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Abstract
Congestion games are a classical type of games studied in game theory, in which n players choose a
resource, and their individual cost increases with the number of other players choosing the same
resource. In network congestion games (NCGs), the resources correspond to simple paths in a graph,
e.g. representing routing options from a source to a target. In this paper, we introduce a variant of
NCGs, referred to as dynamic NCGs: in this setting, players take transitions synchronously, they
select their next transitions dynamically, and they are charged a cost that depends on the number
of players simultaneously using the same transition.

We study, from a complexity perspective, standard concepts of game theory in dynamic NCGs:
social optima, Nash equilibria, and subgame perfect equilibria. Our contributions are the following:
the existence of a strategy profile with social cost bounded by a constant is in PSPACE and NP-hard.
(Pure) Nash equilibria always exist in dynamic NCGs; the existence of a Nash equilibrium with
bounded cost can be decided in EXPSPACE, and computing a witnessing strategy profile can be done
in doubly-exponential time. The existence of a subgame perfect equilibrium with bounded cost can
be decided in 2EXPSPACE, and a witnessing strategy profile can be computed in triply-exponential
time.
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1 Introduction

Congestion games model selfish resource sharing among several players [19]. A special case
is the one of network congestion games, in which players aim at routing traffic through a
congested network. Their popularity is certainly due to the fact that they have important
practical applications, whether in transportation networks, or in large communication
networks [18]. In network congestion games, each player chooses a set of transitions, forming
a simple path from a source state to a target state, and the cost of a transition increases
with its load, that is, with the number of players using it.

Network congestion games can be classified into atomic and non-atomic variants. Non-
atomic semantics is appropriate for large populations of players, thus seen as a continuum.
One then considers portions of the population that apply predefined strategies, and there
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40:2 Dynamic Network Congestion Games

is no such thing as the effect of an individual player on the cost of others. In contrast, in
atomic games, the number of players is fixed, and each player may significantly impact the
cost other players incur. We only focus on atomic games in this paper.

Network congestion games. Network congestion games, also called atomic selfish routing
games in the literature, were first considered by Rosenthal [19]. These games are defined by a
directed graph, a number of pairs of source-target vertices, and non-decreasing cost functions
for each edge in the graph. For each source-target pair, a player must choose a route from
the source to the target vertex. Given their choice of simple paths, the cost incurred by a
player depends on the number of other players that choose paths sharing edges with their
path, and on the cost functions of these edges. In this setting, a Nash equilibrium maps
each player to a path in such a way that no player has an incentive to deviate: they cannot
decrease their cost by choosing a different path.

Rosenthal proved that they are potential games, so that Nash equilibria always exist.
Monderer and Shapley [16] studied in a more general way potential games, and explained
how to iteratively use best-response strategies to converge to an equilibrium. Interestingly,
under reasonable assumptions on the cost functions, Bertsekas and Tsitsiklis established
that there is a direct correspondence between equilibria in selfish routing and distributed
shortest-path routing, which is used in practice for packet routing in computer networks [7].
We refer the interested reader to [20] for an introduction and many basic results on general
routing games.

A natural question is whether selfish routing is very different from a routing strategy
decided by a centralized authority. In other words, how far can a selfish optimum be from
the social optimum, in which players would cooperate. The notion of price of anarchy, first
proposed by Koutsoupias and Papadimitriou [13], is the ratio of the worst cost of a Nash
equilibrium and the cost of the social optimum. This measures how bad Nash equilibria
can be. In the context of network congestion games, the price of anarchy was first studied by
Suri et al. [21], establishing an upper bound of 5

2 when all cost functions are affine. A refined
upper bound was provided by Awerbuch et al. [5]. Bounds on the dual notion of price of
stability, which is the ratio of the cost of a best Nash equilibrium and the cost of the social
optimum was also studied for routing games [1].

Timing aspects. Several works investigated refinements of this setting. In [10], the authors
study network congestion games in which each edge is traversed with a fixed duration
independent of its load, while the cost of each edge depends on the load. The model is
thus said to have time-dependent costs since the load depends on the times at which players
traverse a given edge. The authors prove the existence of Nash equilibria by reduction to the
setting of [19]. An extension of this setting with timed constraints was studied in [2, 3].

The setting of fixed durations with time-dependent costs is interesting in applications
where the players sharing a resource (an edge) see their quality of service decrease, while
the time to use the resource is unaffected [3]. This might be the case, for instance, in some
telecommunication and multimedia streaming applications. Timing also appears, for instance,
in [17, 14] where the load affects travel times and players’ objective is to minimize the total
travel time. Other works focus on flow models with a timing aspect [12, 8].

Dynamic network congestion games. In classical network congestion games, including
those mentioned above, players choose their strategies (i.e., their simple paths) in one shot.
However, it may be interesting to let agents choose their paths dynamically, that is, step by
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step, by observing other players’ previous choices. In this paper, we study network congestion
games with time-dependent costs as in [10], but with unit delays, and in a dynamic setting.
More precisely, at each step, each of the players simultaneously selects the edge they want to
take; each player is then charged a cost that depends on the load of the edge they selected,
and traverses that edge in one step. We name these games dynamic network congestion
games (dynamic NCGs in short); the behaviour of the players in such games is formalized by
means of strategies, telling the players what to play depending of the current configuration.
Notice that, because congestion effect applies to edges used simultaneously by several players,
taking cycles can be interesting in dynamic NCGs, which makes our setting more complex
than most NCG models [4, 10, 19, 20].

Such a dynamic setting was studied in [4] for resource allocation games, which extends [19]
with dynamic choices. A more detailed related work appears at the end of this section.

Standard solution concepts. We study classical solution concepts on dynamic network
congestion games. A strategy profile (i.e., a function assigning a strategy to each player) is a
Nash Equilibrium (NE) when each single strategy is an optimal response to the strategies
of the other players; in other terms, under such a strategy profile, no player may lower
their costs by unilaterally changing their strategies. Notice that NEs need not exist in
general, and when they exist, they may not be unique. In the setting of dynamic games,
Nash Equilibria are usually enforced using punishing strategies, by which any deviating player
will be punished by all other players once the deviation has been detected. However, such
punishing strategies may also increase the cost incurred to the punishing players, and hence
do not form a credible threat; Subgame-Perfect Equilibria (SPEs) refine NEs and address
this issue by requiring that the strategy profile is an NE along any play.

NEs and SPEs aim at minimizing the individual cost of each player (without caring of
the others’ costs); in a collaborative setting, the players may instead try to lower the social
cost, i.e., the sum of the costs incurred to all the players. Strategy profiles achieving this are
called social optima (SO). Obviously, the social cost of NEs and SPEs cannot be less than
that of the social optimum; the price of anarchy measures how bad selfish behaviours may
be compared to collaborative ones.

Our contributions. We take a computational-complexity viewpoint to study dynamic
network congestion games. We first establish the complexity of computing the social
optimum, which we show is in PSPACE and NP-hard. We then prove that best-response
strategies can be computed in polynomial time, and that dynamic NCGs are potential games,
thereby showing the existence of Nash equilibria in any dynamic NCG; this also shows
that some Nash equilibrium can be computed in pseudo-polynomial time. We then give an
EXPSPACE (resp. 2EXPSPACE) algorithm to decide the existence of Nash Equilibria (resp.
Subgame-Perfect Equilibria) whose costs satisfy given bounds. This allows us to compute
best and worst such equilibria, and then the price of anarchy and the price of stability.

Note that some of the high complexities follow from the binary encoding of the number of
players, which is the main input parameter. For instance, the exponential-space complexity
drops to pseudo-polynomial time for a fixed number of players. This parameter becomes
important since we advocate the study of computational problems, such as computing Nash
equilibria with a given cost bound. We also believe that computing precise values for price
of anarchy and the price of stability is interesting, rather than providing bounds on the set
of all instances as in e.g. [21].

Omitted proofs can be found in the corresponding arXiv article [6].

FSTTCS 2020
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Comparison with related work. The works closest to our setting are [10, 4, 2, 3]. As in [10,
3], we establish the existence of Nash equilibria using potential games. Unlike [10], we cannot
obtain this result immediately by reducing our games to congestion games [19] since the
lengths of the strategies cannot be bounded a priori. Moreover, the best-response problem
has a polynomial-time solution in our setting while the problem is NP-hard both in [10, 3].
In [10], this is due to the possibility of having arbitrary durations, while the source of
complexity in [2, 3] is due to the use of timed automata. Thus, our setting offers a simpler
way of expressing timings, and avoids their high complexity for this problem.

Dynamic choices were studied in [4] but with a different cost model. Moreover, network
congestion games can only be reduced to such a setting given an a priori bound on the length
of the paths. So we cannot directly transfer any of their results to our setting. Dynamic
choices were also studied in [10] in the setting of coordination mechanisms which are local
policies that allow one to sequentialize traffic on the edges.

2 Preliminaries

2.1 Dynamic network congestion games
Let F be the family of non-decreasing functions from N to N that are piecewise-affine, with
finitely many pieces. We assume that each f ∈ F is represented by the endpoints of intervals,
and the coefficients, all encoded in binary. An arena for dynamic network congestion games
is a weighted graph A = 〈V,E, src, tgt〉, where V is a finite set of states, E : V × V → F is a
partial function defining the cost of edges, and src and tgt are a source- and a target state
in V . It is assumed throughout this paper that tgt has only a single outgoing transition,
which is a self-loop with constant cost function x 7→ 0. We also assume that tgt is reachable
from all other states.

A dynamic network congestion game (dynamic NCG for short) is a pair G = 〈A, n〉 where
A is an arena as above and n ∈ N is the (binary-encoded) number of players. In a dynamic
network congestion game, all players start from src and simultaneously select the edges
they want to traverse, with the aim of reaching the target state with minimal individual
accumulated cost. Taking an edge e = (v, f, v′) has a cost f(l), where l is the number of
players simultaneously using edge e. The cost function of edge e is denoted by fe. We let
κ = maxe∈E fe(n), which is the maximal cost that a player may endure along one edge.

Our setting differs from classical network congestion games [20] mainly in two respects:
first, the game is played in rounds, during which all players take exactly one transition;
the number of players using an edge e is measured dynamically, at each round;
second, during the play, players may adapt their choices to what the other players have
been doing in the previous rounds.

I Remark 1. In this work, we mainly focus on the symmetric case, where all players have the
same source and target. This is because we take a parametric-verification point of view, with

src

v1

v2

v3 tgt
x
7→
x

x 7→
5

x 7→ 6

x 7→
3x

x
7→
x

x 7→ 4x

Figure 1 Representation of an arena for a dynamic NCG (loop omitted on tgt).
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the (long-term) aim of checking properties of dynamic NCGs for arbitrarily many players.
An important consequence of this choice is that the number of players now is encoded in
binary, which results in an exponential blow-up in the number of configurations of the game
(compared to the asymmetric setting).

Semantics as a concurrent game. For any k ∈ N, we write JkK = {i ∈ N | 1 ≤ i ≤ k}.
A configuration of a dynamic network congestion game 〈A, n〉 is a mapping c : JnK→ V ,
indicating the position of each player in the arena. We define csrc : i ∈ JnK 7→ src and
ctgt : i ∈ JnK 7→ tgt as the initial and target configurations, respectively.

With 〈A, n〉, we first associate a multi-weighted graphM = 〈C, T 〉, where C = V JnK is
the set of all configurations and T ⊆ C ×NJnK ×C is a set of edges, defined as follows: there
is an edge (c, w, c′) in T if, and only if, there exists a collection e = (ei)i∈JnK of edges of E
such that for all i ∈ JnK, writing ei = (vi, fi, v′i) and ui = #{j ∈ JnK | ej = ei}, we have
c(i) = vi, c′(i) = v′i, and w(i) = fi(ui). We denote this edge with c e=⇒ c′. We may omit to
mention e since it can be obtained from c and c′; similarly, we write costi(c, c′) for w(i).

Two edges (c, w, c′) and (d, x, d′), in that order, are said to be consecutive whenever
d = c′. Given a configuration c, a path from c in a dynamic network congestion game is
either the single configuration c (we call this a trivial path) or a non-empty, finite or infinite
sequence of consecutive edges ρ = (tj)1≤j<|ρ| inM, where t1 is a transition from c; the size
of a path ρ is one for trivial paths, and |ρ| ∈ N ∪ {+∞} otherwise. We write Paths(〈A, n〉, c)
and Pathsω(〈A, n〉, c) for the set of finite and infinite paths from c in 〈A, n〉, respectively.

With each path ρ = (cj , wj , c′j)j , and each player i ∈ JnK, we associate a cost, written
costi(ρ), which is zero for trivial paths, +∞ for infinite paths along which cj(i) 6= tgt for
all j, and

∑|ρ|−1
j=1 wj(i) otherwise. We define the social cost of ρ, denoted by soccost(ρ), as∑

i∈JnK costi(ρ).
Given a path ρ, an index 1 ≤ j < |ρ|+ 1 and a player i ∈ JnK, we write ρ(j) for the j-th

configuration of ρ, and ρ(j)(i) for the state of Player i in that configuration. For j ≥ 2, we
define ρ≤j as the prefix of ρ that ends in the j-th configuration; we let ρ≤1 = ρ(1). Similarly,
for 1 ≤ j ≤ |ρ| − 1, we let ρ≥j denote the suffix that starts at the j-th configuration. Finally,
if |ρ| is finite, we let ρ≥|ρ| = ρ(|ρ|).

I Example 2. Consider the arena A displayed at Fig. 1 and the dynamic NCG 〈A, 2〉 with
two players. Assume that Player 1 follows the path π1 : src→ v1 → v3 → tgt and Player 2
goes via π2 : src→ v1 → v2 → v3 → tgt. This gives rise to the following path:(

1 7→ src
2 7→ src

) 1 7→2
2 7→2−−−→

(
1 7→ v1
2 7→ v1

) 1 7→3
2 7→6−−−→

(
1 7→ v3
2 7→ v2

) 1 7→4
2 7→1−−−→

(
1 7→ tgt
2 7→ v3

) 1 7→0
2 7→4−−−→

(
1 7→ tgt
2 7→ tgt

)
Notice how edge v3 → tgt of A is used by both players, but not simultaneously, so that the
cost of using that edge is 4 for each of them, while it would be 8 in classical NCGs. J

We now extend this graph to a concurrent game structure. A move for Player i ∈ JnK
from configuration c is an edge e = (v, f, v′) ∈ E such that v = c(i). A move vector from c is
a sequence e = (ei)i∈JnK such that for all i ∈ JnK, ei is a move for Player i from c.

A network congestion game 〈A, n〉 then gives rise to a concurrent game structure S =
〈C, T,M,U〉 where 〈C, T 〉 is the graph defined above, M : C × JnK → 2E lists the set of
possible moves for each player in each configuration, and U : C × EJnK → T is the transition
function, such that for every configuration c and every move vector e = (ei)i∈JnK with
ei ∈M(c, i) for all i ∈ JnK, U(c, e) = (c e=⇒ c′).

FSTTCS 2020



40:6 Dynamic Network Congestion Games

A strategy for Player i in S from configuration c is a function σi : Paths(〈A, n〉, c)→ E

that associates, with any finite path ρ from c in S, a move for this player from the last
configuration of ρ. A strategy profile is a family σ = (σi)i∈JnK of strategies, one for each
player. We write S for the set of strategies, and Sn for the set of strategy profiles.

Let c be a configuration, h be a finite path from c and a strategy profile σ = (σi)i∈JnK

from c. The residual strategy profile of σ after h is the strategy profile σh = (σhi )i∈JnK from
the last configuration of h defined by σhi (h′) = σi(h · h′), where h · h′ is the concatenation of
paths h and h′.

The outcome of a strategy profile σ from c is the infinite path ρ = (ci, wi, ci+1)i≥1,
hereafter denoted with outcome(σ), obtained by running the strategy profile; it is formally
defined as the only infinite path such that (c1, w1, c2) = U(c, σ(c)), and such that for
any j ≥ 2, (cj , wj , cj+1) = U(cj , σ(h′)), where h′ = (c1, w1, c2) · · · (cj−1, wj−1, cj).

Pick a strategy profile σ = (σi)i∈JnK, and let ρ = (tj)j≥1 be its outcome, writing
tj = (cj , (wij)i∈JnK, c

′
j) for all j ≥ 1. Let k ∈ JnK. If c′l(k) = tgt for some l ∈ N, then σk

is said to be winning for Player k. In that case, we define costk(σ) as costk(outcome(σ)).
If c′l(i) = tgt for all i ∈ JnK, we define the social cost of σ as soccost(σ) = soccost(ρ).

A strategy σi for Player i is said blind whenever for any two finite paths ρ and ρ′ having
same length k, if for any position 0 ≤ j < k we have ρ(j)(i) = ρ′(j)(i), then σi(ρ) = σi(ρ′).
Intuitively, this means that strategy σi follows a path in A, independently of what the other
players do. A blind strategy can thus be represented as a path and we write |σi| for the length
of that path (until its first visit to tgt, if any). We write B for the set of blind strategies.

I Example 3. Consider again the arena A of Fig. 1. The paths π1 and π2 from Example 2 are
two blind strategies in that dynamic NCG. In a 2-player setting, an example of a non-blind
strategy σ consists in first taking the transition src→ v1, and then either taking v1 → v3 if
the other player took the same initial transition, or taking v1 → v2 otherwise. J

Representation as a weighted graph. Another way of representing configurations is to
consider their Parikh images. With a configuration c ∈ V JnK, we associate an abstract
configuration c̄ ∈ JnKV defined as c̄(v) = #{i ∈ JnK | c(i) = v}.

The abstract weighted graph associated with a dynamic network congestion game 〈A, n〉
is the weighted graph P = 〈A,B〉, where A contains all abstract configurations, and there is
an edge (a,w, a′) in B ⊆ A×N×A if, and only if, there is a mapping b : E → JnK such that∑
e∈E b(e) = n and for all v ∈ V ,

a(v) =
∑

e=(v,f,v′)

b(e) w =
∑

e=(v,f,v′)

b(e)× f(b(e)) a′(v) =
∑

e=(v′,f,v)

b(e).

Similarly to the representation as multi-weighted graphs, an abstract path of a network
congestion game is either a single configuration or a non-empty, finite or infinite sequence of
consecutive edges in the abstract weighted graph. The cost of an abstract path is the sum of
the weights of its edges (if any). Then:

I Lemma 4. For any w ∈ N ∪ {+∞}, there is an abstract path inM with social cost w if,
and only if, there is an abstract path in P with cost w.

2.2 Social optima and equilibria
Consider a dynamic network congestion game G = 〈A, n〉. We recall standard ways of
optimizing the strategies of the players, depending on the situation.
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In a collaborative situation, all players want to collectively minimize the total cost for
having all of them reach the target state of the arena. Formally, a strategy profile σ = (σi)i∈JnK

realizes the social optimum if soccost(σ) = infτ∈Sn soccost(τ).
In a selfish situation, each player aims at optimizing their response to the others’ strategies.

Given a strategy profile σ = (σi)i∈JnK, a player k ∈ JnK, and a strategy σ′k ∈ S, we denote
by 〈σ−k, σ′k〉 the strategy profile (τi)i∈JnK such that τk = σ′k and τi = σi for all i ∈ JnK \ {k}.
The strategy σk is a best response to (σi)i∈JnK\{k} if costk(σ) = infσ′

k
∈S costk(〈σ−k, σ′k〉).

A strategy profile σ = (σi)i∈JnK is a Nash equilibrium if for each k ∈ JnK, the strategy σk is a
best response to (σi)i∈JnK\{k}. In such a case, no player has profitable unilateral deviations,
i.e., no player alone can decrease their cost by switching to a different strategy.

Nash equilibria can be defined for subclasses of strategy profiles. In particular, a blind
Nash equilibrium is a blind strategy profile σ that is a Nash equilibrium for blind-strategy
deviations: for all k ∈ JnK, costk(σ) = infσ′

k
∈B costk(〈σ−k, σ′k〉). A priori, a blind Nash

equilibrium need not be a Nash equilibrium for general strategies.
In an NE, once a player deviated from their original strategy in the strategy profile,

the other players can punish the deviating player, even if this results in increasing their own
costs. Indeed, the condition for being an NE only requires that the deviation should not be
profitable to the deviating player. Subgame-Perfect Equilibria (SPE) refine NEs and rule
out such non-credible threats by requiring that, for any path h in the configuration graph,
the residual strategy profile after h is an NE.

I Example 5. Consider again the dynamic NCG 〈A, 2〉, with the arena A of Fig. 1. Assume
that Player 1 plays the blind strategy corresponding to π3 : src → v2 → v3 → tgt, while
Player 2 plays the non-blind strategy σ of Example 3. The cost for Player 1 then is 10, while
that of Player 2 is 12.

This strategy profile is an NE: Player 2 could be tempted to play π1, but they would
then synchronize with Player 1 on edge v3 → tgt, and get cost 12 again. Similarly, Player 1
could be tempted to play π1 instead of π3, but in that case strategy σ would tell Player 2 to
follow the same path, and the cost for Player 1 (and 2) would be 16. Notice in particular
that this is not an SPE, but that the blind strategy profile 〈π1, π2〉 (extended to the whole
configuration tree in the only possible way) is an SPE in 〈A, 2〉. J

In Sections 4 and 5, we focus on NEs and SPEs, developing EXPSPACE and 2EXPSPACE-
algorithms for deciding the existence of NEs and SPEs respectively of social cost less than or
equal to a given bound. Actually, our approach extends to the ~γ-weighted social cost, where
~γ ∈ ZJnK are coefficients applied to the costs of the respective players when computing the
social cost. As a consequence, we can compute best and worst NEs and SPEs, hence also
the price of anarchy and price of stability [13]. Before that, in Section 3, we extend classical
techniques using blind strategies to compute the social optimum and prove that NEs always
exist.

3 Socially-optimal strategy profiles

To compute a socially-optimal strategy profile, it suffices to find a path in the concurrent
game structure of the given network congestion game with minimal total cost since one can
define a strategy profile that induces any given path. Rather than finding such a path in the
concurrent game structure, and in view of Lemma 4, one can look for one in the abstract
weighted graph, thereby reducing in complexity. The socially-optimal cost in a dynamic
NCG 〈A, n〉 is thus the cost of a shortest path in the associated weighted abstract graph P
from c̄src to c̄tgt.

FSTTCS 2020
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Since P has exponential size, we derive complexity upper bounds for computing a socially-
optimal strategy and deciding the associated decision problem. Moreover, adapting [15,
Theorem 4.1] which proves NP-hardness in classical NCGs, we provide a reduction from the
Partition problem to establish an NP lower-bound.

I Theorem 6. A socially-optimal strategy profile can be computed in exponential time.
The constrained social-optimum problem is in PSPACE and NP-hard.

Note, that while P has size (n + 1)|V |, it is sufficient to consider paths with a smaller
number of transitions when looking for a shortest path:

I Lemma 7. There is a shortest path (w.r.t. cost) in P with size (in terms of its number of
transitions) at most n · |V |.

I Remark 8. A consequence of Lemma 7 is that deciding the constrained social-optimum
problem is in NP for asymmetric games, since in that setting the lists of sources and targets
of each player is part of the input, so that n is polynomial in the size of the input. However,
our NP-hardness proof only works in the symmetric case.

4 Nash equilibria

In this section, we study the existence of Nash equilibria and give algorithms to compute
them under given constraints.

4.1 Existence and computation of (blind) Nash equilibria
To prove that blind Nash equilibria always exist, we establish that dynamic NCGs with blind
strategies are potential games [19, 16] which are known to have Nash equilibria.

Consider a dynamic NCG 〈A, n〉, a blind strategy profile π, and let Nπ denote the
maximum length of the paths prescribed by π. We define the following potential function,
which is an adaptation of that used in [19]:

ψ(π) =
Nπ∑
j=1

∑
e∈E

loade(π,j)∑
i=1

fe(i),

where loade(π, j) denotes the number of players that take edge e in the j-step under π, and
fe is the cost function on edge e.

Using the above-defined potential function, one can derive an algorithm to find a Nash
equilibrium, by a classical best-response iteration. Starting with an arbitrary blind strategy
profile, at each step we replace some player’s strategy with their best-response, and we
continue as long as some player’s cost can be decreased. When this procedure terminates,
the profile at hand is a blind Nash equilibrium. In dynamic NCGs, best responses exist and
can be computed in polynomial time. Indeed, one can construct a game in which all players
but Player i follow their fixed strategies given by profile π, using Nπ copies of the game in
order to distinguish the steps. After the Nπ-step, all players in JnK \ {i} have reached their
targets. Since it is the only remaining player, the remaining path for Player i should not be
longer than |V |. Altogether, we obtain the following complexity upper-bound:

I Theorem 9. In dynamic NCGs, blind Nash equilibria always exist, and we can compute
one in pseudo-polynomial time.
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I Remark 10. As an alternative proof to existence of blind NEs, we could have bounded
the length of outcomes of blind NEs as follows: all players have a strategy realizing cost at
most |V | · κ, where κ = maxe∈E fe(n), since the shortest path from src to tgt has length at
most |V |, and the cost for a player at each step along edge e is at most κ. It follows that
no path along which the cost for some player is larger than |V | · κ can be the outcome of a
blind NE. As a consequence, if a dynamic NCG has a blind NE, then it has one of length at
most |V | · κ · |V |n (by removing zero-cycles). Using this bound, we can transform dynamic
NCGs into classical congestion games, in which blind NEs always exist [10, 19].

We now show that blind Nash equilibria are in fact Nash equilibria. This is proved using
the observation that given a blind strategy profile, the most profitable deviation for any
player can be assumed to be a blind strategy.

I Lemma 11. In dynamic NCGs, blind Nash equilibria are Nash equilibria.

Computing some (blind) Nash equilibrium may not be satisfactory for two reasons: one
might want to compute the best (or the worst) Nash equilibrium in terms of the social cost;
and as Lemma 12 claims, blind Nash equilibria are suboptimal, i.e., a lower social cost can be
achieved by Nash equilibria with general strategies. This justifies the study of more complex
strategy profiles in the next subsection.

I Lemma 12. There exists a dynamic NCG with a Nash equilibrium π such that for all
blind Nash equilibria π′, we have cost(π) < cost(π′).

The proof is based on the dynamic NCG depicted on Fig. 2, for which we prove there is a
Nash equilibrium with total cost 36, while any blind Nash equilibrium has higher social cost.
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Figure 2 An arena on which blind Nash equilibria are sub-optimal.

4.2 Computation of general Nash equilibria
Characterization of outcomes of Nash Equilibria. Let us consider a dynamic NCG 〈A, n〉,
and the corresponding game structure S = 〈C, T,M,U〉. Given two configurations c, c′
with c⇒ c′, we let costi(c, c′) denote the cost of Player i on this transition from c(i) to c′(i).
We define devi(c, c′) as the set of all configurations reachable when all players but Player i
choose moves prescribed by the given transition c⇒ c′:

devi(c, c′) = {c′′ ∈ C | c⇒ c′′ and ∀j ∈ JnK \ {i}. c′′(j) = c′(j)}.

The value of configuration c for Player i is vali,c = supσ−i∈Sn−1 infσi∈S costi((σ−i, σi), c).
Note that the value corresponds to the value of the zero-sum game where Player i plays
against the opposing coalition, starting at c. By [11], those values can be computed in
polynomial time in the size of the game. Here the game is a 2-player game with state space
|V | × Jn− 1K|V |, keeping track of the position of Player i and the abstract position of the
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coalition. It follows that each vali,c can be computed in exponential time in the size of the
input 〈A, n〉. Moreover, memoryless optimal strategies exist (in S), that is, the opposing
coalition has a memoryless strategy σ−i to ensure a cost of at least vali,c from c.

The characterization of Nash equilibria outcomes is given in the following lemma.

I Lemma 13. A path ρ in 〈A, n〉 is the outcome of a Nash equilibrium if, and only if,

∀i ∈ JnK. ∀1 ≤ l < |ρ|. ∀c ∈ devi(ρ(l), ρ(l + 1)). costi(ρ≥l) ≤ vali,c + costi(ρ(l), c).

The intuition is that if the suffix costi(ρ≥l) of ρ has cost more than vali,c + costi(ρ(l), c),
then Player i has a profitable deviation regardless of the strategy of the opposing coalition,
since vali,c is the maximum cost that the coalition can inflict to Player i at configuration c
where the deviation is observed. The lemma shows that the absence of such a suffix means
that a Nash equilibrium with given outcome exists, which the proof constructs.

Proof. Consider a Nash equilibrium σ = (σi)i∈JnK with outcome ρ. Consider any player i,
and any strategy σ′i for this player. Let ρ′ denote the outcome of σ[i→ σ′i]. Let l denote the
index of the last configuration where ρ and ρ′ are identical. Since σ is a Nash equilibrium,
we have costi(ρ) ≤ costi(ρ′), that is,

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + costi(σ[i→ σ′i], ρ′≤l+1)

where costi(σ[i→ σ′i], ρ′≤l+1) is the cost for Player i of the outcome of the residual strategy
(σ[i→ σ′i])

ρ′≤l+1 . Since the choice of σ′i is arbitrary here, we have,

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + inf
σ′
i
∈S

costi(σ[i→ σ′i], ρ′≤l+1).

Moreover, we have infσ′
i
∈S costi(π[i→ σ′i], ρ′≤l+1) = infσ′

i
∈S costi(π[i→ σ′i], ρ′(l + 1)) since

memoryless strategies suffice to minimize the cost [11]. We then have

inf
σ′
i
∈S

costi(π[i→ σ′i], ρ′(l + 1)) ≤ sup
σ−i∈Sn−1

inf
σi∈S

costi((σ−i, σi), ρ′(l + 1)).

We obtain the required inequality

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + sup
σ−i∈Sn−1

inf
σi∈S

costi((σ−i, σi), ρ′(l + 1))

≤ costi(ρ(l), c) + vali,c.

Conversely, consider a path ρ that satisfies the condition. We are going to construct
a Nash equilibrium having outcome ρ. The idea is that players will follow ρ, and if some
player i deviates, then the coalition −i will apply a joint strategy to maximize the cost of
Player i, thus achieving at least vali,c, where c is the first configuration where deviation is
detected.

Let us define the punishment function Pρ : Paths(〈A, n〉)→ JnK∪{⊥} which keeps track of
the deviating players and the step where such a player has deviated. For path h′ = h(c, w, c′),
we write

Pρ(h′) =


⊥ if h′ ≤pref ρ,

i if h ≤pref ρ, h(c, w, c′) 6≤pref ρ, and i ∈ JnK min. s.t. c′(i) 6= ρ(|h|+ 1)(i),
Pρ(h) otherwise.

Intuitively, ⊥ means that no players have deviated from ρ in the current path. If Pπ(h) = j,
then Player j was among the first players to deviate from ρ in the path h; so for some l,
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h(l)(j) = ρ(l)(j) but h(l + 1)(j) 6= ρ(l + 1)(j). Notice that if several players deviate at the
same step, there are no conditions to be checked, and the strategy can be chosen arbitrarily.
For each configuration c and coalition −i, let σ−i,c be the strategy of coalition −i maximizing
the cost of Player i from configuration c; thus achieving at least vali,c. Player j’s strategy in
this coalition, for j 6= i, is denoted σ−i,c,j . For path h′ = h(c, w, c′), define

τi(h′) =


(c′(i),m(i), c′′(i)) if Pρ(h′) = ⊥, ρ(|h′|+ 1) = (c′, w′, c′′),

and m ∈ En is such that T (c′,m) = (w′, c′′),
arbitrary if Pρ(h′) = i,

σ−j,c,i(h′) if Pρ(h′) = j for some j 6= i.

The first case ensures that the outcome of the profile (τi)i∈JnK is ρ. The third case means that
Player i follows the coalition strategy σ−j,c after Player j has deviated to configuration c.
The second case corresponds to the case where Player i has deviated: the precise definition
of this part of the strategy is irrelevant.

Let us show that this profile is indeed a Nash equilibrium. Consider any player j ∈ JnK
and any strategy τ ′j . Let ρ′ denote the outcome of (τ−j , τ ′j), and l the index of the last
configuration where ρ and ρ′ are identical. We have

costj((τ−j , τ ′j)) = costj(ρ≤l) + costj(ρ(l), ρ′(l + 1)) + costj((τ−j , τj), ρ′≤l+1)
≥ costj(ρ≤l) + costj(ρ(l), ρ′(l + 1)) + valj,ρ′(l+1)(j)

≥ costj((τi)i∈JnK),

where the second line follows from the fact that the coalition switches to a strategies ensuring
a cost of at least valj,ρ′(l)(j) at step l; and the third line is obtained by assumption. This
shows that (τi)i∈JnK is indeed a Nash equilibrium and concludes the proof. J

Algorithm. We define a graph that describes the set of outcomes of Nash equilibria by
augmenting the n-weighted configuration graphM = 〈C, T 〉. For any real vector ~γ = (γi)i∈JnK,
we define the weighted graph G〈A,n〉,~γ = 〈C ′, T ′〉 with C ′ = C × (JY K ∪ {0,∞})n where
Y = |V | · κ, and T ′ ⊆ C ′ ×N× C ′; remember that all players have a strategy realizing cost
at most Y in 〈A, n〉. The initial state is (csrc,∞n). The set of transitions T ′ is defined as
follows: ((c, b), z, (c′, b′)) ∈ T ′ if, and only if, there exists (c, w, c′) ∈ T , z = ~γ · w (where · is
dot product), and for all i ∈ JnK,

b′i = min(bi − wi, min
c′′∈devi(c(i),c′(i))

costi(c, c′′) + vali,c′′ − wi). (1)

Notice that by definition of C ′, b′i must be nonnegative for all i ∈ JnK, so there are no
transitions ((c, b), z, (c′, b′)) if the above expression is negative for some i. Notice also that
the size of G〈A,n〉,~γ is doubly-exponential in that of the input 〈A, n〉, since this is already the
case for C, while Y is singly-exponential.

Intuitively, for any path ρ that visits some state (c, b) in this graph, in order for ρ to be
compatible with a Nash equilibrium, each player i must have cost no more than bi in the rest
of the path. In fact, the second term of the minimum in (1) is the least cost Player i could
guarantee by not following (c, w, c′) but going to some other configuration c′′ ∈ devi(c, c′), so
the bound bi is used to guarantee that these deviations are not profitable. The definition
of b′i in (1) is the minimum of bi − wi and the aforementioned quantity since we check both
the previous bound bi, updated with the current cost wi (which gives the left term), and
the non-profitability of a deviation at the previous state (which is the right term). If this
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minimum becomes negative, this precisely means that at an earlier point in the current path,
there was a strategy for Player i which was more profitable than the current path regardless
of the strategies of other players; so the current path cannot be the outcome of a Nash
equilibrium. This is why the definition of G〈A,n〉,~γ restricts the state space to nonnegative
values for the bi.

We prove that computing the cost of a Nash equilibrium minimizing the ~γ-weighted social
cost reduces to computing a shortest path in G〈A,n〉,~γ . In particular, letting γi = 1 for all
i ∈ JnK, a ~γ-minimal Nash equilibrium is a best Nash equilibrium (minimizing the social
cost), while taking γi = −1 for all i ∈ JnK, we get a worst Nash equilibrium (maximizing the
social cost).

I Theorem 14. For any dynamic NCG 〈A, n〉 and vector ~γ, the cost of the shortest path
from (csrc,∞n) to some (ctgt, b) in G〈A,n〉,~γ is the cost of a ~γ-minimal Nash equilibrium.

Proof. We show that for each path of 〈A, n〉 from csrc to ctgt, there is a path in G〈A,n〉,~γ from
(csrc,∞n) to some (ctgt, b) with the same cost, and vice versa.

Consider a Nash equilibrium π = (σj)j∈JnK with outcome ρ = (cj , wj , cj+1)1≤j<l. We build
a sequence b1, b2, . . . such that ρ′ = ((cj , bj), ~γ · wj , (cj+1, bj+1))1≤j<l is a path of G〈A,n〉,~γ .
We set b1(j) =∞ for all j ∈ JnK. For j ≥ 1, define

bj+1(i) = min
(
bj(i)− wj(i), min

c′′∈devj(cj(i),cj+1(i))
costi(cj , c′′) + vali,c′′ − wj(i)

)
.

We are going to show that for all 1 ≤ j ≤ l, costi(ρ≥j) ≤ bj , which shows that bj ≥ 0, and
thus ρ′ is a path of G〈A,n〉,~γ .

We show this by induction on j. This is clear for j = 1. Assume this holds up to j ≥ 1.
We have, by induction that costi(ρ≥j) ≤ bj(i) for all i ∈ JnK. Moreover, since π is a Nash
equilibrium, by Lemma 13,

∀i ∈ JnK, costi(ρ≥j) ≤ min
c′′∈devi(ρ(j),ρ(j+1))

vali,c′′ + costi(ρ(j), c′′).

Therefore,

costi(ρ≥j+1) = costi(ρ≥j)− wj(i)
≤ min(bj(i)− wj(i), min

c′′∈devi(ρ(j),ρ(j+1))
vali,c′′ + costi(ρ(j), c′′)− wj(i))

as required, and both paths have the same ~γ-weighted cost.
Consider now a path ((ci, bi), zi, (ci+1, bi+1))1≤i<l in G〈A,n〉,~γ . By the definition of G〈A,n〉,~γ ,

there exists w1, w2, . . . such that ρ = (cj , wj , cj+1)1≤j<l is a path of 〈A, n〉, and zj = ~γ · wj .
So it only remains to show that that ρ is the outcome of a Nash equilibrium. We will show
that ρ satisfies the criterion of Lemma 13. We show by backwards induction on 1 ≤ j ≤ l

that for all i ∈ JnK,
1. costi(ρ≥j) ≤ bj(i),
2. costi(ρ≥j) ≤ minc′′∈devi(ρ(j),c′′) costi(ρ(j), c′′) + vali,c′′ .
For j = l, we have costi(ρ≥l) = 0 so this is trivial. Assume the property holds down to j + 1
for some 1 ≤ j < l. By induction hypothesis, we have

costi(ρ≥j+1) ≤ bj+1(i) = min
(
bj(i)− wj(i), min

c′′∈devi(ρ(j),c′′)
costi(ρ(j), c′′) + vali,c′′ − wj(i)

)
.

Therefore,

costi(ρ≥j) = costi(ρ≥j+1) + wj(i) ≤ min
(
bj(i), min

c′′∈devi(ρ(j),c′′)
costi(ρ(j), c′′) + vali,c′′

)
,

as required. By Lemma 13, ρ is the outcome of a Nash equilibrium. J
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Thanks to Theorem 14, we can compute the costs of the best and worst NEs of 〈A, n〉 in
exponential space. We can also decide the existence of an NE with constraints on the costs
(both social and individual), by non-deterministically guessing an outcome and checking
in G〈A,n〉,~γ that it is indeed an NE. We obtain the following conclusion:

I Corollary 15. In dynamic NCGs, the constrained Nash-equilibrium problem is in EX-
PSPACE.

Proof. As noted earlier, the number of vertices in G〈A,n〉,~γ is doubly exponential since
|C| = |V |n is doubly exponential. Storing a configuration and computing its successors can
be performed in exponential space. One can thus guess a path of size at most the size of
the graph and check whether its cost is less than the given bound. This can be done using
exponential-space counters, and provides us with an EXPSPACE algorithm. J

Note that one can effectively compute a Nash-equilibrium strategy profile satisfying the
constraints in doubly-exponential time by finding the shortest path of G〈A,n〉,~γ , and applying
the construction of (the proof of) Lemma 13.
I Remark 16. The exponential complexity is due to the encoding of the number of players in
binary. If we consider asymmetric NCGs, in which the source-target pairs would be given
explicitly for all players, the size of G〈A,n〉,~γ would be singly-exponential, and the constrained
Nash-equilibrium problem would be in PSPACE.

5 Subgame-perfect equilibria

In this section, we characterize the outcomes of SPEs and decide the existence of SPEs with
constraints on the social cost. We follow the approach of [9], extending it to the setting of
concurrent weighted games, which we need to handle dynamic NCGs.

Characterization of outcomes of SPE. Consider a dynamic NCG 〈A, n〉, and the associated
configuration graphM = 〈C, T 〉. We partition the set C of configurations into (Xj)0≤j≤n
such that a configuration c is in Xj if, and only if, j = #{i ∈ JnK | c(i) = tgt}. Since tgt is a
sink state in A, if there is a transition from some configuration in Xj to some configuration
in Xk, then k ≥ j. We define X≥j =

⋃
i≥j Xi, Zj = {(c, w, c′) ∈ T | c ∈ Xj} and

Z≥j = {(c, w, c′) ∈ T | c ∈ X≥j}.
Following [9], we inductively define a sequence (λj∗)0≤j≤n, where each λj∗ = 〈λj

∗

i 〉i∈JnK

is a n-tuple of labeling functions λj
∗

i : Z≥j → N ∪ {−∞,+∞}. This sequence will be used to
characterize outcomes of SPEs through the notion of λ-consistency:

I Definition 17. Let j ≤ n, and λ = (λi)i∈JnK be a family of functions such that λ : Z≥j →
N ∪ {−∞,+∞} Let c ∈ X≥j. A finite path ρ = (tk)1≤k<|ρ| from c ending in ctgt is said to
be λ-consistent whenever for any i ∈ JnK and any 1 ≤ k < |ρ|, it holds costi(ρ≥k) ≤ λi(tk).
We write Γλ(c) for the set of all λ-consistent paths from c.

We now define λj∗ for all 0 ≤ j ≤ n in such a way that, for all c ∈ X≥j , Γλj∗ (c) is
the set of all outcomes of SPEs in the subgame rooted at c. The case where j = n is
simple: we have X≥n = {ctgt} and Z≥n = {(ctgt, 0n, ctgt)}; there is a single path, which
obviously is the outcome of an SPE since no deviations are possible. For all i ∈ JnK, we let
λn
∗

i (ctgt, 0n, ctgt) = 0.
Now, fix j < n, assuming that λ(j+1)∗ has been defined. In order to define λj∗ , we in-

troduce an intermediary sequence (µki )k≥0,i∈JnK, with µki : Z≥j → N ∪ {−∞,+∞}, of which
(λj
∗

i )i∈JnK will be the limit.
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Functions µki mainly operate on Zj = Z≥j \ Z≥j+1: for any e ∈ Z≥j+1, we let µki (e) =
λ

(j+1)∗
i (e). Now, for e = (c, w, c′) ∈ Zj , µki (e) is defined inductively as follows:
µ0
i (e) = 0 if c(i) = tgt, and µ0

i (e) = +∞ otherwise;
for k > 0, µk is defined from µk−1 following three cases: if c(i) = tgt, then µki (e) = 0; if
Γµk−1(c′) = ∅ for some (c, w′, c′) ∈ T , then µki (e) = −∞; otherwise,

µki (e) = min
c′′∈devi(c,c′)

sup
ρ∈Γ

µl−1 (c′′)
(costi(c, c′′) + costi(ρ))

We can then prove that for any e ∈ Z≥j and any k > 0, µki (e) ≥ µk−1
i (e). It follows that

the sequence (µk)k≥0 stabilizes, and we can define λj∗ as its limit. Let Γ∗ = Γλ0∗ . Then:

I Theorem 18. A path ρ in G = 〈A, n〉 is the outcome of an SPE if, and only if, ρ ∈ Γ∗(csrc).

Algorithm. It remains to compute the sequence (µk)k≥0 (which will include checking non-
emptiness of the corresponding Γ-sets), and to bound the stabilization time. To this aim,
with any family µ = (µi)i∈JnK of functions as above and any configuration c, we associate an
infinite-state counter graph C[µ, c] = 〈C ′, T ′〉 to capture all µ-consistent paths from c:

the set of vertices is C ′ = C × (N ∪ {+∞})JnK;
T ′ contains all edges ((d, b), w, (d′, b′)) for which (d,w, d′) is an edge of M and for
all i ∈ JnK, b′(i) = 0 if d(i) = tgt, and b′i = min{bi − wi, µi(d,w, d′) − wi} otherwise
(provided that b′i ≥ 0 for all i, in order for (d′, b′) to be an edge of C[µ, c]).

With the initial configuration c, we associate bc such that bci = 0 if c(i) = tgt and bci = +∞
otherwise: this configuration imposes no constraint, since no edges has been taken yet.
Intuitively, in configuration (d, b), b is used to enforce µ-consistency: each edge taken along
a path imposes a constraint on the cost of the players for the rest of the path; this constraint
is added to the constraints of the earlier edges, and propagated along the path. We can
prove that the number of reachable states from (c, bc) in C[µ, c], which we denote with |C ′|r,
is bounded by |C| · (n · |V |n · κ)|V |.

Computing λj∗ from λ(j+1)∗ amounts to inductively computing (µk+1
i )i∈JnK from µk for

edges e = (c, w, c′) ∈ Zj , until stabilization. Since C[µk, d] can be proved to capture µk-
consistent paths from d, the computation mainly amounts to checking the existence of paths
in such counter graphs, which can be performed in doubly-exponential space. Stabilization
can be shown to occur within |V |(1 + n · κ · |E|n) steps. In the end:

I Theorem 19. The existence of SPEs in a dynamic NCG can be decided in 2EXPSPACE.

I Remark 20. Again, our algorithm is not specific to the symmetric setting of our dynamic
NCGs; in an asymmetric context, where the number of players would be given in unary, our
algorithm would run in EXPSPACE.

Existence of constrained SPEs. The algorithm above can be extended to compute the
cost of the best and worst SPEs, and to include constraints on the costs (both social and
individual) of the SPEs we are looking for.

First, for any vector ~γ = (γi)i∈JnK, we define the ~γ-counter graph C[λ∗, csrc, ~γ], which is
obtained from C[λ∗, csrc] by replacing the cost vector w on the edges with ~γ · w.

We can then compute the cost of a ~γ-minimal SPE by checking existence of a path
from (csrc, b

csrc) to (ctgt, b) in C[λ∗, csrc, ~γ], which minimizes the ~γ-weighted social cost. Again,
letting γi = 1 for all i ∈ JnK, a ~γ-minimal SPE is a best SPE, while taking γi = −1 for all
i ∈ JnK, we get a worst SPE (maximizing social cost).
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We can also solve the constrained-SPE-existence problem by non-deterministically guessing
an outcome and checking that it is a path in C[λ0∗ , csrc] and that it satisfies the constraints.
In each case, we can inductively build a strategy profile witnessing the fact that the selected
path is the outcome of an SPE.

6 Conclusion and future works

In this paper, we introduced dynamic network congestion games, and studied the complexity
of various decision and computation problems concerning social optima, Nash equilibria and
subgame perfect equilibria. Our algorithms allow us to compute the price of anarchy and
price of stability for those games.

There are couple of areas that are left open in our discussion: possibly the foremost one
being the complexity gaps of the decision problems we talked about. As of yet, we do not
have interesting lower bounds for constraint NE or constraint SPE problem, so definitely one
direction is there for completing the picture. Another aspect of what we do not address in
this paper is to obtain bounds on PoA/PoSs of our model. Even though we are specifically
interested in the measure(s) for a given instance, nonetheless obtaining such bounds could
be interesting.

What we are mostly interested in as future work, is to compute how the price of anarchy
and the price of stability (and costs of equilibria and social optimum) evolve when the number
of players, seen as a parameter, grows.
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