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Abstract
We generalize the concept of synchronizing words for finite automata, which map all states of the
automata to the same state, to deterministic visibly push-down automata. Here, a synchronizing
word w does not only map all states to the same state but also fulfills some conditions on the
stack content of each run after reading w. We consider three types of these stack constraints: after
reading w, the stack (1) is empty in each run, (2) contains the same sequence of stack symbols
in each run, or (3) contains an arbitrary sequence which is independent of the other runs. We
show that in contrast to general deterministic push-down automata, it is decidable for deterministic
visibly push-down automata whether there exists a synchronizing word with each of these stack
constraints, more precisely, the problems are in EXPTIME. Under the constraint (1), the problem is
even in P. For the sub-classes of deterministic very visibly push-down automata, the problem is in P
for all three types of constraints. We further study variants of the synchronization problem where
the number of turns in the stack height behavior caused by a synchronizing word is restricted, as
well as the problem of synchronizing a variant of a sequential transducer, which shows some visibly
behavior, by a word that synchronizes the states and produces the same output on all runs.
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1 Introduction

The classical synchronization problem asks, given a deterministic finite automaton (DFA),
whether there exists a synchronizing word that brings all states of the automaton to a single
state. While this problem is solvable in polynomial time [12, 34, 43], many variants, such
as synchronizing only a subset of states [34], or synchronizing a partial automaton without
taking an undefined transition (called carefully synchronizing) [25], are PSPACE-complete.
Restricting the length of a potential synchronizing word by a parameter in the input also
yields a harder problem, namely the NP-complete short synchronizing word problem [31, 16].
The field of synchronizing automata has been intensively studied over the last years, among
others in attempt to verify the famous Černý conjecture claiming that every synchronizable
DFA admits a synchronizing word of quadratic length in the number of states [12, 13, 39, 40].
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45:2 Synchronization of Deterministic Visibly Push-Down Automata

The currently best upper bound on this length is cubic, and only very little progress has
been made, basically improving on the multiplicative constant factor in front of the cubic
term, see [37, 41]. More information on synchronization of DFA and the Černý conjecture
can be found in [43, 7, 1]. In this work, we want to move away from deterministic finite
automata to more general deterministic visibly push-down automata.1

The synchronization problem has been generalized in the literature to other automata
models including infinite-state systems with infinite branching such as weighted and timed
automata [15, 36] or register automata [5]. Here, register automata are infinite state systems
where a state consists of a control state and register contents.

Another automaton model, where the state set is enhanced with a possibly infinite memory
structure, namely a stack, is the class of nested word automata (NWAs were introduced in [3]),
where an input word is enhanced with a matching relation determining at which pair of
positions in a word a symbol is pushed to and popped from the stack. The class of languages
accepted by NWAs is identical to the class of visibly push-down languages (VPL) accepted
by visibly push-down automata (VPDA) and forms a proper sub-class of the deterministic
context-free languages. VPDAs have first been studied by Mehlhorn [27] under the name
input-driven pushdown automata and became quite popular more recently due to the work
by Alur and Madhusudan [2], showing that VPLs share several nice properties with regular
languages. For more on VPLs we refer to the survey [30]. In [14], the synchronization problem
for NWAs was studied. There, the concept of synchronization was generalized to bringing all
states to one single state such that for all runs the stack is empty (or in its start configuration)
after reading the synchronizing word. In this setting, the synchronization problem is solvable
in polynomial time (again indicating similarities of VPLs with regular languages), while the
short synchronizing word problem (with length bound given in binary) is PSPACE-complete;
the question of synchronizing from or into a subset is EXPTIME-complete. Also, matching
exponential upper bounds on the length of a synchronizing word are given.

Our attempt in this work is to study the synchronization problem for real-time (no
ε-transitions) deterministic visibly push-down automata (DVPDA) and several sub-classes
thereof, like real-time deterministic very visibly push-down automata (DVVPDA for short;
this model was introduced in [24]), real-time deterministic visibly counter automata (DVCA
for short; this model appeared a.o. in [6, 38, 9, 21, 22, 23]) and finite turn variants thereof.
We want to point out that, despite the equivalence of the accepted language class, the
automata models of nested word automata and visibly push-down automata still differ and
the results from [14] do not immediately transfer to VPDAs, as for NWAs an input word
is equipped with a matching relation, which VPDAs lack of. In general, the complexity of
the synchronization problem can differ for different automata models accepting the same
language class. For instance, in contrast to the polynomial time solvable synchronization
problem for DFAs, the generalized synchronization problem for finite automata with one
ambiguous transition is PSPACE-complete, as well as the problem of carefully synchronizing
a DFA with one undefined transition [26]. We will not only consider the synchronization
model introduced in [14], where reading a synchronizing word results in an empty stack on
all runs; but we will also consider a synchronization model where not only the final state
on every run must be the same but also the stack content needs to be identical, as well as
a model where only the states needs to be synchronized and the stack content might be

1 The term synchronization of push-down automata already occurs in the literature, i.e., in [11, 4], but
there the term synchronization refers to some relation of the input symbols to the stack behavior [11] or
to reading different words in parallel [4]; not to confuse it with our notion of synchronizing states.
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arbitrary. These three models of synchronization have been introduced in [28], where length
bounds on a synchronizing word for general DPDAs have been studied dependent on the
stack height. The complexity of these three concepts of synchronization for general DPDAs
are considered in [18], where it is shown that synchronizability is undecidable for general
DPDAs and deterministic counter automata (DCA). It becomes decidable for deterministic
partially blind counter automata and is PSPACE-complete for some types of finite turn
DPDAs, while it is still undecidable for other types of finite turn DPDAs.

In contrast, we will show in the following that for DVPDAs and considered sub-classes
hereof, the synchronization problem for all three stack models, with restricted or unrestricted
number of turns, is in EXPTIME and hence decidable. For DVVPDAs and DVCAs, the
synchronization problems for all three stack models (with unbounded number of turns) are
even in P. Like the synchronization problem for NWAs in the empty stack model considered
in [14], we observe that the synchronization problem for DVPDAs in the empty stack model is
solvable in polynomial time, whereas synchronization of DVPDAs in the same and arbitrary
stack models is at least PSPACE-hard. If the number of turns caused by a synchronizing
word on each run is restricted, the synchronization problem becomes PSPACE-hard for all
considered automata models for n > 0 and is only in P for n = 0 in the empty stack model.
We will further introduce variants of synchronization problems distinguishing the same and
arbitrary stack models by showing complementary complexities in these models. For problems
considered in [18], these two stack models have always shared their complexity status.

Due to lack of space, missing proof details can be found in the long version of this
work [17].

2 Fixing Notations

We refer to the empty word as ε. For a finite alphabet Σ, we denote with Σ∗ the set of
all words over Σ and with Σ+ = ΣΣ∗ the set of all non-empty words. For i ∈ N, we set
[i] = {1,2, . . . , i}. For w ∈ Σ∗, we denote with ∣w∣ the length of w, with w[i] for i ∈ [∣w∣] the
i’th symbol of w, and with w[i..j] for i, j ∈ [∣w∣] the subword w[i]w[i + 1] . . .w[j] of w. We
call w[1..i] a prefix and w[i..∣w∣] a suffix of w. If i < j, then w[j, i] = ε.

We call A = (Q,Σ, δ, q0, F ) a deterministic finite automaton (DFA for short) if Q is a finite
set of states, Σ is a finite input alphabet, δ is a transition function Q×Σ→ Q, q0 is the initial
state, and F ⊆ Q is the set of final states. The transition function δ is generalized to words by
δ(q,w) = δ(δ(q,w[1]),w[2..∣w∣]) for w ∈ Σ∗. A word w ∈ Σ∗ is accepted by A if δ(q0,w) ∈ F
and the language accepted by A is defined by L(A) = {w ∈ Σ∗ ∣ δ(q0,w) ∈ F}. We extend δ to
sets of states Q′ ⊆ Q or to sets of letters Σ′ ⊆ Σ, letting δ(Q′,Σ′) = {δ(q′, σ′) ∣ (q′, σ′) ∈ Q′×Σ′}.
Similarly, we may write δ(Q′,Σ′) = p to define δ(q′, σ′) = p for each (q′, σ′) ∈ Q′ ×Σ′. The
synchronization problem for DFAs (called DFA-Sync) asks for a given DFA A whether there
exists a synchronizing word for A. A word w is called a synchronizing word for a DFA A if it
brings all states of the automaton to one single state, i.e., ∣δ(Q,w)∣ = 1.

We call M = (Q,Σ,Γ, δ, q0,�, F ) a deterministic push-down automaton (DPDA for short)
if Q is a finite set of states; the finite sets Σ and Γ are the input and stack alphabet,
respectively; δ is a transition function Q ×Σ × Γ→ Q × Γ∗; q0 is the initial state; � ∈ Γ is the
stack bottom symbol which is only allowed as the first (lowest) symbol in the stack, i.e., if
δ(q, a, γ) = (q′, γ′) and γ′ contains �, then � only occurs in γ′ as its prefix and moreover,
γ = �; and F is the set of final states. We will only consider real-time push-down automata
and forbid ε-transitions, as can be seen in the definition. Notice that the bottom symbol can
be removed, but then the computation gets stuck.

FSTTCS 2020
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Following [14], a configuration of M is a tuple (q, υ) ∈ Q × Γ∗. For a letter σ ∈ Σ and a
stack content υ, with ∣υ∣ = n, we write (q, υ) σÐ→ (q′, υ[1..(n − 1)]γ) if δ(q, σ, υ[n]) = (q′, γ).
This means that the top of the stack υ is the right end of υ. We also denote with Ð→ the
reflexive transitive closure of the union of σÐ→ over all letters in Σ. The input words on top
of Ð→ are concatenated accordingly, so that Ð→= ⋃w∈Σ∗

wÐ→. The language L(M) accepted
by a DPDA M is L(M) = {w ∈ Σ∗ ∣ (q0,�)

wÐ→ (qf , γ), qf ∈ F}. We call the sequence of
configurations (q,�) wÐ→ (q′, γ) the run induced by w, starting in q, and ending in q′. We
might also call q′ the final state of the run.

We will discuss three different concepts of synchronizing DPDAs. For all concepts, we
require that a synchronizing word w ∈ Σ∗ maps all states, starting with an empty stack, to
the same synchronizing state, i.e., for all q, q′ ∈ Q∶ (q,�) wÐ→ (q, υ), (q′,�) wÐ→ (q, υ′). In other
words, for a synchronizing word all runs started on some states in Q end up in the same
state. In addition to synchronizing the states of a DPDA, we will consider the following two
conditions for the stack content: (1) υ = υ′ = �, (2) υ = υ′. We will call (1) the empty stack
model and (2) the same stack model. In the third case, we do not put any restrictions on the
stack content and call this the arbitrary stack model.
As we are only interested in synchronizing a DPDA, we can neglect the start and final states.

Starting from DPDAs, we define the following sub-classes thereof:
A deterministic visibly push-down automaton (DVPDA) is a DPDA where the input
alphabet Σ can be partitioned into Σ = Σcall ∪Σint ∪Σret such that the change in the stack
height is determined by the partition of the alphabet. To be more precise, the transition
function δ is modified such that it can be partitioned accordingly into δ = δc ∪ δi ∪ δr such
that δc∶Q ×Σ→ Q × (Γ/{�}) puts a symbol on the stack, δi∶Q ×Σ→ Q leaves the stack
unchanged, and δr∶Q ×Σ × Γ→ Q reads and pops a symbol from the stack [2]. If � is the
symbol on top of the stack, then � is only read and not popped. We call letters in Σcall
call or push letters; letter in Σint internal letters; and letters in Σret return or pop letters.
The language class accepted by DVPDA is equivalent to the class of languages accepted
by deterministic nested word automata (see [14]).
A deterministic very visibly push-down automaton (DVVPA) is a DVPDA where not only
the stack height but also the stack content is completely determined by the input alphabet,
i.e., for a letter σ ∈ Σ and all states p, q ∈ Q for δc(p, σ) = (p′, γp) and δc(q, σ) = (q′, γq) it
holds that γp = γq.
A deterministic visibly (one) counter automaton (DVCA) is a DVPDA where ∣Γ/{�}∣ = 1;
note that every DVCA is also a DVVPDA.

We are now ready to define a family of synchronization problems, the complexity of which
will be our subject of study in the following sections.

I Definition 1 (Sync-DVPDA-Empty).
Given: DPDA M = (Q,Σ,Γ, δ,�).
Question: Does there exist a word w ∈ Σ∗ that synchronizes M in the empty stack model?

For the same stack model, we refer to the synchronization problem above as Sync-DVPDA-
Same and as Sync-DVPDA-Arb in the arbitrary stack model. Variants of these problems
are defined by replacing the DVPDA in the definition above by a DVVPDA, and DVCA. If
results hold for several stack models or automata models, then we summarize the problems
by using set notations in the corresponding statements. For the problems Sync-DVPDA-
Same and Sync-DVPDA-Arb, we introduce two further refined variants of these problems,
denoted by the extension -Return and -NoReturn, where for all input DVPDA in the
former variant Σret ≠ ∅ holds, whereas in the latter variant Σret = ∅ holds. In the following,
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Table 1 Complexity status of the synchronization problem for different classes of deterministic
real-time visibly push-down automata in different stack synchronization modes. For the n-turn
synchronization variants, n takes all values not explicitly listed. All our problems are in EXPTIME.

class of automata empty stack model same stack model arbitrary stack model

DVPDA P PSPACE-complete PSPACE-hard
DVPDA-NoReturn P PSPACE-complete P
DVPDA-Return P P PSPACE-hard
n-Turn-Sync-DVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVPDA P PSPACE-complete PSPACE-complete
DVVPDA P P P
n-Turn-Sync-DVVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVVPDA P PSPACE-complete PSPACE-complete
DVCA P P P
n-Turn-Sync-DVCA PSPACE-hard PSPACE-hard PSPACE-hard
1-Turn-Sync-DVCA PSPACE-complete PSPACE-complete PSPACE-complete
0-Turn-Sync-DVCA P PSPACE-complete PSPACE-complete

these variants reveal insights in the differences between synchronization in the same stack
and arbitrary stack models, as well as connections to a concept of trace-synchronizing a
sequential transducer showing some visibly behavior.

We will further consider synchronization of these automata classes in a finite-turn setting.
Finite-turn push-down automata were introduced in [20]. We adopt the definition in [42].
For a DVPDA M , an upstroke of M is a sequence of configurations induced by an input
word w such that no transition decreases the stack-height. Accordingly, a downstroke of M
is a sequence of configurations in which no transition increases the stack-height. A stroke is
either an upstroke or downstroke. A DVPDA M is an n-turn DVPDA if for all w ∈ L(M) the
sequence of configurations induced by w can be split into at most n + 1 strokes. Especially,
for 1-turn DVPDAs, each sequence of configurations induced by an accepting word consists of
one upstroke followed by a most one downstroke. Two subtleties arise when translating this
concept to synchronization: (a) there is no initial state so that there is no way to associate a
stroke counter with a state, and (b) there is no language of accepted words that restricts the
set of words on which the number of strokes should be limited. Hence, in the synchronization
setting the finite turn property is not a property of the push-down automaton but rather of
the word applied to all states in parallel. We therefore generalize the concept of finite-turn
DVPDAs to finite-turn synchronization for DVPDAs as follows.

I Definition 2 (n-Turn-Sync-DVPDA-Empty).
Given: DVPDA M = (Q,Σ,Γ, δ, q0,�, F ).
Question: Is there a synchronizing word w ∈ Σ∗ in the empty stack model, such that for all
states q ∈ Q, the sequence of configurations (q,�) wÐ→ (q,�) consists of at most n + 1 strokes?

We call such a synchronizing word w an n-turn synchronizing word for M . We define
n-Turn-Sync-DVPDA-Same and n-Turn-Sync-DVPDA-Arb accordingly for the same
stack and arbitrary stack model. Further, we extend the problem definition to other classes
of automata such as real-time DVVPDAs, and DVCAs. Table 1 summarizes our results,
obtained in the next sections, on the complexity status of these problems together with the
above introduced synchronization problems.

Finally, we introduce two PSPACE-complete problems for DFAs to reduce from later.

FSTTCS 2020
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I Definition 3 (DFA-Sync-Into-Subset (PSPACE-complete [32])).
Given: DFA A = (Q,Σ, δ), subset S ⊆ Q.
Question: Is there a word w ∈ Σ∗ such that δ(Q,w) ⊆ S?

I Definition 4 (DFA-Sync-From-Subset (PSPACE-complete [34])).
Given: DFA A = (Q,Σ, δ) with S ⊆ Q.
Question: Is there a word w ∈ Σ∗ that synchronizes S, i.e., for which ∣δ(S,w)∣ = 1 is true?

3 DVPDAs – Distinguishing the Stack Models

We start with some positive result showing that we come down from the undecidability of
the synchronization problem for general DPDAs in the empty set model to a polynomial
time solvable version by considering visibly DPDAs.

I Theorem 5. The problems Sync-DVPDA-Empty, Sync-DVCA-Empty, and Sync-
DVVPDA-Empty are decidable in polynomial time.

Proof. We prove the claim for Sync-DVPDA-Empty as the other automata classes are
sub-classes of DVPDAs. Let M = (Q,Σcall ∪Σint ∪Σret,Γ, δ,�) be a DVPDA. First, observe
that if Σret is empty, then any synchronizing word w for M in the empty stack model cannot
contain any letter from Σcall. Hence, M is basically a DFA and for DFAs the synchronization
problem is in P [12, 43, 34]. From now on, assume Σret ≠ ∅. We show that a pair argument
similar to the one for DFAs can be applied, namely that M is synchronizable in the empty
stack model if and only if every pair of states p, q ∈ Q can be synchronized in the empty stack
model. The only if direction is clear as every synchronizing word for Q also synchronizes
each pair of states. For the other direction, observe that since M is a DVPDA, the stack
height of each path starting in any state of M is predefined by the sequence of input symbols.
Hence, if we focus on the two runs starting in p, q and ensure that their stacks are empty
after reading a word w, then also the stacks of all other runs starting in other states in
parallel are empty after reading w. Therefore, we can successively concatenate words that
synchronize some pair of active states in the empty stack model and end up with a word that
synchronizes all states of M in the empty stack model. Further formal algorithmic details
can be found in the long version [17]. J

Does this mean everything is easy and we are done? Interestingly, the picture is not that
simple, as considering the same and arbitrary stack models shows.

I Theorem 6. The problem Sync-DVPDA-Same is PSPACE-hard.

Proof. We reduce from DFA-Sync-Into-Subset. Let A = (Q,Σ, δ) be a DFA and S ⊆ Q.
We construct from A a DVPDA M = (Q∪{qS},Σcall∪Σint∪Σret,{,,/,�}, δ′ = δ′c∪δ′i ∪δ′r,�)
with qS ∉ Q, Σcall = {a}, Σint = Σ, Σret = ∅ and Σcall ∩Σint = ∅. The transition function δ′i
agrees with δ on all letters in Σint. For qS , we set δ′c(qS , a) = (qS ,,) and δ′i(qS , σ) = qS for
all σ ∈ Σint. For q ∈ S, we set δ′c(q, a) = (qS ,,), and for q ∉ S, δ′c(q, a) = (q,/).

Note that qS is a sink-state and can only be reached from states in S with a transition
by the call-letter a. For states not in S, the input letter a pushes an / on the stack which
cannot be pushed to the stack by any letter on a path starting in qS . Hence, in order
to synchronize M in the same stack model, a letter a might only and must be read in a
configuration where only states in S ∪ {qS} are active. Every word w ∈ Σ∗

int that brings M in
such a configuration also synchronizes Q in A into the set S. J
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From the proof of Theorem 6, we can conclude the next results by observing that a DVPDA
without any return letter cannot make any turn.

I Corollary 7. Sync-DVPDA-Same-NoReturn and 0-Turn-Sync-DVPDA-Same are
PSPACE-hard.

In contrast with the two previous results, Sync-DVPDA-Same is solvable in polynomial
time if we have the promise that Σret ≠ ∅.

I Theorem 8. Sync-DVPDA-Same-Return is in P.

Proof. We prove the claim by straight reducing to Sync-DVPDA-Empty with the identity
function. If a DVPDA M with Σret ≠ ∅ can be synchronized in the same stack model with a
synchronizing word w, then w can be extended to ww′ where w′ ∈ Σ∗

ret empties the stack.
As M is deterministic and complete, w′ is defined on all states. As after reading w, the stack
content on all paths is the same, reading w′ extends all paths with the same sequence of
states. Conversely, a word w synchronizing a DVPDA M with Σret ≠ ∅ in the empty stack
model also synchronizes M in the same stack model. J

The arbitrary stack model requires the most interesting construction in the following proof.

I Theorem 9. Sync-DVPDA-Arb is PSPACE-hard.

Proof. We give a reduction from the PSPACE-complete problem DFA-Sync-From-Subset.
Let A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DVPDA M = (Q,Σcall ∪
Σint ∪Σret,Q ∪ {�}, δ′ = δ′c ∪ δ′i ∪ δ′r,�) where all unions in the definition of M are disjoint.
Let Σcall = Σ, Σint = ∅, and Σret = {r} with r ∉ Σ.

For states s ∈ S, we set δ′r(s, r,�) = s and for states q ∈ Q/S, we set δ′r(q, r,�) = t for some
arbitrary but fixed t ∈ S. For states p, q ∈ Q, we set δ′r(q, r, p) = p.

For each call letter σ ∈ Σcall, we set for q ∈ Q, δ′c(q, σ) = (δ(q, σ), q).
First, assume w is a word that synchronizes the set S in the DFA A. Then, it can easily

be observed that rw is a synchronizing word for M in the arbitrary stack model.
Now, assume w is a synchronizing word for M in the arbitrary stack model. If w ∈ Σ∗

call,
then w is also a synchronizing word for A and especially synchronizes the set S in A. (*)
Next, assume w contains some letters r. The action of r is designed such that it maps Q
to the set S if applied to an empty stack and otherwise gradually undoes the transitions
performed by letters from Σcall. This is possible as each letter σ ∈ Σcall stores its pre-image
on the stack when σ is applied. Further, r acts as the identity on the states in S if applied to
an empty stack. Hence, whenever the stacks are empty while reading some word, all states
in S are active.

Hence, if σr is a subword of a synchronizing word w = uσrv of M , with σ ∈ Σcall,
then w′ = uv is also a synchronizing word of M . This justifies the set of rewriting rules
R = {σr → ε ∣ σ ∈ Σcall}. Now, consider a synchronizing word w of M where none of the
rewriting rules from R applies, and, which by (*) contains some letter r. Hence, w ∈ {r}∗Σ∗

call.
By (*), w = rkv, with k > 0, and v ∈ Σ∗

call. Then, w′ = rv is also a synchronizing word of
M , because for all states q ∈ Q, M is in the same configuration after reading r, starting in
configuration (q,�), as after reading rr. But as only (and all) states from S are active after
reading r, v is also a word in Σ∗ that synchronizes the set S in A. J

Observe that in the construction above, Σret ≠ ∅ for all input DFAs. The next corollary
follows from Theorem 9 and should be observed together with the next theorem in contrast
to Theorem 8 and Corollary 7.

FSTTCS 2020
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I Corollary 10. Sync-DVPDA-Arb-Return is PSPACE-hard.

I Theorem 11. Sync-DVPDA-Arb-NoReturn ≡ DFA-Sync.

Proof. Let M be a DVPDA with empty set of return symbols. As there is no return-symbol,
the transitions of M cannot depend on the stack content. Hence, we can redistribute the
symbols in Σcall into Σint and obtain a DFA. The converse is trivial. J

If we move from deterministic visibly push-down automata to even more restricted classes, like
deterministic very visibly push-down automata or deterministic visibly counter automata, the
three stack models do no longer yield synchronization problems with different complexities.
Instead, all three models are equivalent, as stated next. Hence, their synchronization problems
can be solved by the pair-argument presented in Theorem 5 in polynomial time.

I Theorem 12. Sync-DVCA-Empty ≡ Sync-DVCA-Same ≡ Sync-DVCA-Arb.
Sync-DVVPDA-Empty ≡ Sync-DVVPDA-Same ≡ Sync-DVVPDA-Arb.

Proof. First, note that every DVCA is also a DVVPDA. If for a DVVPDA Σret ≠ ∅, then we
can empty the stack after synchronizing the state set, as the very visibly conditions ensures
that the contents of the stacks on all runs coincide. As the automaton is deterministic, all
transitions for letters in Σret are defined on each state. As the stack content on all runs
coincides in every step, the arbitrary stack model is identical to the same stack model and
hence equivalent to the empty stack model. If Σret = ∅, then we can reassign Σcall to Σint
in order to reduce from the same-stack and arbitrary stack to the empty stack variant, as
transitions cannot depend on the stack content which is again the same on all runs due to
the very visibly condition. J

4 Restricting the Number of Turns Makes Synchronization Harder

Let us now restrict the number of turns a synchronizing word may cause on any run. Despite
the fact that we are hereby restricting the considered model even further, the synchronization
problem becomes even harder, in contrast to the previous section.

I Theorem 13. For every fixed n ∈ N with n > 0, the problems n-Turn-Sync-DVCA-Same
and n-Turn-Sync-DVCA-Arb are PSPACE-hard.

Proof. We give a reduction from the PSPACE-complete problem DFA-Sync-Into-Subset.
Let A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DVCA M = (Q ∪ {qsync} ∪
{qstalli ∣ 0 ≤ i ≤ n},Σcall ∪Σint ∪Σret,{1,�}, δ′ = δ′c ∪ δ′i ∪ δ′r,�}), where all unions are disjoint.
We set Σint = Σ, Σcall = {a} and Σret = {b}. For all internal letters, δ′i agrees with δ on all
states in Q. For the letter a, we set for all q ∈ S, δ′c(q, a) = (qstall0 , 1) and for all q ∈ Q/S, we
set δ′c(q, a) = (q,1). For b, we loop in every state in Q. For qsync, we loop with every letter
in qsync (incrementing the counter with a and decrementing it with b).

Let r be an arbitrary but fixed state in Q. For the states qstalli , we set for i < n,
δ′c(qstalli , a) = (qstalli ,1). Further, for even index i < n, we set δ′r(qstalli , b,1) = qstalli+1 and
δ′r(qstalli , b,�) = r. For odd index i < n, we set δ′r(qstalli , b,1) = r, and δ′r(qstalli , b,�) = qstalli+1 .
For even n, let δ′c(qstalln , a) = (qsync,1), δ′r(qstalln , b,1) = r, and δ′r(qstalln , b,�) = r. For
odd n, let δ′c(qstalln , a) = (qstalln ,1), δ′r(qstalln , b,1) = r, and δ′r(qstalln , b,�) = qsync. All other
transitions (on internal letters) act as the identity.

Observe that the state qsync must be the synchronizing state of M , since it is a sink
state. In order to reach qsync from any state in Q, the automaton must pass through all the
states qstalli for all 0 ≤ i ≤ n, by construction. Since we can only pass from a state qstalli to



H. Fernau and P. Wolf 45:9

qstalli+1 with an empty or non-empty stack in alternation, passing through all states qstalli , for
0 ≤ i ≤ n, forces M to make n turns. For even n, the last upstroke is enforced by passing from
qstalln to qsync by explicitly increasing the stack. As M is only allowed to make n turns while
reading the n-turn synchronizing word it follows that any of the states qstalli might be visited
at most once, as branching back into Q by taking a transition that maps to r would force M
to go through all states qstalli again, which exceeds the allowed number of strokes. Note that
only counter values of at most one are allowed in any run which is currently in a state in
qstalli as otherwise the run will necessarily branch back into Q later on.2 Especially, this is
the case for qstall0 which ensures that each n-turn synchronizing word has first synchronized
Q into S before the first letter a is read, as otherwise qstall0 is reached with a counter value
greater than 1, or M has already made a turn in Q and hence cannot reach qsync anymore.

In the construction above, for odd n, each run enters the synchronizing state with an
empty stack (*). For even n, each run enters the synchronizing state with a counter value
of 1. The visibly condition, or more precisely very visibly condition as we are considering
DVCAs, tells us that at each time while reading a synchronizing word, the stack content of
every run is identical. In particular, this is the case at the point when the last state enters
the synchronizing state and, hence, any n-turn synchronizing word for M is a synchronizing
word in both the arbitrary and the same stack models. J

By observing that in the empty stack model allowing n even turns is as good as allowing
(n − 1) turns, essentially (*) from the previous proof yields the next result.

I Corollary 14. For every fixed n ∈ N, with n > 0, the problem n-Turn-Sync-DVCA-Empty
is PSPACE-hard.

I Corollary 15. For every fixed n ∈ N, with n > 0, the problems n-Turn-Sync-DVPDA and
n-Turn-Sync-DVVPDA in the empty, same, and arbitrary stack models are PSPACE-hard.

I Theorem 16. 0-Turn-Sync-DVPDA-Empty ≡ DFA-Sync.

Proof. The visibly condition and the fact that we can only synchronize with an empty stack
mean that we cannot read any letter from Σcall, hence we cannot use the stack at all. Delete
(a) all transitions with a symbol from Σcall and (b) all transitions with a symbol from Σret
and a non-empty stack. Then, assigning the elements in Σret to Σint gives us a DFA. J

The next result is obtained by a reduction from DFA-Sync-From-Subset.

I Theorem 17. The problems 0-Turn-Sync-DVCA-{Same, Arb} are PSPACE-hard.

I Corollary 18. The problems 0-Turn-Sync-DVVPDA-{Same, Arb}, and 0-Turn-Sync-
DVPDA-{Same, Arb} are PSPACE-hard.

5 (Non-)Tight Upper Bounds

In this section, we will prove that at least all considered problems are decidable (in contrast
to non-visibly DPDAs and DCAs, see [18]) by giving exponential time upper bounds. We will
also give some tight PSPACE upper bounds for some PSPACE-hard problems discussed in the
previous section, but for other previously discussed problems, a gap between PSPACE-hardness
and membership in EXPTIME remains.

2 In some states, such as qstalln
for even n, it is simply impossible to have a higher counter value.
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I Theorem 19. All problems listed in Table 1 are in EXPTIME.

Proof. We show the claim explicitly for Sync-DVPDA-Same, Sync-DVPDA-Arb,
n-Turn-Sync-DVPDA-Empty, n-Turn-Sync-DVPDA-Same, and n-Turn-Sync-
DVPDA-Arb. The other results follow by inclusion of automata classes.

Let M = (Q,Σcall ∪Σint ∪Σret,Γ, δ,�) be a DVPDA. We construct from M the ∣Q∣-fold
product DVPDA M ∣Q∣ with state set Q∣Q∣, consisting of ∣Q∣-tuples of states, and alphabet
Σcall ∪Σint ∪Σret. Since M is a DVPDA, for every word w ∈ (Σcall ∪Σint ∪Σret)∗, the stack
heights on runs starting in different states in Q is equal at every position in w. Hence, we can
multiply the stacks to obtain the stack alphabet Γ∣Q∣ for M ∣Q∣. For the transition function
δ∣Q∣ (split up into δ∣Q∣c ∪ δ∣Q∣i ∪ δ∣Q∣r ) of M ∣Q∣, we simulate δ independently on every state in an
∣Q∣-tuple, i.e., for (q1, q2, . . . , qn) ∈ Q∣Q∣ and letters σc ∈ Σcall, σi ∈ Σint, σr ∈ Σret, we set

δ
∣Q∣
c ((q1, q2, . . . , qn), σc) = ((q′1, q′2, . . . , q′n), (γ1, γ2, . . . , γn)) if δ(qj , σc) = (q′j , γj) for j ∈[n];
δ
∣Q∣
i ((q1, q2, . . . , qn), σi) = (δ(q1, σi), δ(q2, σi), . . . , δ(qn, σi));
δ
∣Q∣
r ((q1, q2, . . . , qn), σr, (γ1, γ2, . . . , γn)) = (δ(q1, σr, γ1), δ(q2, σr, γ2), . . . , δ(qn, σr, γn)).

The bottom symbol of the stack is the ∣Q∣-tuple (�,�, . . . ,�). Let p1, p2, . . . , pn be an
enumeration of the states in Q and set (p1, p2, . . . , pn) as the start state of M ∣Q∣.

For Sync-DVPDA-Arb, set {(q, q, . . . , q) ∈ Q∣Q∣ ∣ q ∈ Q} as the final states for M ∣Q∣.
Clearly, for Sync-DVPDA-Arb, M ∣Q∣ is a DVPDA and the words accepted by M ∣Q∣ are
precisely the synchronizing words for M in the arbitrary stack model. As the emptiness
problem can be decided for visibly push-down automata in time polynomial in the size of
the automaton [2], the claim follows observing that M ∣Q∣ is exponentially larger than M .

For Sync-DVPDA-Same, we produce a DVPDA M
∣Q∣
same by enhancing the automaton

M ∣Q∣ with three additional states qcheck, qfin, and qfail and an additional new return letter r and
set qfin as the single accepting state of M ∣Q∣

same, while the start state coincides with the one of
M ∣Q∣. For states (q1, q2, . . . , qn) ∈ Q∣Q∣, we set δ∣Q∣r ((q1, q2, . . . , qn), r, (γ1, γ2, . . . , γn)) = qcheck
if qi = qj and γi = γj , γi ≠ � for all i, j ∈ [n]. We set δ∣Q∣r ((q1, q2, . . . , qn), r, (�,�, . . . ,�)) = qfin
if qi = qj for all i, j ∈ [n]. For all other cases, we map with r to qfail. We let the transitions
for qfail be defined such that qfail is a non-accepting trap state for all alphabet symbols. For
qcheck, we set δ∣Q∣r (qcheck, r, (γ1, γ2, . . . , γn)) = qcheck if γi = γj for i, j ∈ [n]. Further, we set
δ
∣Q∣
r (qcheck, r, (�,�, . . . ,�)) = qfin and map with r to qfail in all other cases. The state qcheck
also maps to qfail with all input symbols other than r. We let the transitions for qfin be
defined such that qfin is an accepting trap state for all alphabet symbols.

Clearly, for Sync-DVPDA-Same M ∣Q∣
same is a DVPDA and the words accepted by M ∣Q∣

same
are precisely the synchronizing words for M in the same stack model, potentially prolonged
by a sequence of r’s, as the single accepting state qfin can only be reached from a state in
Q∣Q∣ where the states are synchronized and the stack content is identical for each run (which
is checked in the state qcheck). As the size of M ∣Q∣

same is exponential in the size of M , we get
the claimed result as in the previous case.

For the n-Turn synchronization problems, we have to modify the previous construction
by adding a stroke counter similar as in the proof of Theorem 13. J

I Remark 20. It cannot be expected to show PSPACE-membership of synchronization
problems concerning DVPDAs using a ∣Q∣-fold product DVPDA, as the resulting automata
is exponentially large in the size of the DVPDA that is to be synchronized, as the emptiness
problem for DVPDAs is P-complete [30]. Rather, one would need a separate membership
proof. We conjecture that a PSPACE-membership proof similar to the one for the short
synchronizing word problem presented in [14] can be obtained if exponential upper bounds
for the length of shortest synchronizing words for DVPDAs in the respective models can be
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obtained. For the empty stack model, an exponential upper bound on the length of a shortest
synchronizing word should follow by applying analogous arguments as in [14, Theorem 6]. For
the same and arbitrary stack model, the question is open as we cannot reduce the problem
to considering pairs like in the empty stack model.

I Theorem 21. The problems 0-Turn-Sync-{DVPDA, DVVPDA, DVCA}-Same are in
PSPACE.

Proof sketch. LetM = (Q,Σcall∪Σint∪Σret,Γ, δ,�) be a DVPDA. For the same stack model,
the 0-turn condition forbids us to put in simultaneous runs different letters on the stack at
any time while reading a synchronizing word, as we cannot exchange symbols on the stack
with visible PDAs. Note that this is a dynamic runtime-behavior and does not imply that
M is necessarily very visibly. Further, the 0-turn and visibility condition enforce that at
each step the next transition does not depend on the stack content if the symbol on top
of the stack is not �. Hence, we can construct from M a ∣Q∣-fold DFA (with a state set
exponential in the size of ∣Q∣) in a similar way as in the proof of Theorem 19 by neglecting
the stack as nothing is ever popped from the stack. As the emptiness problem for DFAs
can be solved in NLOGSPACE, the claim follows with Savitch’s famous theorem stating that
NPSPACE = PSPACE [35].3 J

I Corollary 22. Sync-DVPDA-Same-NoReturn, Sync-DVPDA-Same are in PSPACE.

I Theorem 23. The problems 0-Turn-Sync-{DVPDA, DVVPDA, DVCA}-Arb, and
1-Turn-Sync-DVCA-{Empty, Same, Arb} are in PSPACE.

Proof. The claim follows from [18, Theorem 16 & 17] by inclusion of automata classes. J

6 Sequential Transducers

In [18], the concept of trace-synchronizing a sequential transducer has been introduced. We
want to extend this concept to sequential transducers showing some kind of visible behavior
regarding their output, inspired by the predetermined stack height behavior of DVPDAs. We
call T = (Q,Σ,Γ, q0, δ, F ) a sequential transducer (ST for short) if Q is a finite set of states,
Σ is an input alphabet, Γ is an output alphabet, q0 is the start state, δ∶Q ×Σ→ Q × Γ∗ is a
total transition function, and F collects the final states. We generalize δ from input letters
to words by concatenating the produced outputs. T is called a visibly sequential transducer
(VST for short) [or very visibly sequential transducer (VVST for short)] if for each σ ∈ Σ
and for all q1, q2 ∈ Q and γ1, γ2 ∈ Γ∗, it holds that δ(q1, σ) = (q′1, γ1) and δ(q2, σ) = (q′2, γ2)
implies that ∣γ1∣ = ∣γ2∣ [or that γ1 = γ2, respectively]. A VVST T is thereby computing the
same homomorphism hT , regardless of which states are chosen as start and final states (*).
Hence, if AT is the underlying DFA (ignoring any outputs), then hT (L(AT )) ⊆ Γ∗ describes
the language of all possible output of T . By Nivat’s theorem [29], a language family is a full
trio iff it is closed under VVST and inverse homomorphisms. Our considerations also show
that a language family is a full trio iff it is closed under VVST and inverse VVST mappings.

We say that a word w trace-synchronizes a sequential transducer T if, for all states
p, q ∈ Q, δ(p,w) = δ(q,w), i.e., a synchronizing state is reached, producing identical output.
Notice that from the viewpoint of trace-synchronization, we do not assume that a VVST has
only one state.

3 Here, a smaller powerset-construction would also work but, for simplicity, we stuck with the introduced
∣Q∣-fold product construction.
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I Definition 24 (Trace-Sync-Transducer).
Given: Sequential transducer T = (Q,Σ,Γ, δ).
Question: Does there exist a word w ∈ Σ∗ that trace-synchronizes T?

We define Trace-Sync-VST and Trace-Sync-VVST by considering a VST, respec-
tively VVST. In contrast to the undecidability of Trace-Sync-Transducer [18], we get
the following results for trace-synchronizing VST and VVST from previous results.

I Theorem 25. Trace-Sync-VST is PSPACE-complete.

Proof. First, observe that there is a straight reduction from the problem Sync-DVPDA-
Same-NoReturn to Trace-Sync-VST as the input DVPDAs to the problem Sync-
DVPDA-Same-NoReturn have no return letters and, hence, the stack is basically a write
only tape. Further, as the remaining alphabet is partitioned into letters in Σcall, which write
precisely one symbol on the stack, and into letters in Σint, writing nothing on the stack, the
visibly condition is satisfied when interpreting the DVPDA with Σret = ∅ as a VST.

There is also a straight reduction from Trace-Sync-VST to Sync-DVPDA-Same-
NoReturn as follows. For a VST T = (Q,Σ,Γ, δ), we construct a DVPDA M = (Q,Σcall ∪
Σint,Γ′, δ) with Σret = ∅ by introducing for each σ ∈ Σ a new alphabet Σσ = {w ∈ Γ∗ ∣ ∃q, q′ ∈
Q∶ δ(q, σ) = (q′,w)}. Observe that Σσ is either {ε} or contains only words of the same length.
By setting Σint = {σ ∈ Σ ∣ Σσ = {ε}}, Σcall = {σ ∈ Σ ∣ Σσ ≠ {ε}}, Γ′ = ⋃σ∈Σ(Σσ/{ε}), and
interpreting the output sequence w ∈ Γ∗ produced by δ as the single stack symbol in Γ′. J

Yet, by Observation (*), we inherit from Sync-DFA the following algorithmic result.

I Theorem 26. Trace-Sync-VVST is in P.

7 Discussion

Our results concerning DVPDAs and sub-classes thereof are summarized in Table 1. While
all problems listed in the table are contained in EXPTIME, the table lists several problems
for which their known complexity status still contains a gap between PSPACE-hardness
lower bounds and EXPTIME upper bounds. Presumably, their precise complexity status
is closely related to upper bounds on the length of synchronizing words which we want to
consider in the near future. One of the questions which could be solved in this work is if
there is a difference between the complexity of synchronization in the same stack model
and synchronization in the arbitrary stack model. While for general DPDA, DCA, and
sub-classes thereof, see [18], these two models admitted synchronization problems with the
same complexity, here we observed that these models can differ significantly. While the
focus of this work is on determining the complexity status of synchronizability for different
models of automata, an obvious question for future research is the complexity status of
closely related, and well understood questions in the realm of DFAs, such as the problem
of shortest synchronizing word, subset synchronization, synchronization into a subset, and
careful synchronization.

Here is one subtlety that comes with shortest synchronizing words: While for finding
synchronizing words of length at most k for DFAs, it does not matter if the number k is
given in unary or in binary due to the known cubic upper bounds on the lengths of shortest
synchronizing words, this will make a difference in other models where such polynomial length
bounds are unknown. More precisely, for instance with DVPDAs, it is rather obvious that
with a unary length bound k, the problem becomes NP-complete, while the status is unclear
for binary length bounds. As there is no general polynomial upper bound on the length of
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shortest synchronizing words for VPDAs, they might be of exponential length. Hence, we
do not get membership in PSPACE easily, not even for synchronization models concerning
DVPDA for which general synchronizability is solvable in P, as it might be necessary to store
the whole word on the stack in order to test its synchronization effects.
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