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Abstract
We present a randomness efficient version of the linear noise operator Tρ from boolean function
analysis by constructing a sparse linear operator on the space of boolean functions {0, 1}n → {0, 1}
with similar eigenvalue profile to Tρ. The linear operator we construct is a direct consequence of
a generalization of ε-biased sets to the product distribution Dp on {0, 1}n where the marginal of
each coordinate is p = 1

2 −
1
2ρ. Such a generalization is a small support distribution that fools

linear tests when the input of the test comes from Dp instead of the uniform distribution. We
give an explicit construction of such a distribution that requires logn+Op(log logn+ log 1

ε
) bits of

uniform randomness to sample from, where the p subscript hides O(log2 1
p
) factors. When p and ε

are constant, this yields a support size nearly linear in n, whereas previous best known constructions
only guarantee a size of poly(n). Furthermore, our construction implies an explicitly constructible
“sparse” noisy hypercube graph that is a small set expander.
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1 Introduction

Most constructions in pseudorandomness aim to simulate the behavior of a class of tests
when the input to the tests are drawn from the uniform distribution on {0, 1}n. Simulating
the uniform distribution has been the main subject of attention because many algorithmic
problems ultimately boil down to finding a solution to a problem in an input space where
a large fraction of inputs are correct. Thus a uniform sample from the space will find a
correct solution with high probability. However, other distributions have also proved to be
incredibly useful in solving important problems in computer science. One example of such a
distribution is the product distribution with marginals p:

I Definition 1 (product distribution with marginals p). Let p ∈ [0, 1]. The product distribution
with marginals p is the distribution Dp,n on {0, 1}n where each bit xi is picked independently
with Pr[xi = 1] = p. When the length of the string n is clear from context we simply denote
the distribution as Dp.
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31:2 Randomness Efficient Noise Stability

Apart from being one of the simplest deviations from the uniform distribution, Dp in particular
serves an integral role in the concept of the noise stability of boolean functions. Noise stability
is a fundamental concept in boolean function analysis that is pervasive in many branches of
mathematics such as social choice theory [13], and has a crucial application in celebrated
results in hardness of approximation [7, 8]. Roughly speaking, the stability of a boolean
function f : {0, 1}n → {0, 1} is a measure of how likely the output is to change when each
input bit is independently flipped with some small probability p. The bit flipping is generally
thought of as noise, where input x ∈ {0, 1}n is perturbed to x +µ for µ ∼ Dp. If we instead
draw z ∼ Z and perturb x to x + z for Z that is a randomness efficient approximation of
Dp (under the right notion of approximation), we can then define a randomness efficient
notion of noise. In addition to suggesting a randomness efficient noise test, we believe that
the existence of such a notion of noise is of independent interest.

An alternative view of the concept of noise stability relates to the noise operator Tp,1
which is a linear operator that acts on truth tables of functions f : {−1, 1}n → {−1, 1}. The
matrix corresponding to Tp is simply the 2n × 2n transition matrix of the graph on {0, 1}n
where a random step from x moves to x + n for n ∼ Dp,n. Many important properties of
the noise operator and noise stability stem from the eigenvalues of Tp. Thus we focus on
defining a linear noise operator with similar eigenvalue profile to Tp. We show that in order
to do so it suffices to study a generalization of ε-biased sets.

Small bias sets are a fundamental object in pseudorandomness, with applications to
error-correcting codes, derandomization, and PCPs [12, 15, 4]. An ε-biased set is a small
subset S ⊂ {0, 1}n such that a uniform random sample from S behaves similarly to a uniform
random sample from all of {0, 1}n with respect to linear tests. More formally, S is an ε-biased
set if for any nonempty subset of indices I ⊂ [n], the bias of I is small: if U(S) is the uniform
distribution on S then:

∣∣∣∣∣Prx∼U(S)

(⊕
i∈I

xi = 0
)
− Prx∼U(S)

(⊕
i∈I

xi = 1
)∣∣∣∣∣ ≤ ε

In other words, the parity of any subset of indices has almost equal probability of being
0 or 1. Notice that in the case of a uniform random sample over {0, 1}n, the parity of any
nonempty subset is equally likely to be 0 or 1. Hence ε-biased sample spaces approximate
the uniform distribution in the sense that parities of subsets of indices behave almost the
way they should. Classic results show that there are ε-biased sets that require O(log n

ε ) bits
of uniform randomness to sample from. In other words there are explicit constructions where
the size of S is polynomial in n, and optimal constructions even have size linear in n [12, 15].
In addition to having applications in randomness efficient noise, it is a natural question to
ask whether there are small sample spaces that approximate distributions on {0, 1}n other
than the uniform distribution.

1.1 Our Contribution
We generalize ε-biased sets for the distribution Dp on {0, 1}n. The sample space Z we
construct approximates Dp in the sense that if z ∼ Z then for every I ⊂ [n] the parity of zI
has approximately the same distribution as when z is drawn from Dp.

1 In mainstream literature, the noise operator that we denote Tp is instead denoted as Tρ for ρ = 1− 2p.
We stray from the standard notation in this paper for convenience with our own notation
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I Theorem 2 (Main Result). Let p be a power of 2. There exists a distribution Z on {0, 1}n
such that for every I ⊂ [n] we have:∣∣∣∣∣Prz∼Z

(⊕
i∈I

zi = 1
)
− Prr∼Dp,n

(⊕
i∈I

ri = 1
)∣∣∣∣∣ ≤ ε

Z requires logn + O(log 1
p log logn + log2 1

p + log 1
p log 1

ε ) bits of uniform randomness to
sample from. Moreover, the support of Z (along with the corresponding probability of each
point) can be explicitly constructed in time n · poly(logn, 1

ε ) for constant p.

The main takeaway from our result is that there is a simple explicit construction of a
distribution that approximates Dp,n with support size nearly linear in n when p and ε are
constant. This roughly matches the size of an optimal ε-biased set, although the size blows
up for nonconstant p.

1.2 Application to Randomness Efficient Noise
The main application of our generalization of ε-biased sets is in the definition of a “randomness
efficient” version of noise stability. The stability of the function f is defined as:

Stab1−2p(f) = 〈f , Tpf〉

Our construction of ε-biased sets for Dp,n naturally suggests a new noise operator T sparsep,ε

that is the transition matrix of the graph where a random step from x moves to x + z for z
a sample from our constructed distribution Z. We can then define a new notion of stability:

Stabsparse1−2p (f) = 〈f , T sparsep,ε f〉

Through analysis of the eigenvalues of Tp and T sparsep,ε , we can show that our new notion
of stability is the same as the original up to an additive error of 2ε:

I Theorem 3 (Randomness Efficient Approximate Noise Stability). Let f : {−1, 1}n → [0, 1].
Let Stab1−2p(f) = 〈f , Tpf〉 be the stability of f under the noise operator Tp. Let Stabsparse1−2p (f) =
〈f , T sparsep,ε f〉 be the stability of f under the noise operator T sparsep,ε defined by our ε-biased set
for Dp. Then:

|Stab1−2p(f)− Stabsparse1−2p (f)| ≤ 2ε

An immediate consequence of the above theorem is that the majority is stablest theorem,
which is a crucial ingredient in hardness of approximation results, is also true for our
randomness efficient noise operator up to an additive error of 2ε. We state the original
majority is stablest theorem below:

I Theorem 4 (Majority Is Stablest [11]). Let f : {−1, 1}n → [0, 1] be a function with E[f ] = µ.
Suppose Inf≤10 log(1/τ)

i (f) ≤ τ for all i ∈ [n]. Then:

〈f , Tpf〉 ≤ Γ1−2p(µ) + 10 log log(1/τ)
(2p) log(1/τ)

where Γ1−2p is the Gaussian noise stability curve.

Our result shows that the stability of a function under our randomness efficient noise operator,
〈f , T sparsep,ε f〉 also obeys the same upper bound, with an extra additive error of 2ε.

FSTTCS 2020



31:4 Randomness Efficient Noise Stability

As a secondary application, our construction also implies an explicitly constructible small
set expander with large eigenvalues. We say that a graph G = (V,E) is a small set expander
if for sufficiently small constant δ and all subsets of vertices of size δ|V |, the probability of
leaving the set in one step of a random walk is at least some constant (say .9). Finding an
efficient algorithm for deciding whether a graph is a small set expander remains an open
problem. Arora, Barak, and Steurer [2] observed that there is an algorithm that can solve
the small set expansion problem in time exponential in the number of eigenvectors of G that
have eigenvalue greater than 1− ξ. Thus a natural question is how many such eigenvectors
could a small set expander have? The noisy hypercube is one of the few “counterexamples”
to the efficiency of the above mentioned algorithm, as it is an N -vertex graph that can have
polylog(N) such eigenvectors. Our construction implies the existence of a “sparse” noisy
hypercube with similar spectrum and small set expansion properties.

I Theorem 5. For every ξ > 0, there is an explicit N-vertex small set expander with
polylog(N) eigenvectors with eigenvalue 1− ξ. Moreover the graph contains

O

(
N logN · poly

((
1
ξ

log logN
)log 1

ξ

))

edges.

The main interest in small set expansion is the relationship between the number of vertices
and the number of large eigenvalues. Our construction does not improve on any lower bounds
on the number of such eigenvalues a small set expander could have. However, we do note
that our graph is sparse in the number of edges, containing about N logN edges as opposed
to the O(N2) needed for the original noisy hypercube.

1.3 Background and Related Work
The idea of approximating nonuniform distributions such as Dp is not entirely new in
pseudorandomness. In fact, the linear tests on Dp that we aim to fool are a special case of
combinatorial shapes. An (m,n) combinatorial shape is a function f : [m]n → {0, 1} that can
be expressed as f(x1, . . . , xn) = h(1A1 , . . . , 1An) for some symmetric function h : {0, 1}n →
{0, 1} and subsets A1, . . . , An ⊂ [m]. By setting m = 1/p and h as the parity of all its inputs,
we can express the parity of any I ⊂ [n] if we set Ai = {1} if i ∈ I and Ai = ∅ otherwise.
Gopalan, Meka, Reingold, and Zuckerman [6] give a PRG that fools all (m,n)-combinatorial
shapes using seed length O(logm+ logn+ log2(1/ε)) = O(log 1/p+ logn+ log2(1/ε)). The
main drawback of [6] that we improve on is that the seed length is only guaranteed to be
O(logn), which implies only a polynomial sized construction. On the other hand, when p is
a power of 2, our construction guarantees a nearly linear sized construction, with a slightly
worse dependence on p, and a slightly better dependence on ε.

In a previous work, Even, Goldreich, Luby, Nisan, and Veličković [5] study the approxim-
ation of distributions on [m]n where each coordinate is an independent (and not necessarily
identical) distribution. For any distribution D = D1×· · ·×Dn where each Di is independent,
their constructions give sample spaces that have size (n/ε)log(1/ε) and (n/ε)logn such that
for any I ⊂ [n], the marginal distribution of the sample space restricted to I is ε-close to the
marginal distribution of D in max-norm.

Chin Ho Lee [9] gave a pseudorandom generator that fooled (under the uniform distri-
bution) the XOR of any k boolean functions on disjoint inputs of length m with error ε using
seed length Õ(m+ log(km/ε)) where the Õ hides polynomial factors in logm, log log k, and
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log log(1/ε). By setting m = log(1/p), k = n, and each of the k boolean functions as simply
the product of its m bits, we get a pseudorandom generator that fools linear tests under the
product distribution on n bits with marginals p. Indeed, for any linear test on n bits

∑
i∈I xi,

I ⊂ [n], we can consider the XOR of k = n boolean functions where each function fi is the
product of m bits if i ∈ I and is 0 otherwise. Then, Lee’s generator produces a random
variable X ∼ {0, 1}km that fools such a function under the uniform distribution. Thus the
random variable Z ∼ {0, 1}n obtained by simply taking the product of the bits in each of the
m disjoint blocks of X fools the original linear test with respect to the production distribution
with marginals p. Lee’s pseudorandom generator thus immediately gives a pseudorandom
generator fooling linear tests with respect to the production distribution with marginals p
with seed length Õ(log(1/p) + log(n/ε)).

We mention that Meka, Reingold, and Tal [10] define a notion of “δ-biased distributions
with marginals p.” However, their definition of approximation is ad hoc for their main goal
of constructing PRGs for width-3 branching programs.

Our application of sparsifying the noisy hypercube is related to the classic result of
Spielman and Teng in the edge sparsification of graphs [14]. Indeed, their sparsification
algorithm, when run on the noisy hypercube, should produce a sparsified graph with the
properties we aim to preserve. However, the main drawback to this approach is that the
sparsification algorithm runs in time mpolylog(m) where m is the number of edges. In the
case of the noisy hypercube, which is a dense graph defined on {0, 1}n, this algorithm is
much less efficient than the explicit construction we provide.

Barak et al. previously explored the idea of reducing the size of the noisy hypercube, which
has close ties to hardness of approximation [3]. Their work presents a “derandomized noisy
hypercube” along with the appropriate analogues of small set expansion and the majority is
stablest theorem. As their interest was in the relationship between the number of vertices
and the number of large eigenvalues of a small set expander, their constructed graph contains
a reduced number of vertices. On the other hand, our construction keeps the same 2n vertices
of the original noisy hypercube and reduces the number of edges.

1.4 Overview of Techniques
The construction of the randomness efficient noise operator and small set expanders are
essentially direct applications of our construction of generalized small bias sets. Thus here
we focus on the intuition behind our construction. It’s easy to see that the bitwise product of
log2(1/p) independent uniform samples from {0, 1}n is exactly equivalent to Dp for p a power
of 2. Thus intuitively, if ε-biased sets approximate the uniform distribution on {0, 1}n, then
the bitwise product of log2(1/p) random draws from an ε-biased set should approximate Dp.
Our main construction formalizes this intuition by showing via a hybrid argument that such
a bitwise product indeed fools linear tests when the input is drawn from Dp. This simple
idea is not sufficient however, as the final seed length will be roughly log2(1/p) logn which
implies at least a polynomial sized support for small p.

To improve the dependence on n, we observe that the parities of sufficiently large I ⊂ [n]
will be close to uniform on {0, 1}. More specifically, the probability that the parity of a
subset of indices I under the distribution Dp is 1 is 1

2 −
1
2 (1− 2p)|I|. Thus for |I| ≥ 1

2p ln( 1
ε )

the probability of the parity being 1 is ε/2 close to 1/2. This means that we only need
to accurately simulate the behavior of Dp for |I| smaller than k = 1

2p ln( 1
ε ). For large |I|

we simply need to simulate the uniform distribution. To do so, we can take the bitwise
AND of log2(1/p) − 1 independent samples from a k-wise ε-biased set (using seed length
only log logn). This simulates Dp/2. Finally we take the bitwise product of this with a final

FSTTCS 2020



31:6 Randomness Efficient Noise Stability

ε-biased set with seed length logn. For small |I|, the behavior of the parities under Dp are
preserved, and for large |I|, the product of the k-wise ε-biased sets will contain at least one
1, so the final probability the parity is 1 will be the probability that the final ε-biased set
outputs 1 on a specific coordinate, which is roughly 1/2.

1.5 Paper Organization
In Section 2 we define the necessary preliminaries and notation. Section 3 presents and
proves the correctness of our construction and Section 4 presents the applications of our
result to randomness efficient noise and small set expansion. Finally in Section 5 we discuss
lower bounds for our generalization of ε-biased sets and further directions for research.

2 Preliminaries and Notation

In general we denote random variables as capital letters such as X and Y . We denote fixed
values using lowercase such as x, y. Distributions are denoted with calligraphic capital letters
such as D, and the uniform distribution on a set S is denoted via U(S). We distinguish vector-
valued random variables from scalars via boldface: X,x, and refer to a value at a specific
index of a vector via the corresponding nonbolded symbol with subscript: Xi, xi. Vectors in
this paper generally take on values in the field F2 and thus arithmetic is generally done modulo
2. We use 〈·, ·〉 to denote the inner product of two vectors modulo 2. Finally, we define the
binary operation “�” between two vectors as the entrywise product modulo 2. For example,
for X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), we have: X �Y = (X1Y1, . . . , XnYn). It is
straightforward to verify that for any vectors x,y, z ∈ {0, 1}n, we have: 〈x,y�z〉 = 〈x�y, z〉

We first define the bias of a subset according to a distribution.

I Definition 6 (Bias). Let I ⊂ [n] and D be any distribution on {0, 1}n. Then the bias of I
according to D is defined as

bI,D = Prx∼D

[⊕
i∈I

xi = 0
]
− Prx∼D

[⊕
i∈I

xi = 1
]

Equivalently, if α ∈ {0, 1}n then we say that the bias is:

bα,D = Prx∼D [〈α,x〉 = 0]− Prx∼D [〈α,x〉 = 1]

When the probability distribution is clear from context, we denote the bias of I as bI .
Next, we define the concept of ε-biased sets and k-wise independent ε-biased sets, both of

which have already well known constructions, and are crucial for our construction of ε-biased
product distributions with marginals p.

I Definition 7 (ε-biased set). An ε-biased set is a small set S ⊂ {0, 1}n such that for every
α ∈ {0, 1}n we have:

|bα,U(S)| =
∣∣Prx∼U(S)[〈α,x〉 = 0]− Prx∼U(S)[〈α,x〉 = 1]

∣∣ ≤ ε
or equivalently:∣∣Prx∼U(S)[〈α,x〉 = 1]− Prx∼U({0,1}n)[〈α,x〉 = 1]

∣∣ ≤ ε/2
Numerous works [12, 15] show that there are explicit constructions of ε-biased sets that
require logn+O(log 1

ε ) random bits to specify a random point in S, or in other words, the
size of S is linear in n. A weaker notion of ε-biased sets only considers the parity of subsets
of indices of size at most k:
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I Definition 8 (k-wise ε-biased set). A k-wise ε-biased set is a small set S ⊂ {0, 1}n such
that for any α ∈ {0, 1}n with hamming weight |α| ≤ k. We have:

|bα,U(S)| =
∣∣Prx∼U(S)[〈α,x〉 = 0]− Prx∼U(S)[〈α,x〉 = 1]

∣∣ ≤ ε
or equivalently:∣∣Prx∼U(S)[〈α,x〉 = 1]− Prx∼U({0,1}n)[〈α,x〉 = 1]

∣∣ ≤ ε/2
Naor and Naor show that there are explicit constructions of k-wise ε-biased sets that require
O(log k + log logn+ log 1

ε ) random bits to specify a random point in S.
Our notion of approximating a product distribution with marginals p is the natural

extension of the notion of approximation given by ε-biased sets: the parity of any subset of
coordinates from our approximate distribution should look like the parity of the subset of
coordinates from Dp.

I Definition 9 ((p, ε)-biased sample space). Let p ∈ [0, 1]. A (p, ε)-biased sample space is a
distribution Z on {0, 1}n with small support S ⊂ {0, 1}n such that for every α ∈ {0, 1}n we
have:∣∣Prz∼Z [〈α, z〉 = 1]− Prr∼Dp [〈α, r〉 = 1]

∣∣ ≤ ε
Historically, the definition of ε-biased sets and k-wise independent ε-biased sets use small

bias as their notion of approximation. As stated in their definitions above, this notion
is equivalent (up to constant factors) with the alternate notion that the distribution of
the outputs of any linear function on input x ∼ U(S) is close to the distribution when
x ∼ U({0, 1}n). This equivalence no longer holds in the generalized notion of ε-biased sets
for Dp. For example, if p is small, then the bias bI,Dp is almost 1 for any singleton subset
I. The nonequivalence of these notions makes some simple facts about standard ε-biased
sets more tedious to prove for ε-biased sets for Dp. For completeness, we now state the facts
important for our analysis, and defer their proofs to the appendix.

First, there is a well known relationship between the biases of a random x ∈ {0, 1}n (over
any distribution) and the probability mass function for the distribution.

I Proposition 10. Let D be any distribution. For any a ∈ {0, 1}n, let pa,D be the probability
of sampling a under D. Let p be the 2n length vector of probabilities pa,D for each a. Let b
be the 2n length vector of biases bα,D indexed by α ∈ {0, 1}n. Let the Hadamard matrix H
be the 2n × 2n matrix where each entry is defined as (−1)〈α,a〉 then:

p = 2−nHTb

Given this proposition, we can prove a necessary fact for the analysis of our construction
that if Z is an (p, ε)-biased space for Dp, then Z is close in max-norm to Dp.

I Corollary 11 (ε-biased implies close in max norm). Let Z be an (p, ε)-biased sample space.
Then Z is 2ε-close to Dp in max-norm. That is, for any a ∈ {0, 1}n we have:

|pa,Z − pa,Dp | ≤ 2ε

Finally, we note a useful fact that the distribution of the parity of k independent random
variables in {0, 1} with marginals p is close to uniform on {0, 1} for sufficiently large k. The
proof is again deferred to the appendix.

I Proposition 12. Consider k independent tosses of a biased coin with Pr[Heads] = p. Then
the probability of an odd number of heads is 1

2 −
1
2 (1− 2p)k.

FSTTCS 2020
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3 Construction

Our construction of a (p, ε)-biased space for Dp is as follows:

I Construction 1. Let k = 1
p ln 100

ε and t = log2
1

2p . Let ε′ = 1
100

2ε
t+1 = 1

100
2ε

log2
1
p

< ε
4 ≤ ε.

For 1 ≤ i ≤ t, let Xi be t independent draws from a k-wise ε′-biased set of {0, 1}n. We
let X =

⊙t
i=1 Xi. Let Y be drawn from an ε′-biased set of {0, 1}n. Our final distribution is

then Z = X�Y.

We first state a main lemma that the product of ε-biased spaces approximates Dp with the
right notion of approximation. We defer the proof to the appendix.

I Lemma 13 (Coordinate-wise product of ε-biased sets is ε-biased for Dp). Let k ≤ n and let
X1, . . . ,Xt be independent draws from k-wise ε-biased sets on {0, 1}n. Then X =

⊙
i Xi is

a k-wise ( 1
2t , tε/2)-biased sample space.

Given the lemma, we can then prove the correctness of our construction.

I Theorem 14 (Main Result). Let 0 < p < 1/2. For any ε > 0, Z is a (p, ε)-biased sample
space requiring logn+O(log2 1

p + log 1
p log 1

ε + log 1
p log logn) uniform random bits to sample

from.

Proof. We first note that using the constructions mentioned above, generating Z requires
logn+O(t(log k+ log logn+ log 1

ε′ ) + log 1
ε′ ) = logn+O(log2 1

p + log 1
p log 1

ε + log 1
p log logn)

bits. Moreover, since the original constructions are explicit, we can construct the support of
Z via enumeration of all elements in each used ε-biased set.

We claim that Z is an ε-biased distribution for Dp. We show that for any α ∈ {0, 1}n:∣∣Prz∼Z[〈α, z〉 = 1]− Prr∼Dp [〈α, r〉 = 1]
∣∣ ≤ ε

The proof splits into two cases. For the first case, assume |α| ≤ k. Since Y and the Xi’s
are k-wise ε′-biased, by Lemma 13 we have immediately that:

∣∣Prz∼Z[〈α, z〉 = 1]− Prr∼Dp [〈α, r〉 = 1]
∣∣ ≤ (t+ 1)ε

′

2 ≤ ε

In the second case, assume |α| > k. Let I ⊂ [n] be any subset of the indices of size
exactly k for which α is 1. Consider the first component in the construction of Z:

X =
t⊙
i=1

Xi

where each Xi ∈ {0, 1}n is drawn from a k-wise ε′-biased set. By Lemma 13, we know that
the substring of X restricted only to indices in I, denoted XI ∈ {0, 1}k, is (p2 , γ)-biased for
D p

2 ,k
for γ ≤ tε′/2 ≤ ε/100. Thus by Corollary 11, the distribution of XI is ε

50 -close to D p
2 ,k

in max-norm. In particular, this means that:

P (XI = 0k) ≤ (1− p)k + ε

50 ≤ (1− p)
1
p ln 100

ε + ε

50 = ε

100 + ε

50 ≤
ε

4
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Thus with probability at least 1 − ε/4, the string X will contain at least one 1 on an
index where α is 1. This means that we have:

Prz∼Z(〈α, z〉 = 1) = P (〈α, z〉 = 1 ∧Xα = 0|α|) + P (〈α, z〉 = 1 ∧Xα 6= 0|α|)

≤ ε

4 +
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 ∧X = x)

= ε

4 +
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 | X = x)P (X = x)

= ε

4 +
∑

x:xα 6=0|α|

P (〈α� x,y〉 = 1)P (X = x)

≤ ε

4 +
∑

x:xα 6=0|α|

(
1
2 + ε′

)
P (X = x)

≤ 1
2 + ε

4 + ε′ ≤ 1
2 + ε

2
Similarly for a lower bound we have:

Prz∼Z(〈α, z〉 = 1) = P (〈α, z〉 = 1 ∧Xα = 0|α|) + P (〈α, z〉 = 1 ∧Xα 6= 0|α|)

≥ 0 +
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 ∧X = x)

=
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 | X = x)P (X = x)

=
∑

x:xα 6=0|α|

P (〈α� x,y〉 = 1)P (X = x)

≥
(

1
2 − ε

′
) ∑

x:xα 6=0|α|

P (X = x)

≥
(

1
2 − ε

′
)(

1− ε

4

)
= 1

2 + ε′
ε

4 − ε
′ − ε

8
≥ 1

2 − ε
′ − ε

4
≥ 1

2 −
ε

2
Combining the upper and lower bound shows that Prz∼Z(〈α, z〉 = 1) is ε/2 close to 1/2.
Since by Proposition 12 we know that Prr∼Dp(〈α, z〉 = 1) is also ε/2 close to 1/2 we must
have that:

|Prz∼Z(〈α, z〉 = 1)− Prr∼Dp(〈α, r〉 = 1)| ≤ ε J

4 Applications

We first define the noisy hypercube, which is a crucial graph in our applications and also an
important graph in many areas of theoretical computer science.

I Definition 15 (Noisy Hypercube Graph). The p-noisy hypercube graph, which we denote Tp,
is the graph on vertex set {0, 1}n such that a random step from node a ∈ {0, 1}n is equivalent
to picking r ∼ Dp and moving to a + r.
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Note that the transition matrix of Tp has no nonzero entries since there is a nonzero probability
of reaching any node from any other node and is thus very dense. Our ε-biased distribution
for Dp allows us to construct a spare noisy hypercube that has similar properties to the
original noisy hypercube but with fewer edges.

I Definition 16 (Sparse Noisy Hypercube Graph). Let Z be an (p, ε)-biased sample space.
The sparse (p, ε)-noisy hypercube graph, which we denote T sparsep,ε , is the graph on vertex set
{0, 1}n such that a random step from node a ∈ {0, 1}n is equivalent to picking z ∼ Z and
moving to a + z.

Because of the size of our construction’s seed length, each row and column of the 2n × 2n
transition matrix of T sparsep,ε has Õ(n) nonzero entries when p and ε are constant.

We first show that the noise operator defined by T sparsep,ε has similar eigenvalues to that
of the original noise operator. This leads to the fact that our randomness efficient notion
of stability approximates the original notion of stability, and also implies that the graph
T sparsep,ε is our desired sparse small set expander.

4.1 Eigenvalues
The main feature about T sparsep,ε from which our applications arise is that it has a similar
spectrum to Tp. We first give a well known (and easily verifiable) fact about the eigenvalues
and eigenvectors of graphs on the boolean hypercube that are defined like above.

I Theorem 17. Let Z be any distribution on {0, 1}n. Define G = (V,E) on vertices
V = {0, 1}n as the graph on which a random step starting at a ∈ {0, 1}n is equivalent to
drawing z ∈ Z and moving to a + z. Let M be the 2n × 2n transition matrix of G. For every
subset of indices I ⊂ [n], define the vector vI ∈ {−1, 1}2n to be 1 if the parity of the ith
bitstring in {0, 1}n restricted to I is 0 and −1 if the parity is 1. Each vI is an eigenvector
of M with eigenvalue bI,Z .

Given this well known fact it is straightforward to see that the eigenvalue profiles of Tp and
T sparsep,ε are close:

I Corollary 18. The graphs Tp and T sparsep,ε have the same eigenvectors. For every eigenvector
v of both graphs, the corresponding eigenvalues differ by at most 2ε.

Proof. By Theorem 17, both Tp and T sparsep,ε have the same eigenvectors vI ∈ {−1, 1}2n . For
any I, vI has eigenvalue bI,Dp in Tp and bI,Z in T sparsep,ε where Z is an ε-biased distribution
for Dp. However we know by definition of (p, ε)-biased distribution that:

|bI,Z − bI,Dp | ≤ 2ε J

4.2 Randomness Efficient Noise
The stability of a boolean function f on {−1, 1}n is a fundamental concept in the analysis of
boolean functions that measures the tendency of the output of a function to change when
each bit of the input is flipped independently with probability p. In our context, the stability
is equivalent to

Stab1−2p = 〈f , Tpf〉

where we think of f as a 2n length truth table, and Tp is the transition matrix of the noisy
hypercube above (here we no longer think of 〈·, ·〉 as the inner product modulo 2).
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We can show that the stability of a function under our notion of “derandomized noise”,
where noise is added to the input via a sample from a (p, ε)-biased space for Dp is close to
the original notion of stability.

I Theorem 19 (Randomness Efficient Noise Stability is Close to Noise Stability). Let f :
{−1, 1}n → [0, 1] be a function with E[f ] = µ. Then:

Stab1−2p(f)− 2ε ≤ Stabsparse1−2p (f) ≤ Stab1−2p(f) + 2ε

Proof. We can write f in the Fourier basis as:

f =
∑
I

fIvI

It is a well know fact in fourier analysis that:

〈f , Tpf〉 =
∑
I

bI,Dpf
2
I

Similarly we can derive the corresponding expression for T sparsep,ε :

〈f , T sparsep,ε f〉

=
〈∑

I

fIvI , T sparsep,ε

∑
I

fIvI

〉

=
〈∑

I

fIvI ,
∑
I

bI,ZfIvI

〉

=
∑
I

bI,Zf
2
I 〈vI ,vI〉

≤
∑
I

(bI,Dp + 2ε)f2
I

= 〈f , Tpf〉+ 2ε

For the lower bound, we replace the inequality with bI,Z ≥ bI,Dp − 2ε J

4.3 Small Set Expansion
We now show that our sparse noisy hypercube is our desired sparse small set expander with
large eigenvalues. We first define the expansion of a graph.

I Definition 20 (Expansion). Given graph G = (V,E), let S be any subset of vertices of G.
The expansion of S, denote Φ(S) is the probability that a randomly chosen edge (u, v) has
v 6∈ S conditioned on u ∈ S. Equivalently, if G is a regular undirected graph, we have:

ΦG(S) = E(S, V \ S)∑
v∈S deg(v)

In the context of small set expansion, we are typically interested in the expansion of
sets that contain a small constant fraction δ of vertices. We say that a graph is a small set
expander if for sufficiently small δ, all subsets containing δ-fraction of vertices have expansion
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at least some constant (such as 0.9). We know that the noisy hypercube has n eigenvalues
that are at least 1− 2p. As a consequence of Corollary 18, we know that T sparsep,ε has at least
n eigenvalues that are at least 1− 2p− 2ε.

It remains to verify that the sparse noisy hypercube is also a small set expander. The
following theorem relates the top eigenvectors of a graph to the expansion of sets [3].

I Theorem 21. For any vector space V, define the p→ q norm of a subspace U of V as:

||U||p→q = max
v∈V

||PUv||q
||v||p

Where PU is the projection operator onto subspace U .
For graph G = (V,E), let U be the subspace spanned by all eigenvectors of G with

eigenvalue larger than λ. Then for any S ⊂ V containing δ fraction of vertices we have:

Φ(S) ≥ 1− λ− ||U||22→4
√
δ

In the case of the noisy hypercube, one can show via the Bonami Lemma that ||U||2→4 is
bounded. This implies via Theorem 21 that for sufficiently small δ, the expansion of S is
large. Finally, the next corollary relates the expansion of sets in T sparsep,ε to those in Tp.

I Corollary 22. Let Utrue be the subspace spanned by all eigenvectors of Tp with eigenvalue
larger than λ. Let Upseudo be the subspace spanned by all eigenvectors of T sparsep,ε with
eigenvalue larger than λ+ 2ε. Then for any S ⊂ V that contains δ fraction of vertices we
have:

ΦT sparsep,ε
(S) ≥ 1− λ− ||Utrue||22→4

√
δ − 2ε

Proof. Observe that since the eigenvalues of Tp are at most 2ε away from the eigenvalues of
T sparsep,ε , we have Upseudo ⊂ Utrue. This implies that ||Upseudo||2→4 ≤ ||Utrue||2→4. Thus by
Theorem 21 we have:

ΦT sparsep,ε
(S) ≥ 1− (λ+ 2ε)− ||Upseudo||22→4

√
δ ≥ 1− λ− ||Utrue||22→4

√
δ − 2ε J

Thus sets in T sparsep,ε have similar expansion to those in Tp. As mentioned earlier, by the
Bonami Lemma [13], we have that when λ = (1− 2p)k then ||Utrue||22→4 ≤ 3k. Thus we have:

ΦT sparsep,ε
(S) ≥ 1− (1− 2p)k − 3k

√
δ − 2ε

Thus if we want expansion at least 1− γ for some small γ, we can set ε < γ
6 , k > O

(
ln 1/γ
p

)
,

and δ < γO( 1
p ).

5 Lower Bounds and Discussion

A natural question is how the size of our construction compares to an optimal, possibly
nonexplicit construction. We first note that a simple probabilistic argument shows that any
collection of 2n tests from {0, 1}n to {0, 1} under the uniform distribution can be ε-fooled
by some function G : {0, 1}s → {0, 1}n for s = logn+ 2 log(1/ε) +O(1). The probabilistic
construction is to simply pick each output of G independently and uniformly at random from
{0, 1}n. Using an analogous argument, picking each output of G independently from Dp
shows that there is a distribution Z using the same seed length s that fools all 2n linear tests
under Dp. Thus, non-explicitly there exists a construction of an (p, ε)-biased distribution
whose size does not depend on p. Moreover, the distribution is uniform on its support, which
is not the case for our explicit construction.
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Alon et al [1] prove a lower bound of Ω
(

n
ε2 log 1/ε

)
on the size of ε-biased sets. We note

that as a whole, since our construction works for p = 1/2 this lower bound is also a lower
bound in general for ε-biased sets for Dp. However, the story changes dramatically for small
p. The previously mentioned lower bound is a result on the equivalence of ε-biased sets
with ε-balanced linear error correcting codes. In an ε-balanced linear error correcting codes
with message length n and block length m, every codeword has weight between (1/2− ε)m
and (1/2 + ε)m. The equivalence between such codes and ε-biased sets breaks down when
generalizing to (p, ε)-biased sample spaces. Under the assumption that we wish to construct
an (p, ε)-biased distribution for Dp,n of size m that is uniform on its support, we would
require a linear error correcting code with basis a1, . . . ,an ∈ {0, 1}m such that the weight of
the codeword

∑
I aI for every I ⊂ [n] is between 1

2 −
1
2 (1− 2p)|I|− ε and 1

2 −
1
2 (1− 2p)|I|+ ε.

We note that our construction worsens in comparison to the optimal as p gets small.
Indeed, as p approaches 1/n, the amount of entropy in Dp approaches 1, however, our seed
length approaches log2 n. Thus, our construction illuminates a peculiar question about
simulating an unfair coin: in order to simulate a coin with bias p, we require log 1

p flips of
a fair coin, or in other words log 1

p bits of Shannon entropy. This is an extremely wasteful
amount of randomness needed to simulate a distribution that has only H(p) � 1 bits of
entropy. However, it is unclear how to simulate an unfair coin using fair coins in a more
efficient way. We note that the reverse direction of simulating a fair coin with a biased coin
is a well known riddle attributed to von Neumann [16].

One reason that the efficiency of our construction depends on p is because of an asymmetry
between the nature of the seed and the output. We aimed to use O(logn) independent fair
coin flips to approximate the distribution of n independent unfair coin flips. A more apt
comparison would be to stretch O(logn) unfair coins to approximate n unfair coins. It would
be interesting to see whether there are simple constructions that can do so.
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A Omitted Proofs

Proof of Proposition 10. We note that H−1 = 2−nHT and show that Hp = b. For any
fixed entry of b, we have:

bα,D = Pra∼D [〈α,a〉 = 0]− Pra∼D [〈α,a〉 = 1]

=
∑

a:〈α,a〉=0

pa,D −
∑

a:〈α,a〉=1

pa,D

=
∑
a

(−1)〈α,a〉pa,D

= (Hp)α J

Proof of Corollary 11. For any α ∈ {0, 1}n, we have that:

|bα,Z − bα,Dp |
= |Pz∼Z [〈α, z〉 = 0]− Prz∼Z [〈α, z〉 = 1]− (Pz∼Dp [〈α, z〉 = 0]− (Pz∼Dp [〈α, z〉 = 1])|
≤ |Pz∼Z [〈α, z〉 = 0]− Pz∼Dp [〈α, z〉 = 0]|+ |Prz∼Z [〈α, z〉 = 1]− (Pz∼Dp [〈α, z〉 = 1])|
≤ 2ε.

Fix any a ∈ {0, 1}n. By the formula from Proposition 10, we know that:

pa,Z = 2−n
∑

α∈{0,1}n
(−1)〈a,α〉bα,Z

Similarly:

pa,D = 2−n
∑

α∈{0,1}n
(−1)〈a,α〉bα,D

http://arxiv.org/abs/math/0503503
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
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Thus:

|pa,Z − pa,D|

= 2−n
∣∣∣∣∣∣
∑

α∈{0,1}n
(−1)〈a,α〉(bα,Z − bα,D)

∣∣∣∣∣∣
≤ 2−n

∑
α∈{0,1}n

|(bα,Z − bα,D)|

≤ 2ε J

Proof of Proposition 12. Let Xi be a random variable with value −1 if the ith coin toss
is heads and 1 otherwise. Then the probability of an odd number of heads is equal to
Pr[
∏k
i=1 Xi = −1]. Note that the random variable 1

2 + 1
2
∏k
i=1 Xi is an indicator random

variable that is 1 when there is an even number of heads. Thus

Pr(even number of heads) = E

[
1
2 + 1

2

k∏
i=1

Xi

]
= 1

2 + 1
2

k∏
i=1

E[Xi] = 1
2 + 1

2(1− 2p)k

Thus the probability of an odd number of heads is

1
2 −

1
2(1− 2p)k J

Proof of Lemma 13. We wish to show that for any α ∈ {0, 1}n with |α| ≤ k:

∣∣∣∣Prx∼X[〈α,x〉 = 1]− Prx∼D 1
2t

[〈α,x〉 = 1]
∣∣∣∣ ≤ tε

We prove this via a hybrid argument.

Consider random variables X1, . . . ,Xt,R1, . . . ,Rt taking on values in {0, 1}n where the
Xi’s are independent draws from a k-wise ε-biased set, Ri’s are chosen independently and
uniformly at random from {0, 1}n. We then define for 0 ≤ ` ≤ t the t+1 hybrid distributions:

H` =
〈
α,

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+1
Xi

)〉

Notice that H0 = 〈α,x〉 when x ∼ X, while Ht+1 = 〈α,x〉, when x ∼ Dp. We show that
|H` −H`+1| ≤ ε for every 0 ≤ ` ≤ t. Since each H` is a distribution on {0, 1} we can write
the probability that distribution H` outputs 1 as:
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Pr
R1,...,R`,

X`+1,...,Xt

[〈
α,

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+1
Xi

)〉
= 1
]

= Pr
R1,...,R`,

X`+1,...,Xt

[〈
α,

(⊙̀
i=1

Ri

)
�X`+1 �

(
t⊙

i=`+2
Xi

)〉
= 1
]

= Pr
R1,...,R`,

X`+1,...,Xt

[〈
α,

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
�X`+1

〉
= 1
]

= Pr
R1,...,R`,

X`+1,...,Xt

[〈
α�

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
,X`+1

〉
= 1
]

= E
R1,...,R`,

X`+2,...,Xt

[
PrX`+1

[〈
α�

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
,X`+1

〉
= 1
]]

Where the last equality makes use of the fact that all the Xi’s and Ri’s are independent
from each other. Similarly, we can write the probability that H`+1 outputs 1 as:

Pr
R1,...,R`+1,
X`+2,...,Xt

[〈
α,

(
`+1⊙
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)〉
= 1
]

= E
R1,...,R`,

X`+2,...,Xt

[
PrR`+1

[〈
α�

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
,R`+1

〉
= 1
]]

For fixed R1, . . . ,R` and X`+2, . . . ,Xt, we know that β = α�
(⊙`

i=1 Ri

)
�
(⊙t

i=`+2 Xi

)
is a vector with at most k 1’s. Thus since X`+1 is k-wise ε-biased, we know that:

|PrX`+1 [〈β,R`+1〉 = 1]− PrX`+1 [〈β,X`+1〉 = 1] | ≤ ε/2

Since expectation is just a weighted average, and each H` is a distribution over {0, 1}, we
can conclude that |H` −H`+1| ≤ ε/2. Combining all the hybrid steps via triangle inequality
gives us that |H0 −H`| ≤ tε/2 J
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