := TV U {s,t} with s € Sand t € T,
if there is a color set C C C of size at most k such that there is no connected component
containing both a vertex of S and a vertex of T after removing all the edges colored in C.
To this end, we first compute for every pair of vertices x € S and y € T' the collection Ay, ,y
of all color sets of (z,y)-paths in Gy, 3 == G — (I'\ {z,y}). This can be done in n®") time
since G, ,} does not contain any (z,y)-path of length more than r + 2. To check if there
is a color set C' C C of size at most k& with the intended property, we only have to check
if C'NL # 0 for all pairs of vertices z € S and y € T and all L € Aggyy- This is equivalent
to the question, if there is a hitting set of size at most & for U(m,y)ESXT Az}, which can be
determined in (r + 1)*2°(™ time due to the fact that every set Afz.yy contains only color
sets of size at most 7 + 1 and (r + 1)-HITTING SET can be solved in (r + 1)*n®M) time. <

» Corollary 4.16. COLORED (s,t)-CUT can be solved in 2°*n®W) time, where vc denotes
the vertexr cover number of G and k denotes the budget of the attacker.
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Table 1 Classic Complexity of COLORED (s,t)-CuT, (DA)*-CCR, A(DA)‘-CCR, and (DA)*-
CCR in general and in some restricted cases.

graph classes COLORED (s,t)-Cur  (DA)’-CCR  A(DA)'-CCR (DA)*-CCR
general NP-c [7, 15 >h-c 3, 1-c PSPACE-c
subcubic cP P ¥5.-h PSPACE-c
bipartite planar NP-c [28] xh-c 05, . ,-c PSPACE-c
bipartite planar eb P Y5-h PSPACE-c
subcubic

every color in < 2 € P [27] NP-h NP-h NP-h

(s, t)-paths NP-—cifi=1

We extend our fixed-parameter tractability result from COLORED (s,t)-CuT to (DA)!-CCV.

» Theorem 4.17. For any constant r > 1, (DA)'-CCV can be solved in ((2k)" (r + 1)* +
(r+ 1)) -nC") time, where k, denotes the r-p-deletion number of G and k denotes the
budget of the attacker.

Let us remark that it would also be natural to attempt to generalize the vertex cover
number to the vertex deletion distance to a maximum degree of r for any r € IN. Note,
however, that the standard reduction from HITTING SET to COLORED (s,t)-CUT [7] already
implies that COLORED (s,t)-CUT has no kernel of size |C|°}) even when G has only two
vertices of degree at least three, unless NP C coNP /poly. Hence, for any r > 2 it is unlikely
that we can obtain polynomial kernels for |C| plus the vertex deletion distance to a maximum
degree of r.

5 Conclusion

We have studied the complexity of a variety of games that deal with preventing or establishing
a colored cut in edge-colored graphs (see Table 1 for an overview of the classic complexity
results). In the negative and the positive results of this work we exploited the close connection
between colored cut games and the HITTING SET problem. For example, the PSPACE-
hardness proof for the most general game presented in this work, is based on a simple
reduction from COMPETITIVE HITTING SET. Ideally, we would have liked to also use such
a simple reduction for the games with a constant number of rounds. However, we do not
know whether the corresponding HITTING SET games are hard. In particular, it seems open
whether the following problem is I1§-hard.

V3 HITTING SET
Input: A collection F of subsets of a universe U and two integers k; and ko.
Question: VD ¢ (IZ)EIA € (UIJQD) such that ANF # () for all F € F?

This problem asks for a winning strategy for the attacker who wants to complete a hitting
set in the case that the defender starts. If this problem is II5-hard, then we can infer the
Y -hardness of (DA)!-CCV directly from it. Otherwise, the hardness of (DA)!-CCV
would be rooted in the fact that we can create an exponential number of paths in our
hardness construction. It would also be interesting to explore further how efficiently we can
reduce from colored cut games to HITTING SET. In other words, how long does it take to
construct C(H), the collection of color sets of (s, t)-paths, for a given colored graph H? In
particular, can we compute the set C(H) in [C(H)| - |H|®M time?
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