
Fully Dynamic Sequential and Distributed
Algorithms for MAX-CUT
Omer Wasim
Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
wasim.o@northeastern.edu

Valerie King
Department of Computer Science, University of Victoria, Canada
val@uvic.ca

Abstract
This paper initiates the study of the MAX-CUT problem in fully dynamic graphs. Given a graph
G = (V, E), we present deterministic fully dynamic distributed and sequential algorithms to maintain
a cut on G which always contains at least |E|2 edges in sublinear update time under edge insertions
and deletions to G. Our results include the following deterministic algorithms: i) an O(∆) worst-case
update time sequential algorithm, where ∆ denotes the maximum degree of G, ii) the first fully
dynamic distributed algorithm taking O(1) rounds and O(∆) total bits of communication per update
in the Massively Parallel Computation (MPC) model with n machines and O(n) words of memory
per machine. The aforementioned algorithms require at most one adjustment, that is, a move of one
vertex from one side of the cut to the other.

We also give the following fully dynamic sequential algorithms: i) a deterministic O(m1/2)
amortized update time algorithm where m denotes the maximum number of edges in G during any
sequence of updates and, ii) a randomized algorithm which takes Õ(n2/3) worst-case update time
when edge updates come from an oblivious adversary.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms

Keywords and phrases data structures, dynamic graph algorithms, approximate maximum cut,
distributed computing, parallel computing

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.33

Funding This research was completed while the first author was a MSc candidate at the University
of Victoria. Both authors were funded by a NSERC Discovery Grant.

Acknowledgements The authors thank Hung Le for useful discussions and an anonymous reviewer
for helpful comments.

1 Introduction

A fully dynamic graph algorithm is a data structure to maintain a property of a graph under
an arbitrary sequence of edge insertions and deletions. The goal is to update the graph in
less time than the best static algorithm which computes the property from scratch. A fully
dynamic graph algorithm may incur preprocessing time, after which it is able to answer
queries regarding the maintained property. Research in this area has focused mostly on
dynamic variants of well-known problems such as connectivity [42, 26, 30, 15], minimum
spanning trees [24, 26, 47], minimum cut [45], etc., all of which admit polynomial time exact
algorithms in the static setting.

Following the seminal work of Onak and Rubinfeld [40] in which fully dynamic algorithms
for maintaining constant factor approximations of maximum matching (and vertex cover) were
presented, research in dynamic algorithms has broadened to include approximate versions
of NP-hard problems. Some natural directions arising in this setting include the design

© Omer Wasim and Valerie King;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4746-5211
mailto:wasim.o@northeastern.edu
mailto:val@uvic.ca
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

of dynamic algorithms to maintain an approximate solution in sublinear update time and
the study of approximability-time trade-off. A list of approximate versions of NP-hard
problems investigated in the dynamic setting includes vertex cover [5, 43, 9, 38], set-cover
[22], dominating set [25], graph coloring [8], facility location [21] and maximum independent
set [23, 3, 4].

In this paper, we initiate the study of the MAX-CUT problem in fully dynamic graphs
and pose the question of whether there exist sublinear update time algorithms. Another
parameter we look at is the adjustment cost, which is defined in a dynamic graph problem as
the amount of changes to the maintained solution per update. In the case of MAX-CUT, it
is the number of vertices which move from one subset of the cut to the other.

MAX-CUT is one of the fundamental NP-hard problems [32] which continues to be
widely studied. Some of its concrete applications arise in the design of integrated circuits
[12], communication networks [14] and statistical physics [41]. It also models a standard
2-clustering objective for partitioning a graph such that the number of inter-cluster edges is
maximized.

Let G = (V,E) be an undirected, unweighted graph G = (V,E) with n = |V |,m = |E|.
A cut C is a partition of the vertex set V , and denoted by C = (S, S̄), where S, S̄ ⊆ V and
S̄ = V \S. The cut-set E(S, S̄) of C = (S, S̄) is the set of all edges which have exactly one
endpoint in S. A cut edge of C is an edge contained in the cut-set E(C) = E(S, S̄). A
maximum cut of G is a cut whose cut-set is largest among cut-sets for all possible cuts, i.e.
MAX-CUT(G) = argmaxC=(S,S̄), S⊆V |E(S, S̄)|, where |E(S, S̄)| denotes the number of cut
edges. We say a cut is t-respecting if |E(C)| ≥ t|E|. Note that the cut-set of a t-respecting
cut contains a t fraction of all edges, regardless of the size of the largest cut-set. Let OPT
denote the size of the largest cut-set. A cut is t-approximate if |E(C)| ≥ t · OPT and a
t-approximation algorithm for MAX-CUT yields a t-approximate cut. It follows that a
t-respecting cut is always a t-approximate cut but not vice-versa. This distinction can be
appreciated in the case of K2n, the complete graph on 2n vertices where a maximum cut is
any cut C = (S, S̄) where |S| = n. For large n, the size of the cut-set of a 1

2 -respecting cut
can be nearly twice the size of a 1

2 -approximate cut. Throughout this paper, we let [k] to
denote {1, 2, .., k}, ∆ to be the maximum degree of G and Õ to hide a O(polylog(n)) factor.

The Massively Parallel Computation (MPC) model was introduced by Karloff et al. [31]
and later refined in [20, 6, 1] as a theoretical framework for large scale parallel processing
settings such as those in [48, 17]. There are µ machines with S words of memory each, which
solve a problem by synchronously communicating over an all-to-all communication network
(i.e. a complete network). Initially, input data of size N (which is O(m+ n) in the case of a
graph problem) are distributed across these machines. It is desirable to have µ and S to be
O(N1−ε) for some ε > 0 and the message size is limited to O(S) bits. In each round, every
machine can: i) receive messages of the previous round from other machines ii) do local
polynomially bounded computation (i.e. taking poly(S) space and time) without additional
communication and iii) send messages to other machines which are received in the next round.
The complexity of a MPC algorithm to solve a problem is determined by 3 parameters: i)
the number of rounds of communication, ii) the size of the memory per machine and iii) the
total amount of communication per round. Typically, MPC algorithms for graph problems
use O(n) machines, Õ(n) memory per machine and take Õ(1) rounds of communication.

O. Wasim and V. King 33:3

1.1 Previous Work
Static sequential algorithms for 1

2 -respecting cuts. A simple randomized algorithm, here-
after referred to as Randomized Max-Cut obtains a 1

2 -respecting cut C = (S, S̄) in expectation
by placing each vertex independently in S or S̄ with probability 1

2 . Any edge e = {u, v}
is a cut edge of C with probability 1

2 , implying the result. Randomized Max-Cut can be
derandomized using the method of conditional expectation or pairwise independence.

Johnson’s folklore algorithm [28] hereafter referred to as Greedy Max-Cut, which finds a
1
2 -respecting cut can be viewed as derandomized version of Randomized Max-Cut using the
method of conditional expectation. Given G = (V,E), where V = {v1, v2, ..., vn} it starts
with S = {v1}, S̄ = ∅. Each successive vertex vj , where j ≥ 2 is added to S or S̄ depending
on which contains fewer of its neighbors vi, where i < j. Thus, at least half of all edges of
the form {vj , vi} where i < j are contained in the resulting cut. Since each vertex and edge
is encountered once, the running time of Greedy Max-Cut is O(m+ n).

Randomized Max-Cut can also be derandomized using the idea of pairwise independence
[37]. For a set S, let P(S) denote the power set of S. We first note that one can get a
1
2 -respecting cut (in expectation) which uses only k = dlogne independent random bits. The
idea is to construct a one-to-one function f : V → P([k]) and choosing R to be a uniformly
random subset of [k]. It can be shown that the cut C = (S, S̄) where S = {v| |f(v)∩R| is even}
and S̄ = {v| |f(v)∩R| is odd} is 1

2 -respecting in expectation. Enumerating all the 2k = O(n)
possibilities for R, and taking the cut which maximizes |E(S, S̄)| yields a 1

2 -respecting cut.
For a fixed R, the time to compute C is O(nk) while determining the size of C ′s cut-set
takes O(m) time giving a total time of O(n2 logn+mn). While this algorithm isn’t better
in terms of running time as compared to Greedy Max-Cut, it has the advantage of being
parallelizable.

Static distributed algorithms for 1
2 -respecting cuts. We observe that the algorithm ob-

tained by derandomizing Randomized Max-Cut via pairwise independence can be used
to compute a 1

2 -respecting cut in O(1) rounds in the MPC model of computation with
n machines and Θ(n) memory per machine. We assume there exists a fixed coordinator
machine. Given f , each machine corresponds to a vertex v, and stores f(v) along with
the list of v′s neighbors and R ⊆ [k] which is fixed. In the first round, each machine first
computes the count of the number of edges its corresponding vertex is incident to in the cut
obtained by considering the ith choice of R where i ∈ [n]. Then each machine sends the ith
count to machine i. In the next round all machines send these counts to the coordinator,
which chooses a 1

2 -respecting cut and informs all other machines. Thus, at the end of the
third round, each machine is able to output the position of its corresponding vertex in the
1
2 -respecting cut. The total amount of communication is bounded by O(n2 logn) bits.

A similar adaptation of Greedy Max-Cut in the MPC model with n machines and Θ(n)
memory per machine takes n rounds of communication and O(n∆) total communication.

The only deterministic distributed algorithm to compute a 1
2 -respecting cut that we

are aware of was presented by Censor-Hillel et al. [11] which takes Õ(∆ + log∗ n) rounds
and Ω(∆2) messages in the CONGEST model. Their algorithm can be adapted to the
Congested-Clique setting with the same round and message complexity.

Approximation Algorithms for MAX-CUT. We briefly survey the relevant literature on
approximation algorithms for MAX-CUT in the static setting. Goemans and Williamson
(1994) used a semidefinite programming (SDP) relaxation [19] and randomized rounding
to yield a 0.878-approximation to MAX-CUT. This polynomial-time algorithm runs in

FSTTCS 2020

33:4 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

super-linear time using state-of-the art numerical methods for solving a semidefinite program.
Khot et al. showed that MAX-CUT is hard to approximate better than 0.878 [35] under the
Unique Games Conjecture [34].

Arora and Kale [2] presented a primal dual (SDP-based) (0.878 − ε)-approximation
algorithm which runs in Õ(m) time for d regular graphs with high probability where the
running time depends inversely on ε. Trevisan later presented a 0.53-approximation algorithm
for MAX-CUT utilizing spectral techniques [46] whose analysis was improved to 0.62 by Soto
[44]. In the same paper, Trevisan showed that the primal dual SDP-based algorithm of [2]
can be made to run in Õ(m) time for any degree, via a linear time reduction to reduce the
maximum degree to O(polylog(n)). By using the algorithm of Arora and Kale [2] together
with the rounding scheme of Charikar and Wirth [13], we note that in graphs in which the
size of the optimal cut is (1

2 + ε)|E|, one can get a (1
2 + Ω(ε

log(1/ε)))-respecting cut in Õ(m)
time. However, when ε = O(1

n) (as in the case of K2n) and a 1
2 -respecting cut is desired

(instead of a 1
2 -approximate cut) this can take Ω(mn) time.

Kale and Seshadhri [29] presented a combinatorial algorithm based on the spectral
method [46] which uses random walks to give a (0.5+ε)-approximation with running time
depending on ε. For ε = 0.0155, the running time is Õ(n2). As the running time increases,
the approximation ratio converges to the spectral algorithm of Trevisan [46].

1.2 The Fully Dynamic Model
In this paper, we seek to maintain a 1

2 -respecting cut in sublinear update time and handle
meaningful queries such as determining whether an edge is in the cut-set, the size of vertex
partitions and the cut-set in constant time. We define the Fully Dynamic Max-Cut problem
as follows:

I Problem 1 (Fully Dynamic MAX-CUT). Starting with a graph G = (V,E) on n vertices
and an empty edge set E, maintain a 1

2 -respecting cut C = (S, S̄) for G under edge insertions
and deletions to E such that queries of the following form can be handled in constant time:
i) Is the edge {vi, vj} contained in the cut-set E(S, S̄)? ii) What is the size of the cut-set,
E(C)? iii) What are the sizes of S and S̄?

Our goal is to update C in o(m+ n) time to fare better than running Greedy Max-Cut
after every update and we require that answers to all queries between any two updates must
be consistent with respect to the maintained cut C.

In the fully dynamic MPC model that we consider in this paper, we start with a graph
G = (V,E) on n vertices and m edges. Let N = O(m+ n). We use a coordinator machine
which can be selected in a single round: machines send their ID’s to all other machines and
the coordinator is selected to be the machine with ID larger than all ID’s it receives. There
are a total of n machines each with Θ(n) memory and the goal is to maintain a 1

2 -respecting
cut in O(1) rounds per edge update and O(n) total communication per round. Each machine
corresponds to a vertex of G and stores the edges incident to it. After any update {u, v} to
the graph, the machines corresponding to u and v are informed of the update. In our model,
we insist on algorithms which make few adjustments to the maintained cut. We note that
there are other fully dynamic MPC models that have been studied very recently such as in
[27, 18, 39]. Our dynamic algorithm in the MPC model requires at most one adjustment.
Ensuring this is easier in the case of problems such as maximal matching where only the
neighborhood of endpoints of the updated edge needs to be examined per update. In our
case, this may not always be the case (see Theorem 9).

O. Wasim and V. King 33:5

Attaining a deterministic worst-case update time (i.e. without randomization or amortiza-
tion) is an important objective in the design of dynamic algorithms. For the seminal problem
of dynamic connectivity, deterministic algorithms beating O(

√
n) update time [15, 33] were

only recently discovered after decades. Another example is the maximal independent set
problem for which known deterministic algorithms [3, 23] only achieve a sublinear (in m)
amortized update time and polylogarithmic update time algorithms are yet to be discovered.

An event happens with high probability (w.h.p) if its probability is 1− 1
nc for any c > 0.

For our randomized algorithm, we assume that updates come from an oblivious adversary.
This is a standard assumption used in the design of many randomized dynamic algorithms.
An oblivious adversary is one which cannot choose updates adaptively in response to the
answers returned by queries. Thus, updates to the graph can be assumed to be fixed in
advance. We assume the existence of an oracle which randomly labels each vertex uniquely
using a number in {1, ..., n}, and to which the adversary is oblivious. This is only used in
the algorithm of Theorem 6. We seek to maintain a 1

2 -respecting cut exactly or w.h.p.

1.2.1 Dynamic algorithms from static via lazy recomputation
The following observation allows one to obtain dynamic algorithms by using known static
algorithms as subroutines.

I Observation 2. Given a t-respecting (resp., t-approximation) static algorithm AS for
MAX-CUT which runs in time T (m,n), there exists a fully dynamic algorithm AD which
maintains a (t − ε)-respecting (resp., (t − ε)-approximate) cut for any constant ε > 0 in
O(T (m,n)

εm) worst-case update time.

The proof of Observation 2 is deferred to the Appendix. Using observation 2 gives the
following fully dynamic algorithms. For any constant ε > 0, a (1

2 − ε)-respecting cut can
be maintained in O(1/ε) worst-case update time by using Greedy Max-Cut. Similarly, the
algorithm of [2] yields a dynamic algorithm to maintain a (0.878− ε)-approximate cut (w.h.p)
for a fixed constant ε > 0 in O(polylog(n)) worst case update time. For instances where the
size of the cut-set of the optimal cut contains (1

2 + ε)|E| edges, the rounding algorithm of
[13] can be used together with the algorithm of [2] to get a (1

2 + Ω(ε
log 1/ε))-respecting cut in

O(polylog(n)) worst case update time where ε > 0 is a constant. However, to maintain a
1
2 -respecting cut for graphs in which the optimal cut is (1

2 +O(1
n)) the update time using

this technique can be Ω̃(n) time which is prohibitive. Thus there remains a need to design
dynamic algorithms to maintain a 1

2 -respecting cut exactly in sublinear update time.

1.3 Our Contribution
We present the first fully dynamic algorithms in the sequential and distributed settings which
exactly maintain a 1

2 -respecting cut. Our results are summarized in the following theorems.

I Theorem 3. There exists a deterministic fully dynamic sequential algorithm which main-
tains a 1

2 -respecting cut, requires no more than one adjustment per update and takes O(∆)
worst case update time, where ∆ denotes the maximum degree of the graph after the update.

The algorithm in Theorem 3 is used as a subroutine in all other algorithms in this paper.
The next result gives the first fully dynamic deterministic algorithm in the MPC setting with
n machines and Θ(n) memory per machine to maintain a 1

2 -respecting cut. Our algorithm
takes O(1) rounds, requires no more than one adjustment and uses O(∆) total communication
per round. This significantly improves on the parallel implementation of the static algorithm
to maintain a 1

2 -respecting cut based on the idea of pairwise independence which can take as
much as O(n2 logn) total communication and Ω(n) adjustments.

FSTTCS 2020

33:6 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

I Theorem 4. Given a graph on n vertices and m edges, there exists a deterministic fully
dynamic MPC algorithm on n machines having Θ(n) memory each, which maintains a
1
2 -respecting cut on G and takes O(1) rounds, makes at most one adjustment, and uses O(∆)
bits of communication per update. If we start with an arbitrary graph, the preprocessing for
the algorithm takes O(1) rounds and O(n2 logn) bits of communication.

We note that the worst-case update time of O(∆) can be quite large in the case when
∆ = Ω(n) and thus costly in the dynamic setting. This motivates the design of sublinear
update time algorithms for all regimes of ∆. Our next result is a sublinear (in m) amortized
update time algorithm which is useful for sufficiently sparse graphs having high maximum
degree.

I Theorem 5. There exists a deterministic fully dynamic sequential algorithm which main-
tains a 1

2 -respecting cut, and takes O(m1/2) amortized update time where m is the maximum
number of edges in the graph during any arbitrary sequence of updates.

Our final result is a randomized algorithm which always maintains a 1
2 -respecting cut and

takes sublinear in n worst-case update time when updates come from an oblivious adversary.

I Theorem 6. There exists a randomized fully dynamic sequential algorithm which maintains
a 1

2 -respecting cut and takes Õ(n2/3) worst-case update time with high probability.

We note that for our algorithms in Theorems 5 and 6, the adjustment cost can be Ω(n).

1.4 Our techniques
Our techniques utilize combinatorial and structural properties of cuts in graphs. The key
insight underlying our algorithms is the following: in any cut C which is not 1

2 -respecting,
there exists a vertex which can be moved across the cut to increase the size of C ′s cut-set.
We show that this vertex can be efficiently found, yielding a simple deterministic O(∆) worst
case update time algorithm. This algorithm is not “local” in the sense that endpoints of the
updated edge need not qualify as vertices which can be moved to increase the number of
cut edges (Theorem 9). Such locality is often exploited to obtain dynamic and distributed
algorithms for problems such as vertex cover, independent set and coloring. Despite this,
we show that the algorithm can be used to get a deterministic fully dynamic distributed
algorithm taking O(1) rounds and no more than one adjustment.

Central to our sublinear time algorithms of Theorem 5 and 6 is a cut-combining technique.
This allows us to work on induced subgraphs of G and combine their “locally maintained”
cuts to yield a 1

2 -respecting cut on G. However, the update time depends the complexity of
maintaining 1

2 -respecting cuts on individual subgraphs and the combining step. We work
around this non-trivial dependence. For our algorithm of Theorem 5, we partition vertices
based on their degree and only selectively update data structures. We show that selective
updating is sufficient for our purpose and refine the vertex partition after sufficiently many
updates. This leads to a simple O(m1/2) amortized update time algorithm. To obtain
the algorithm of Theorem 6, we extend the cut-combining idea and apply it to a random
multi-way k-partition of V and obtain a sublinear in n worst case update time algorithm.

1.5 Organization of the paper
In the next section, we present an O(∆) update time algorithm. In Section 3, we present the
dynamic distributed algorithm of Theorem 4. In Section 4, we give the O(m1/2) amortized
update time sequential algorithm of Theorem 5. In section 5, we give the randomized
algorithm of Theorem 6.

O. Wasim and V. King 33:7

2 Preliminaries

Starting with an empty graph G = (V,E) where V = {v1,, vn} is fixed, an update to
G is either an insertion or a deletion of an edge {vi, vj} from E. For a cut C = (S, S̄) let
αC(G) = |E(S,S̄)|

|E| denote the ratio of the sizes of C ′s cut-set and E. The sizes of sets S, S̄ and
the cut-set E(S, S̄) corresponding to the cut C = (S, S̄) are maintained by all algorithms to
facilitate queries in constant time. Let Gk = (V,Ek) be the resulting graph after k updates
have been made to G := G0 and m denote the number of edges in the graph at any given
time. The degree of any vertex v in Gk is denoted by degk(v).

The cut on G0, the empty graph is initialized to (V, ∅). Given a 1
2 -respecting cut

C = (S, S̄), i.e. αC(Gk−1) ≥ 1
2 for some k ≥ 1, there are a few cases to consider when an

edge update {vi, vj} is made to Gk−1. Deletion of a non-cut edge or insertion of a cut edge
never decreases the size of C ′s cut-set. However, C needs to be updated if a cut edge is
deleted, or a non-cut edge is inserted since C may cease to be 1

2 -respecting.

2.1 A crucial observation
We say that a vertex u is switched (with respect to a cut C = (S, S̄)) if u is in S (resp. S̄)
and moved to S̄ (resp. S). We leverage the existence of vertices which can be switched
to increase the size of the cut-set |E(S, S̄)| of C for any cut C which is not 1

2 -respecting.
Thus, if C ceases to be 1

2 -respecting following any update there exists a vertex which can be
switched to restore the 1

2 -respecting property.

I Definition 7 (Switching vertex). For a cut C = (S, S̄), let NS(u) = {v ∈ S|(u, v) ∈ E}
be the neighbors of u in S and NS̄(u) = {v ∈ S̄|(u, v) ∈ E} be the neighbors of u in S̄.
Then u is a switching vertex if one of the following two conditions holds: i) u ∈ S and
|NS(u)| − |NS̄(u)| ≥ 1 and ii) u ∈ S̄ and |NS̄(u)| − |NS(u)| ≥ 1.

I Theorem 8. Let C be a 1
2 -respecting cut w.r.t. Gk−1 i.e., αC(Gk−1) ≥ 1

2 and {vi, vj} be
an update. If αC(Gk) < 1

2 , then there exists a switching vertex u w.r.t. C such that if u is
switched, then αC(Gk) ≥ 1

2 .

Proof. Suppose there does not exist a switching vertex. Then,

αC(Gk) = 1
2|Ek|

∑
u∈V

max{|NS(v)|, |NS̄(v)|} ≥ 1
2|Ek|

∑
v∈V

1
2degk(v) = 1

4|Ek|
2|Ek| =

1
2 .

clearly contradicting our assumption that αC(Gk) < 1
2 . If a switching vertex u is switched,

then the size of C ′s cut set increases by at least 1 so that αC(Gk) ≥ 1
2 . J

Given the count of a vertex’s neighbors in S and S̄, it can be decided whether it is switching
or not. Maintaining these neighbor counts is necessary to determine a vertex to switch.
However, testing all vertices whether they are switching is costly. In the next section we
show how to efficiently maintain a set of switching vertices. The following theorem rules out
the possibility of using end points of the updated edge as switching vertices. A proof can be
found in the Appendix.

I Theorem 9. Given an edge update {vi, vj} to Gk−1 for k ≥ 1, and a 1
2 -respecting cut

Ck−1 maintained on Gk−1, a switching vertex with respect to Ck−1 need not always be one
of vi, vj.

FSTTCS 2020

33:8 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

2.2 An O(∆) worst-case update time algorithm

In this section, we give a simple fully dynamic algorithm with worst case update time O(∆).

Data Structures. For each vertex u ∈ V and a cut C = (S, S̄), we maintain the following:
i) NS(u): a list of neighbors of u in S, and its size |NS(u)|, ii) NS̄(u): a list of neighbors of
u in S̄ and its size |NS̄(u)| and, iii) flag(u): a bit which is 1 if u ∈ S and -1 if u ∈ S̄.

I Definition 10 (Gain of a vertex). The gain of a vertex u with respect to a cut C = (S, S̄)
and denoted by G(u) is given by G(u) = flag(u)(|NS(u)| − |NS̄(u)|).

The gain of a vertex u measures the change in the number of cut edges of C, if u is switched.
Note that a vertex is switching if the gain is positive, and non-switching otherwise. The
following (global) data structures are also maintained:
a. A doubly linked list L, which stores nodes corresponding to switching vertices.
b. An array P where P [i] stores the gain of vi and a pointer. The pointer points to the node

in L corresponding to vi if G(vi) > 0 and is NULL otherwise.

The head of L, denoted by L.head is NULL if no switching vertex exists. Each node of L
corresponding to a switching vertex vi stores i as its value.

Algorithm. The algorithm begins with G0, the empty graph and C = (S, S̄) = (V, ∅) on
G0. It maintains a 1

2 -respecting cut on Gk−1 for any k ≥ 1 as follows: when an edge
update {vi, vj} to Gk−1 arrives, NS(vi), NS̄(vi), NS(vj), NS̄(vj) are updated (including their
sizes) along with P [i] and P [j]. If either of vi, vj become switching or non-switching, L is
appropriately modified. C is checked if it is 1

2 -respecting. If C ceases to be 1
2 -respecting then

a switching vertex vs is found by accessing the node pointed to by L.head which stores the
value s. This node is removed from L, vs is switched and P [s] is updated. Data structures of
vt and P [t] of all neighbors vt of vs are modified to reflect v′ss switch. Thereafter, depending
on whether or not G(vt) > 0 in the updated cut, the node corresponding to vt in L is inserted
or removed. The pseudo code of the algorithm is as follows.

Algorithm 1 Delta-Dynamic Max-Cut(Gk−1, {vi, vj}, C = (S, S̄)).

1: Update NS(vi), NS(vj), NS̄(vj), NS̄(vj), αC(Gk), P [i], P [j].
2: for vt ∈ {vi, vj} do
3: Add(remove) the node corresponding to vt in L if vt becomes switching(non-switching).
4: end for
5: if αC(Gk) < 1

2 then
6: vs ← L.head. Remove vs from L.
7: Switch vs and update C, flag(vs), NS(vs), NS̄(vs), P [s].
8: for vt ∈ NS(vs) ∪NS̄(vs) do
9: Update NS(vt) and NS̄(vt) as appropriate.

10: Add(remove) the node corresponding to vt in L if vt becomes switching(non-
switching) and update P [t].

11: end for
12: end if
13: return vs.

O. Wasim and V. King 33:9

Running Time. Updates to data structures of vi, vj and P [i], P [j] take constant time.
Inserting or removing a node from L also takes constant time. Switching vs in the case
when C is no longer 1

2 -respecting takes time proportional to updating all its neighbors’ data
structures, their corresponding entries in P and their corresponding nodes in L. This takes
O(∆) time. Theorem 3 follows.

3 A fully dynamic distributed algorithm

In this section, we present the algorithm of Theorem 4. Dynamic distributed algorithms
have been well studied in the past [36, 16], and techniques to design sequential fully dynamic
algorithms are often applicable in designing their distributed counterparts. As an example,
for the maximal independent set problem the distributed implementation of the dynamic
sequential algorithm of Assadi et al.[3] improves on the dynamic distributed algorithm of
Censor-Hillel et al. [10]. This is often easier for problems in which only the neighborhood
of vertices incident to an update needs to be examined to restore the maintained property.
For MAX-CUT, it may not always be the case that endpoints of the update edge can be
switched to maintain a 1

2 -approximate cut by Theorem 9. Nevertheless, we show how to use
the O(∆) update time algorithm to get an efficient fully dynamic distributed algorithm in
the MPC model.

In the model we consider, there are n machines M1, ...,Mn each corresponding to vertices
v1, ..., vn respectively. Given a graph G = (V,E) where n = |V | and m = |E|, each machine
Mi initially stores a list of neighbors of vi in addition to storing f(v) and R ⊆ [k] to run the
static distributed algorithm obtained by pairwise independence (see Section 1.1) and obtain
an initial 1

2 -respecting cut C = (S, S̄) on G. For any i, j ∈ [n] we say that machine Mi is
a neighbor of Mj if (vi, vj) ∈ E. We let Mn be the coordinator machine which stores the
position of any vertex v ∈ V in C, i.e. whether v ∈ S or S̄. Given the initial cut C, each
machine Mi maintains whether vi is a switching vertex w.r.t. C or not. This can be done in
a single round and O(m) total communication–every machine simply sends the position of
its corresponding vertex in C to all its neighbors. We also ensure that the coordinator Mn

maintains the list of all switching vertices w.r.t C, the total number of edges in the graph
and the size of C ′s cut-set. After this initial preprocessing which takes O(1) rounds and
O(n2 logn) bits of communication, the information f(v) and R stored by all machines can
be discarded.

We now describe the update algorithm. Whenever an update {vi, vj} is made to G,
machines Mi and Mj are informed and thereafter, they update their list of neighbors. Both
Mi and Mj inform the coordinator Mn of the update in addition to informing whether vi
and vj become switching w.r.t the maintained cut C. This allows Mn to update m, size of
the cut-set C and the set of switching vertices. If C ceases to be 1

2 -respecting, Mn selects
an arbitrary switching vertex, vs and informs Ms. Thereafter, Ms updates its local data
structures to reflect the switch and informs all its neighbors to reflect the switch. If any
neighbor vk of vs becomes a switching vertex w.r.t the updated cut C, Mk informs the
coordinator Mn, after which Mn updates the list of switching vertices.

This takes O(1) rounds, O(∆) total communication per round and at most one adjustment
to C after any edge update. Theorem 4 follows.

FSTTCS 2020

33:10 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

4 Achieving sublinear (in m) update time

In this section, we present an O(m1/2) amortized update algorithm which improves on the
O(∆) update time algorithm for sufficiently sparse graphs having high maximum degree.
The high level ideas involve: i) partitioning the graph G into induced subgraphs G1 and G2
on Vlow and Vhigh respectively where Vlow and Vhigh are sets of low and high degree vertices
respectively, ii) combining 1

2 -respecting cuts C1 and C2 on G1 and G2 respectively which are
maintained using the algorithm of Theorem 3 and, iii) selectively updating data structures.
The latter idea is crucial to reduce the update time. When a high degree vertex v ∈ Vhigh
switches w.r.t. the cut C2, data structures of only its neighbors in Vhigh are updated leading
to stale information in data structures of its neighbors in Vlow. A similar idea was used in
the fully dynamic algorithm for the maximal independent set problem [3]. We show that
lazy updating of low degree vertex data structures is sufficient for our purpose and re-build
G1 and G2 after sufficiently many updates which leads to O(m1/2) amortized update time.
Given 1

2 -respecting cuts on any vertex disjoint induced subgraphs of G, we first show that
they can be combined to give a 1

2 -respecting on G.

I Theorem 11 (Cut combining). Let G = (V,E) be any graph and C1 = (S, S̄) and
C2 = (T, T̄) be 1

2 -respecting cuts with respect to the vertex disjoint induced subgraphs
G1 = (V1, E1), G2 = (V2, E2) of G such that S ∪ S̄ = V1, T ∪ T̄ = V2 and V1 ∪ V2 = V . Then
one of the following is a 1

2 -respecting cut C of G:
i) (S ∪ T, S̄ ∪ T̄)
ii) (S ∪ T̄ , S̄ ∪ T).
A formal proof of Theorem 11 is omitted for the sake of brevity but it follows by noting

that cut-edges of C1 and C2 remain cut edges in both cuts considered in i) and ii), and the
cut-set of one of the cuts in i) and ii) must contain half of the remaining edges.

Data Structures. For any U,W ⊆ V , let E(U,W) be the set of edges having one endpoint
in U and the other in W . To determine C, the following edge counts are maintained:
|E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|. If |E(S, T̄)| + |E(S̄, T)| ≥ |E(S, T)| + |E(S̄, T̄)|,
then C = (S ∪ T, S̄ ∪ T̄), else we take C = (S ∪ T̄ , S̄ ∪ T). Let NU (v) denote the list of
neighbors of v in U ⊆ V . In addition to data structures required by the algorithm of Theorem
3, every vertex v ∈ Vlow maintains neighbor counts NT (v), NT̄ (v) and every vertex v ∈ Vhigh
maintains neighbor counts NS(v), NS̄(v). For any subset U,W ⊆ V s.t. U ∈ {S, S̄} and
W ∈ {T, T̄}, note that the edge count |E(U,W)| =

∑
u∈U |NW (u)|.

The main challenge is to correctly maintain these edge counts without updating all the
neighbors of a high degree vertex which switches w.r.t C2. These edge counts change if i) an
edge update (vi, vj) is encountered and/or ii) a vertex switches w.r.t. either C1 or C2. Our
update algorithm switches at most a single vertex w.r.t C1 or C2 and maintains neighbor
counts of high degree vertices accurately at any given time. Combined with recomputing
neighbor counts of low degree vertices only when they switch, this is sufficient to maintain
edge counts correctly at any given time.

Algorithm. The algorithm consists of phases. The kth phase for k ≥ 1 begins with the graph
G containing mk edges and 1

2 -respecting cuts C1 and C2 on the induced subgraphs G1 and
G2 respectively. Here, G1 and G2 are induced subgraphs on Vlow = {v ∈ V |deg(v) ≤ m1/2

k }
and Vhigh = V \Vlow respectively. We assume that the first phase starts with a single edge, i.e.
m1 = 1. The kth phase consists of m1/2

k updates after which a new phase corresponding to

O. Wasim and V. King 33:11

the new value of mk begins. Thereafter, all data structures are reinitialized and 1
2 -respecting

cuts are computed for G1 and G2 (under the new value of mk). The total time taken to
reinitialize a phase is O(mk), leading to O(m1/2

k) amortized update time.
Note that the number of high degree vertices for any phase beginning with mk edges is

bounded by |Vhigh| = O(mk)/Ω(m1/2
k) = O(m1/2

k). Let {vi, vj} be an edge update during
the kth phase for k ≥ 1. Then,
1. if vi ∈ Vlow, vj ∈ Vhigh: One of the lists NT (vi), NT̄ (vi) and one of NS(vj), NS̄(vj) is

updated. Additionally, one of the edge counts |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|
depending on the position of vi and vj in C1 and C2 respectively, is updated.

2. if vi, vj ∈ Vlow: the algorithm of Theorem 3 is used to restore C1. Let u be a vertex which
is switched w.r.t C1. All data structures of high degree neighbors of u ∈ NT (u) ∪NT̄ (u)
are updated. Moreover, u recomputes the lists of its high degree neighbors NT (u), NT̄ (u).
The edge counts |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)| are updated.

3. if vi, vj ∈ Vhigh: the algorithm of Theorem 3 is used to restore C2. The edge counts
|E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)| are updated.

The pseudo code of the update algorithm is as follows.

Algorithm 2 Sublinear Max-Cut ({vi, vj}, C1 = (S, S̄), C2 = (T, T̄)).

1: if vi ∈ Vlow and vj ∈ Vhigh then
2: Update |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|, NT (vi), NT̄ (vi), NS(vj), NS̄(vj).
3: else
4: if vi, vj ∈ Vlow then
5: u← Delta-Dynamic Max-Cut(G1, {vi, vj}, C1).
6: for w ∈ NT (u) ∪NT̄ (u) do
7: Update NS(w), NS̄(w) to reflect the new position of u in the cut (S, S̄).
8: end for
9: Update NT (u), NT̄ (u), |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|.

10: end if
11: if vi, vj ∈ Vhigh then
12: u← Delta-Dynamic Max-Cut(G2, {vi, vj}, C2).
13: Update |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|.
14: end if
15: end if

Running Time. If an update {vi, vj} is such that vi ∈ Vlow, vj ∈ Vhigh, the update time is
O(1).

If vi, vj ∈ Vlow the call to the O(∆) update time algorithm takes time O(m1/2
k) since any

vertex in Vlow has degree at most 2m1/2
k = O(m1/2

k) throughout the phase, by definition.
Updating the list of neighbors of the switched vertex u, and updating the data structures of
u′s neighbors takes O(m1/2

k) time. Updating edge counts takes constant time since they are
incremented or decremented by constants which can be determined from the size of neighbor
lists of u.

If vi, vj ∈ Vhigh: the call to the O(∆) update time algorithm takes time O(m1/2
k) since

|Vhigh| = O(m1/2
k). As in the second case, updating edge counts takes constant time.

Thus, the time taken to handle an edge update during a phase beginning with mk edges
is O(m1/2

k). Since the amortized cost of re-initialization is O(m1/2
k), this gives an O(m1/2)

amortized update time algorithm where m denotes the maximum number of edges in G

during an arbitrary sequence sequence of updates. Theorem 5 follows. A proof of correctness
can be found in the Appendix.

FSTTCS 2020

33:12 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

5 Achieving sublinear (in n) worst case update time

In this section we give a randomized algorithm which exactly maintains a 1
2 -respecting cut

and takes Õ(n2/3) worst case update time w.h.p. We obtain the result by first designing an
algorithm with O(n2/3) expected worst-case update time. Then, we apply the probability
amplification result in [7] which gives a Õ(n2/3) worst-case update time algorithm w.h.p.

The high level idea of our algorithm is to use cut-combining idea on k vertex disjoint
subgraphs G1, G2, ..., Gk induced by a random k-partition of V denoted by (V1, V2, ..., Vk).
The random partition is constructed using the oracle described in Section 1.2 such that⋃k
i=1 Vi = V and |V1| = |V2| = ... = |Vk−1| = dn/ke, |Vk| = n − (k − 1)dn/ke. On each

subgraph Gi induced by Vi, a 1
2 respecting cut Ci = (Si, S̄i) (where S̄i = Vi\Si) is dynamically

maintained using the algorithm of Theorem 3. We now describe the data structures and the
update algorithm.

Data structures. In addition to data structures required by theO(∆)-update time algorithm,
we maintain: i) For each vertex v ∈ V , lists of its neighbors in each Si, (denoted by NSi(v))
and S̄i (denoted by NS̄i

(v)) for all 1 ≤ i ≤ k and, ii) For all 1 ≤ i, j ≤ k, the edge counts
|E(Si, Sj)|, |E(Si, S̄j)| |E(S̄i, Sj)|, |E(S̄i, S̄j)| for a total of

(2k
2
)

= O(k2) counts. The edge
counts can be maintained using the size of neighbor lists maintained for each vertex.

Algorithm.
Cut combining: We first describe how to combine 1

2 -approximate cuts Ci on Gi for 1 ≤ i ≤ k
to get a 1

2 -approximate cut C, on G. Initially, C = (S1, S̄1). Whenever considering cut
Ci = (Si, S̄i) for 2 ≤ i ≤ k to combine with C, the edge counts |E(Si, Sj)|, |E(Si, S̄j)|,
|E(S̄i, Sj)|, |E(S̄i, S̄j)|, for 1 ≤ j ≤ i − 1 are used to compute the edge counts |E(S, Si)|,
|E(S, S̄i)|, |E(S̄, Si)|, |E(S̄, S̄i)|. Depending on the combination which maximizes |E(S, S̄)|,
either Si (resp. S̄i) is added to S (resp. S̄) or Si (resp. S̄i) is added to S̄ (resp. S).
Computing the edge counts takes O(k) time, yielding O(k2) time to compute C.
Update algorithm: Let {vi, vj} be an edge update. Then,
1. if vi ∈ Vp and vj ∈ Vq s.t. p 6= q: Only the lists NSq (vi), NS̄q

(vi), NSp(vj), NS̄p
(vj) and

edge counts |E(Sp, Sq)|, |E(Sp, S̄q)|, |E(S̄p, Sq)|, |E(S̄p, S̄q)| are updated which takes O(1)
time.

2. if vi, vj ∈ Vp for some p: the cut Cp is updated using the O(∆) update time algorithm.
Let u be the switched vertex w.r.t Cp. The lists NSp

(w), NS̄p
(w) of all neighbors w of

u are updated to reflect u′s switch. For all 1 ≤ q ≤ k such that NSq (u) ∪NS̄q
(u) 6= ∅,

edge counts of the form |E(Sp, Sq)|, |E(Sp, S̄q)|, |E(S̄p, Sq)|, |E(S̄p, S̄q)| are also updated.
This can be done by using the values of |NSq

(u)| and |NS̄q
(u)|.

Following this, the cuts C1, ..., Ck are combined to yield C. The pseudo code of the update
algorithm is as follows.
Note that the only information required to determine how to combine the cut (St, S̄t) with
(S, S̄) in each iteration of the for loop is the position of all Si, S̄i for all i ≤ t− 1 in (S, S̄).
Thus, computing the edge counts |E(S ∪ St, S̄ ∪ S̄t)|, |E(S ∪ S̄t, S̄ ∪ St)| can be done in O(k)
time, and lines 14 and 16 of Algorithm 3 do not need to be explicitly implemented.

Running Time. For the case when vi ∈ Vp and vj ∈ Vq s.t. p 6= q updating the edge counts
takes constant time. However, the combining cost is incurred. This is because a single update
can possibly cause the cuts to combine differently in order to maintain a 1

2 -respecting cut
on G.

O. Wasim and V. King 33:13

Algorithm 3 Randomized Sublinear MAX-CUT ({vi, vj}, G1, ..., Gk, C1,, Ck).

1: if vi ∈ Vp, vj ∈ Vq s.t. p 6= q then
2: Update NSq (vi), NS̄q

(vi), NSp(vj), NS̄p
(vj).

3: Update |E(Sp, Sq)|, |E(S̄p, Sq)|, |E(Sp, S̄q)|, |E(S̄p, S̄q)| appropriately.
4: else
5: u← Delta-Dynamic Max-Cut(Gp, {vi, vj}, Cp).
6: for all neighbors v of u where v ∈ Vr for any 1 ≤ r ≤ k do
7: Update NSr (u), NS̄r

(u), NSp(v), NS̄p
(v).

8: Update |E(Sp, Sr)|, |E(S̄p, Sr)|, |E(Sp, S̄r)|, |E(S̄p, S̄r)| appropriately.
9: end for

10: end if
11: S = S1, S̄ = S̄1.
12: for t = 2,, k do
13: if |E(S ∪ St, S̄ ∪ S̄t)| ≥ |E(S ∪ S̄t, S̄ ∪ St)| then
14: S = S ∪ St, S̄ = S̄ ∪ S̄t.
15: else
16: S = S ∪ S̄t, S̄ = S̄ ∪ St.
17: end if
18: end for

For the case when vi, vj ∈ Vp for some p, the algorithm of Theorem 3 takes O(n/k) time.
Let u be the switched vertex w.r.t. Cp. Updating the neighbor lists of all neighbors of u
takes O(∆) time. Thus, the update time in this case is O(∆ + n

k + k2) = O(∆ + k2).

I Lemma 12. The running time of the update algorithm is O(∆
k + k2). With k = Θ(n1/3),

this yields O(n2/3) expected worst-case update time.

Proof. Let {vi, vj} be an edge update. The probability that this update is of the second
type, i.e. vi, vj ∈ Vp for some p ∈ [k] is at most 1/k. The expected update time, denoted by
E[T (n, k)] can be written as,

E[T (n, k)] = Pr[vi, vj ∈ Vp]O(∆ + k2) + Pr[vi ∈ Vp, vj ∈ Vq, p 6= q]O(k2)
= Pr[vi, vj ∈ Vp]O(∆ + k2) + (1− Pr[vi, vj ∈ Vp,])O(k2)

= 1
k
O(∆) +O(k2)

= O(∆
k

+ k2)

= O(n
k

+ k2).

The value of k which minimizes E[T (n, k)] is Θ(n1/3) yielding O(n2/3) expected worst case
update time. J

Bernstein et al. [7] give a general technique to convert a fully dynamic data structure
with expected worst-case update time to one with a worst-case update time with high
probability. See [7] for technical details. By using their technique as a black-box, we convert
our randomized algorithm described in this section taking O(n2/3) expected worst-case
update time to one taking O(n2/3 log2(n)) = Õ(n2/3) update time with high probability.
Theorem 6 follows.

FSTTCS 2020

33:14 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

6 Conclusion

The following open problems arise from our work. First, it would be interesting to improve
on the algorithm in Theorem 5 to get a better update time in the worst-case. Second, the
Algorithm in Theorem 6 works only for an oblivious adversary, and it would be interesting
to design a randomized worst-case algorithm with better update time which works against
an adaptive adversary.

We believe that ideas from our fully dynamic distributed MPC algorithm may be useful
in other models such as the ones considered in [27, 39]. We observe that our dynamic
algorithm for MPC can be implemented in the Congested-Clique model. Moreover, we
believe that a dynamic MPC algorithm to maintain a 1

2 -respecting cut using only sublinear
(in n) memory per machine (in contrast to Ω(n) memory as in the algorithm of Theorem
4) may be possible without a blow up in the round, adjustment or message complexity.
A natural open question is whether there exists a deterministic fully dynamic algorithm
with o(∆) round complexity and O(1) adjustment and message complexity to preserve a
1
2 -respecting cut in the CONGEST model. This may necessitate new techniques and lead to
interesting connections to other fundamental problems studied in the distributed computing
and dynamic algorithms literature.

References

1 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proceedings of the Forty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, page 574–583, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2591796.2591805.

2 Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. J. ACM, 63(2):12:1–12:35, May 2016. doi:10.1145/2837020.

3 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 815–826, New York, NY, USA, 2018.
ACM. doi:10.1145/3188745.3188922.

4 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear in n update time. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 1919–1936, Philadelphia,
PA, USA, 2019. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3310435.3310551.

5 S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in o (log n) update time.
In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 383–392,
October 2011. doi:10.1109/FOCS.2011.89.

6 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query pro-
cessing. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS ’13, page 273–284, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2463664.2465224.

7 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for
dynamic spanner and dynamic maximal matching. In Timothy M. Chan, editor, Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1899–1918. SIAM, 2019. doi:10.1137/1.
9781611975482.115.

8 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Artur Czumaj, editor, Proceedings of the Twenty-

https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1145/2837020
https://doi.org/10.1145/3188745.3188922
http://dl.acm.org/citation.cfm?id=3310435.3310551
http://dl.acm.org/citation.cfm?id=3310435.3310551
https://doi.org/10.1109/FOCS.2011.89
https://doi.org/10.1145/2463664.2465224
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1137/1.9781611975482.115

O. Wasim and V. King 33:15

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1–20. SIAM, 2018. doi:10.1137/1.9781611975031.1.

9 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Dynamic algorithms via the
primal-dual method. Inf. Comput., 261(Part):219–239, 2018. doi:10.1016/j.ic.2018.02.005.

10 Keren Censor-Hillel, Elad Haramaty, and Zohar Karnin. Optimal dynamic distributed mis.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
’16, page 217–226, New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2933057.2933083.

11 Keren Censor-Hillel, Rina Levy, and Hadas Shachnai. Fast distributed approximation for
max-cut. In Antonio Fernández Anta, Tomasz Jurdzinski, Miguel A. Mosteiro, and Yanyong
Zhang, editors, Algorithms for Sensor Systems - 13th International Symposium on Algorithms
and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria,
September 7-8, 2017, Revised Selected Papers, volume 10718 of Lecture Notes in Computer
Science, pages 41–56. Springer, 2017. doi:10.1007/978-3-319-72751-6_4.

12 K. C. Chang and D. H. . Du. Efficient algorithms for layer assignment problem. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(1):67–78, 1987.

13 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending grothen-
dieck’s inequality. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’04, page 54–60, USA, 2004. IEEE Computer Society. doi:
10.1109/FOCS.2004.39.

14 Kwan-Wu Chin, Sieteng Soh, and Chen Meng. Novel scheduling algorithms for concurrent
transmit/receive wireless mesh networks. Computer Networks, 56:1200–1214, March 2012.
doi:10.1016/j.comnet.2011.12.001.

15 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond, 2019. arXiv:1910.08025.

16 Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. Distributed computation
in dynamic networks via random walks. Theor. Comput. Sci., 581(C):45–66, May 2015.
doi:10.1016/j.tcs.2015.02.044.

17 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. doi:10.1145/1327452.1327492.

18 Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and
Xiaorui Sun. Parallel batch-dynamic graphs: Algorithms and lower bounds. In Proceedings
of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, page
1300–1319, USA, 2020. Society for Industrial and Applied Mathematics.

19 Michel X. Goemans and David P. Williamson. .879-approximation algorithms for MAX
CUT and MAX 2sat. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 422–431, 1994.
doi:10.1145/195058.195216.

20 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Proceedings of the 22nd International Conference on Algorithms
and Computation, ISAAC’11, page 374–383, Berlin, Heidelberg, 2011. Springer-Verlag. doi:
10.1007/978-3-642-25591-5_39.

21 Gramoz Goranci, Monika Henzinger, and Dariusz Leniowski. A tree structure for dynamic
facility location. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual
European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume
112 of LIPIcs, pages 39:1–39:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ESA.2018.39.

22 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

FSTTCS 2020

https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.1016/j.ic.2018.02.005
https://doi.org/10.1145/2933057.2933083
https://doi.org/10.1145/2933057.2933083
https://doi.org/10.1007/978-3-319-72751-6_4
https://doi.org/10.1109/FOCS.2004.39
https://doi.org/10.1109/FOCS.2004.39
https://doi.org/10.1016/j.comnet.2011.12.001
http://arxiv.org/abs/1910.08025
https://doi.org/10.1016/j.tcs.2015.02.044
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/195058.195216
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.4230/LIPIcs.ESA.2018.39

33:16 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 537–550. ACM,
2017. doi:10.1145/3055399.3055493.

23 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for maximal independent set
and other problems. CoRR, abs/1804.01823, 2018. arXiv:1804.01823.

24 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.
320215.

25 Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic. Dominating sets
and connected dominating sets in dynamic graphs. In STACS, 2019.

26 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48:723–760, July 2001. doi:10.1145/276698.276715.

27 Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis. Dynamic
algorithms for the massively parallel computation model. In Proceedings of the 31st ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’19, page 49–58, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3323165.3323202.

28 David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst.
Sci., 9(3):256–278, December 1974. doi:10.1016/S0022-0000(74)80044-9.

29 Satyen Kale and C. Seshadhri. Combinatorial approximation algorithms for maxcut using
random walks. In Bernard Chazelle, editor, Innovations in Computer Science - ICS 2011,
Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages 367–388. Tsinghua
University Press, 2011. URL: http://conference.iiis.tsinghua.edu.cn/ICS2011/content/
papers/20.html.

30 Bruce Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic
worst case time. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1131–1142, January 2013. doi:10.1137/1.9781611973105.81.

31 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’10, page 938–948, USA, 2010. Society for Industrial and Applied Mathematics.

32 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming, 1972.

33 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Deterministic
worst case dynamic connectivity: Simpler and faster. CoRR, abs/1507.05944, 2015. arXiv:
1507.05944.

34 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? In 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 146–154, 2004.
doi:10.1109/FOCS.2004.49.

35 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM J. Comput., 37(1):319–357, April 2007.
doi:10.1137/S0097539705447372.

36 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC ’10, page 513–522, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1806689.1806760.

37 M. Luby. Removing randomness in parallel computation without a processor penalty. In
[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages
162–173, 1988.

38 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Trans. Algorithms, 12(1):7:1–7:15, 2016. doi:10.1145/2700206.

39 Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch updates in the
massively parallel computation model, 2020. arXiv:2002.07800.

https://doi.org/10.1145/3055399.3055493
http://arxiv.org/abs/1804.01823
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/276698.276715
https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1016/S0022-0000(74)80044-9
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/20.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/20.html
https://doi.org/10.1137/1.9781611973105.81
http://arxiv.org/abs/1507.05944
http://arxiv.org/abs/1507.05944
https://doi.org/10.1109/FOCS.2004.49
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.1145/2700206
http://arxiv.org/abs/2002.07800

O. Wasim and V. King 33:17

40 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464.
ACM, 2010. doi:10.1145/1806689.1806753.

41 M. Preissmann and Andras Sebo. Optimal cuts in graphs and statistical mechanics. Mathem-
atical and Computer Modelling - MATH COMPUT MODELLING, 26:1–11, October 1997.
doi:10.1016/S0895-7177(97)00195-7.

42 Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. J. ACM, 28(1):1–4,
January 1981. doi:10.1145/322234.322235.

43 Shay Solomon. Fully dynamic maximal matching in constant update time. 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 325–334, 2016.

44 José A. Soto. Improved analysis of a max-cut algorithm based on spectral partitioning. SIAM
J. Discret. Math., 29(1):259–268, 2015. doi:10.1137/14099098X.

45 Mikkel Thorup. Fully-dynamic min-cut. In Proceedings on 33rd Annual ACM Symposium
on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 224–230, 2001.
doi:10.1145/380752.380804.

46 L. Trevisan. Max cut and the smallest eigenvalue. SIAM Journal on Computing, 41(6):1769–
1786, 2012. doi:10.1137/090773714.

47 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time, 2016. arXiv:1611.02864.

48 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’10, page 10, USA, 2010. USENIX Association.

7 Appendix

7.1 Proof of Observation 2
Proof. The high level idea is to partition the update sequence into phases consisting of
O(εm) updates and spreading the time to recompute a t-respecting (resp., t-approximate)
cut using AS over any phase. Let Pi denote phase i, GPi

the graph at the beginning of
phase i and mi the number of edges in GPi . We let mi = m so that phases Pi+1 and Pi+2
begin after εm

2 and εm updates have been made to GPi
, respectively. Algorithm AS is

used to compute a t-respecting (resp., t-approximate) cut CPi on GPi by spending T (m,n)
time spread over updates between phase Pi and Pi+1, and CPi

is used to answer all queries
between phase Pi+1 and Pi+2. This takes 2T (m,n)

εm = O(T (m,n)
εm) worst-case update time where

CPi
is a (t − ε)-respecting (resp., t-approximate) cut until phase Pi+2 begins. Moreover,

after Pi+1 begins, AS is used to compute a t-respecting (resp., t-approximate) cut CPi+1

on GPi+1 by spending T (mi+1, n) time spread over updates between phase Pi+1 and Pi+2,
yielding a worst-case update time of 2T (mi+1,n)

εm ≤ 2T (m(1+ε/2),n)
εm = O(T (m,n)

εm). Thus, the
total worst-case update time is bounded by O(T (m,n)

εm). J

7.2 Endpoints of an updated edge may not be switching
I Theorem 9. Given an edge update {vi, vj} to Gk−1 for k ≥ 1, and a 1

2 -respecting cut
Ck−1 maintained on Gk−1, a switching vertex with respect to Ck−1 need not always be one
of vi, vj.

Proof. We refer to Figures 7.1 and 7.2 for the sake of illustration. Let V = {v1, ..., v9}
be the set of vertices such that S = V, S̄ = ∅. Consider the following sequence of edge in-
sertions {v1, v6}, {v1, v7}, {v2, v7}, {v3, v7}, {v3, v8}, {v3, v9}, {v4, v9}, {v5, v8} which leads to

FSTTCS 2020

https://doi.org/10.1145/1806689.1806753
https://doi.org/10.1016/S0895-7177(97)00195-7
https://doi.org/10.1145/322234.322235
https://doi.org/10.1137/14099098X
https://doi.org/10.1145/380752.380804
https://doi.org/10.1137/090773714
http://arxiv.org/abs/1611.02864

33:18 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 7.1 S = {v1, .., v5}, S̄ = {v6, .., v9}.
After {v3, v5} is added, v3 switches.

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 7.2 After v3 switches and edges
{v1, v2}, {v1, v4}, {v1, v5} are added, none of
v1, v2, v4, v5 are switching, yet the cut ceases
to be 1

2 respecting.

v6, v7, v8, v9 moving to S̄ in that order, as a result. Next, consider the following non-cut edge in-
sertions in no particular order: {v1, v3}, {v2, v3}, {v3, v4}, {v6, v7}, {v7, v8}, {v8, v9}, {v7, v9}.
The latter set of edge insertions does not make any vertex switching, After the edge {v3, v5} is
added v3 switches to S̄. Now consider the insertion of non-cut edges {v1, v2}, {v1, v4}, {v1, v5}
so that none of their endpoints namely v1, v2, v4, v5 become switching. But, (S, S̄) is no
longer 1

2 -respecting. J

7.3 On the sublinear (in m) update time algorithm

7.3.1 Proof of correctness
I Lemma 13. Algorithm 2 correctly maintains the edge counts |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|,
|E(S̄, T̄)| where C1 = (S, S̄), C2 = (T, T̄).

Proof. Assume that the edge counts (|E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|) are accurate
before Algorithm 2 is executed to handle the edge update {vi, vj}. For vi ∈ Vlow and
vj ∈ Vhigh let X ∈ {S, S̄}, Y ∈ {T, T̄} be such that vi ∈ X, vj ∈ Y . If {vi, vj} is an edge
insertion, then vi is added to NX(vj), vj to NY (vi) and |E(X,Y)| is increased by 1. On the
other hand, if {vi, vj} is an edge deletion, vi is removed from NX(vj), vj from NY (vi) and
|E(X,Y)| is decremented by 1. Thus, the edge counts are correctly updated in this case.

In the case when vi, vj ∈ Vlow, Algorithm 1 is called in order to handle the edge update
with respect to the induced subgraph G1. Let u ∈ Vlow be a switched vertex and let
X, X̄ ∈ {S, S̄} be such that u ∈ X moves to X̄ after the switch. Now, u may no longer
have an accurate count of its neighbors in T and T̄ since when high degree neighbors of u
possibly switch in previous updates, the data structures of u namely NT (u), NT̄ (u) are not
modified. Thus, lists NT (u), NT̄ (u) are updated and for all high degree neighbors w of u,
NX(w), NX̄(w) are also updated to reflect u’s switch. Since u switched from X to X̄, the
sizes of lists NX(w), NX̄(w) are modified appropriately. For all neighbors w ∈ Vlow of u,
their data structures due to u′s switch to X̄ are already updated in the call to Algorithm 1.
Since u′s neighbor lists are up-to-date, the counts |E(X,T)|, |E(X, T̄)|, |E(X̄, T)|, |E(X̄, T̄)|
are correctly updated.

O. Wasim and V. King 33:19

For the case when vi, vj ∈ Vhigh, Algorithm 1 is called in order to handle the edge update
with respect to the induced subgraph G2. Let u ∈ Vhigh be a vertex which switches and let
Y, Ȳ ∈ {T, T̄} be such that u ∈ Y before the update and switches to Ȳ . Vertices in Vhigh are
updated to reflect the switch of u with respect to the cut (T, T̄) during the call to Algorithm
1. Since u is a high degree vertex, the neighbor lists NS(u), NS̄(u) are always up-to-date.
Thus, the edge counts |E(X,T)|, |E(X, T̄)|, |E(X̄, T)|, |E(X̄, T̄)| are correctly updated. J

FSTTCS 2020

	Introduction
	Previous Work
	The Fully Dynamic Model
	Dynamic algorithms from static via lazy recomputation

	Our Contribution
	Our techniques
	Organization of the paper

	Preliminaries
	A crucial observation
	An D worst-case update time algorithm

	A fully dynamic distributed algorithm
	Achieving sublinear (in m) update time
	Achieving sublinear (in n) worst case update time
	Conclusion
	Appendix
	Proof of Observation 2
	Endpoints of an updated edge may not be switching
	On the sublinear (in m) update time algorithm
	Proof of correctness

