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Abstract
In this paper, we investigate the synthesis problem of terminating reactive systems from quantitative
specifications. Such systems are modeled as finite transducers whose executions are represented as
finite words in (Σi × Σo)∗, where Σi, Σo are finite sets of input and output symbols, respectively. A
weighted specification S assigns a rational value (or −∞) to words in (Σi × Σo)∗, and we consider
three kinds of objectives for synthesis, namely threshold objectives where the system’s executions
are required to be above some given threshold, best-value and approximate objectives where the
system is required to perform as best as it can by providing output symbols that yield the best
value and ε-best value respectively w.r.t. S. We establish a landscape of decidability results for
these three objectives and weighted specifications with partial domain over finite words given by
deterministic weighted automata equipped with sum, discounted-sum and average measures. The
resulting objectives are not regular in general and we develop an infinite game framework to solve
the corresponding synthesis problems, namely the class of (weighted) critical prefix games.
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1 Introduction

Reactive synthesis. The goal of automatic synthesis is to automatically construct programs
from specifications of correct pairs of input and output. The goal is to liberate the developer
from low-level implementation details, and to automatically generate programs which are
correct by construction. In the automata-based approach to synthesis [14, 20], the programs to
be synthesized are finite-state reactive programs, which react continuously to stimuli received
from an environment. Such systems are not assumed to terminate and their executions are
modeled as ω-words in (ΣiΣo)ω, alternating between input symbols in Σi and output symbols
in Σo. Specifications of such systems are then languages S ⊆ (ΣiΣo)ω representing the set
of acceptable executions. The synthesis problem asks to check whether there exists a total
synchronous1 function f : Σω

i
→ Σω

o
such that for all input sequences u = i0i1 . . . , there exists

1 f : Σω
i → Σω

o is synchronous if it is induced by a strategy s : Σ+
i
→ Σo in the sense that f(i0i1 . . . ) =

s(i0)s(i0i1)s(i0i1i2) . . . for all i0i1 · · · ∈ Σω
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46:2 Synthesis from Weighted Specifications with Partial Domains over Finite Words

an output sequence v = o0o1 . . . such that f(u) = v and the convolution u⊗ v = i0o0i1o1 . . .

belongs to S. The function f is called a realizer of S. Automatic synthesis of non-terminating
reactive systems has first been introduced by Church [19], and a first solution has been given
by Büchi and Landweber [14] when the specification S is ω-regular. In this setting, when
a realizer exists, there is always one which can be computed by a finite-state sequential
transducer, a finite-state automaton which alternates between reading one input symbol and
producing one output symbol. This result has sparked much further work to make synthesis
feasible in practice, see e.g., [31, 27, 7]. The synthesis problem is classically modeled as
an infinite-duration game on a graph, played by two players, alternatively picking input
and output symbols. One player, representing the system, must enforce an objective that
corresponds to the specification. Finite-memory winning strategies are in turn systems
that realize the specification. This game metaphor has triggered a lot of research on graph
games [20, Chapter 27]. There has also been a recent effort to increase the quality of
the automatically generated systems by enhancing Boolean specifications with quantitative
constraints, e.g., [5, 16, 12, 2]. This has also triggered a lot of research on quantitative
extensions of infinite-duration games, for example mean-payoff, energy, and discounted-sum
games, see, e.g., [24, 34, 22, 10, 11, 4, 29].

Partial-domain specifications. In the classical formulation of the synthesis problem, it
is required that a realizer f meets the specification for all possible input sequences. In
particular, if there is a single input sequence u such that u⊗ v 6∈ S for all output sequences
v, then S admits no realizer. In other words, when the domain of S is partial, then S

is unrealizable. Formally, the domain of S is dom(S) = {u ∈ Σω
i
| ∃v : u ⊗ v ∈ S}. As

noticed recently and independently in [1], asking that the realizer meets the specification
for all input sequences is often too strong and a more realistic setting is to make some
assumptions on the environment’s behaviour, namely, that the environment plays an input
sequence in the domain of the specification. This problem is called good-enough synthesis
in [1] and can be formulated as follows: given a specification S, check whether there exists a
partial synchronous function f : Σω

i
→ Σω

o
whose domain is dom(S), and such that for all

input sequence u ∈ dom(S) = dom(f), u⊗ f(u) ∈ S. Decidability of the latter problem is
entailed by decidability of the classical synthesis problem when the specification formalism
used to describe S is closed under expressing the assumption that the environment provides
inputs in dom(S). It is the case for instance when S is ω-regular, because the specification
S ∪ dom(S) ⊗ Σω

o
has total domain and is effectively ω-regular. [1] investigates the more

challenging setting of S being expressed by a multi-valued (in contrast to Boolean) LTL
logic. More generally, there is a series of works on solving games under assumptions on the
behaviour of the environment [18, 6, 30, 21, 13, 2].

Our setting: Partial-domain weighted specifications. In this paper, motivated by the
line of work on quantitative extensions of synthesis and the latter more realistic setting of
partial-domain specifications, we investigate synthesis problems from partial-domain weighted
specifications (hereafter just called weighted specifications). We conduct this investigation in
the setting of terminating reactive systems, and accordingly our specifications are over finite
words. Formally, a specification is a mapping S : (Σi.Σo)∗ → Q∪{−∞}. The domain dom(S)
of S is defined as all the input sequences u ∈ Σ∗

i
such that S(u⊗ v) ∈ Q for some v ∈ Σ∗

o
.

We consider three quantitative synthesis problems, which all consists in checking whether
there exists a function f computable by a finite transducer such that dom(f) = dom(S) and
which satisfies respectively the following conditions:
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Table 1 Complexity results for weighted specifications. Here, D stands for decidable, the suffix
-c for complete, λ for discount factor, and n for a natural number.

Problem Spec Sum-automata Avg-automata Dsum-automata
strict threshold NP ∩ coNP NP ∩ coNP NP

non-strict threshold NP ∩ coNP NP ∩ coNP NP ∩ coNP
best-value Ptime [3] Ptime [3] NP ∩ coNP

strict approximate EXPtime-c [26] D NEXPtime forλ=1/n
non-strict approx. EXPtime-c [26] D EXPtime forλ=1/n

for all u ∈ dom(S) it holds that S(u⊗f(u)).t for a given threshold t ∈ Q and . ∈ {>,≥},
called threshold synthesis, or
S(u⊗ f(u)) = bestValS(u), that is, the maximal value that can be achieved for the input
u, i.e., bestValS(u) = sup{S(u⊗ v) | v ∈ Σ∗

o
}, called best-value synthesis, or

bestValS(u) − S(u ⊗ f(u)) / r for a given threshold r ∈ Q and / ∈ {<,≤}, called
approximate synthesis.

Following the game metaphor explained before, those quantitative synthesis problems
can be formulated as two-player games in which Adam (environment) and Eve (system)
alternatively pick symbols in Σi and Σo respectively. Additionally, Adam has the power to
stop the game. If it does not, then Eve wins the game. Otherwise, a finite play spells a word
u ⊗ v. For the Boolean synthesis problem, Eve has won if either u 6∈ dom(S) where S is
the specification, or u⊗ v ∈ S. Additionally, for the threshold synthesis problem, the value
S(u⊗ v) must be greater than the given threshold; for the best-value synthesis problem, it
must be equal to bestValS(u) and for approximate synthesis it must be r-close to bestValS(u).

Contributions. Our main contribution is a clear picture about decidability of threshold
synthesis, best-value synthesis and approximate synthesis for weighted specifications over
finite words defined by deterministic weighted finite automata [23], equipped with either sum,
average or discounted-sum measure. Such automata extend finite automata with integer
weights on their transitions, computing a value through a payoff function that combines
those integers, with sum, average, or discounted-sum. The results (presented in Section 4)
are summarized in Table 1. We also give an application of our results to the decidability
of quantitative extensions of the Church synthesis problem over infinite words, for some
classes of weighted safety specifications, which intuitively require that all prefixes satisfy a
quantitative requirement (being above a threshold, equal to the best-value, or close to it).

As we explain in the related works section, some of our results are obtained via reduction
to solving known quantitative games or to the notions of r-regret determinization for weighted
automata. We develop new techniques to solve the strict threshold synthesis problem for
discounted-sum specifications in NP (Theorem 9), the best-value synthesis problem for
discounted-sum specifications in NP ∩ coNP (Theorem 12) and approximate synthesis for
average specifications (Theorem 13), which are to the best of our knowledge new results.

Moreover, as our main tool to obtain our synthesis results, we introduce in Section 3 a new
kind of (weighted) games called critical prefix games tailored to handle weighted specifications
with partial domain of finite words. We believe these kind of games are interesting on their
own and are described below in more detail.

FSTTCS 2020



46:4 Synthesis from Weighted Specifications with Partial Domains over Finite Words

Critical prefix games. Following the classical game metaphor of synthesis, we design
weighted games into which some of our synthesis problems can be directly encoded. Those
games still have infinite-duration, but account for the fact that specifications are on finite
words and have partial domains. In particular, the quantitative constraints must be checked
only for play prefixes that correspond to input words of the environment which are in the
domain of the specification. So, a critical prefix game is defined as a two-player turn-based
weighted game with some of the vertices being declared as critical. When the play enters a
critical vertex, a quantitative requirement must be fulfilled, otherwise Eve loses. For instance,
critical prefix threshold games require that the payoff value when entering a critical vertex is
at least or above a certain threshold. We show that these threshold games are all decidable
for sum, average, and discounted-sum payoffs, see Theorems 3 and 4. For solving approximate
average synthesis, we use a reduction to critical prefix energy games of imperfect information
starting with fixed initial credit (the energy level must be at least zero whenever the play is
in a critical vertex). Without critical vertices (where the energy level must be at least zero all
the time) these games are known to be decidable [22]. We show that adding critical vertices
makes these games undecidable, in general, see Theorem 7. However, a large subclass of
imperfect information critical prefix energy games, sufficient for our synthesis problems, is
shown to be decidable, see Theorem 8.

Domain-safe weighted specifications. Most of our quantitative synthesis problems reduce
to two-player games. While we need games of different natures, they all model the fact that
Eve constructs a run of the (deterministic) automaton, given the input symbols provided by
Adam so far. By choosing outputs, Eve must make sure that this run is accepting whenever
the input word played by Adam so far is in the domain of S. Otherwise Adam can stop and
Eve loses. While this condition can be encoded in the game by enriching the vertices with
subsets of states (in which Eve could have been by choosing alternative output symbols),
this would result in an exponential blow-up of the game. We instead show that the weighted
automaton can be preprocessed in polynomial-time into a so called domain-safe automaton,
in which there is no need to monitor the input domain when playing, see Theorem 2.

Related works. Boolean synthesis problems for finite words have been considered in [33, 32]
where the specification is given as an LTL formula over finite traces. In the quantitative
setting, it has also been considered in [25] for weighted specifications given by deterministic
weighted automata. In these works however, it is the role of Eve to eventually stop the game.
While this makes sense for reachability objectives and planning problems, this setting does
not accurately model a synthesis scenario where the system has no control over the provided
input sequence. Our setting is different and needs new technical developments.

Threshold problems in quantitative infinite-duration two-player games with discounted-
and mean-payoff measures are known to be solvable in NP ∩ coNP [4, 34]. Our threshold
synthesis problems all directly reduce to critical prefix threshold games with corresponding
payoff functions. The latter games, for sum and average, are shown to reduce to mean-payoff
games, so our NP∩ coNP upper-bound follows from [34]. For critical prefix discounted-sum
games with a non-strict threshold, we show a polynomial time reduction to infinite-duration
discounted sum games and hence our result follows from [4]. Such a reduction fails for
a strict threshold and we develop new techniques to solve critical prefix discounted-sum
games with strict threshold, by first showing that memoryless strategies suffice for Eve
to win, and then by showing how to check in PTime whether a memoryless strategy is
winning for Eve. The latter result actually shows how to test in PTime whether there exists,
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in a weighted graph, a path from a source to a target vertex of discounted-sum greater
or equal to some given threshold. This result entails that the non-emptiness problem for
non-deterministic discounted-sum max-automata2 is solvable in PTime (Theorem 6). To
the best of our knowledge, up to now this problem is only known to be in PSpace for the
subcase of functional discounted-sum automata [25, 9].

As we show, the best-value synthesis problems correspond to zero-regret determinization
problems for non-deterministic weighted automata, i.e., deciding whether there is a non-
determinism resolving strategy for Eve that guarantees the same value as the maximal value of
an accepting run in the non-deterministic weighted automaton. Such a problem is in PTime
for sum-automata [3] and the average case easily reduces to the sum-case. For discounted-sum,
zero-regret determinization is known to be decidable in NP for dsum-automata over infinite
words [29]. We improve this bound to NP ∩ coNP for finite words.

Finally, approximate synthesis corresponds to a problem known as r-regret determinization
of non-deterministic weighted automata. For sum-automata, it is known to be ExpTime-
complete [26]. For average-automata, there is no immediate reduction to the sum case,
because the sum value computed by an r-regret determinizer can be arbitrarily faraway
from the best sum, while its averaged value remains close to the best average. Instead,
we show a reduction to the new class of partial observation critical prefix energy games.
For dsum-automata over infinite words, total domain and integral discount factor, r-regret
determinization is known to be decidable [29]. Our setting does not directly reduce to this
setting, but we use similar ideas.

2 Preliminaries

Languages and relations. Let N be the set of non-negative integers. Let Σ be a finite
alphabet. We denote by Σ∗, respectively Σω, the set of finite, respectively infinite, words
over Σ, and Σ+ the set of non-empty finite words over Σ. The empty word is denoted by ε.
A language over Σ is a set of words over Σ. A (binary) relation R is a subset of Σ∗

i
×Σ∗

o
, i.e.,

a set of pairs of words. Its domain is the set dom(R) = {u | ∃v : (u, v) ∈ R}. Given a pair of
words, we refer to the first (resp. second) component as input (resp. output) component, the
alphabets Σi and Σo are referred to as input resp. output alphabet. We let Σio = Σi ∪ Σo.

Automata. A nondeterministic finite state automaton (NFA) is a tuple A = (Q, qi,Σ,∆, F ),
where Q is a finite state set, qi ∈ Q is the initial state, Σ is a finite alphabet, ∆ ⊆ Q×Σ×Q
is a transition relation, and F ⊆ Q is a set of final states. A run of the automaton on a word
w = a1 . . . an is a sequence ρ = τ1 . . . τn of transitions such that there exist q0, . . . , qn ∈ Q
such that τj = (qj−1, aj , qj) for all j. A run on ε is a single state. A run is accepting
if it begins in the initial state and ends in a final state. The language recognized by the
automaton is defined as L(A) = {w | there is an accepting run of A on w}. The automaton
is deterministic (a DFA) if ∆ is given as a partial function δ : Q× Σ→ Q.

Transducers. A transducer is a tuple T = (Q, qi,Σi,Σo, δ, F ), where Q is a finite state
set, qi ∈ Q is the initial state, Σi and Σo are finite alphabets, δ :

(
Q × Σi

)
→
(
Σo × Q

)
is a transition function, and F ⊆ Q is a set of final states. A transition is also denoted
as a tuple for convenience. A run is either a non-empty sequence of transitions ρ =
(q0, u1, v1, q1)(q1, u2, v2, q2) . . . (qn−1, un, vn, qn) or a single state. The input (resp. output) of

2 i.e., checking whether there exists a word with value greater or equal to some threshold, where the value
is defined by taking the max over all accepting runs.

FSTTCS 2020
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ρ is u = u1 . . . un (resp. v = v1 . . . vn) if ρ ∈ ∆+, both are ε if ρ ∈ Q. We denote by p u|v−−→ q

that there exists a run from p to q with input u and output v. A run is accepting if it starts
in the initial and ends in a final state. The partial function recognized by the transducer is
fT : Σ∗

i
→ Σ∗

o
defined as fT (u) = v if there is an accepting run of the form p

u|v−−→ q.

Weighted automata. Let n > 0. Given a finite sequence φ = j1 . . . jn of integers,
and a discount factor λ ∈ Q such that 0 < λ < 1, we define the following functions:
Sum(φ) =

∑n
i=1 ji, Avg(φ) = Sum(φ)

n , Dsum(φ) =
∑n
i=1 λ

iji if φ is non-empty and
Sum(φ) = Avg(φ) = Dsum(φ) = 0 otherwise. Let V ∈ {Sum,Avg,Dsum}. A weighted
V -automaton (WFA) is a tuple A = (Q,Σ, qi,∆, F, γ), where (Q,Σ, qi,∆, F ) is a classical de-
terministic finite state automaton, and γ : δ → Z is a weight function. Its recognized language,
etc., is defined as for classical finite state automata. The value V (ρ) of a run ρ = τ1 . . . τn is
defined as V (γ(τ1) . . . γ(τn)) if ρ is accepting and −∞ otherwise. The value A(w) of a word
w is given by the total function, called the function recognized by A, A : Σ∗ → Q ∪ {−∞}
defined as w 7→ V (ρ), where ρ is the run of A on w, that is, the value of a word is the value
of its accepting run, or −∞ if there exists none.

Weighted specifications. A weighted specification is a total function S : (ΣiΣo)∗ → Q ∪
{−∞} recognized by a WFA A. Note that by our definition, A is deterministic by default.
Given u = u1 . . . un ∈ Σ∗

i
and v = v1 . . . un ∈ Σ∗

o
, u⊗v denotes its convolution u1v1 . . . unvn ∈

(ΣiΣo)∗. We usually write S(u⊗ v) instead of S(u1v1 . . . unvn). The relation (or Boolean
specification) of S, denoted by R(S), is given by the set of pairs that are mapped to a rational
number, i.e., R(S) = {(u, v) | S(u⊗v) > −∞}. We usually write u⊗v ∈ S instead of (u, v) ∈
R(S). The domain of S, denoted by dom(S), is defined as {u ∈ Σ∗

i
| ∃v ∈ Σ∗

o
: u⊗ v ∈ S}. If

a weighted specification is given by some V -automaton, we refer to it as V -specification.

Quantitative synthesis problems. The (Boolean) synthesis problem asks, given a weighted
specification S, whether there exists a partial function f : Σ∗

i
→ Σ∗

o
defined by a transducer

with dom(f) = dom(S) such that u⊗ f(u) ∈ S for all u ∈ dom(f).
We define three quantitative synthesis problems that pose additional conditions, we only

state the additions. The threshold synthesis problem additionally asks, given a threshold
ν ∈ Q, and . ∈ {>,≥}, that S(u ⊗ f(u)) . ν for all u ∈ dom(f). The best-value synthesis
problem additionally asks that S(u⊗f(u)) = bestValS(u), where bestValS(u) = sup{S(u⊗v) |
u⊗ v ∈ S} for all u ∈ dom(f). The approximate synthesis problem additionally asks, given a
threshold ν ∈ Q, and / ∈ {<,≤}, that bestValS(u)− S(u⊗ f(u)) / ν for all u ∈ dom(f).

In these settings, if such a function f exists, it is called S-realization, a transducer that
defines f is called S-realizer, and is said to implement an S-realization. A transducer whose
implemented function f only satisfies the Boolean condition is called Boolean S-realizer.

I Example 1. Let Σi = {a, b} and Σo = {c, d}, and consider the weighted specification S
defined by the following automaton A.

a|0

c| − 2

a|0

d|2

b|0 d|12

d|2

b|0 d|4
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Clearly, S has a Boolean realizer (infinitely many, in fact). First, we view A as a Sum-
automaton. There exists a realizer that ensures a value of at least 6, for example, the
transducer that always outputs d. There exists no best-value realizer. To see this, we look at
the maximal values. We have bestVal(b) = 12, bestVal(ab) = 10, and bestVal(aib) = 2i+ 4
for i > 1. The maximal value for ab is achieved with cd and the maximal value for aaab
with dddd. So, the first output symbol depends on the length of the input word, which is
unknown to a transducer when producing the first output symbol. However, there exists an
approximate realizer for the non-strict threshold 4: the transducer that outputs c solely for
the first a. The difference to the maximal value is 0 for the inputs b and ab, and 4 for all
other inputs. Secondly, we view A as an Avg-automaton. With the same argumentation as
for Sum, it is easy to see that there exists no best-value realizer, there exists an approximate
realizer for the non-strict threshold 2

3 : the transducer that outputs c solely for the first a.
The difference to the maximal value is 0 for the inputs b and ab, and 2

i+1 for inputs of the
form aib for i > 1. Note that the difference decreases with the input length unlike for Sum.

Boolean synthesis and domain-safe automata. The quantitative synthesis problems that
we have defined, ask for Boolean realizers that additionally satisfy a quantitative condition.
We start by showing that a weighted specification A can be preprocessed in polynomial time
such that dealing with the Boolean part becomes very simple. Basically, we remove all parts
of A that cannot be used by a Boolean realizer. We call the result of this preprocessing
a domain-safe weighted specification, to be defined formally below. In Section 4 we use
domain-safe specifications.

Denote by dom(A) ⊆ Σ∗
i
the domain of the weighted specification defined by A. We can

easily obtain an NFA (with ε-transitions) for dom(A) by removing the weights and turning
all transitions that are labelled by an output letter into an ε-transition. We call the resulting
NFA the domain automaton of A, and denote it by Adom. For a state q of A, we denote
by L(Adom, q) the language of Adom accepted by runs starting in q. An output transition
(q, a, q′) of A is called domain-safe if L(Adom, q) = L(Adom, q

′), i.e., it does not restrict the
language of input words that can be accepted by Adom. Otherwise, such a transition is called
domain-unsafe. We call a weighted specification A domain-safe if it is trim, i.e., all states
are accessible and co-accessible, and all its output transitions are domain-safe.

A transducer that produces an input/output pair whose run in A uses a domain-unsafe
transition of A cannot be a Boolean realizer of A because it cannot complete all inputs
in the domain with an output in the relation R(A). We now show that we can compute
in polynomial time for a given weighted specification A a sub-automaton A′ of A that is
domain-safe and has the same Boolean realizers as A. We would like to mention that there
is a tight connection between domain-safe automata and the problem of “determinization
by pruning” (DBP) as it is studied in [3]. The following result can also be derived from the
proof of [3, Theorem 4.1]. Furthermore, the proof of Theorem 2 directly yields an alternative
game-based proof of the “determinization by pruning” problem.

I Theorem 2. There is a polynomial time procedure that takes as input a weighted specification
A, and either returns “no realizer” if A does not have Boolean realizers, or, otherwise, returns
a sub-automaton A′ of A that is domain-safe, has the same domain as A, and has the same
Boolean realizers as A.

A direct consequence of the above theorem is that the Boolean synthesis problem is
decidable in polynomial time.

FSTTCS 2020



46:8 Synthesis from Weighted Specifications with Partial Domains over Finite Words

3 Critical prefix games

In this section we introduce the necessary definitions and notations regarding games. Moreover,
we introduce critical prefix games and establish our results for these kind of games.

Games. A weighted game with imperfect information is an infinite-duration two-player
game played on a game arena G = (V, v0, A,E,O, w), where V is a finite set of vertices,
v0 ∈ V is the initial vertex, A is a finite set of actions, E ⊆ V ×A× V is a labeled transition
relation, O ⊆ 2V is a set of observations that partition V , and w : E → Z is a weight function.
Without loss of generality, we assume that the arena has no dead ends, i.e., for all v ∈ V
there exists a ∈ A and v′ ∈ V such that (v, a, v′) ∈ E. The unique observation containing a
vertex v is denoted obs(v). A game with perfect information is such that O = {{v} | v ∈ V }.
In that case we omit O from the tuple G.

Games are played in rounds in which Eve chooses an action a ∈ A, and Adam chooses an
a-successor of the current vertex. The first round starts in the initial vertex v0. A play π in
G is an infinite sequence v0a0v1a1 . . . such that (vi, ai, vi+1) ∈ E for all i ∈ N. The prefix
of π up to vn is denoted π(n), its last element vn is denoted by last(π(n)). The set of all
plays resp. prefixes of plays in G is denoted by Plays(G) resp. Prefs(G). The observation
sequence of the play π is defined as obs(π) = obs(v0)a0obs(v1)a1 . . . and the finite observation
sequence of the play prefix π(n) is obs(π(n)) = obs(v0)a0 . . . obs(vn). Naturally, obs extends
to sets of (prefixes of) plays.

A game is defined by an arena G and an objective Win ⊆ Plays(G) describing a set of
good plays in G for Eve. A strategy for Eve in G is a mapping σ : Prefs(G)→ A, it is called
observation-based if for all play prefixes ρ, ρ′ ∈ Prefs(G), if obs(ρ) = obs(ρ′), then σ(ρ) = σ(ρ′).
Equivalently, an observation-based strategy is a mapping σ : obs(Prefs(G))→ A. We do not
formally introduce strategies for Adam, intuitively, given a play prefix and an action a, a
strategy of Adam selects an a-successor of its last vertex. Given a strategy σ, let Playsσ(G)
denote the set of plays compatible with σ in G, and Prefsσ(G) denote the set of play prefixes
of Playsσ(G). An Eve’s strategy σ in G is winning if Playsσ(G) ⊆Win.

We now define quantitative objectives. The energy level of the play prefix π(n) is
EL(π(n)) =

∑n
i=1 w((vi−1, ai−1, vi)), the sum value is Sum(π(n)) =

∑n
i=1 w((vi−1, ai−1, vi)),

the average value is Avg(π(n)) = 1
nSum(π(n)), and the discounted-sum value is Dsum(π(n)) =∑n

i=1 λ
iw((vi−1, ai−1, vi)), and we let Dsum(π) =

∑∞
i=1 λ

iw((vi−1, ai−1, vi)) (we do not
explicitly mention the discount factor λ in this notation because it is always clear from the
context).

The energy objective in G is parameterized by an initial credit c0 ∈ N and is given by
PosEnG(c0) = {π ∈ Plays(G) | ∀i ∈ N : c0 + EL(π(i)) ≥ 0}. It requires that the energy
level of a play never drops below zero when starting with initial energy level c0. The
fixed initial credit problem for imperfect information games asks whether there exists an
observation-based winning strategy for Eve for the objective PosEnG(c0). The discounted-sum
objective in G is parameterized by a threshold ν ∈ Q, and . ∈ {>,≥}. It is given by
DS.G(ν) = {π ∈ Plays(G) | Dsum(π) . ν} and requires that the discounted-sum value of a play
is greater than resp. at least ν. The discounted-sum game problem asks whether there exists
a winning strategy for Eve for the objective DS.G(ν).

A game with perfect information is a special case of an imperfect information game.
Classically, instead of using the above model with full observation, a (weighted) perfect
information game, simply called game, is defined over an arena (V, V∃, v0, E, w), where the
set of vertices V is partitioned into V∃ and V \ V∃, the vertices belonging to Eve and Adam,
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respectively, v0 ∈ V is the initial vertex, E ⊆ V × V is a transition relation, and w : E → Z

is a weight function. In a play on such a game arena, Eve chooses a successor if the current
vertex belongs to her, otherwise Adam chooses. For games with perfect information the two
models are equivalent and we shall use both.

Critical prefix games. A critical prefix game is a game, where the winning objective is
parameterized by a set C ⊆ V of critical vertices, and a set of play prefixesW ⊆ Prefs(G). Its
objective is defined as CritC,W (G) = {π ∈ Plays(G) | ∀i last(π(i)) ∈ C → π(1) . . . π(i) ∈W}.
The idea of a critical prefix game is that the state of a play is only relevant whenever the
play is in a critical vertex. For convenience, in the case of critical prefix games, we also refer
to the set W as objective.

The threshold problem for critical prefix games asks whether there exists a winning strategy
for Eve for the objective CritC,W (G), where W is of the form ThresV .G (ν) = {ϕ ∈ Prefs(G) |
V (ϕ) . ν} parameterized by a threshold ν ∈ Q, . ∈ {>,≥}, and V ∈ {Sum,Avg,Dsum}.

The initial credit problem for critical prefix imperfect information energy games asks
whether there exists an observation-based winning strategy for Eve for the objective
CritC,W (G), where W is of the form PrefPosEnG(c0) = {ϕ ∈ Prefs(G) | c0 + EL(ϕ) ≥ 0}
parameterized by an initial credit c0 ∈ N.

I Theorem 3. The threshold problem for critical prefix games for V ∈ {Sum,Avg} and a
strict or non-strict threshold is decidable in NP ∩ coNP. Moreover, positional strategies are
sufficient for Eve to win such games.

Proof sketch. For Sum and Avg and a strict or non-strict threshold, the critical prefix
threshold games reduce to mean-payoff games which are solvable in NP ∩ coNP [34].
Positional strategies suffice for mean-payoff games, a winning strategy in the constructed
mean-payoff game directly yields a positional winning strategy in the critical prefix threshold
game. J

I Theorem 4. The threshold problem for critical prefix games for Dsum and a strict resp.
non-strict threshold is decidable in NP resp. NP ∩ coNP. Moreover, positional strategies
are sufficient for Eve to win such games.

To prove the above theorem, we first show a result on weighted graphs which is interesting
in itself.

I Lemma 5. Given a weighted graph G, a source vertex v0 ∈ V , a target set T ⊆ V and a
threshold ν ∈ Q, checking whether there exists a path π from v0 to some vertex v ∈ T such
that Dsum(π) ≤ ν can be done in Ptime.

Lemma 5 can be used to show that the ≥ ν-non-emptiness problem for nondeterministic
discounted-sum automata3 can be checked in Ptime, a result which is, to the best of
our knowledge, new. It was known to be in PSpace for unambiguous discounted-sum
automata [25, 9]. This problem asks for the existence of a word of value greater or equal than
a given threshold ν. Since the value of a word is the maximal value amongst its accepting
runs, it suffices to check for the existence of a run from the initial state to an accepting state
of discounted-sum value ≥ ν. By inverting the weights, the latter is equivalent to checking

3 In contrast to deterministic weighted automata, there might be serveral accepting runs on an input and
the value of the word is defined as the maximal value of its accepting runs [25, 28].
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whether there exists a run from the initial state to an accepting state of discounted-sum
value ≤ −ν. By seeing the (inverted) discounted-sum automaton as a weighted graph, the
latter property can be checked in Ptime by Lemma 5, thus proving the following theorem.

I Theorem 6. The ≥ ν non-emptiness problem is decidable in PTime for nondeterministic
discounted-sum automata.

We now go back to the proof of Theorem 4.

Proof sketch of Theorem 4. For Dsum, and a non-strict threshold, the problem can be
directly reduced to discounted-sum games which are solvable in NP ∩ coNP [4].

For Dsum, and a strict threshold, such a reduction fails. To solve the problem, we first
show that positional strategies are sufficient for Eve to win in a critical prefix threshold
discounted-sum game (for strict and non-strict thresholds). The NP-algorithm guesses a
positional strategy σ for Eve, and then verifies in polynomial time whether σ is winning. Let
G′ be the game restricted to Eve’s σ-edges, seen as a weighted graph. The strategy σ is not
winning iff Adam can form a path in G′ from the initial vertex to a critical vertex that has
weight ≤ ν. This property can be checked in Ptime thanks to Lemma 5 (by taking as target
set the set of critical vertices). J

The following is shown by reduction from the halting problem for 2-counter machines.

I Theorem 7. The fixed initial credit problem for imperfect information critical prefix energy
games is undecidable.

The above result contrasts the fixed initial credit problem for imperfect information
energy games which is decidable [22].

I Theorem 8. The fixed initial credit problem for imperfect information critical prefix energy
games is decidable if from each vertex Adam has a strategy to reach a critical vertex against
observation based strategies. Moreover, finite-memory strategies are sufficient for Eve to win.

Proof sketch. This problem is reduced to the fixed initial credit problem for imperfect
information energy games which is decidable [22]. In classical energy games, Eve loses as
soon as the energy goes below zero. The idea of the reduction is that if in the critical prefix
energy game the initial credit is c0, then in the classical energy game we start the game with
an additional buffer, i.e., with c0 +B, for some computable bound B. In the critical prefix
energy game, if the energy level drops below −B Adam can force to visit a critical vertex
such that the energy level can rise by at most B, ensuring that a critical vertex is visited
with energy level below zero. Thus, the additional buffer B suffices in the classical energy
game. J

4 Synthesis problems

Here, we solve the quantitative synthesis problems defined in Section 2. Recall that weighted
specifications are given by weighted automata that alternate between reading one input and
one output symbol. In other words, we prove the decidability results of Table 1. We then
show consequences of these results to quantitative synthesis problems over infinite words.
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Threshold synthesis problems. Since weighted specifications S are given by weighted
automata, the synthesis problem naturally reduces to a game played on the automaton.
In order to solve threshold synthesis problems, in contrast to best-value and approximate
synthesis problems, it is not necessary to compare the values of runs of the specification
automaton that have the same input sequence. Hence, it is relatively straightforward to
reduce threshold synthesis problems to critical prefix threshold games. An important point
needs to be taken care of due to the fact the domain of S might be partial, and therefore lead
Eve into the following bad situation (?): Eve must choose her outputs in such a way that
she does not go in a state of the automaton which is non-accepting, while the input word
played by Adam so far is in the domain of S. Otherwise, the pair of input and output word
formed would not even be in S, something which is required by the definition of synthesis
problems. So, Eve has to monitor the domain, which is easy if the domain is total, but
more involved if it is partial. Thanks to Theorem 2, this can be done in polynomial time.
More precisely, we first run the algorithm of Theorem 2 which either returns that there is
no Boolean realizer, or returns a domain-safe deterministic weighted automaton A′ which
has the same Boolean realizers as S. By the very definition of domain-safe automata, the
bad situation (?) described above cannot happen. Hence, Eve can freely play on A′ without
taking care of the domain constraint. Only the quantitative constraint matters, and it has to
be enforced whenever Eve is in an accepting state of A′ (this corresponds to the situation
where Adam has chosen an input word in the domain of S). Hence, only accepting states
of A′ matter for the quantitative constraint and these are declared as critical. To conclude,
by projecting away the symbols of A′ and by declaring its accepting states to be critical,
we obtain a critical prefix game. For the threshold synthesis problem, decidability follows
directly from the decidability of the threshold problem for critical prefix games (Theorems 3
and 4). For Sum- and Avg-specifications, this can be done in NP ∩ coNP. We leave open
whether it is solvable in Ptime and show that this would also solve the long standing open
problem of whether mean-payoff games are solvable in Ptime.

I Theorem 9. The threshold synthesis problem for a V -specification with V ∈ {Sum,Avg}
and a strict or non-strict threshold is decidable in NP ∩ coNP and PTIME-equivalent to
mean-payoff games. The threshold synthesis problem for a Dsum-specification and a strict
resp. non-strict threshold is decidable in NP resp. in NP ∩ coNP.

Synthesis and regret determinization. Before we prove our results about best-value and
approximate synthesis, we highlight the tight connection between the approximate synthesis
problem and the so-called regret determinization problem for nondeterministic weighted
automata4. This problem has for instance been studied in [26] for Sum-automata and in [29]
for Dsum-automata. We formalize this connection here. Given r ∈ Q and / ∈ {<,≤}, a
nondeterministic WFA A = (Q,Σ, qi,∆, F, γ) is called r/-regret determinizable if there exists
a finite set of memory states M and a deterministic WFA Ar = (Q×M,Σ, qri ,∆r, Fr, γr),
where qri = (qi,m) for some m ∈ M , Fr ⊆ F × M ,

(
(q,m), a, (q,m′)

)
∈ ∆r implies

that (q, a, q′) ∈ ∆, and γr
((

(q,m), a, (q,m′)
))

= γ((q, a, q′)) for all m,m′ ∈ M , such that
L(A) = L(Ar) and A(w) − Ar(w) / r for all w ∈ dom(L(A)). The regret determinization
problem asks, given a nondeterministic weighted automaton A, a threshold r ∈ Q, and
/ ∈ {<,≤}, whether A is r/-regret determinizable.

4 In contrast to deterministic weighted automata, there might be serveral accepting runs on an input and
the value of the word is defined as the maximal value of its accepting runs [25, 28].
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I Lemma 10. The approx. synthesis problem for weighted specifications reduces in linear time
to the regret determinization problem for nondet. weighted automata (with the same threshold).
The converse is true (in linear time and with the same threshold) for Sum-automata.

Lemma 10 is independent from any payoff function. Regarding the converse direction,
when going from the regret determinization problem to the approximate synthesis problem,
a transition (for an input symbol) must be translated into two transitions (adding an output
symbol). This step can cause difficulties depending on the used payoff function, e.g., Dsum.

Best-value synthesis problems. Best-value synthesis is equivalent to zero-regret synthesis,
which is, by Lemma 10, equivalent to zero-regret determinization of weighted automata.
In [9], the authors showed that if a Sum-automaton is zero-regret determinizable, then no
memory states are needed, i.e., a sub-automaton suffices. We give general sufficient conditions
on weighted finite automata (which hold for Sum-, Avg- and Dsum-automata) under which
the latter result can be generalized.

Let V : Z∗ → Q be a payoff function. A V -automaton defining a V -specification, where
V is applied to runs as usual, is called ≤-stable if for all runs ρ, ρ′, ρ′′ such that the end state
of ρ is the beginning state of ρ′ and ρ′′, w′ = u⊗ v′, and w′′ = u⊗ v′′ for some u ∈ Σ∗

i
and

v′, v′′ ∈ Σ∗
o
, where w′ and w′′ are the words associated to ρ′ and ρ′′, respectively, holds that

if V (ρ′) ≤ V (ρ′′) then V (ρρ′) ≤ V (ρρ′′).

I Lemma 11. Given a weighted specification S by a ≤-stable weighted automaton A, if there
exists a transducer that implements a best-value S-realization, then there exists a transducer
that implements a best-value S-realization that is defined as a sub-automaton of A.

While the above lemma can be used to obtain our decidability results for best-value
synthesis, we use other techniques to obtain the complexity results stated below.

I Theorem 12. The best-value synthesis problem is decidable in Ptime for Sum-specifications
and Avg-specifications, and in NP∩coNP for Dsum-specifications.

Proof sketch. For Sum, the problem reduces to the zero-regret determinization problem for
Sum-automata, see Lemma 10, aka the determinization by pruning problem for Sum-automata,
known to be decidable in Ptime in [3]. For Avg, it easily reduces to Sum by interpreting
the Avg-specification as a Sum-specification. For Dsum, we show that the problem reduces
in Ptime to a critical prefix threshold game, for non-strict threshold, which is solvable in
NP∩coNP by Theorem 4. J

Alternatively, decidability for Dsum can be obtained by reduction to the zero-regret
determinization problem for Dsum-automata over infinite words which was shown to be
decidable in NP in [29, Theorem 6]. However, our techniques allow us to get NP∩coNP.

Approximate synthesis problems. We now turn to the approximate synthesis problems
and show its decidability for Sum and Avg. We leave the decidability status open for Dsum,
but nevertheless show decidability for a large class, namely when the discount factor is of
the form 1

n for n ∈ N. Nondeterministic Dsum-automata in this class have been considered
in [8] and shown to be determinizable.

I Theorem 13. The approximate synthesis problem is
EXPtime-complete for Sum-specifications and strict or non-strict thresholds;
decidable and EXPtime-hard for Avg-specifications and strict or non-strict thresholds;
in NEXPtime (resp. EXPtime) for Dsum-specifications with a discount factor λ of the
form 1

n with n ∈ N and strict (resp. non-strict) thresholds.
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Proof sketch. For Sum, we reduce the problem to r-regret determinization of Sum-automata,
known to be EXPtime-complete, using the back-and-forth connection given by Lemma 10.

For an Avg-specifications S, it is worth noting that even though r-approximate synthesis
reduces to r-approximate synthesis for Sum when r = 0, interpreting S as a Sum-specification,
this reduction is wrong for r > 0 in general. It is because in an Avg-specification, Eve can
deviate more and more from the best sum, while the average of this difference can stay
low. We instead rely on a reduction to critical prefix energy games of imperfect information
and fixed initial credit (which falls into the decidable subclass of Theorem 8). Intuitively,
in this game, Adam constructs a run ρ on a pair of words (u, v) and Eve constructs a run
ρ′ on some (u, v′). She only sees u and not ρ. The energy level of such a play is set to
Sum(ρ′) + |uv| · r − Sum(ρ) and must be positive whenever Adam reaches an accepting state.
ExpTime-hardness is perhaps the most technical result of the paper, and is a non-trivial
adaptation of reduction from countdown games used to show ExpTime-hardness of the
regret determinization of Sum-automata [26].

Finally, for Dsum, we use that by projecting away the output in the Dsum-automaton
defining the specification, we obtain a nondeterministic weighted automaton which is deter-
minizable by [8]. This allows us to reduce the problem to the threshold synthesis problem for
Dsum, which is decidable by Theorem 9. To obtain the complexity results, we first analyze
the determinization procedure. It yields an automaton whose states are exponential in the
number of states and polynomial in the weights of the nondeterministic one. Its weights are
polynomial in the weights of the nondeterministic one. For a strict threshold, the claimed
complexity bound follows directly from Theorem 9. For a non-strict threshold, we use that
critical prefix threshold games are reduced in polynomial time to discounted-sum games.
Using value iteration [34] to solve discounted-sum games yields the claimed complexity bound,
because it runs in polynomial time in the size of the arena, logarithmic in the absolute
maximal weight of the arena, and exponential in the representation of the discount factor,
i.e., polynomial in the discount factor. J

Infinite words and Church synthesis. An ω-specification is a subset S ⊆ (Σi.Σo)ω. The
(Church) synthesis problem asks to decide whether there exists a strategy to pick a correct
output sequence given longer and longer prefixes of an infinite input sequence. Formally, an
ω-specification S is said to be realizable if there exists a function λ : Σ∗

i
→ Σo such that for

all i1i2 · · · ∈ Σω
i
, it holds that i1λ(i1)i2λ(i1i2)i3λ(i1i2i3) · · · ∈ S.

Strategies of interest are those which can be represented by a finite-state machine, and in
particular a Mealy machine, that is, roughly, a transducer running on ω-words and without
acceptance condition. Formally, it is a tuple M = (P, p0, δ) such that P is a finite set of
states with initial state p0, and δ : P × Σi → Σo × P is a (total) transition function. The
function δ can be extended to δ∗ : P ×Σ+

i
→ Σo × P as usual. Then, M defines the strategy

λM such that for all u ∈ Σ∗
i
, λM (u) = π1(δ∗(p0, u)), where π1 is the first projection. It

is well-known that when S is ω-regular (given e.g. as a parity automaton), it is decidable
whether S is realizable [14]. Moreover, realizability implies realizability by a Mealy machine.

Weighted safety specifications. In this paper, we go beyond ω-regular specifications, by
considering safety ω-specifications induced by weighted specifications of finite words defined by
deterministic weighted automata. Let W : (ΣiΣo)∗ → Q∪ {−∞} be a weighted specification.
For a threshold t ∈ Q and . ∈ {>,≥}, we define the ω-specification Thres.t(W ) = {i1o1 · · · ∈
(Σi.Σo)ω | ∀k ≥ 0, i1 . . . ik ∈ dom(W ) → W (i1o1 . . . ikok) . t}. In words, an ω-word w is
in Thres.t(W ) iff for all finite prefixes u = i1o1 . . . ikok of w, either i1 . . . ik 6∈ dom(W ) or
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W (u) . t. So, the quantitative condition is checked only for prefixes whose input belongs
to dom(W ). The ω-specification Thres.t(W ) is a safety specification 5. More generally, any
set S ⊆ (Σi.Σo)∗ induces a safety ω-specification Safe(S) = {i1o1 · · · ∈ (Σi.Σo)ω | ∀k ≥
0, i1 . . . ik ∈ dom(S)→ i1o1 . . . ikok ∈ S}.

For example, we have the equality Thres.t(W ) = Safe({u ∈ (Σi.Σo)∗ | W (u) . t}).
Likewise, we define best-value and approximate safety ω-specifications. Formally, given a
finite word i1 . . . ik ∈ Σ∗

i
and / ∈ {<,≤}, we let BestVal(W ) = Approx≤(W, 0) where for all

r ∈ Q≥0 we have Approx/(W, r) = Safe({u = i1o1 . . . ikok | bestValW (i1 . . . ik) −W (u) / r}.
Note that the three notions of safety ω-specifications we have defined are not necessarily
ω-regular, even if W is given by a deterministic weighted automaton. Nevertheless, an
immediate consequence of the results we have obtained previously on finite words is that

I Theorem 14. The synthesis problem for an ω-specification O ⊆ (Σi.Σo)ω is decidable
when O is given by a deterministic V -automaton defining a weighted V -specification of finite
words W s.t. O ∈ {Thres>t(W ),Thres≥t(W ),BestVal(W ),Approx<(W, r),Approx≤(W, r)}
and V = Sum, V = Avg or V = Dsum with discount factor 1/n for n ∈ N. Moreover, if O is
realizable, it is realizable by a Mealy machine.

5 Future work

In this paper, weighted specifications are defined by deterministic weighted automata.
Nondeterministic, even unambiguous, weighted automata, are strictly more expressive than
their deterministic variant in general, and in particular for Sum, Avg and Dsum. An
interesting direction is to revisit our quantitative synthesis problems for specifications defined
by nondeterministic weighted automata. Using similar ideas as the undecidability of critical
prefix energy games of imperfect information, it can be shown that threshold synthesis
becomes undecidable for unambiguous sum- and avg-specifications. The problem is open for
best-value and approximate synthesis, and we plan to investigate it.

Two other directions seem interesting as future work, both in the setting of infinite words.
First, natural measures in this setting are discounted-sum and mean-payoff. While the
threshold synthesis problems directly reduce to known results and best-value/approximate
synthesis for dsum has been studied in [29], nothing is known to the best of our knowledge
about best-value/approximate synthesis for mean-payoff. We expect the techniques to be
different because such a measure is prefix-independent, unlike our measures in the setting
of finite words. As a second direction, we have seen how our results apply to synthesis on
infinite words through weighted safety conditions. An interesting direction is to consider
such weighted requirements in conjunction with ω-regular conditions such as parity, in the
line of [17] that combines energy and parity objectives in games.
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