
Connectivity Lower Bounds in Broadcast
Congested Clique
Shreyas Pai
The University of Iowa, Iowa City, IA, USA
shreyas-pai@uiowa.edu

Sriram V. Pemmaraju
The University of Iowa, Iowa City, IA, USA
sriram-pemmaraju@uiowa.edu

Abstract
We prove three new lower bounds for graph connectivity in the 1-bit broadcast congested clique
model, BCC(1). First, in the KT-0 version of BCC(1), in which nodes are aware of neighbors
only through port numbers, we show an Ω(log n) round lower bound for Connectivity even for
constant-error randomized Monte Carlo algorithms. The deterministic version of this result can be
obtained via the well-known “edge-crossing” argument, but, the randomized version of this result
requires establishing new combinatorial results regarding the indistinguishability graph induced by
inputs. In our second result, we show that the Ω(log n) lower bound result extends to the KT-1
version of the BCC(1) model, in which nodes are aware of IDs of all neighbors, though our proof works
only for deterministic algorithms. This result substantially improves upon the existing Ω(log∗ n)
deterministic lower bound (Jurdziński et el., SIROCCO 2018) for this problem. Since nodes know IDs
of their neighbors in the KT-1 model, it is no longer possible to play “edge-crossing” tricks; instead
we present a reduction from the 2-party communication complexity problem Partition in which
Alice and Bob are given two set partitions on [n] and are required to determine if the join of these
two set partitions equals the trivial one-part set partition. While our KT-1 Connectivity lower
bound holds only for deterministic algorithms, in our third result we extend this Ω(log n) KT-1 lower
bound to constant-error Monte Carlo algorithms for the closely related ConnectedComponents
problem. We use information-theoretic techniques to obtain this result. All our results hold for
the seemingly easy special case of Connectivity in which an algorithm has to distinguish an
instance with one cycle from an instance with multiple cycles. Our results showcase three rather
different lower bound techniques and lay the groundwork for further improvements in lower bounds
for Connectivity in the BCC(1) model.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Communication complexity; Mathematics of computing → Information theory

Keywords and phrases Distributed Algorithms, Broadcast Congested Clique, Connectivity, Lower
Bounds, Indistinguishability, Communication Complexity, Information Theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.32

Related Version A full version of this paper is available at: https://arxiv.org/abs/1905.09016.
A short version of this paper has appeared as a brief announcement in PODC 2019.

1 Introduction

We are given an n-node, completely connected communication network in which each node
can broadcast at most b bits in each round. These n nodes and a subset of the edges of the
communication network form the input graph. The question we ask is this: how many rounds
of communication does it take to determine if the input graph is connected? This is the well
known Connectivity problem in the b-bit Broadcast Congested Clique, i.e., the BCC(b)
model.

© Shreyas Pai and Sriram V. Pemmaraju;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2409-7807
mailto:shreyas-pai@uiowa.edu
mailto:sriram-pemmaraju@uiowa.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.32
https://arxiv.org/abs/1905.09016
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Connectivity Lower Bounds in Broadcast Congested Clique

A series of recent rapid improvements [15, 13, 20] have shown that Connectivity and
in fact MST, can be solved in O(1) rounds w.h.p.1 in the b-bit Congested Clique model,
CC(b), when b = logn. The CC(b) model allows each node to send a possibly different b-bit
message to each of the other n − 1 nodes in the network, in each round. In contrast, the
fastest known algorithm for Connectivity in the BCC(logn) model, due to Jurdziński
and Nowicki [19], is deterministic and it runs in O

(
logn

log logn

)
rounds. This contrast between

BCC(b) and CC(b) is not surprising, given how much larger the overall bandwidth in CC(b)
is compared to BCC(b). Becker et al. [4] show that the pair-wise set disjointness problem
can be solved in O(1) rounds in CC(1), but needs Ω(n) rounds in BCC(1). But, despite
the fact that Connectivity is such a fundamental problem, prior to this paper, only an
Ω(log∗ n)-round lower bound for deterministic algorithms for Connectivity in the KT-1
BCC(1) model was known [18].

Lower bound arguments in “congested” distributed computing models typically use a
“bottleneck” technique [5, 8, 9, 11, 12, 16]. At a high level, this technique consists of showing
that there is a low bandwidth cut in the communication network across which a high volume of
information has to flow in order to solve the given problem. The lower bound on information
flow is usually obtained via 2-party communication complexity lower bounds [23]. Not
surprisingly, the “bottleneck” technique does not work in the CC(b) model because any cut
with Θ(n) vertices in each part, has a high bandwidth of Θ(n2 · b) bits. In fact, a result of
Drucker et al. [11], showing that circuits can be simulated efficiently in the Congested Clique
model, indicates that no technique we currently know of can prove non-trivial lower bounds
in the CC(b) model. However, as further shown by [11], “bottlenecks” are possible for some
problems in the weaker BCC(b) model. In this model, every cut has bandwidth O(n · b) and
for example Drucker et al. [11] provide a reduction showing that for the problem of detecting
the presence of a K4 in the input graph there is a cut across which Ω(n2) information has to
flow. This leads to an Ω(n/b) lower bound for K4-detection in the BCC(b).

All known lower bounds [11, 16] in the BCC(logn) model have this general structure and
these techniques work for problems such as fixed subgraph detection, all pairs shortest paths,
diameter computation, etc., that are relatively difficult, requiring polynomially many rounds
to solve. For “simpler” problems such as Connectivity and MST, we need more fine-grained
lower bound techniques that allow us to prove polylogarithmic lower bounds. Specifically,
since Connectivity can be solved in BCC(b) for any b ≥ 1 in just O(poly(logn)) rounds,
the best we can expect is to show the existence of a cut across which Ω(n · poly(logn))
volume of information needs to flow. In fact, the connected components of a subgraph can
be represented in O(n logn) bits and this is all that needs to communicated across a cut
to solve Connectivity. Thus the best lower bound we can expect for Connectivity via
this technique is an Ω(logn/b). However, even this was unknown prior to this paper and
one contribution of this paper is an Ω(logn/b) lower bound for Connectivity using the
“bottleneck” technique.

1.1 Our Contribution
We consider the Connectivity problem and the closely related ConnectedComponents
problem in the BCC(1) model. In the latter problem, each node needs to output the label of
the connected component it belongs to. We work in the BCC(1) model because it allows

1 We use “w.h.p.” as short for “with high probability” which refers to the probability that is at least
1− 1/nc for c ≥ 1.

S. Pai and S. V. Pemmaraju 32:3

us to isolate barriers due to different levels of initial local knowledge (e.g., knowing IDs of
neighbors vs not knowing IDs). This is also without loss of generality because a t-round
lower bound in BCC(1) immediately translates to a t/b-round lower bound in BCC(b). We
consider two natural versions of the BCC(1) model, that we call KT-0 and KT-1 (using
notation from [2]). In the KT-0 (“Knowledge Till 0 hops”) version, nodes are unaware of IDs
of other nodes in the network and the n− 1 communication ports at each node are arbitrarily
numbered 1 through n − 1. In the KT-1 (“Knowledge Till 1 hop”) version, nodes know
all n IDs in the network and the n− 1 communication ports at each node are respectively
labeled with the IDs of the nodes at the other end of the port. Note that if the bandwidth
b = Ω(logn), then there is essentially no distinction between the KT-0 and KT-1 versions
since each node in the KT-0 version can send its ID to neighbors in constant rounds and
then nodes would have as much knowledge as they initially do in the KT-1 version. But the
difference in initial knowledge plays a critical role when b = o(logn) and in fact our best
results in these two models use completely different techniques. We present three main lower
bound results in this paper, derived using very different techniques.

In the KT-0 version of BCC(1) we show an Ω(logn) round lower bound for Connectivity
even for constant-error randomized Monte Carlo algorithms. In fact, the lower bound is
shown for the seemingly simpler “one cycle vs two cycles” problem in which the input
graph is either a single cycle or consists of two disjoint cycles and the algorithm has
to distinguish between these two possibilities. We use a well-known indistinguishability
argument involving “edge crossing” [22, 3, 27] for this result, but the main novelty here
is how this argument deals with the possibility that the algorithm can err on a constant
fraction of the input instances. In a standard edge crossing argument one shows that for
a particular YES instance (i.e., a connected or “one-cycle” instance) G, many of the NO
instances G(e, e′) obtained by crossing pairs of edges e and e′ in G cannot be distinguished
even after some t rounds of a BCC(1) algorithm (see Definition 7 for the precise definition
of a crossing). But for a randomized lower bound in BCC(1), it is not enough to consider
a single YES instance. Instead, we use the bipartite indistinguishability graph induced by
all YES and NO instances and show that this satisfies a polygamous version of Hall’s
Theorem (see Theorem 1). This allows us to show the existence of a large generalized
matching in the indistinguishability graph, which in turn shows that every o(logn) round
constant-error Monte Carlo algorithm can be fooled into making more errors than it is
allowed.
We then show that the above lower bound result extends to the KT-1 version of the
BCC(1) model, though our proof only works for deterministic algorithms. This result
substantially improves the Ω(log∗ n)-round lower bound for deterministic algorithms
for Connectivity in the KT-1 BCC(1) model [18]. In KT-1, because of knowledge
of IDs of neighbors, it is no longer possible to perform “edge crossing” tricks. But we
are able to successfully use the “bottleneck” technique and show that there is a cut for
the Connectivity problem across which Ω(n logn) bits need to flow. We prove this
result by presenting a reduction from the 2-party communication complexity problem
Partition [14]. In the Partition problem, we have a ground set [n] and Alice and Bob
respectively are given two set partitions PA and PB of [n]. The goal is to output 1 iff
PA ∨ PB = 1 where PA ∨ PB (read as “PA join PB”) is the finest partition P such that
both PA and PB are refinements of P 2 and 1 is the trivial partition consisting of the single

2 Given two set partitions P and P ′ of [n], P is said to be a refinement of P ′ if for every part S ∈ P ,
there is a part S′ ∈ P ′ such that S ⊆ S′. For example the partition (1, 2)(3, 4)(5) is a refinement of

FSTTCS 2020

32:4 Connectivity Lower Bounds in Broadcast Congested Clique

set [n]. For example, if PA = (1, 2)(3, 4)(5), PB = (1, 2, 4)(3)(5), and PC = (1, 2, 4)(3, 5)
then PA ∨ PB = (1, 2, 3, 4)(5) and PA ∨ PC = (1, 2, 3, 4, 5). We then use the fact that the
deterministic communication complexity of Partition is Ω(n logn) to obtain our result.
Again, this time using a linear-algebraic argument, we show our result for a seemingly
simple special case of Connectivity: “one cycle vs multiple cycles.” As far as we
know, randomized communication complexity of Partition is a long-standing unresolved
problem. Showing a lower bound on the randomized communication complexity of
Partition will immediately lead to a KT-1 lower bound for randomized Connectivity
algorithms, via our reduction.
Our final result arises from our attempt to obtain a KT-1 lower bound even for constant-
error Monte Carlo algorithms. We consider a version of the Partition problem, called
PartitionComp, in which Alice and Bob are required to output the join of their respective
input partitions PA and PB instead of just determining if PA ∨ PB = 1. We use an
information-theoretic argument to show that the mutual information of any algorithm,
even a constant-error Monte Carlo algorithm, that solves this version of Partition is
Ω(n logn). This leads to an Ω(logn)-round lower bound for ConnectedComponents in
the KT-1 version of BCC(1), even for constant-error randomized Monte Carlo algorithms.

We prove in this paper non-trivial lower bounds for Connectivity in the BCC(1) model.
The fact that our lower bounds hold even in the KT-1 model implies that the difficulty of
the problem does not arise just from lack of knowledge of IDs of other nodes. The fact
that our lower bounds hold for extremely sparse (i.e., 2-regular) graphs, suggests that there
might be room to get stronger lower bounds by considering dense input graphs. In fact,
using a deterministic sketching technique [25, 24], it is possible to obtain a deterministic
O(logn)-round BCC(1) algorithm for Connectivity for graphs with arboricity bounded
by a constant. This implies that our lower bounds are tight for uniformly sparse graphs.

1.2 The BCC(b) Model
A size-n KT-0 instance of the BCC(1) model consists of n vertices, each with a unique
O(logn)-bit ID. Each vertex has n − 1 communication ports labeled distinctly, 1 through
n− 1, in an arbitrary manner. A key feature of the KT-0 instance is that port labels have
nothing to do with IDs. Pairs of communication ports are connected by network edges such
that the underlying communication network is a clique. The n vertices along with a subset
of the edges form the input graph. Thus some edges are both network edges and input graph
edges, whereas the remaining edges are just network edges. The initial knowledge of a vertex
v consists of its ID, its port numbering, an identification of ports that correspond to input
edges, and an arbitrarily long string rv of random bits. In each round t, each vertex u

receives messages via broadcast from the remaining n − 1 vertices in the previous round,
performs local computation, and broadcasts a message of length at most b-bits. This message
is received at the beginning of round t + 1 by the remaining n − 1 vertices along each of
their communication ports that connect to u. After t rounds, the at most t · b bits that v
sends and the at most (n− 1) · t · b bits that v receives, along with the ports that they are
received from make up the transcript of v at round t. A size-n KT-1 instance of the BCC(b)
model differs from a KT-0 instance in one important way: each network edge e = {u, v} is
connected to u at port number ID(v) and connected to v at port number ID(u). Thus, in
a KT-1 instance, IDs serve as port numbers and the initial knowledge of a vertex consists
include all n vertex IDs.

(1, 2)(3, 4, 5).

S. Pai and S. V. Pemmaraju 32:5

Since the main focus of the paper is to derive lower bounds, we assume the public coin
model in which all the random strings rv are identical. Lower bounds proved in the public
coin model hold in the private coin model as well, in which all the rv’s are distinct. For
a decision problem, such as Connectivity, when we run a BCC(b) algorithm A on an
input graph G, each vertex outputs either YES or NO and the output of the system is
YES if all vertices output YES and is NO otherwise. For a deterministic algorithm A for
Connectivity the system must output YES if G is connected and NO if G is disconnected.
If A is an ε-error randomized Monte Carlo algorithm, then in order to be correct, it must
satisfy the following requirements: (i) if G is connected then the system outputs YES with
probability > 1− ε and (ii) if G is disconnected then the system outputs NO with probability
> 1− ε.

1.3 Related Work
Congest model [28] lower bounds via the “bottleneck technique” that rely on communication
complexity lower bounds have been shown for MST and related connectivity problems in [9]
and for minimum vertex cover, maximum independent set, optimal graph coloring, all pairs
shortest paths, and subgraph detection in [5, 8, 12]. This approach has also been used to
derive BCC(logn) lower bounds in [11, 16]. Becker et al. [4] define a spectrum of congested
clique models parameterized by a range parameter r, denoting the number of distinct messages
a node can send in a round. Setting r = 1 gives us the BCC(b) model and setting r = n

gives us the CC(b) model. They show the pair-wise set disjointness problem is sensitive to
the value of r in the sense that for every pair of ranges r′ < r, the problem can be solved
provably faster in the model with range r than it can in the model with range r′.

Distributed lower bounds via the “edge crossing” argument have a long history in
distributed computing, see [21] for an example in the context of proving message complexity
lower bounds. More recent examples [22, 3, 27] appear in the context of proof-labeling schemes.
Informally speaking, a proof-labeling scheme consists of a prover who labels the vertices
of the input configuration with labels and a distributed verifier who is required to verify a
predicate (e.g., do the marked edges form an MST?) in one round, using the help of the
prover’s labels. The verification complexity of a proof-labeling scheme is the size of the largest
message sent by the verifier. Patt-Shamir and Perry [27] show an Ω(logn) lower bound on the
verification complexity of MST in the broadcast congested clique model. An Ω(logn) lower
bound in the KT-0 version of BCC(1) for deterministic Connectivity algorithms follows
from this result. The high level idea is that if there were a faster BCC(1) Connectivity
algorithm, the prover could use the transcript of the algorithm at each vertex v as the label at
v. The verifier could then broadcast these transcripts and locally, at each vertex v, simulate
the algorithm at v. Baruch et al. [3] show that if there is a deterministic proof-labeling
scheme with verification complexity κ, then there is a randomized proof-labeling scheme
with one-sided error having verification complexity O(log κ). Combining this with the fact
that MST verification has a deterministic proof-labeling scheme with O(log2 n) verification
complexity [22], leads to a randomized proof-labeling scheme with O(log logn) verification
complexity for MST [3, 27]. This needs to be contrasted with the fact that we show an
Ω(logn) lower bound for Connectivity in KT-0 BCC(1) even for constant-error Monte
Carlo algorithms.

There have been recent attempts to combine the edge crossing and bottleneck techniques
to obtain lower bounds for triangle detection in the Congest model [1, 12]. In particular, [12]
provide an Ω(logn) lower bound for deterministic algorithms solving triangle detection in
the KT-1 Congest model with 1-bit bandwidth.

FSTTCS 2020

32:6 Connectivity Lower Bounds in Broadcast Congested Clique

Finally, lower bounds for the Connectivity problem are also known in related models
like streaming and MPC [26, 6, 29]. Ideas in these papers, based on the polynomial method
and boolean function complexity do not seem to imply any non-trivial lower bounds in the
BCC(1) model.

2 Technical Preliminaries

Polygamous Hall’s Theorem. Let G = (L,R,E) be a bipartite graph. A k-matching is a
subgraph consisting of a set of nodes A ⊆ L where each v ∈ A has edges to nodes in the set
nbr(v) such that |nbr(v)| = k and nbr(u) ∩ nbr(v) = ∅ for u, v ∈ A, u 6= v. The size of a
k-matching is the number of connected components in the subgraph.

I Theorem 1 (Polygamous Hall’s Theorem). Let G = (L,R,E) be a bipartite graph. If for
every S ⊆ L we have |N(S)| ≥ k|S| then G has a k-matching of size |L|.

Proof. Make k copies of each node in L while keeping R the same. Now for every S ⊆ L

we have |N(S)| ≥ |S| and by Hall’s marriage theorem, we have a matching in the modified
bipartite graph which is a k-matching of size |L| in the original graph. J

Yao’s Minimax Theorem. The standard way to prove lower bounds on ε-error randomized
algorithms is by invoking Yao’s Minimax Theorem [31]. Let RRε(P) denote the minimum
round complexity of any ε-error randomized algorithm that solves P . Let DRµε (P) denote the
distributional round complexity of P , which is the minimum deterministic round complexity
of an algorithm whose input is drawn from the distribution µ (known to the algorithm) and
the algorithm is allowed to make error on at most ε fraction of the input (weighted by µ).

I Theorem 2 (Yao’s Minimax Theorem). For any problem P , RRε(P) ≥ maxµ{DRµε (P)}

Yao’s Minimax Theorem reduces the problem of proving a randomized lower bound to the
task of designing a “hard” distribution that produces high distributional complexity.

Lower bound for Partition. The total number of distinct partitions on a ground set of n
elements is given by the nth Bell number Bn. It is well known that Bn = 2Θ(n logn). This
means that the number of different possible input pairs that Alice and Bob can receive in
the Partition problem is B2

n = 2Θ(n logn). Define the matrix Mn such that Mn(i, j) = 1 if
Pi ∨ Pj = 1 and Mn(i, j) = 0 otherwise. Note that Mn is a Bn × Bn matrix. Theorem 3
shows that this matrix is non-singular.

I Theorem 3 ([10, 30]). rank(Mn) = Bn where Bn is the nth Bell number

Therefore by Lemma 1.28 of [23] we get the following corollary.

I Corollary 4. The deterministic 2-party communication complexity of Partition is
Ω(n logn)

Information Theory. Let µ be a distribution over a finite set Ω and let X be a random
variable with distribution µ. The entropy of X is defined as H(X) = −

∑
x∈Ω µ(x) logµ(x)

and the conditional entropy of X given Y is H(X|Y) =
∑
y Pr[Y = y]H(X|Y = y) where

H(X|Y = y) is the entropy of X conditioned on the event {Y = y}. The joint entropy of two
random variables X and Y , denoted by H(X,Y), is the entropy of their joint distribution.

The mutual information between random variables X and Y is I(X;Y) = H(X) −
H(X|Y) = H(Y)−H(Y |X) and the conditional mutual information between X and Y given
Z is I(X;Y |Z) = H(X|Z) −H(X|Y,Z). See the first two chapters of [7] for an excellent
introduction to the basics of information theory.

S. Pai and S. V. Pemmaraju 32:7

3 Lower Bounds in the KT-0 model

This section is devoted to proving the following theorem. As mentioned earlier, our lower
bound applies to the simpler “one cycle vs two cycles” problem which we will call TwoCycle.
In this problem, the input is promised to be either a single cycle or two disconnected cycles,
each of length at least 3 and the goal is to distinguish between these two types of inputs.

I Theorem 5. For a sufficiently small constant 0 < ε ≤ 1/2, the ε-error randomized round
complexity of the TwoCycle problem in the BCC(1) KT-0 model is bounded below by
Ω(logn).

Proof. Consider an arbitrary one-cycle instance I1 ∈ V1 after t = 0.1 log3 n rounds of
algorithm A. Let x, y ∈ {0, 1,⊥}t be the strings that correspond to the largest set of active
edges after t-rounds of algorithm A. We would like to count the size of this set of active
edges. Recall that we orient each input graph edge of I1 in a clockwise direction. Therefore,
each input graph edge in I1 can be labeled with a string of length 2t which denotes messages
sent across it from the head and the tail (in order) across the t rounds. This means that
there are at least n/32t = n0.8 input graph edges in I1 that have the same messages sent
across them. Therefore, the size of the set of active edges with respect to x, y is at least
Ω(n0.8).

By Lemma 12 and Theorem 1, we can say that there exists a Θ(logn)-matching in Gtx,y
of size |V1|. No matter what the algorithm A outputs on any one-cycle instance, it will
produce the same output on the matched O(logn) two-cycle instances. By Lemma 13, we
know that for any I1 ∈ V1 and I2 ∈ V2, µ(I1) = µ(I2) · Θ(logn) Therefore, each instance
I1 ∈ V1 contributes to Θ(µ(I1)) the error of the algorithm which means that any t-round
BCC(1) algorithm will have total error at least a constant. This implies the theorem. J

Two KT-0 instances I1 and I2 are said to be indistinguishable after t rounds of an algorithm
A if the state of each vertex (i.e., the initial knowledge and the transcript at that vertex)
after t rounds is the same in both the instances. We first introduce a technical tool called
indistinguishability via port-preserving crossings. This tool has been used to show distributed
computing lower bounds in several settings [21, 22, 3, 27] and we heavily borrow notation
from [27]. For an edge e = (v, u) we use the notation e(p, q) to denote that e is connected to
port p at v and to port q at u. For this notation to be unambiguous, we must think of the
edge e = (v, u) as a directed edge v → u even though the graph itself is undirected.

I Definition 6 (Independent Edges [27]). Let I be an instance with input graph G = (V,E)
and let e1 = (v1, u1) and e2 = (v2, u2) be two edges of G. The edges e1 and e2 are said to be
independent if and only if v1, u1, v2, u2 are four distinct vertices and (v1, u2), (v2, u1) /∈ E. A
set of input graph edges is called independent if every pair of edges in the set is a pair of
independent edges.

I Definition 7 (Port-Preserving Crossing [27]). Consider an instance I with input graph G =
(V,E). Let e1 = (v1, u1) and e2 = (v2, u2) be two independent edges of G, and let e′1 = (v1, u2)
and e′2 = (v2, u1) be two corresponding network edges in I. Let p1, p2, q1, q2, p

′
1, q
′
1, p
′
2, q
′
2 be

eight ports such that e1(p1, q1), e2(p2, q2), e′1(p′1, q′2), e′2(p′2, q′1). The crossing of e1 and e2 in
I, denoted by I(e1, e2), is the instance obtained from I by replacing e1 and e2 in G with the
edges e′1 and e′2 and rewiring the edges so that e1(p′1, q′1), e2(p′2, q′2), e′1(p1, q2), and e′2(p2, q1).
(See Figure 1.)

FSTTCS 2020

32:8 Connectivity Lower Bounds in Broadcast Congested Clique

u1

u2v2

v1
p1

p′1

p′2

p2

q1

q′1

q′2

q2

u1

u2v2

v1
p1

p′1

p′2

p2

q1

q′1

q′2

q2

Figure 1 This figure illustrates definition of a port-preserving crossing as per Definition 7.

The following lemma establishes a standard connection between indistinguishability and
port-preserving crossings (henceforth “crossings”) and is in fact the main motivation for
defining crossings. For simplicity, we say that a node sends the character ⊥ to denote the
fact that the node remains silent. Therefore, the events of a node broadcasting a 0, a 1, or
remaining silent can be described as sending the characters 0, 1, or ⊥ respectively.

I Lemma 8. Let I be an instance with input graph G = (V,E) and let e1 = (v1, u1) and
e2 = (v2, u2) be two independent edges of G. If v1, v2 send the same sequence x ∈ {0, 1,⊥}t

and u1, u2 send the same sequence y ∈ {0, 1,⊥}t in the first t rounds of the algorithm, then
I is indistinguishable from I(e1, e2) after t rounds.

Proof. We will prove the lemma by induction on t. The initial knowledge of each vertex in
I and I(e1, e2) is the same so the statement is true for t = 0.

Assume that the lemma is true for some round 0 ≤ i ≤ t. Therefore, the characters
broadcast by the vertices in round i+ 1 will be the same in both the instances. From the
definition of port preserving crossing it is clear that I and I(e1, e2) differ only in four edges,
e1, e2, e′1 = (v1, u2), and e′2 = (v2, u1). Therefore, all vertices except v1, v2, u1, and u2 will
receive the same characters across all their ports in round i+ 1 in both the instances and
hence will have the same state in both instances after round i+ 1.

Let the port names of the four edges in I and I(e1, e2) be as in Definition 7 and Figure
1. In I, the vertex u1 will receive the characters broadcast by v1, v2 through ports q1, q

′
1

respectively and in I(e1, e2) it will receive the characters broadcast by v2, v1 through ports
q1, q

′
1 respectively. Note that v1 and v2 broadcast the same message in round i+ 1 since they

send the same sequence x in the first t rounds and therefore, the state of u1 after round i+ 1
will be the same in both instances. We can make similar arguments for u2, v1, and v2 as well.
Therefore, the state of each vertex after round i+ 1 is the same in both I and I(e1, e2) which
proves the induction step as well as the lemma. J

As a “warm-up”, we first sketch an easy Ω(logn) lower bound for randomized Monte Carlo
algorithms that make polynomially small error, i.e., error ε = 1/nc for constant c > 0. By
Yao’s minimax theorem (Theorem 2), it suffices to show a lower bound on the distributional
complexity of a deterministic algorithm under a hard distribution. Consider the following
hard distribution µ: Let I be an arbitrary instance such that the input graph G of I is a
one-cycle on n vertices. Let S be an arbitrarily chosen set of exactly bn/3c independent
edges 3 and let I(S) be the set of all instances I(e, e′) where e, e′ ∈ S, and therefore,
|I(S)| =

(bn/3c
2
)

= Θ(n2). The hard distribution µ places probability mass 1/2 on the

3 Adding an edge to S invalidates at most two other edges, and therefore we can always find an independent
set S of size bn/3c.

S. Pai and S. V. Pemmaraju 32:9

instance I and uniformly distributes the remaining probability mass among the instances
in I(S). Now, given a t-round deterministic algorithm A we can assign a 2t-character label
to each edge (v, u) obtained by concatenating the t characters broadcast by v and u. Here
each character in the label belongs to the alphabet {0, 1,⊥}. The pigeon-hole principle
implies that there is a set S′ ⊆ S, |S′| ≥ n/(3 · 32t), of edges in S with identical labels.
Then by Lemma 8, for any e, e′ ∈ S′, I and I(e, e′) are indistinguishable after t-rounds of A.
Since A cannot make an error on I, it makes errors on all instances I(e, e′) where e, e′ ∈ S′.
Since µ assigned the probability mass 1/2 uniformly to all instances in I(S), the probability
that A makes an error is at least |I(S′)|/(2|I(S)|) =

(|S′|
2
)
/
(bn/3c

2
)
≥ Ω(3−4t). Therefore,

if t ≤ 0.001 · c · log3 n, this error becomes Ω(1/n0.001c) which is much larger than 1/nc; a
contradiction, implying that t > 0.001 · c · logn and leading to the following theorem.

I Theorem 9. For any constant c > 0, if ε ≤ 1/nc then the ε-error randomized round
complexity of the Connectivity problem in the BCC(1) KT-0 model is Ω(c · logn).

Proof. Note that since the probability mass on I is so large, any algorithm with permissible
error probability must output YES on I and therefore, it will also output YES on all instances
that are indistinguishable from I.

Given a t-round deterministic algorithm A we can assign a 2t-character label to each
edge (v, u) where each character belongs to the alphabet {0, 1,⊥}. The label is assigned
such that the head v sends the ith character of the label and the tail u sends the (t+ i)th
character of the label in round i for all edges. By using the pigeon hole principle, we see
that there is a set S′ ⊆ S, |S′| ≥ n/(3 · 32t), of edges in S with identical labels. By Lemma
8, for any e, e′ ∈ S′, I and I(e, e′) are indistinguishable after t-rounds of A. Therefore, any t
round algorithm will make an error on instances I(e, e′) where e, e′ ∈ S′ and this makes the
error at least

(|S′|
2
)
/
(bn/3c

2
)
≥ Ω(3−4t). Therefore, if t ≤ 0.001 · c · log3 n, this error becomes

Ω(1/n0.001c) which is much larger than 1/nc. J

The hard distribution µ that led to the above theorem fails to give even a super-constant
round lower bound for constant error probability. This is because for any constant ε, there is
a constant t such that the error probability |I(S′)|/(2|I(S)|) of algorithm A is smaller than
ε, leading to no contradiction.

3.1 A Lower Bound for Constant Error Probability

To get around this problem, we start with the observation that a two-cycle instance I(e, e′)
obtained from I, can also be obtained by crossing edges in other one-cycle instances, i.e.,
I(e, e′) = I ′(f, f ′) for edges f, f ′ in an instance I ′ 6= I. Thus, as the algorithm executes, even
though I(e, e′) ceases to be indistinguishable from I, it may continue to be indistinguishable
from I ′. This suggests that we should be considering all one-cycle and two-cycle instances
and all the edge crossings that lead from one-cycle instances to two-cycle instances. This
motivates the definition below of a bipartite indistinguishability graph with all one-cycle
and two-cycle instances as vertices. In the proof of Theorem 9, when we placed the entire
probability mass on a single “star” indistinguishability graph with I being the central node
and instances in I(S) being the leaves, we ran into trouble because the degree of I in this “star”
shrank too quickly with the number of rounds, t. If we consider the full indistinguishability
graph, we have more leeway. Specifically, showing the existence of a large matching in the
indistinguishability graph would be helpful since the algorithm is forced to make an error at
one of the two endpoints of each matching edge. We formalize this intuition below.

FSTTCS 2020

32:10 Connectivity Lower Bounds in Broadcast Congested Clique

Let the set of distinct one-cycle and two-cycle instances be V1 and V2 respectively let µ
be a probability distribution on these. Let A be a t-round deterministic KT-0 algorithm
which solves the TwoCycle problem correctly on (1− ε) fraction of input in the support of
µ (recall, ε is a constant). For any instance I ∈ V1 ∪ V2, call an edge e = (v, u) in the input
graph of I active with respect to strings x, y ∈ {0, 1,⊥}t iff v broadcasts the sequence given
by x and u broadcasts the sequence given by y in the first t rounds of the algorithm A. We
call an edge active if the strings x, y are clear from the context.

I Definition 10 (Indistinguishability Graph). Let t be a non-negative integer and let x, y ∈
{0, 1,⊥}t be two strings of length t. The indistinguishability graph with respect to messages
x and y after t rounds of algorithm A is a bipartite graph Gtx,y = (V1,V2, Et) where V1 is the
set of all one-cycle instances and V2 is the set of all two-cycle instances and there is an edge
{I1, I2} ∈ Et iff I1 ∈ V1 and I2 ∈ V2 and there exist two active independent directed edges
e1 = (v1, u1) and e2 = (v2, u2) in the input graph of I1 such that I2 = I1(e1, e2).

We now propose to use a rather natural hard distribution µ that assigns probability mass
1/2 distributed uniformly among the instances in V1 and the remaining probability mass 1/2
distributed uniformly among the instances in V2. We first prove Lemma 11 that plays a crucial
role in our overall proof by essentially showing that every one-cycle instance has sufficiently
many two-cycle neighbors in Gtx,y with high degree. This in turn is used in Lemma 12 to
prove that a Polygamous Hall’s Theorem (Theorem 1) condition holds for Gtx,y. This allows
us to show that Gtx,y can be packed with |V1| “stars,” each with Θ(logn) leaves. We need
this generalized notion of a matching because as shown in Lemma 13, |V2| = |V1| ·Θ(logn).
Therefore, the probability mass assigned to an instance in V2 is 1/Θ(logn) fraction of the
probability mass assigned to an instance in V1. Thus, a “star” with its central node from V1
and Θ(logn) leaves from V2 has roughly equal probability mass assigned to the YES instance
and NO instances.

I Lemma 11. Consider an arbitrary instance I1 ∈ V1 that is a vertex of Gtx,y. If d ≥ 1 is
the number of active edges of I1 with respect to x, y then for every i, 3 ≤ i ≤ d/2, I1 has at
least d/2 neighbors of degree i · (d− i).

Proof. A two-cycle instance I2 ∈ V2 will be a neighbor of I1 iff I1 and I2 form a pair of
crossed instances with respect to x, y. Say I2 = I1(e, e′) where e = (v, u) and e′ = (v′, u′).
Note that I2 will have two new input graph edges (v, u′) and (u, v′) both of which are active
and all input graph edges of I1 except for e, e′ appear in the input graph of I2. Therefore, I2
also has d active edges with respect to x, y. The degree of I2 is determined by the number of
active edges either cycle, i.e., if I2 has i active edges in one cycle and d− i active edges in
the other cycle then its degree in Gtx,y is i · (d− i) since we can take one active edge from
either cycle and cross them to produce a unique neighbor of I2.

For every active edge e in the input graph of I1, we can associate a unique active edge
ei such that I1(e, ei) has i active edges in one cycle and d − i active edges in the other
cycle. Therefore, I1 has exactly d (or d/2 if i = d/2) neighbors having degree i(d− i). This
argument may not hold exactly for i = 1, 2 because e and ei as described need not form a
pair of independent edges in this case. Thus, the lemma follows. J

I Lemma 12. For the graph Gtx,y, consider an arbitrary set S ⊆ V1 of one-cycle instances
with degree at least 1. Let N(S) be the neighborhood of S in Gt. Then |N(S)| ≥ |S| ·Θ(log d)
where d is the smallest number of active edges in any instance in S.

S. Pai and S. V. Pemmaraju 32:11

Proof. Every I ∈ S has at least d active edges, therefore by Lemma 11, there are at least
d/2 neighbors of I having degree i · (d − i) for 3 ≤ i ≤ d/2. Thus there are at least
(d/2) · |S|/(i · (d − i)) = Θ(|S|/i) two-cycle instances in N(S) having degree i · (d − i).
Therefore, we have |N(S)| ≥

∑d/2
i=3 Θ(|S|/i) = |S| ·Θ(Hd/2 − 3/2) ≥ |S| ·Θ(log d), where Hn

is the nth harmonic number. J

I Lemma 13. |V2| = |V1| ·Θ(logn).

Proof. Let G = G0
λ,λ (λ is the empty string) be the indistinguishability graph at round 0.

Note that in G, every instance in V1 ∪ V2 has strictly positive degree since each instance has
n active edges. Therefore, we have |V1| = |N(V2)| and |V2| = |N(V1)|. Therefore, by Lemma
12, we have |V2| = |V1| · Ω(logn). Now we show that |V2| = |V1| ·O(logn).

Since each instance has n active edges, each one-cycle instance I1 has degree n(n− 3)/2
because for each input graph edge e of I1 there are (n− 3) active edges independent of e,
which we can cross with to get a unique neighbor of I1. We need to divide by a factor of two
because I1(e, e′) = I1(e′, e). And each two-cycle instance I2 with the smaller cycle having
length i has degree i · (n− i) since we can cross any two edges in different cycles to get a
neighbor of I2.

Let Ti denote the set of two-cycle instances with the smaller cycle having length i for
3 ≤ i ≤ n/2.

For every input graph edge e in a one-cycle instance I, there is exactly one input graph
edge ei such that I(e, ei) ∈ Ti. Therefore, for 3 ≤ i < n/2, each one cycle instance has n
neighbors such that the smaller cycle is of length i. And if n is even, each one-cycle instance
will have n/2 neighbors where both cycles have length n/2 instead.

We will now show that |Ti| ≤ |V1| · n/(i · (n − i)). To see this note that if we restrict
our attention to the subgraph of G spanned by instances in V1 ∪ Ti then we have a bipartite
graph where each instance in V1 has the same degree n (or n/2 if i = n/2) and each instance
in Ti has the same degree i · (n− i). Therefore, the total number of edges incident on V1 is
≤ |V1| · n and those incident on Ti is |Ti| · i · (n− i). Since the number of edges should be
the same counted from either side, we get |Ti| ≤ |V1| · n/(i · (n− i)). Now we finish the proof
of the lemma with the following calculation:

|V2| =
n/2∑
i=3
|Ti| ≤

∑
i

n

i · (n− i) · |V1| = |V1| ·O(logn) J

4 Lower Bounds in the KT-1 Model

Our lower bounds in the KT-1 model are inspired by the work of Hajnal et al. [14], which
is concerned with 2-party communication complexity of several graph problems, including
Connectivity. In their setup [14], the input graph G = (V,E) is edge-partitioned among
Alice and Bob in such a way that both parties know V and Alice and Bob respectively
know edge sets EA and EB , were (EA, EB) forms a partition of E. One simple deterministic
protocol that solves Connectivity in this setup is this: Alice sends all the connected
components induced by EA to Bob, who can determine if G is connected. The worst case
communication complexity of this protocol is O(n logn). Via reduction from Partition,
Hajnal et al. [14] show that there exists a family of input graphs such that for any equal
sized edge partition, the communication complexity of Connectivity is Ω(n logn).

It does not seem possible to reduce from this edge-partitioned version of 2-party Con-
nectivity to Connectivity in the KT-1 model because KT-1 algorithms are vertex-centric
and Alice and Bob may not hold all the edges they need to simulate vertices executing a

FSTTCS 2020

32:12 Connectivity Lower Bounds in Broadcast Congested Clique

KT-1 algorithm. We resolve this issue by designing a new reduction, from Partition to
a vertex-partition version of 2-party Connectivity. In the Hajnal et al. [14] reduction,
Partition is reduced to Connectivity on a family of dense graphs. Motivated by our
KT-0 lower bound for Connectivity for the TwoCycle problem, we are interested in
deriving a KT-1 Connectivity lower bound for a sparse class of graphs as well. In what
follows, we extend the reduction of Hajnal et al. from Partition to Connectivity in two
important ways: (i) we reduce to a vertex-partitioned version of Connectivity and (ii) we
reduce to a sparse special case of Connectivity that we call the MultiCycle problem, in
which the input is either a single cycle or two or more cycles, each having length at least 4.

4.1 A Special Case of the Partition Problem
In order to establish a lower bound for MultiCycle, we now consider a special case of the
2-party Partition problem, which we call TwoPartition. The input to TwoPartition
consists of partitions PA and PB of [n], for even n, such that each part in PA and PB has
exactly two elements in it. We will now use a linear algebraic argument to show that there
is an Ω(n logn) deterministic lower bound on this special case of Partition also. The 0-1
matrix En associated with this problem is a sub-matrix of the matrix Mn where Mn(i, j) = 1
if Pi ∨ Pj = 1 and Mn(i, j) = 0 otherwise (see Section 2). The matrix En has dimension
r× r where r = n!/(2n/2 · (n/2)!). This fact follows from a simple counting argument. In the
following theorem, we show that this sub-matrix En has full rank.

I Lemma 14. rank(En) = r where r = n!/(2n/2 · (n/2)!).

Proof. We will prove a more general observation: every sub-matrix AS of a full rank d× d
matrix A formed by choosing a subset S of the rows and the corresponding columns has rank
s where s = |S|. In other words, for all S, AS is a full rank s× s matrix.

Let B be a d× d diagonal matrix where B(i, i) = 1 if i ∈ S and B(i, i) = 0 if i /∈ S. It is
easy to see that rank(B) = |S| = s. Using basic properties of rank, rank(AB) ≤ rank(B) ≤ s
and by Sylvester’s rank inequality 4, rank(AB) ≥ rank(A) + rank(B)− d = d+ s− d = s.

Therefore, rank(AB) = s which means that some minor of AB having dimension s

needs to be of full rank. The only such candidate is the minor corresponding to the matrix
AS because all other minors of dimension s either have an all zero row or all zero column.
Therefore, AS has full rank.

Now En is a submatrix of Mn where the rows and columns correspond to partitions of
[n] such that each part has exactly two elements in it. Therefore, the lemma follows since
Mn has full rank. J

By using Stirling’s approximation, it can be verified that r = 2Θ(n logn). Then, by the rank
bound and Lemma 1.28 of [23] we get the following corollary.

I Corollary 15. The deterministic 2-party communication complexity of TwoPartition is
Ω(n logn)

We describe our reductions in the next two subsections. In section 4.2, we reduce the
Partition (TwoPartition) problem to the vertex partitioned 2-party Connectivity
(2-party MultiCycle) problem and in section 4.3, we reduce the 2-party Connectivity
(2-party MultiCycle) problem to Connectivity (MultiCycle) in the KT-1 model.

4 For any two n× n matrices A, B, rank(AB) ≥ rank(A) + rank(B)− n. We can prove this inequality
by applying the rank-nullity theorem to the inequality null(AB) ≤ null(A) + null(B).

S. Pai and S. V. Pemmaraju 32:13

PA = (1, 2, 3)(4, 5, 6)(7, 8)

PB = (1, 2, 6)(3, 4, 7)(5, 8)

Alice Bob

`1

`2

`3

`4

`5

`6

`7

`8

r7

r8

r5

r6

r3

r4

r1

r2

a3

a1

a2

b3

b1

b2

PB = (1, 3)(2, 4)(5, 7)(6, 8)

PA = (1, 2)(3, 4)(5, 6)(7, 8)

Alice Bob

`1

`2

`3

`4

`5

`6

`7

`8

r7

r8

r5

r6

r3

r4

r1

r2

Figure 2 The figure on the left illustrates the reduction from Partition to 2-party Connectivity
and the figure on the right illustrates the reduction from TwoPartition to 2-party MultiCycle.
The vertices a4, . . . , a8 that are connected to `∗ = `8 and b4, . . . , b8 connected to r∗ = r8 are not
shown in the left figure.

4.2 Reductions from Partition and TwoPartition

Here we present two reductions, first from Partition to 2-party Connectivity and
next from TwoPartition to 2-party MultiCycle. Alice is given a partition PA =
(S1, S2, . . . , Sn) over the ground set [n] where Si is the ith part of PA, which could possibly be
empty if PA has fewer than i parts. Similarly, Bob is given a partition PB = (S′1, S′2, . . . , S′n).
They construct a graph G(PA, PB) as follows: Alice creates vertex sets A = {a1, . . . , an} and
L = {`1, . . . , `n} whereas Bob creates the vertex sets R = {r1, . . . , rn} and B = {b1, . . . , bn}.
Alice and Bob add edges (`i, ri) for i ∈ [n], independent of PA and PB. Alice adds edges
between A and L that induce the partition PA on L. That is, for every Si ∈ PA, Alice adds
edges (ai, `j) for all j ∈ Si. There will be some vertices in A that are not connected to any
vertex, so Alice just adds an edge between these vertices and an arbitrary vertex `∗ ∈ L.
Bob similarly adds edges between the sets B and R. See Figure 2.

If PA and PB are instances of TwoPartition, that is, each part of PA and PB is of size
exactly two, then we can modify the construction of G(PA, PB) by getting rid of the sets
A and B. Note that in this case PA = (S1, S2, . . . , Sn/2) and PB = (S′1, S′2, . . . , S′n/2) where
each Si and S′i has size exactly two. If {i, j} ∈ PA then Alice creates an edge between `i and
`j and Bob does the same with R for every pair in PB. With this modified construction,
each vertex in G(PA, PB) has degree exactly 2 and therefore, every connected component of
G(PA, PB) will be a cycle. See Figure 2.

The following theorem encapsulates a crucial property of the graph G(PA, PB) which
implies the correctness of our reductions.

I Theorem 16. If PA and PB are instances of Partition (or TwoPartition), then the
partition induced by the connected components of G(PA, PB) on the vertices in L and R
corresponds to the partition PA ∨ PB.

FSTTCS 2020

32:14 Connectivity Lower Bounds in Broadcast Congested Clique

Proof. Call two elements a and b reachable from each other if there exists a sequence of
distinct elements e0, e1, . . . et, 1 ≤ t ≤ n such that e0 = a, et = b and each pair (ei, ei+1)
either belongs to the same part of PA or the same part of PB. Any partition in which all
reachable elements are in the same part have both PA and PB as refinements.

We claim that two elements belong to the same part of PA ∨ PB if and only if they are
reachable from each other. The backward direction is true because PA and PB are both
refinements of PA ∨ PB . The forward direction is true because if a and b are not reachable
from each other but still belong to the same part S of PA ∨PB then we can refine the part S
to be Sa, Sb where Sa is the set of all elements in S that are reachable from a and Sb is the
set of all elements in S that are reachable from b. It is easy to see that Sa and Sb are disjoint.
Let P ′ be the partition PA ∨ PB where S is further refined to be Sa, Sb, S \ (Sa ∪ Sb). Note
that with this further refinement of S, we still have the property that all pairs of reachable
elements belong to the same part of P ′. This means both PA and PB still remain refinements
of the P ′ which contradicts the minimality of the join.

The theorem follows by observing that i and j are reachable from each other if and only
if there is a path from `i to `j (and consequently from ri to rj) in G(PA, PB). J

4.3 Reductions from 2-party Connectivity and MultiCycle
We now show reductions from 2-party Connectivity to Connectivity in the KT-1 model
and from 2-party MultiCycle to MultiCycle in the KT-1 model. Given an r-round
KT-1 algorithm A, Alice and Bob will simulate the algorithm with G(PA, PB) as the input
graph. Alice hosts vertices in A ∪ L and Bob hosts vertices in B ∪R. For 1 ≤ i ≤ n, the IDs
of vertices ai, `i, ri, and bi are i, n+ i, 2n+ i, and 3n+ i respectively. So both parties know
the ID’s of all vertices as well as the ID’s of neighbors of all hosted vertices in G(PA, PB)
and hence, the initial knowledge of hosted vertices.

In order to simulate round t of A, Alice and Bob need to compute the states of all hosted
vertices after round t of A. The state of a vertex v after round t depends on the initial
knowledge and the transcript τ(v, t) of v. Assume that Alice and Bob know the states of all
the vertices they host after round t− 1. Alice and Bob send a message from {0, 1,⊥}2n to
each other. These messages denote the characters their hosted vertices broadcast in round t,
in increasing order of ID. Therefore, they know the sender ID of a character from the position
of the character in the message. This enables Alice and Bob to compute the transcript τ(v, t)
and hence the state after round t of all hosted vertices v.

Therefore, in simulating each round, Alice and Bob exchange exactly O(n) bits with each
other and the total communication complexity of the protocol is O(rn). If A solves the
Connectivity or MultiCycle problems, then using Corollaries 4 and 15 respectively and
Theorem 16, we obtain the following result.

I Theorem 17. The round complexity of a deterministic algorithm for solving the Con-
nectivity and MultiCycle problems in the KT-1 model is Ω(logn).

4.4 Information-theoretic Lower Bound for ConnectedComponents
Já Já [17] proves a lower bound for 2-party ConnectedComponents and points out that
his techniques may not work for decision problems, indicating that it might be easier to prove
lower bounds for ConnectedComponents. This motivates us to consider the Connec-
tedComponents problem as a lower bound candidate, closely related to Connectivity,
but for which we may be able to prove an Ω(logn) lower bound in the KT-1 model, even for
constant-error Monte Carlo algorithms. It turns out that we are able to prove this result

S. Pai and S. V. Pemmaraju 32:15

by combining the reductions described in the previous section with information-theoretic
techniques. We first define the 2-party problem PartitionComp which is closely related to
Partition, but requires an output with a large representation. As in Partition, Alice and
Bob are respectively given set partitions PA and PB of [n] and at the end of the communica-
tion protocol for PartitionComp, Alice and Bob are required to output the join PA ∨ PB .
From Theorem 16, we get that if there is a t-round, ε-error Monte Carlo algorithm A for
ConnectedComponents in the KT-1 model, then there is an ε-error Monte Carlo protocol
that solves PartitionComp with communication complexity t · n.

Consider the following distribution over inputs of PartitionComp: Alice’s input PA is
chosen uniformly at random from the set of all partitions and Bob’s partition is fixed to be the
finest partition, i.e., PB = (1)(2)(3) . . . (n). With PB fixed in this manner, PA∨PB = PA and
at the end of the protocol Bob learns PA. Since PA is chosen from the uniform distribution,
it’s initial entropy is Θ(n logn) since the support of the distribution has size 2Θ(n logn).
Therefore Bob will learn a lot of information by the end of the protocol. This idea is
formalized in the proof of the following theorem. This proof also has to deal with the
complication that the protocol has constant error probability.

I Theorem 18. For any constant 0 < ε < 1, the round complexity of an ε-error randomized
Monte Carlo algorithm that solves the ConnectedComponents problem in the KT-1
version of the BCC(1) model is Ω(logn).

Proof. Using Yao’s minimax theorem (Theorem 2) we can assume that all protocols are
deterministic but are allowed to make an error on ε-fraction of the input, weighted by µ.
Although appealing to Yao’s theorem is not necessary, it allows us to simplify the exposition.
Let Π denote the transcript of a 2-party protocol that solves PartitionComp and let |Π|
denote the length of the longest transcript produced by Π on any input. We know that

|Π| ≥ H(Π(PA, PB)) ≥ I(Π(PA, PB);PA, PB) = I(PA, PB ; Π(PA, PB)) = I(PA; Π(PA, PB))

where the last equality follows from the fact that PB is fixed according to µ. From the
definition of mutual information, I(PA; Π(PA, PB)) = H(PA)−H(PA|Π(PA, PB)). Alice’s
input PA is uniformly distributed among all Bn = 2Θ(n logn) set partitions according to the
hard distribution µ. Therefore H(PA) = Θ(n logn). Let B be the set of protocol transcripts
that produce an error on the input PA, PB. If Π(PA, PB) /∈ B then H(PA|Π(PA, PB)) = 0
since the output of the protocol is PA ∨ PB = PA. We are guaranteed that Pr[Π(PA, PB) ∈
B] ≤ ε. Therefore, the second term can be bounded as follows.

H(PA|Π(PA, PB)) =
∑
π

Pr[Π(PA, PB) = π]H(PA|Π(PA, PB) = π)

=
∑
π∈B

Pr[Π(PA, PB) = π]H(PA|Π(PA, PB) = π) ≤ εH(PA)

Where the last inequality follows from the fact that H(X|Y) ≤ H(X) for any X,Y . This
implies I(PA; Π(PA, PB)) = Ω(n logn) which proves that any ε-error randomized protocol
that solves the PartitionComp problem has communication complexity of Ω(n logn). This
in turn implies that t = Ω(logn) which proves the theorem. J

References
1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. Fooling views: A

new lower bound technique for distributed computations under congestion. CoRR, 2017.
arXiv:1711.01623.

FSTTCS 2020

http://arxiv.org/abs/1711.01623

32:16 Connectivity Lower Bounds in Broadcast Congested Clique

2 Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A trade-off between
information and communication in broadcast protocols. J. ACM, 37(2):238–256, 1990. doi:
10.1145/77600.77618.

3 Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling schemes.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC
2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 315–324, 2015. doi:10.1145/
2767386.2767421.

4 Florent Becker, Antonio Fernández Anta, Ivan Rapaport, and Eric Rémila. The effect of range
and bandwidth on the round complexity in the congested clique model. In Computing and
Combinatorics - 22nd International Conference, COCOON 2016, Ho Chi Minh City, Vietnam,
August 2-4, 2016, Proceedings, pages 182–193, 2016. doi:10.1007/978-3-319-42634-1_15.

5 Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower bounds
for the CONGEST model. In 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 10:1–10:16, 2017. doi:10.4230/LIPIcs.
DISC.2017.10.

6 Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional lower bounds for adaptive
massively parallel computation. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’20, page 141–151, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3350755.3400230.

7 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

8 Artur Czumaj and Christian Konrad. Detecting cliques in congest networks. In 32nd
International Symposium on Distributed Computing (DISC 2018). Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, July 2018. URL: http://wrap.warwick.ac.uk/106950/.

9 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In Proceedings of the Forty-third Annual ACM Symposium
on Theory of Computing, STOC ’11, pages 363–372, New York, NY, USA, 2011. ACM.
doi:10.1145/1993636.1993686.

10 Thomas A. Dowling and Richard M. Wilson. Whitney number inequalities for geometric
lattices. Proceedings of the American Mathematical Society, 47(2):504–504, 1975. doi:10.
1090/s0002-9939-1975-0354422-3.

11 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 367–376, New York, NY, USA, 2014. ACM. doi:10.1145/2611462.2611493.

12 Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA ’18, pages 153–162, New York, NY, USA, 2018. ACM.
doi:10.1145/3210377.3210401.

13 Mohsen Ghaffari and Merav Parter. MST in Log-Star Rounds of Congested Clique. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 19–28, 2016. doi:10.1145/2933057.2933103.

14 András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity of
graph properties. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 186–191, 1988. doi:10.1145/62212.62228.

15 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh, and
Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connectivity and
mst. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC ’15, pages 91–100, New York, NY, USA, 2015. ACM. doi:10.1145/2767386.2767434.

16 Stephan Holzer and Nathan Pinsker. Approximation of distances and shortest paths in
the broadcast congest clique. In 19th International Conference on Principles of Distributed

https://doi.org/10.1145/77600.77618
https://doi.org/10.1145/77600.77618
https://doi.org/10.1145/2767386.2767421
https://doi.org/10.1145/2767386.2767421
https://doi.org/10.1007/978-3-319-42634-1_15
https://doi.org/10.4230/LIPIcs.DISC.2017.10
https://doi.org/10.4230/LIPIcs.DISC.2017.10
https://doi.org/10.1145/3350755.3400230
http://wrap.warwick.ac.uk/106950/
https://doi.org/10.1145/1993636.1993686
https://doi.org/10.1090/s0002-9939-1975-0354422-3
https://doi.org/10.1090/s0002-9939-1975-0354422-3
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.1145/2933057.2933103
https://doi.org/10.1145/62212.62228
https://doi.org/10.1145/2767386.2767434

S. Pai and S. V. Pemmaraju 32:17

Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, pages 6:1–6:16, 2015. doi:
10.4230/LIPIcs.OPODIS.2015.6.

17 Joseph Já Já. The vlsi complexity of selected graph problems. J. ACM, 31(2):377–391, March
1984. doi:10.1145/62.70.

18 Tomasz Jurdzinski, Krzysztof Lorys, and Krzysztof Nowicki. Communication complexity in
vertex partition whiteboard model. In Structural Information and Communication Complexity
- 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21,
2018, Revised Selected Papers, pages 264–279, 2018. doi:10.1007/978-3-030-01325-7_24.

19 Tomasz Jurdzinski and Krzysztof Nowicki. Brief announcement: On connectivity in the
broadcast congested clique. In 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 54:1–54:4, 2017. doi:10.4230/LIPIcs.
DISC.2017.54.

20 Tomasz Jurdziński and Krzysztof Nowicki. Mst in o(1) rounds of congested clique. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 2620–2632, Philadelphia, PA, USA, 2018. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=3174304.3175472.

21 E. Korach, S. Moran, and S. Zaks. The optimality of distributive constructions of minimum
weight and degree restricted spanning trees in a complete network of processors. SIAM J.
Comput., 16(2):231–236, April 1987. doi:10.1137/0216019.

22 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Computing,
22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

23 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
New York, NY, USA, 1997.

24 Pedro Montealegre and Ioan Todinca. Brief announcement: Deterministic graph connectivity
in the broadcast congested clique. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC ’16, pages 245–247, New York, NY, USA, 2016. ACM.
doi:10.1145/2933057.2933066.

25 Pedro Montealegre and Ioan Todinca. Deterministic graph connectivity in the broadcast
congested clique. CoRR, abs/1602.04095, 2016. URL: http://arxiv.org/abs/1602.04095.

26 Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming spanning
forest computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’19, page 1844–1860, USA, 2019. Society for Industrial and
Applied Mathematics.

27 Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: Broadcast, unicast and in between.
In Stabilization, Safety, and Security of Distributed Systems - 19th International Symposium,
SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings, pages 1–17, 2017. doi:
10.1007/978-3-319-69084-1_1.

28 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

29 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits: (on lower
bounds for modern parallel computation). In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove,
CA, USA, July 11-13, 2016, pages 1–12, 2016. doi:10.1145/2935764.2935799.

30 D.J.A. Welsh. Matroid theory. Dover Publications, 2010. URL: http://www.worldcat.org/
oclc/319491697?referer=xid.

31 A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227, October
1977. doi:10.1109/SFCS.1977.24.

FSTTCS 2020

https://doi.org/10.4230/LIPIcs.OPODIS.2015.6
https://doi.org/10.4230/LIPIcs.OPODIS.2015.6
https://doi.org/10.1145/62.70
https://doi.org/10.1007/978-3-030-01325-7_24
https://doi.org/10.4230/LIPIcs.DISC.2017.54
https://doi.org/10.4230/LIPIcs.DISC.2017.54
http://dl.acm.org/citation.cfm?id=3174304.3175472
https://doi.org/10.1137/0216019
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1145/2933057.2933066
http://arxiv.org/abs/1602.04095
https://doi.org/10.1007/978-3-319-69084-1_1
https://doi.org/10.1007/978-3-319-69084-1_1
https://doi.org/10.1145/2935764.2935799
http://www.worldcat.org/oclc/319491697?referer=xid
http://www.worldcat.org/oclc/319491697?referer=xid
https://doi.org/10.1109/SFCS.1977.24

	Introduction
	Our Contribution
	The BCC(b) Model
	Related Work

	Technical Preliminaries
	Lower Bounds in the KT-0 model
	A Lower Bound for Constant Error Probability

	Lower Bounds in the KT-1 Model
	A Special Case of the Partition Problem
	Reductions from Partition and TwoPartition
	Reductions from 2-party Connectivity and MultiCycle
	Information-theoretic Lower Bound for ConnectedComponents

