
Parameterized Complexity of Safety of Threshold
Automata
A. R. Balasubramanian
Technische Universität München, Germany
bala.ayikudi@tum.de

Abstract
Threshold automata are a formalism for modeling fault-tolerant distributed algorithms. In this
paper, we study the parameterized complexity of reachability of threshold automata. As a first
result, we show that the problem becomes W[1]-hard even when parameterized by parameters which
are quite small in practice. We then consider two restricted cases which arise in practice and provide
fixed-parameter tractable algorithms for both these cases. Finally, we report on experimental results
conducted on some protocols taken from the literature.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Logic and verification

Keywords and phrases Threshold automata, distributed algorithms, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.37

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agreement No
787367 (PaVeS).

Acknowledgements I would like to thank Prof. Javier Esparza for useful discussions regarding the
paper and Christoph Welzel and Margarete Richter for their encouragement and support. I would
also like to thank the anonymous reviewers whose comments greatly improved the presentation of
the paper.

1 Introduction

Threshold automata [21] are a formalism for modeling and analyzing fault-tolerant distributed
algorithms. In this setup, an arbitrary but fixed number of processes execute a given protocol
as specified by a threshold automaton. Verification of these systems aims to prove these
protocols correct for any number of processes [4].

One of the main differences between threshold automata and other formalisms for modeling
distributed protocols (like replicated systems and population protocols [1, 16, 18]) is the
notion of a threshold guard. Roughly speaking, a threshold guard specifies certain constraints
that should hold between the number of messages received and the number of participating
processes, in order for a transition to be enabled. For example, a guard of the form x ≥ n/2−t,
(where x counts the number of messages of some specified type, n is the number of processes
and t is the maximum number of faulty processes), specifies that the number of messages
received should be bigger than n/2 − t, in order for the process to proceed. This feature
is important in modeling fault-tolerant distributed algorithms where, often a process can
make a move only if it has received a message from a majority or two-thirds of the number of
processes. In a collection of papers [26, 3, 25, 24, 23], many algorithms have been developed
for verifying various properties for threshold automata. These algorithms have then been
used to verify a number of protocols from the distributed computing literature [24]. It is
known that the reachability problem for threshold automata is NP-complete [2].

© A.R. Balasubramanian;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bala.ayikudi@tum.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.37
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Parameterized Complexity of Safety of Threshold Automata

Parameterized complexity [13] attempts to study decision problems that come along with
a parameter. In parameterized complexity, apart from the size of the input n, one considers
further parameters k that capture the structure of the input and one looks for algorithms
that run in time f(k) · nO(1), where f is some function dependent on k alone. The hope is to
find parameters which are quite small in practice and to base the dominant running time
of the algorithm on this parameter alone. Problems solvable in such a manner are called
fixed-parameter tractable (FPT).

In recent years, increasing effort has been devoted to studying the parameterized complex-
ity of problems in verification for different models [10, 11, 15, 17, 9]. Motivated by this and
by the hard theoretical complexity (NP-completeness) of reachability of threshold automata,
we study the parameterized complexity of the same problem, parameterized by (among
other parameters) the number of threshold guards and the given safety specification. Our
first result is a parameterized equivalent of NP-hardness, which shows that reachability of
threshold automata is W[1]-hard. However, motivated by practical concerns, we then study
two restricted cases for which we provide fixed-parameter tractable algorithms. In the first
case, we restrict ourselves to threshold automata whose underlying control structure is acyclic
and provide a simple algorithm which reduces the size of the automaton to a function of the
considered parameters. In the second case we consider multiplicative threshold automata
where the number of fall guards is a constant. (For a definition of fall guards, see Section 2.1.)
Roughly speaking, multiplicativity means that any run over a smaller population of processes
can be “lifted” to a run over a bigger population as well. For this case, we use results from
Petri net theory to provide an FPT algorithm. Finally, the usefulness of these cases is shown
by a preliminary implementation of our algorithms on various protocols from the benchmark
in [24]. Our implementation compares favorably with ByMC, the tool developed in [24] and
also with the algorithm given in [2].

2 Preliminaries

We denote the set of non-negative integers by N0, the set of positive integers by N>0 and the
set of all non-negative rational numbers by Q≥0.

2.1 Threshold Automata
We introduce threshold automata, mostly following the definition and notations used

in [2]. Along the way, we also illustrate the definitions on the example of Figure 2 from [25],
which is a model of the Byzantine agreement protocol of Figure 1.

Environments
Threshold automata are defined relative to an environment Env = (Π,RC ,Num), where Π
is a set of environment variables ranging over N0, RC ⊆ NΠ

0 is a resilience condition over
the environment variables, expressible as a linear formula, and Num : RC → N0 is a linear
function called the number function. Intuitively, a valuation of Π determines the number
of processes of different kinds (e.g. faulty) executing the protocol, and RC describes the
admissible combinations of values of environment variables. Finally, Num associates to a
each admissible combination, the number of copies of the automaton that are going to run in
parallel, or, equivalently, the number of processes explicitly modeled. In a Byzantine setting,
faulty processes behave arbitrarily, and so we do not model them explicitly; in this case, the
system consists of one copy of the automaton for every correct process. In the crash fault
model, processes behave correctly until they crash and they must be modeled explicitly.

A. Balasubramanian 37:3

1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 whi le t r u e do (in one atomic step)
5 i f myvali = 1
6 and not s e n t ECHO b e f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t

10 t + 1 d i s t i n c t p r o c e s s e s
11 and not s e n t ECHO b e f o r e
12 then send ECHO to a l l
13
14 i f received ECHO from at l e a s t
15 n − t d i s t i n c t p r o c e s s e s
16 then accepti ← true
17 od

Figure 1 Pseudocode of a reliable broadcast
protocol from [28] for a correct process i, where
n and t denote the number of processes, and
an upper bound on the number of faulty pro-
cesses. The protocol satisfies its specification (if
myvali = 0 for every correct process i, then no
correct process sets its accept variable to true)
if t < n/3.

`0

`1

`2 `3

r2 : γ1 7→ x++

r1 : > 7→
x++ r3 : γ2

sl1 : >

sl2:> sl3:>

Figure 2 Threshold automaton from [25]
modeling the body of the loop in the pro-
tocol from Fig. 1. Symbols γ1, γ2 stand for
the threshold guards x ≥ (t + 1) − f and
x ≥ (n−t)−f , where n and t are as in Fig. 1, and
f is the actual number of faulty processes. The
shared variable x models the number of ECHO
messages sent by correct processes. Processes
with myvali = b (line 1) start in location `b (in
green). Rules r1 and r2 model sending ECHO
at lines 7 and 12. The self-loop rules sl1, . . . , sl3
are stuttering steps.

I Example 1. In the threshold automaton of Figure 2, the environment variables are n, f ,
and t, describing the number of processes, the number of (Byzantine) faulty processes, and
the maximum possible number of faulty processes, respectively. The resilience condition is
the constraint n/3 > t ≥ f . The function Num is given by Num(n, t, f) = n− f , which is
the number of correct processes.

Threshold automata
A threshold automaton over an environment Env is a tuple TA = (L, I,Γ,R), where L is a
finite set of local states (or locations), I ⊆ L is a nonempty subset of initial locations, Γ is
a set of shared variables ranging over N0, and R is a set of transition rules (or just rules),
formally described below.

A transition rule (or just a rule) is a tuple r = (from, to, ϕ, ~u), where from and to are the
source and target locations, ϕ ⊆ NΠ∪Γ

0 is a conjunction of threshold guards (described below),
and ~u : Γ→ {0, 1} is an update. We often let r.from, r.to, r.ϕ, r.~u denote the components of r.
Intuitively, r states that a process can move from from to to if the current values of Π and Γ
satisfy ϕ, and when it moves, it updates the current valuation ~g of Γ by performing the update
~g := ~g + ~u. Since all components of ~u are nonnegative, the values of shared variables never
decrease. A threshold guard ϕ has one of the following forms: b·x ./ a0+a1 ·p1+. . .+a|Π| ·p|Π|
where ./ ∈ {≥, <}, x ∈ Γ is a shared variable, p1, . . . , p|Π| ∈ Π are the environment variables,
b ∈ N>0 and a0, a1, . . . , a|Π| ∈ Z are integer coefficients. If b = 1, then the guard is called a
simple guard. Additionally, if ./ = ≥, then the guard is called a rise guard and otherwise
the guard is called a fall guard. We sometimes use b · x = a0 + a1 · p1 + . . .+ a|Π| · p|Π| as a
shorthand for b ·x ≥ a0 +a1 ·p1 + . . .+a|Π| ·p|Π|∧b ·x < (a0 +1)+a1 ·p1 + . . .+a|Π| ·p|Π|. Since

FSTTCS 2020

37:4 Parameterized Complexity of Safety of Threshold Automata

shared variables are initialized to 0 and they never decrease, once a rise (resp. fall) guard
becomes true (resp. false) it stays true (resp. false). We call this property monotonicity of
guards. We let Φrise, Φfall, and Φ denote the sets of rise guards, fall guards, and all guards of
TA. Finally, the graph of TA is the graph where the vertices are the locations and there is an
edge between ` and `′ if there is a rule r in TA with r.from = ` and r.to = `′. We say that
TA is acyclic if its graph is acyclic.

I Example 2. The rule r2 of Figure 2 has `0 and `2 as source and target locations, x ≥
(t+ 1)− f as guard, and increments the value of the shared variable x by 1.

Configurations and transition relation
A configuration of TA is a triple σ = (~κ, ~g, ~p) where ~κ : L → N0 describes the number
of processes at each location, and ~g ∈ N|Γ|0 and ~p ∈ RC are valuations of the shared
variables and the environment variables. In particular,

∑
`∈L ~κ(`) = Num(~p) always holds.

A configuration is initial if ~κ(`) = 0 for every ` /∈ I, and ~g = ~0. We often let σ.~κ, σ.~g, σ.~p
denote the components of σ.

A configuration σ = (~κ, ~g, ~p) enables a rule r = (from, to, ϕ, ~u) if ~κ(from) > 0, and
(~g, ~p) satisfies the guard ϕ, i.e., substituting ~g(x) for x and ~p(pi) for pi in ϕ yields a true
expression, denoted by σ |= ϕ. If σ enables r, then TA can move from σ to the configuration
r(σ) = (~κ′, ~g′, ~p′) defined as follows: (i) ~p′ = ~p, (ii) ~g′ = ~g + ~u, and (iii) ~κ′ = ~κ+ ~vr, where
~vr = ~0 if from = to and otherwise, ~vr(from) = −1, ~vr(to) = +1, and ~vr(`) = 0 for all other
locations `. We let σ → r(σ) denote that TA can move from σ to r(σ).

Schedules and paths
A schedule is a (finite or infinite) sequence of rules. A schedule τ = r1, . . . , rm is applicable
to configuration σ0 if there is a sequence of configurations σ1, . . . , σm such that σi = ri(σi−1)
for 1 ≤ i ≤ m, and we define τ(σ0) := σm. We let σ ∗−→ σ′ denote that τ(σ) = σ′ for some
schedule τ , and say that σ′ is reachable from σ. Further we let τ · τ ′ denote the concatenation
of two schedules τ and τ ′, and, given µ ≥ 0, let µ · τ the concatenation of τ with itself µ
times.

A path or run is a finite or infinite sequence σ0, r1, σ1, . . . , σk−1, rk, σk, . . . of alternating
configurations and rules such that σi = ri(σi−1) for every ri in the sequence. If τ = r1, . . . , r|τ |
is applicable to σ0, then we let path(σ0, τ) denote the path σ0, r1, σ1, . . . , r|τ |, σ|τ | with
σi = ri(σi−1), for 1 ≤ i ≤ |τ |. Similarly, if τ is an infinite schedule. Given a path path(σ, τ),
the set of all configurations in the path is denoted by Cfgs(σ, τ).

The main focus of this paper will be the reachability problem and is defined as: Given
TA and a set of locations Lspec = L=0 ∪ L>0 (called the specification), decide if there is a
run of TA satisfying Lspec, i.e., decide if there is an initial configuration σ0 such that some σ
reachable from σ0 satisfies σ.~κ(`) = 0 for every ` ∈ L=0 and σ.~κ(`) > 0 for every ` ∈ L>0.
The coverability problem is the special case of the reachability problem where L=0 = ∅.

2.2 Fixed-parameter tractability
We refer the reader to [13] for more information on parameterized complexity and only
give the necessary definitions here. A parameterized problem L is a subset of Σ∗ × N0 for
some alphabet Σ. A parameterized problem L is said to be fixed-parameter tractable (FPT)
if there exists an algorithm A such that (x, k) ∈ L iff A(x, k) is true and A runs in time
f(k) · |x|O(1) for some computable function f , depending only on the parameter k. Given

A. Balasubramanian 37:5

parameterized problems L,L′ ⊆ Σ∗ × N0 we say that L is reducible to L′ if there is an
algorithm that, given an input (x, k), produces another input (x′, k′) in time f(k) · |x|O(1)

such that (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′ and k′ ≤ g(k) for some functions f and g depending
only on k.

The parameterized clique problem is the set of all pairs (G, k) such that the graph G
has a clique of size k. A parameterized problem L is said to be W[1]-hard if there is a
parameterized reduction from L to the parameterized clique problem. If L is W[1]-hard and
there is a parameterized reduction from L to L′ then L′ is W[1]-hard as well. W[1]-hardness
is usually taken to be evidence that the problem does not have an FPT algorithm.

3 W[1]-hardness

We consider the reachability problem parameterized by the following parameters: |Φ| (the
number of distinct guards), |Lspec| (the size of the specification), |RC | (the number of
constraints in the resilience condition) and C (the maximum constant appearing in any of the
guards of TA). (We note that if x ∈ Γ ∪Π such that x does not appear in any of the guards
in Φ or in any of the constraints in RC , then x can be removed from the input. Hence, we
will always assume that |Γ|+ |Π| ≤ |Φ|+ |RC | and for this reason, we do not consider |Γ|
and |Π| explicitly as parameters.) In practice, all these values are quite small, roughly in the
range of 10 to 25. Unfortunately, we prove the following negative result:

I Theorem 3. Coverability (and hence reachability) for threshold automata parameterized by
|Φ|+ |Lspec|+ |RC |+ C is W [1]-hard, even for acyclic automata where |Φfall| is a constant.

Proof. We give a parameterized reduction from the Unary Bin Packing problem which is
known to be W [1]-hard (See Theorem 2 of [20]) and is defined as follows:

Given: A finite set of items I = {0, 1, 2, . . . , w}, a size size(i) ∈ N0 for each i ∈ I,
two positive integers B and k. (The integers size(i) and B are encoded in unary)
Parameter: k

Decide: If there exists a partition of I into bins I1, . . . , Ik such that the sum of the
sizes of the items in each bin Ij is less than or equal to B

Let size =
∑
i∈I size(i). Our parameterized reduction works as follows: We will have

k + 1 environment variables c1, c2, . . . , ck, n. Intuitively ci will denote the sum of the sizes of
the items in the ith bin. The environment variable n will denote the number of processes
modeled.

Further, we will have k + 5 shared variables x1, . . . , xk, access1, access2, access3 and
count1, count2. The variable xi will denote the sum of the sizes of items which do not
belong to the ith bin. The role of count1 and count2 will be to set up two counters whose
value will be exactly size and B respectively. Our construction will have three gadgets and
the role of access1, access2 and access3 is to ensure that exactly one process can enter the
first, second and third gadgets respectively.

We will have exactly one initial location start and three rules of the form r1 : (start,
access1 < 1, access1++, p0), r2 : (start, access2 < 1, access2++, q0) and r3 : (start, access3 <

1, access3++, `0). This means that once a process fires r1, it increments access1 and hence
no other process can fire r1 in the future. Similarly for the rules r2 and r3. Hence these
three rules ensure that at most one process can enter p0, q0 and `0 respectively. For the
specification, we set L=0 = ∅ and L>0 = {pcorr, qcorr, `w+1}, whose locations we will now
explain.

FSTTCS 2020

37:6 Parameterized Complexity of Safety of Threshold Automata

p0 p1 p2 · · · · · · · · · psize−1 psize pcorr
count1++ count1++ count1++

∑
1≤i≤k ci = count1

Figure 3 First gadget, which sets up the value of count1 to be exactly size.

q0 q1 q2 · · · · · · · · · qB−1 qB qcorr
count2++ count2++ count2++

∧
1≤i≤k count2 ≥ ci

Figure 4 Second gadget, which sets up the value of count2 to be exactly B.

`i `ji,0 `ji,1 `ji,2 · · · · · · · · · `ji,size(i)−1 `ji,size(i) `i+1
condj updj updj updj condj

Figure 5 Third gadget, which guesses the partition. Here condj is the condition xj ≥
∑

l 6=j
cl

and updj is the update ∧l 6=j xl++.

The first gadget is given by Figure 3 and starts from the location p0. It increments the
shared variable count1 to the value size. This gadget then ensures that we can reach pcorr
only if the sum of the values of the environment variables c1, c2, . . . , ck is exactly size. Notice
that this gadget can be constructed in polynomial time, since each size(i) is given in unary.

The second gadget is given by Figure 4 and starts from the location q0. It increments
the shared variable count2 to the value B. This gadget then ensures that we can reach qcorr
only if the values of the environment variables c1, c2, . . . , ck are all at most B. Notice that
this gadget can be constructed in polynomial time, since B is given in unary.

The third gadget is comprised of locations {`i}0≤i≤w+1 and {`ji,q}
1≤j≤k
0≤i≤w,0≤q≤size(i) and

is comprised of various mini-gadgets. For every 0 ≤ i ≤ w and 1 ≤ j ≤ k, the third gadget
has a mini-gadget as given by Figure 5.

Recall that the shared variable xj denotes the the sum of the sizes of items which do
not belong to the jth bin. Intuitively, if a process moves from `i to `i+1 by going through
`ji,0, . . . , `

j
i,size(i), this corresponds to putting the ith item in the jth bin and hence the

mini-gadget increments the variables {xl}l 6=j by the value size(i). To ensure that we do not
overshoot the bin size of the jth bin, we have the guards xj ≥

∑
l 6=j cl at the beginning and

the end of the mini-gadget. Recall that the first gadget ensures that
∑

1≤l≤k cl = size and
since xj denotes the sum of sizes of items not in the jth bin, the condition xj ≥

∑
l 6=j cl

ensures that the sum of the sizes of the items in the jth bin is at most cj . Since the second
gadget forces cj ≤ B, it follows that the test xj ≥

∑
l 6=j cl ensures that the sum of the

sizes in the jth bin is at most B. Notice that, once again this gadget can be constructed in
polynomial time, since each size(i) is given in unary.

Let RC be n > 1 and let Num(c1, . . . , ck, n) = n. From the given construction it is clear
that a configuration satisfying Lspec is reachable iff we can partition I into k bins such that
the sum of sizes of items in each bin does not exceed B.

It is clear that the reduction can be accomplished in polynomial time. Notice that the
automaton is acyclic, L=0 = ∅, |Φ| = O(k), |Φfall| = 4, |RC | = 1, C = 1 and |Lspec| = 3.
Hence it is clear that |Φ|+ |RC |+C + |Lspec| = O(k) and so the above reduction is indeed a
parameterized reduction from the unary bin packing problem to the coverability problem. J

A. Balasubramanian 37:7

We now identify two special cases for which we give an FPT algorithm and discuss how
these special cases arise in practice for a variety of distributed algorithms.

4 Acyclic threshold automata

The first case we consider is that of acyclic threshold automata, i.e., threshold automata
whose underlying graph is acyclic. Except for one protocol, all the others in the benchmark
of [24] are acyclic.1 As the reduction of Theorem 3 produces acyclic threshold automata,
we cannot hope for an FPT algorithm parameterized by {|Φ|, |Lspec|, |RC |, C}. However, we
show that

I Theorem 4. Reachability of acyclic threshold automata parameterized by |Φ|+ |Lspec|+
|RC | + C + D is in FPT, where D is the length of the longest path in the graph of the
threshold automaton.

Proof. Let TA be the given acyclic threshold automaton. First, we show that it is possible
to incrementally “contract” the locations of TA in a bottom-up manner, while preserving
the reachability property, such that, in the resulting automaton after contraction, the
number of locations and rules is a function of |Φ| + |Lspec| + |RC | + C + D. This then
immediately implies our theorem, since the size of the whole automaton is now just a function
of |Φ|+ |Lspec|+ |RC |+ C +D.

More formally, let the contraction of a subset S = {`1, . . . , `q} of locations of TA be the
following operation: We remove the locations `1, . . . , `q from TA, introduce a new location `S
and we replace all occurrences of `1, . . . , `q in every rule of TA with `S . We say that a set S
in TA is good if for every two locations `, `′ ∈ S, if (`, `′′, φ, ~u) is a rule in TA then (`′, `′′, φ, ~u)
is also a rule in TA. Intuitively, this means that, for every rule that we can fire from `, there
is another rule we can fire from `′ which will have the exact same effect. Since TA is assumed
to be acyclic, contracting a good set cannot introduce cycles. Let Tar = {` : ` ∈ Lspec}. The
following is a very simple fact to verify:

Claim: Suppose S is a good set such that S ∩ Tar = ∅ and let TA′ be the threshold
automaton obtained by contracting S in TA. Then TA satisfies Lspec iff TA′ does.

Given a threshold automaton TA such that D is the length of the longest path in its
graph, the “layers” of TA is a partition of the locations into subsets LTA

0 , LTA
1 , . . . , LTA

D

such that ` ∈ LTA
i iff the longest path ending at ` in the graph of TA is of length i.

The subset LTA
i will be called the ith layer of TA. We will now construct a sequence of

threshold automata TAD,TAD−1, . . . ,TA0 such that for each i, |LTAi
i |+ |L

TAi
i+1|+ · · ·+ |L

TAi

D | ≤
gi(|Φ|, |RC |, |Lspec|, D) for some function gi and such that TAi satisfies Lspec iff TAi+1 does.

For the base case of TAD, we take the threshold automaton TA and consider the set
SD := LTA

D \ Tar. We now contract SD in TA to get a threshold automaton TAD. Notice
that SD is a good set and by the above claim, TAD satisfies Lspec iff TA does.

For the induction step, suppose we have already constructed TAi+1. For a location
` ∈ LTAi+1

i , define its color to be the set {(`′, φ, ~u) : (`, `′, φ, ~u) is a rule in TAi+1}. Observe
that if ` ∈ LTAi+1

i and (`, `′, φ, ~u) is a rule in TAi+1 then `′ ∈ LTAi+1
i+1 ∪ LTAi+1

i+2 ∪ · · · ∪ LTAi+1
D .

By induction hypothesis, |LTAi+1
i+1 ∪ LTAi+1

i+2 ∪ · · · ∪ LTAi+1
D | ≤ gi+1(|Φ|, |RC |, |Lspec|, D) for

1 Some of the examples have self-loops on some locations, but since these self-loops do not update any of
the shared variables, we can remove them without affecting the reachability relation.

FSTTCS 2020

37:8 Parameterized Complexity of Safety of Threshold Automata

some function gi+1. It then follows that the number of possible colors is at most 2|Φ| ·
2|Γ| · gi+1(|Φ|, |Lspec|, D). Hence as long as the number of locations in LTAi+1

i is bigger than
2|Φ| · 2|Γ| · gi+1(|Φ|, |Lspec|, D) + |Tar| there will be two locations in LTAi+1

i \ Tar which have
the same color and can hence be contracted while maintaining the answer for Lspec. It then
follows that by repeated contraction, we can finally end up at a threshold automaton TAi
such that |LTAi

i |+ · · ·+ |L
TAi

D | ≤ O(2|Φ| ·2|Φ|+|RC| ·gi+1(|Φ|, |RC |, |Lspec|, D) + |Tar|). Taking
this bound to be the function gi, we get our required TAi.2

Notice that the number of locations (and also rules) in TA0 is only dependent on
|Φ|, |RC |, |Lspec| and D. Since the reachability problem is decidable, it immediately follows
that we have a parameterized algorithm for acyclic threshold automata running in time
f(|Φ|+ |RC |+ |Lspec|+ C +D) · nO(1) J

5 Threshold automata with constantly many fall guards

As a second case, we consider threshold automata in which the number of fall guards is a
constant. In almost all of the benchmarks of [24], the number of fall guards is at most one.
We provide some intuitive reason behind this phenomenon. In threshold automata, shared
variables are usually used for two things: To record that some process has sent a message or
to keep track of the number of processes which have crashed so far. If a shared variable v is
used for the first purpose, then all guards containing v are typically rise guards, since we
only want to check that enough messages have been received to proceed. On the other hand,
if v is used to keep track of the number of crashed processes, then we will have a fall guard
which allows a process to crash only if the value of v is less than the maximum number of
processes allowed to crash. However, since we will only need one fall guard for this purpose,
it follows that in practice we can hope to have very few fall guards in a threshold automaton.

Since the reduction of Theorem 3 produces threshold automata with constantly many
fall guards, we need another restriction on this class as well, which we now describe.

I Definition 5. A threshold automaton TA over an environment Env = (Π,RC ,Num) is
called multiplicative if every fall guard is simple and for every µ ∈ N>0, (i) for every rational
vector p ∈ Q|Π|≥0, if RC (p) is true then RC (µ · p) is true and Num(µ · p) = µ · Num(p)
and (ii) for every guard g := b · x ./ a0 + a1p1 + · · · + alpl in TA where ./ ∈ {≥, <}, if
(y, q1, . . . , ql) is a rational solution to g then (µ · y, µ · q1, . . . , µ · ql) is also a solution to g.

To the best of our knowledge, many algorithms discussed in the literature (For example,
see [8, 28, 6, 27, 19, 14, 7]), and more than two-thirds of all of the benchmarks of [24] satisfy
multiplicativity. The main result of this section is

I Theorem 6. Given a multiplicative threshold automaton TA with a constant number of
fall guards and a specification Lspec, it can be decided in time f(|Φ|) · nO(1) whether there is
a run of TA satisfying Lspec.

The rest of this section is devoted to proving this result, which we do so in four parts.
Let us fix a threshold automaton TA = (L, I,Γ,R), an environment Env = (Π,RC ,Num)
and a specification Lspec for the rest of this section. Let Φ denote the set of all guards which
appear in TA.

2 Though the function gi as given here gives very huge bounds, we show in the experimental section that
repeated contractions can sometimes reduce the number of locations by 50%. Intuitively, this is because
the number of colors of a location in the benchmarks is much smaller than the worst-case analysis
performed here.

A. Balasubramanian 37:9

First part: Decomposing paths into steady paths
First, similar to the paper [22], we show that the job of finding a path satisfying Lspec can be
reduced to that of finding a bounded number of concatenated “steady” paths. However, the
result needs to be stated in a different manner than [22], so that later on, we could leverage
the fact that the threshold automaton TA contains only constantly many fall guards.

A context ω is any subset of the guards of TA, i.e., ω ⊆ Φ. A rule r is said to be activated
by a context ω if all the rise guards of r are present in ω and all the fall guards of r are not
present in ω. The set of all rules activated by a context ω is denoted by Rω.

The context of a configuration σ, denoted by ω(σ), is the set of all rise guards that
evaluate to true and the set of all fall guards that evaluate to false in σ. Since the values of
the shared variables can only increase along a path, it easily follows that for any configuration
σ and any schedule τ applicable to σ, ω(σ) ⊆ ω(τ(σ)).

We say that path(σ, τ) is ω-steady if all the rules in the schedule τ are from Rω and
for every configuration σ′ ∈ Cfgs(σ, τ), we have Rω ⊆ Rω(σ′). Intuitively, if path(σ, τ) is
ω-steady then the path only uses rules from Rω. We have the following lemma.

I Lemma 7. The specification Lspec can be satisfied by a path of TA iff there exists K ≤ |Φ|,
configurations σ0, σ

′
0, . . . , σK , σ

′
K and contexts ω0 (ω1 (· · · (ωK such that

σ0 is an initial configuration and σ′K satisfies Lspec

For every i ≤ K, there is a ωi-steady path σi
∗−→ σ′i

For every i < K, if Rωi ⊆ Rωi+1 then there is a ωi-steady path σ′i
∗−→ σi+1, otherwise

σ′i → σi+1

Proof. (Sketch.) Clearly if there exists such configurations and contexts then then there exists
a path of TA which satisfies Lspec. To prove the other direction, suppose path(σ0, τ) is a path
of TA which satisfies Lspec. Using the fact that ω(σ′) ⊆ ω(τ ′(σ′)) for any configuration σ′ and
any schedule τ ′, we can decompose path(σ0, τ) into σ0, τ0, σ

′
0, t0, σ1, τ1, σ

′
1, t1, . . . , σK , τK , σ

′
K

such that for every i, ω(σi) = ω(σ′i), ω(σ′i) (ω(σi+1) and ti is a rule of TA. We can then
prove that the configurations σ0, σ

′
0, . . . , σK , σ

′
K and the contexts ω(σ0), . . . , ω(σK) satisfy

the required conditions. J

Second part: Establishing a connection between continuous Petri nets
and steady paths
Let us fix a context ω of the threshold automaton TA for the rest of this subsection. We say
that a configuration σ is Rω-applicable if (σ.~g, σ.~p) satisfies every guard of every rule in Rω.

Continuous Petri nets

To define continuous Petri nets, we will mostly reuse the same notations from [5]. A continuous
Petri net N is a tuple (P, T, F) where P is a finite set of places, T is a finite set of transitions
and F ⊆ P × T ∪ T × P is the flow relation. For a transition t, let •t = {p : (p, t) ∈ F}
and t

• = {p : (t, p) ∈ F}. A marking M of N is a function M : P → Q≥0. Intuitively a
marking M assigns M(p) many tokens to each place p ∈ P . A marking is called integral if
M(p) ∈ N0 for every place p. Given a marking M and a k ∈ N>0 let kM denote the marking
kM(p) = k ·M(p). The transition relation between two markings M and M ′ is defined as
follows: For α ∈ (0, 1] and t ∈ T , we say that M αt−→M ′ if for every p ∈ •t, M(p) ≥ α and
M ′(p) = M(p)−α if p ∈ •t\ t•, M ′(p) = M(p) +α if p ∈ t• \ •t and M ′(p) = M(p) otherwise.
We say that M →M ′ if M αt−→M ′ for some α and t. Finally we say that M ∗−→M ′ if there
exists M1, . . . ,Mk−1 such that M →M1 → . . .Mk−1 →M ′.

FSTTCS 2020

37:10 Parameterized Complexity of Safety of Threshold Automata

Constructing continuous Petri nets from contexts

We now construct a continuous Petri net Nω for the context ω as follows: For every location
` of TA, we will have a place p`. Similarly for every variable x ∈ Γ ∪ Π, we will have a place
px. If r = (`, `′, φ, ~u) is a rule in Rω, we will have a transition tr where •tr = {p`} and
t
•
r = {p`′} ∪ {px : ~u[x] = 1}.

We note that Nω tries to simulate exactly the rules of Rω, but it does not check whether
the corresponding guard of a rule is true before firing it. To ensure that a proper simulation
is carried out by Nω, we will restrict ourselves to only runs of Nω over compatible markings
which are defined as follows.

A marking M of Nω is called a compatible marking if
∑
`∈LM(p`) = Num({M(px) : x ∈

Π}) and if for every x ∈ Γ ∪Π, the assignment x 7→M(px) satisfies the resilience condition
RC and all the guards of all the rules in Rω. Notice that to every Rω-applicable configuration
σ of TA we can bijectively assign a canonical compatible integral marking B(σ) of Nω where
(B(σ))(px) = σ[x].

I Proposition 8. The following are true:
Suppose σ ∗−→ σ′ is an ω-steady run of TA. Then B(σ) ∗−→ B(σ′) in Nω.
Suppose M and M ′ are compatible markings of Nω such that M ∗−→M ′. Then there exists
µ ∈ N>0 such that for all k ∈ N>0, µkM and µkM ′ are compatible integral markings and
B−1(µkM) ∗−→ B−1(µkM ′) is an ω-steady run of TA.

Proof. (Sketch.) The first point is obvious from the definition. For the second point, if
M := M0

α1tr1−−−→ M1
α2tr2−−−→ M2 . . .Ml−1

αltrl−−−→ Ml := M ′ is a run, then by multiplying the
markings by the least common multiple of the denominators of {αi}i≤l∪{Mi(px) : i ≤ l, x ∈
L ∪ Γ ∪ Π} (which we take to be µ), we can get an integral run between µkM and µkM ′.
Using multiplicativity of TA, we can translate this back to a run of TA. J

Third part: Characterizing steady paths

It was shown in ([5], Theorems 3.6 and 3.3) that there is a logic (which the authors of [5]
call convex semi-linear Horn formulas) characterizing reachability in continuous Petri nets,
whose satisfiability can be tested in polynomial time. Using this result, proposition 8 and
multiplicativity, we show that

I Lemma 9. Given a context ω, in polynomial time we can construct a convex semi-linear
Horn formula φω(x,y) with 2(|L|+ |Γ|+ |Π|) free variables such that

If σ ∗−→ σ′ is an ω-steady path of TA then φω(σ, σ′) is true
Suppose φω(M,M ′) is true. Then there exists µ ∈ N such that for all k ∈ N, µkM,µkM ′

are configurations of TA such that µkM ∗−→ µkM ′ is an ω-steady path in TA.

I Lemma 10. Given a rule r of TA, in polynomial time we can construct a convex semi-linear
Horn formula φr(x,y) with 2(|L|+ |Γ|+ |Π|) free variables such that

If σ and σ′ are configurations of TA such that σ′ = r(σ), then φr(σ, σ′) is true.
Suppose φr(M,M ′) is true. Then there exists µ ∈ N such that for all k ∈ N, µkM,µkM ′

are configurations of TA such that µkM ′ = (µk · r)(µkM), i.e., µkM ′ can be obtained by
applying the rule r to µkM , repeatedly for µk many steps.

A. Balasubramanian 37:11

Fourth part: Bringing it all together
I Theorem 11. Given a multiplicative threshold automaton TA with constant number of fall
guards and a specification Lspec, it can be decided in time f(|Φ|) · nO(1) whether there is a
run of TA satisfying Lspec.

Proof. (Sketch.) One can easily show that if we have a monotonically increasing context
sequence ω0 (ω1 (· · · (ωK , the size of the set {j : Rωj

* Rωj+1} is at most |Φfall|. Using
this observation, we proceed as follows. We iterate over all K ≤ |Φ| and over all possible
monotonically increasing context sequences ω0 (ω1 (· · · (ωK of length K + 1 and all
possible rule sequences r1, . . . , rc of length c = #{j : Rωj * Rωj+1}. Note that the number
of such iterations is at most O(|Φ| · |Φfall| · |Φ|! · 2|Φ| · |R||Φfall|). Since |Φfall| is assumed to be
a constant, the exponential dependence only lies upon |Φ|.

A position 0 ≤ l ≤ K is called bad if Rωl
* Rωl+1 . Let j1, . . . , jc be the set of all bad

positions. Using lemmas 9 and 10 we can write down the following convex semi-linear Horn
formula in polynomial time:

ξ0(x0,y0,x1) ∧ ξ1(x1,y1,x2) ∧ · · · ∧ ξK−1(xK−1,yK−1,xK) ∧ ξK(xK ,yK) (1)

where ξK(xK ,yK) = φωK
(xK ,yK) and ξi for i < K is defined as follows: If i is a bad

position, i.e., if i = jl for some 1 ≤ l ≤ c, then ξi(xi,yi,xi+1) = φωi
(xi,yi) ∧ φrl

(yi,xi+1).
It i not a bad position, then ξi(xi,yi,xi+1) = φωi

(xi,yi) ∧ φωi
(yi,xi+1)

To equation (1), we also add a constraint stating that x0 is an initial configuration and
yK satisfies Lspec. By proposition 8 we can then easily show that, there is a run of TA
satisfying Lspec iff in at least one iteration, the constructed formula (1) is satisfiable. J

6 NP-hardness of multiplicative threshold automata

A natural question arises from the results of the previous section. Can we do better than
fixed-parameter tractability and instead solve the reachability problem for multiplicative
threshold automata in polynomial time? We remark that the proof of NP-hardness of
reachability for threshold automata given in [2] does not produce multiplicative threshold
automata and hence does not answer this question. Nevertheless, we show that it is unlikely
for reachability of multiplicative threshold automata to be in polynomial time.

I Theorem 12. Coverability (and hence reachability) for multiplicative threshold automata
is NP-hard even when there are no fall guards.

Proof. We give an easy reduction from 3-SAT. Let ϕ be a propositional formula with variables
x1, . . . , xk and clauses C1, . . . , Cm. We will have 2k shared variables y1, . . . , yk, ȳ1, . . . , ȳk
and one environment variable n, denoting the number of processes. Incrementing yi
(ȳi resp.) corresponds to setting xi to true (false resp). We will have 2k + 1 locations
`0, `

′
0, `1, `

′
1, . . . , `

′
k−1, `k. Between `i and `′i we will have two rules which increment yi and

ȳi respectively. To ensure that all the processes increment the same variable, we have two
rules from `′i to `i+1 which test that yi ≥ n and ȳi ≥ n respectively. Hence if one process
increments yi and another increments ȳi, then all the processes get stuck at `′i.

Let var(xi) = yi and let var(x̄i) = ȳi. We will then have m locations `k+1, `k+2, . . . , `k+m
and the following rules between `k+i−1 and `k+i for every 1 ≤ i ≤ m: If the clause Ci is
of the form a ∨ b ∨ c then there are three rules between `k+i−1 and `k+i, each checking if
var(a) ≥ 1, var(b) ≥ 1 and var(c) ≥ 1 respectively. Hence if either one of var(a) or var(b)
or var(c) was incremented, the processes could move from `k+i−1 to `k+i, otherwise all the

FSTTCS 2020

37:12 Parameterized Complexity of Safety of Threshold Automata

processes get stuck at `k+i−1. Finally we set the initial location to be `0 and the specification
to be L=0 = ∅ and L>0 = {`k+m}. It is then easy to see that ϕ is satisfied iff there is a run
which satisfies Lspec. J

7 Experiments

We implemented the contraction procedure for the acyclic threshold automata as presented
in section 4 and then used the algorithm for multiplicative threshold automata presented in
section 5. To leverage the solid engineering work that has been put into modern SMT solvers,
we used the Z3 solver to solve the convex semi-linear Horn formulas as well as to choose
a context (and rule) sequence. We applied our implementations to all the multiplicative
protocols in the latest version of the benchmark of [24], which contains various algorithms
taken from the distributed computing literature. For more information on the protocols, we
refer the reader to the benchmark of [24].

Table 1 The experiments were run on a machine with Intel® CoreTM i5-7200U CPU with 7.7
GiB memory. The time limit was set to be 2 hours and the memory limit was set to be 7 GiB. TLE
(MLE) means that the time limit (memory limit) exceeded for the particular benchmark.

Input Case Time, seconds
(if more than one) This paper Algo from [2] ByMC

frb 0.38 0.32 0.07
frb hand-coded TA 0.29 0.31 0.16

strb 0.44 0.43 0.14
strb hand-coded TA 0.32 0.30 0.10

nbacg 2.92 8.43 9.71
aba Case 1 4.49 10.26 25.6
aba Case 2 18.29 41.92 704.9
cbc Case 1 3579.24 MLE MLE
cbc Case 2 183.61 2035.5 26.37
cbc Case 3 MLE MLE MLE
cbc Case 4 MLE MLE MLE
cbc hand-coded TA 3.27 0.91 0.26
cf1s Case 1 13.81 13.53 37.09
cf1s Case 2 12.47 16.14 186.5
cf1s Case 3 84.95 86.98 7875
cf1s hand-coded TA 1.75 1.31 2737.53
c1cs Case 1 179.39 598.2 TLE
c1cs Case 2 70.77 747.86 7119.71
c1cs Case 3 604.91 1575.21 MLE
c1cs hand-coded TA 4.87 6.63 TLE

Evaluation: Table 1 summarizes our results and compares them with the results obtained
using ByMC, the tool presented in [24] and the algorithm from [2].

For some safety specifications, our contraction procedure was able to reduce the number
of locations by more than 50% for the cbc protocol(s). This helped us save some memory,
as we also noticed that running just the algorithm for multiplicative threshold automata

A. Balasubramanian 37:13

took much more memory and the algorithm was not able to complete its execution. Our
implementation compares favorably with both ByMC and the algorithm from [2] in some
cases, but also performs worse in some of the hand-coded examples, the second case of cbc
and the frb and strb protocols.

8 Conclusion

In this paper, we have investigated the parameterized complexity of safety in threshold
automata. Though we have proved hardness results even in very restricted settings, we have
also identified tractable special cases which arise in practice. A preliminary implementation
of our algorithms suggest that these methods might be useful in practice as well.

For the sake of simplicity, we have only restricted to verifying safety properties in this
paper. A special type of logic called ELTLFT [12] has been proposed for threshold automata
which can express various safety and liveness properties. Since model checking this logic
decomposes to a finite number of safety specifications (modulo some technical constraints),
we believe that our algorithm for multiplicative threshold automata can be adapted to give
an algorithm for model checking this logic as well.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/s00446-005-0138-3.

2 A. R. Balasubramanian, Javier Esparza, and Marijana Lazić. Complexity of verification and
synthesis of threshold automata. In Accepted at ATVA 2020, 2020. URL: https://arxiv.
org/abs/2007.06248.

3 Nathalie Bertrand, Igor Konnov, Marijana Lazić, and Josef Widder. Verification of randomized
consensus algorithms under round-rigid adversaries. In CONCUR, volume 140 of LIPIcs, pages
33:1–33:15, 2019.

4 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and
Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2015.

5 Michael Blondin and Christoph Haase. Logics for continuous reachability in petri nets and
vector addition systems with states. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005068.

6 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824–840, 1985.

7 Francisco Vilar Brasileiro, Fabíola Greve, Achour Mostéfaoui, and Michel Raynal. Consensus
in one communication step. In PaCT, volume 2127 of LNCS, pages 42–50, 2001.

8 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

9 Peter Chini, Jonathan Kolberg, Andreas Krebs, Roland Meyer, and Prakash Saivasan. On the
complexity of bounded context switching. In Kirk Pruhs and Christian Sohler, editors, 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ESA.2017.27.

10 Peter Chini, Roland Meyer, and Prakash Saivasan. Fine-grained complexity of safety verifica-
tion. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,

FSTTCS 2020

https://doi.org/10.1007/s00446-005-0138-3
https://arxiv.org/abs/2007.06248
https://arxiv.org/abs/2007.06248
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.4230/LIPIcs.ESA.2017.27

37:14 Parameterized Complexity of Safety of Threshold Automata

Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of Lecture Notes in Computer
Science, pages 20–37. Springer, 2018. doi:10.1007/978-3-319-89963-3_2.

11 Peter Chini, Roland Meyer, and Prakash Saivasan. Complexity of liveness in parameterized
systems. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019,
December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 37:1–37:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.37.

12 Peter Chini, Roland Meyer, and Prakash Saivasan. Liveness in broadcast networks. In NETYS
2019, Revised Selected Papers, pages 52–66, 2019.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Dan Dobre and Neeraj Suri. One-step consensus with zero-degradation. In DSN, pages
137–146, 2006.

15 Constantin Enea and Azadeh Farzan. On atomicity in presence of non-atomic writes. In
Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer
Science, pages 497–514. Springer, 2016. doi:10.1007/978-3-662-49674-9_29.

16 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In LICS, pages 352–359. IEEE Computer Society, 1999.

17 Azadeh Farzan and P. Madhusudan. The complexity of predicting atomicity violations. In
Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5505 of Lecture Notes in Computer Science, pages
155–169. Springer, 2009. doi:10.1007/978-3-642-00768-2_14.

18 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

19 Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with
failure detectors. Distributed Computing, 15(1):17–25, 2002.

20 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.
doi:10.1016/j.jcss.2012.04.004.

21 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model
checking for threshold-based distributed algorithms: Reachability. In CONCUR, volume 8704
of LNCS, pages 125–140, 2014.

22 Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter abstrac-
tion: Parameterized model checking of threshold-based distributed algorithms. In Daniel
Kroening and Corina S. Pasareanu, editors, Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I, volume 9206 of Lecture Notes in Computer Science, pages 85–102. Springer, 2015.
doi:10.1007/978-3-319-21690-4_6.

23 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. Information and Computation, 252:95–
109, 2017.

24 Igor Konnov and Josef Widder. Bymc: Byzantine model checker. In ISoLA (3), volume 11246
of LNCS, pages 327–342. Springer, 2018.

25 Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed algorithms. In POPL
2017, pages 719–734, 2017.

https://doi.org/10.1007/978-3-319-89963-3_2
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.37
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-49674-9_29
https://doi.org/10.1007/978-3-642-00768-2_14
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1007/978-3-319-21690-4_6

A. Balasubramanian 37:15

26 Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in parameterized systems: All
flavors of threshold automata. In CONCUR, pages 19:1–19:17, 2018.

27 Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel Raynal. Evaluating
the condition-based approach to solve consensus. In DSN, pages 541–550, 2003.

28 T.K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp., 2:80–94, 1987.

FSTTCS 2020

	Introduction
	Preliminaries
	Threshold Automata
	Fixed-parameter tractability

	W[1]-hardness
	Acyclic threshold automata
	Threshold automata with constantly many fall guards
	NP-hardness of multiplicative threshold automata
	Experiments
	Conclusion

