
Active Prediction for Discrete Event Systems
Stefan Haar
INRIA, LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
stefan.haar@inria.fr

Serge Haddad
LSV, ENS Paris-Saclay, CNRS, INRIA, Université Paris-Saclay, France
haddad@lsv.fr

Stefan Schwoon
LSV, ENS Paris-Saclay, CNRS, INRIA, Université Paris-Saclay, France
schwoon@lsv.fr

Lina Ye
LRI, Université Paris-Saclay, CentraleSupélec, France
lina.ye@lri.fr

Abstract
A central task in partially observed controllable system is to detect or prevent the occurrence of
certain events called faults. Systems for which one can design a controller avoiding the faults are
called actively safe. Otherwise, one may require that a fault is eventually detected, which is the task
of diagnosis. Systems for which one can design a controller detecting the faults are called actively
diagnosable. An intermediate requirement is prediction, which consists in determining that a fault
will occur whatever the future behaviour of the system. When a system is not predictable, one may
be interested in designing a controller to make it so. Here we study the latter problem, called active
prediction, and its associated property, active predictability. In other words, we investigate how to
determine whether or not a system enjoys the active predictability property, i.e., there exists an
active predictor for the system.

Our contributions are threefold. From a semantical point of view, we refine the notion of
predictability by adding two quantitative requirements: the minimal and maximal delay before the
occurence of the fault, and we characterize the requirements fulfilled by a controller that performs
predictions. Then we show that active predictability is EXPTIME-complete where the upper bound
is obtained via a game-based approach. Finally we establish that active predictability is equivalent to
active safety when the maximal delay is beyond a threshold depending on the size of the system, and
we show that this threshold is accurate by exhibiting a family of systems fulfilling active predictability
but not active safety.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Mathematics of computing → Discrete mathematics

Keywords and phrases Automata Theory, Partially observed systems, Diagnosability, Predictability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.48

Related Version A full version of the paper is available at [14], https://hal.archives-ouvertes.
fr/hal-02951944.

Funding Lina Ye: This research was done while Lina Ye was on leave at MEXICO team of INRIA.

1 Introduction

Monitoring faulty systems. In monitoring faulty systems, two central tasks consist in
detecting a fault that has occurred, resp. will occur, i.e. the tasks of diagnosis and prediction,
respectively, based on observations. However, such tasks may be defeasible due to ambiguity
(i.e. observations associated with both correct and faulty runs). In this case, one may

© Stefan Haar, Serge Haddad, Stefan Schwoon, and Lina Ye;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 48; pp. 48:1–48:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1892-2703
mailto:stefan.haar@inria.fr
https://orcid.org/0000-0002-1759-1201
mailto:haddad@lsv.fr
https://orcid.org/0000-0001-6622-6510
mailto:schwoon@lsv.fr
https://orcid.org/0000-0002-2217-4752
mailto:lina.ye@lri.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.48
https://hal.archives-ouvertes.fr/hal-02951944
https://hal.archives-ouvertes.fr/hal-02951944
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Active Prediction for Discrete Event Systems

introduce a controller to restrict the behaviour in order to enforce diagnosis (resp. prediction)
to be processed. Such a controller is called an active diagnoser (resp. active predictor). Here
we focus on the existence of an active predictor, a problem called active predictability.

Diagnosis. In partially observed discrete-event systems, diagnosis was defined and studied
in the seminal paper by Sampath et al [17] (see also [6, 7]). That work builds a deterministic
version of the original model, a so-called diagnoser, that tries to detect the occurrence of
faults. A system is called diagnosable if the diagnoser can detect every fault occurrence,
possibly after some delay. As an illustration, consider the system in Figure 1, which we
shall use as a running example, sometimes with different values for Σ1 and Σ2, where Σ1
and Σ2 are subsets of events in the system. Precisely, Σ1,Σ2 ⊆ {a, b, c, d}, all of which are
observable, while f represents a fault that is not directly observable. If, e.g., a is contained
in both Σ1 and Σ2, then the system is not diagnosable because any observation adan may
belong to a faulty run or a correct one.

The diagnosability problem is in PTIME [22], via an approach called twin-plant construc-
tion. When the system is not diagnosable, it may have to be redesigned, e.g. by adding further
sensors to enhance observability, or by forbidding some actions. Sampath et al [16] followed
the last approach, called active diagnosis: one strives to synthesise a controller, based on
partial observations, that forces the behaviour of the system to stay within a diagnosable
subset of its behaviours. For instance, if the system in Figure 1 has Σ1 = Σ2 = {b} and the
controller has the right to block a, then the system is actively diagnosable.

The algorithm for the active-diagnosability problem in [16] operates in doubly exponential
time. In [13], we revisited the problem using automata and game theory and established that
in fact the active-diagnosability problem is EXPTIME-complete. Later on, we generalised
the framework, e.g. allowing the controller to be aware of deadlocks [4]. We also studied
active diagnosis for probabilistic systems [1].

In loosely related works. Chanthery and Pencolé [9] proposed a planning-based approach
that allows the verdict of the diagnoser to be ambiguous; the works in [8, 10, 20] studied the
problem of dynamic sensor activation to ensure some observation properties. In work more
closely related to ours [19], Yin and Lafortune proposed a uniform approach for synthesizing
property-enforcing supervisor by mapping the considered property to a suitably-defined
information state, which is applicable to a class of properties that can be expressed in
terms of such information states, including safety, diagnosability, opacity and so on. Note
that predictability cannot be formulated as an information state in that framework since it
depends also on future behaviours of the system; its enforcement thus requires new methods.

q0 q1 q2 q3q4q5

Σ2 d f
a, c

Σ1d
a, b

Figure 1 Running example, with unobservable events indicated by dashed lines.

Prediction. Several works have studied the (passive) predictability problem, i.e. where
no control is involved. For instance, if Σ1 = {b} and Σ2 = {c} in Figure 1, then upon
first seeing c, an observer can predict that a fault will necessarily occur. In [11], Genc and
Lafortune introduced a diagnoser construction to derive a necessary and sufficient condition
for predictability in systems modeled by regular languages. Ye, Dague, and Nouioua [18]
proposed a polynomial time algorithm for predictability analysis in a centralized way and

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:3

then extend it to a distributed framework. Brandan Briones and Madalinski [5] introduced
and studied two variants of predictability by defining an additional requirement about either
a lower bound or an upper bound on the number of events between the fault prediction
and the fault occurrence. Then Yin and Li [21] investigated the bounded predictability in
the decentralized framework, and proposed a polynomial-time algorithm for its verification.
Madalinski and Khomenko [15] reduce the predictability problem for a Petri net to LTL-X
model checking. All these previous works focus on passive predictability.

Our contributions. First we refine the paradigm of prediction by allowing an observer to
quantify its observations. Unlike [5] but similar to [21], our predictors can at the same time
provide both lower and upper bounds on the number of observations before a fault may (resp.
must) occur. For instance, upon seeing c in the previous example, an observer can not only
predict that a fault will eventually happen but that it will necessarily happen between the
first and the second observable event after c. In practice, if a fault prediction is issued, the
reaction procedure of the system should be triggered. As such interventions may require
a certain amount of time to take effect, having both lower and upper bounds are relevant
performance criteria for capture such timing issues.

We then turn to the case of active prediction, where a controller tries to restrict the
system’s behaviour so that faults can be reliably predicted. For instance, if Σ1 = {a, b} and
Σ2 = {a, c} in Figure 1, then faults are unpredictable, but if a controller has the right to
block a, it becomes actively predictable (with the aforementioned bounds). We formalize the
idea of active predictability and then propose a class of controller, called active predictor.
We then show that active predictability is equivalent to the existence of an active predictor.

Next, we focus on the decision and synthesis problems, i.e. to decide whether the system
is actively predictable, and if so, how to build an active predictor. In active diagnosability
[13], the solution exploited the fact that whether a sequence of observations is ambiguous (i.e.
corresponds to both faulty and correct runs) is independent of the control that was applied
in the past. In prediction, by contrast, the eventuality of a fault occurence in the future
depends on the control that is going to be applied. Thus solving the active-predictability
problems requires new techniques.

We establish that the decision problem is EXPTIME-complete by reducing it to a turn-
based game with a Büchi objective of exponential size. A memoryless winning strategy of
this game provides the main ingredient to build an active predictor. Furthermore we show
that instead of solving this Büchi game (which takes quadratic time), one can equivalently
in linear time (1) solve a reachability game, (2) build a safety game that depends on the
winning states of the reachability game, and (3) solve it and combine the winning strategies
to get a winning strategy for the Büchi game when it exists (see [14] for all details).

Finally we study the relation between the lower prediction bound k and the number of
states n of the system. We establish that if k ≥ 2n then a system is k-actively predictable if
and only if it is actively safe. This bound is tight since we exhibit a family of systems of size
O(n) such that the system is 2n-actively predictable but not actively safe.

Organization. In Section 2, we introduce prediction in both the uncontrollable and control-
lable framework and establish a class of controller called active predictor. The existence of
such a controller is equivalent to active predictability. The construction of an active predictor
(if it exists) is carried out in Section 3, providing simultaneously the solutions to the decision
and synthesis problems. Section 4 complements these results by a tight analysis of complexity
bounds. We conclude and give some perspectives to this work in Section 5. The missing
proofs are developed in [14].

FSTTCS 2020

48:4 Active Prediction for Discrete Event Systems

2 The Active Prediction Problem

As usual, for an alphabet Σ, we use Σ∗ and Σω, to denote the finite and infinite words over
Σ, and Σ∞ := Σ∗ ∪ Σω. The length of a word σ ∈ Σ∗ is denoted |σ|, and � represents the
prefix notation.

Labeled transition systems

When dealing with discrete event systems (DES), systems are often modeled using labeled
transition systems (LTS).

I Definition 1. A labeled transition system is a tuple A = 〈Q, q0,Σ, T 〉 where:
Q is a set of states with q0 ∈ Q the initial state;
Σ is a finite set of events;
T ⊆ Q× Σ×Q is a set of transitions.

We note q a−→A q′ for (q, a, q′) ∈ T ; this transition is said to be enabled in q. A run over
the infinite word σ = a1a2 . . . ∈ Σω is a sequence of states (qi)i≥0 with qi

ai+1−−−→A qi+1 for
all i ≥ 0, and we write q0

σ=⇒
A

if such a run exists. A finite run over σ ∈ Σ∗ is defined

analogously, and we write q σ=⇒
A
q′ if it ends at state q′. A state q is reachable if there exists

a run q0
σ=⇒
A
q for some σ. The index A in those relations will be omitted if unambiguous.

In order to formalize problems related to prediction, we partition Σ into two disjoint
sets Σo and Σuo, the sets of observable and of unobservable events, respectively. Moreover,
we distinguish a special fault event f ∈ Σuo. We say σ is correct if σ ∈ (Σ \ {f})∗ (we will
denote Σ \ {f} with the short form Σ\f in the following), and that σ is faulty otherwise. For
Σ′ ⊆ Σ, define its projection PΣ′(σ) inductively by: PΣ′(ε) = ε; PΣ′(σa) = PΣ′(σ)a when
a ∈ Σ′, and PΣ′(σa) = PΣ′(σ) otherwise. For the sake of simplicity, write P for PΣo , |σ|o for
|P(σ)|, |σ|Σ′ for |PΣ′(σ)|, and for a ∈ Σ, write |σ|a for |σ|{a}. When σ is an infinite word, its
projection is the limit of the projections of its finite prefixes. This projection can be either
finite or infinite. As usual the projection is extended to languages.

I Definition 2 (Languages of an LTS). Let A = 〈Q, q0,Σ, T 〉 be an LTS. The finite and the
infinite (correct) languages of A are defined by:
L∗(A) = {σ ∈ Σ∗ | ∃q q0

σ=⇒ q } and Lω(A) = {σ ∈ Σω | q0
σ=⇒};

L∗c(A) = {σ ∈ (Σ\f)∗ | ∃q q0
σ=⇒ q } and Lωc (A) = {σ ∈ (Σ\f)ω | q0

σ=⇒}
A is safe if L∗(A) = L∗c(A) (i.e. no fault ever occurs).

The union of finite and infinite languages of A is denoted L∞(A) = L∗(A)∪Lω(A). The
inverse observable projection with respect to A and w ∈ Σ∗o is defined as P−1

A (w) = {σ ∈
L∗(A) | P(σ) = w}, which can be simply denoted by P−1(w) if there is no ambiguity. An
LTS A is deterministic if for every pair q ∈ Q, a ∈ Σ there is at most one q′ such that q a−→ q′.
For a deterministic LTS we write T (q, a) = q′ if q a−→ q′. As is the case for classical diagnosis
problems, we make two assumptions on A:

Liveness: ∀q ∈ Q, ∃a, q′, q a−→ q′.
Convergence: Lω(A) ∩ Σ∗Σωuo = ∅.

Liveness implies that from any reachable state of an LTS, there exists at least one trans-
ition enabled in that state. Convergence guarantees that there is no infinite sequence of
unobservable events. When A is convergent, then for all σ ∈ Lω(A), one has P(σ) ∈ Σωo .

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:5

I Example 3. Figure 1 shows a live and convergent LTS with Σo = {a, b, c, d}, Σuo = {f},
Σ1 ⊆ Σo, Σ2 ⊆ Σo and Σ1 ∪ Σ2 6= ∅. Transitions labelled by unobservable events are dashed.
We also factorize transitions with same source and target states. Depending on Σ1 and Σ2,
this LTS may have different levels of predictability (see Example 7 for further explanation).

Predictability
Intuitively, a system is predictable with respect to a fault f if in every faulty run, an
observer can be certain that f is going to occur before it actually happens. Before formally
defining predictability, we first present some useful notations. Given σ ∈ L∞(A) and
n ≤ |σ|o, pren(σ) denotes the minimal (w.r.t. �) prefix of σ such that |pren(σ)|o = n. As
an abbreviation, pre(σ) := pre|σ|o(σ) removes unobservable events from the end of σ. For
example, in the LTS of Figure 1, we have (as f is unobservable) pre0(bdf) = ε, pre1(bdf) = b

and pre(bdf) = pre2(bdf) = bd. We naturally extend pre to sets of words.
An observed sequence w forbids prediction of a fault when a correct, infinite future

behavior is still possible. We introduce different kinds of observed sequences.

I Definition 4. (observation properties) Let A be an LTS, w ∈ Σ∗o, and m ∈ N. Then w is:
surely correct in A if pre(P−1

A (w)) ∩ Σ∗fΣ∗ = ∅;
surely faulty in A if P−1

A (w) ∩ L∗c(A) = ∅;
ambiguous in A if it is neither surely correct nor surely faulty in A;
m-correct in A if ww′ is surely correct in A for all w′ ∈ Σmo ;
m-faulty in A if ww′ is surely faulty in A for all w′ ∈ Σmo ;
ω-faulty in A if there exists m ∈ N such that w is m-faulty.

We now define the notion of k-l-predictability, which means that the occurrence of a
fault can be predicted with certainty, based on what has been observed so far, at least k
observations before it does occur, and such that the fault definitely occurs before the l-th
additional observation. In the sequel, N+ denotes N \ {0} and Nω (resp. N+

ω) denotes N
(resp. N+) enlarged with ω which is an absorbing item for addition.

I Definition 5. (Predictability) Let A be an LTS, w ∈ Σ∗o, k ∈ N, and l ∈ N+
ω .

w is k-l-faulty in A if w is k-correct and (k + l)-faulty in A.
A is k-l-predictable if for all σf ∈ L∗(A), P(σ) has a k-l-faulty prefix.

I Remark 6. If w is k-l-faulty in A, then w is also k′-l′-faulty in A for all k′ ≤ k and
k′ + l′ ≥ k + l.

As an abbreviation, we will call A k-predictable if it is k-ω-predictable, and simply
predictable if it is 0-predictable. Thus, Remark 6 implies that predictability is weaker than
any other notion of k-l-predictability.

I Example 7. Consider the LTS of Figure 1:
it is not predictable if Σ1 ∩ Σ2 6= ∅;
it is 1-1-predictable and not 2-predictable if Σ1∩Σ2 = ∅, and both of them are not empty;
it is 2-1-predictable if Σ1 = ∅ and Σ2 6= ∅.

Proposition 8 establishes bounds for predictability in finite LTS:

I Proposition 8. Let A be a k-predictable LTS with n states, where n is finite.
(i) A is k-n-predictable.
(ii) If A is not safe, then k < n.

FSTTCS 2020

48:6 Active Prediction for Discrete Event Systems

Active predictability
We suppose that Σo is partitioned into subsets Σc ⊆ Σo of controllable and Σuco = Σo\Σc of
uncontrollable actions. Intuitively, a controller may forbid a subset of the controllable actions
based on the observations made so far, thereby restricting the behaviour of A.

I Definition 9 (Controlled LTS). Let A be an LTS. A controller for A is a mapping cont :
P(L∗(A)) → 2Σ such that for all w, Σuco ∪ Σuo ⊆ cont(w). The controlled LTS Acont =
〈Qcont , q0cont ,Σ, Tcont〉 is defined as the smallest LTS satisfying:

q0cont = 〈ε, q0〉 ∈ Qcont;
if 〈w, q〉 ∈ Qcont, a ∈ cont(w), and q a−→A q′, then 〈wP(a), q′〉 ∈ Qcont and 〈w, q〉 a−→Acont

〈wP(a), q′〉.

The goal of our controllers is to make the system predictable by preserving liveness and
to perform prediction at the same time. Before formally defining prediction verdicts in
Definition 11, we discuss their intuitive meanings: > means that the controller is currently
unable to predict a fault, while 〈k, l〉 means that the run is correct so far but a fault can
be predicted to happen between the next k and k + l observations. When l = ω, a fault
is predicted but without an upper bound. 〈?,m〉 means that a fault may or may not have
happened yet but one will surely occur within m further observations, and ⊥ means that a
fault has definitely already occurred.

I Example 10. Consider again the LTS from Figure 1 and assume that Σ1 = {a} and
Σ2 = {b}. At the beginning, no fault can be predicted, so a controller would be expected
to emit the prediction >. After observing b, the controller could predict that a fault will
happen between the first and second next observation to come, i.e. 〈1, 1〉. After seeing d,
this would change to 〈0, 1〉, and finally to ⊥.

I Definition 11 (predictions). Let P := {>} ∪ (N × N+
ω) ∪ ({?} × N+

ω) ∪ {⊥} be the set of
possible predictions. We define the following measures κ, µ : P→ Nω ∪ {−1, ω + 1}:

κ(>) = ω + 1, κ(〈k, l〉) = k, and κ(p) = −1 otherwise;
µ(>) = ω + 1, µ(〈k, l〉) = k + l, µ(〈?,m〉) = m, and µ(⊥) = 0.

We also define two particular types of subsets of P: For k ∈ N and l ∈ N+, let Pk,l := {>,⊥}∪
{ 〈k′, l′〉 | k′ ≤ k, l′ ≤ l } ∪ { 〈?,m〉 | m < l } and Pk,ω := {>,⊥, 〈?, ω〉} ∪ { 〈k′, ω〉 | k′ ≤ k }.

The values κ(p) and µ(p) define the “window” (lower and upper bound on future obser-
vations) within which a fault is to occur according to prediction p. Here, −1 indicates that
the fault may or must have occurred in the past, and in the case of >, ω + 1 is chosen for
technical convenience. A predictor using values from Pk,l makes firm commitments on both
the lower and upper bounds within which a fault is going to occur, while a predictor with
values from Pk,ω only commits to a lower bound.

I Definition 12 (compatible predictions). Let p, p′ ∈ P and k ∈ N, l ∈ N+
ω . We say that 〈p, p′〉

are k-l-compatible if the following conditions are all satisfied:
if p = >, then κ(p′) ≥ k else κ(p′) ≥ κ(p)− 1;
µ(p′) ≤ µ(p), and if 0 < µ(p) < ω, then µ(p′) < µ(p);
if p′ 6= >, then µ(p′) ≤ k + l.

Moreover, p is called k-l-initial if 〈>, p〉 are k-l-compatible.

The conditions in Definition 12 describe the relations that should reasonably hold between
a prediction p made for some observation w and the prediction p′ made when one has observed
one additional event in a k-l-predictable controlled LTS. Intuitively these are:

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:7

1. When a fault is first predicted, it should be at least k observations in advance, and the
gap between this lower bound and the upper bound should be at most l. This is why
p = > should imply κ(p′) ≥ k. In particular, one cannot switch from > to 〈k′, l′〉 for
any k′ < k, nor directly to 〈?,m〉 or ⊥. Moreover, the third condition ensures that when
switching from > to 〈k′, l′〉, we have k′ + l′ ≤ k + l, which with k′ ≥ k implies l′ ≤ l.

2. Having predicted a fault within a certain “window”, the subsequent predictions can only
become more precise. Thus, one can maintain or shrink that window, but not enlarge,
shift, or forget about it. Figure 2 illustrates this idea. E.g., when a predictor announces a
fault between the 3rd and 7th following observation, expressed by p = 〈3, 4〉, then one step
later it must give p′ = 〈2, 4〉 or a more precise verdict such as 〈3, 2〉. As another example,
if the controller has arrived at a verdict of 〈?, 6〉, meaning “a fault has occurred, or will
occur within six further observations”, then the information gained from an additional
observation may lead it to conclude that the fault has now definitely occurred (⊥), will
occur later (e.g., 〈1, 3〉), or to maintain the prediction (e.g., 〈?, 5〉). Note that 〈?, 6〉 could
only be reached by passing through 〈0,m〉, for some m > 6, earlier in the observation.
These relations are ensured by allowing κ to decrease by at most one and requiring µ to
strictly decrease (if an upper bound was given).

A k-l-initial prediction is one that is admissible for the empty observation.

|w|
n n+1

〈3, 4〉 3 4

〈2, 4〉

〈3, 2〉

|w|
n n+1

〈?, 6〉 6

〈?, 5〉

〈1, 3〉

⊥

Figure 2 Examples of compatible predictions 〈p, p′〉 after n resp. n + 1 observations, where p is
illustrated above the timeline, and p′ is one of the predictions below. Solid intervals indicate periods
in which a fault is predicted.

I Definition 13 (active predictor). Let A be an LTS, P′ ⊆ P, and h = 〈cont, pred〉, where
cont is a controller and pred is a mapping from P(L∗(Acont)) to P′. We call h a k-l-active
predictor over P′, for k ∈ N and l ∈ N+

ω , if and only if:
(i) Acont is live;
(ii) pred(ε) is k-l-initial;
(iii) for w ∈ P(L∗(Acont)), the prediction satisfies the following:

if pred(w) = >, then w is (k + 1)-correct in Acont;
if pred(w) = 〈k′, l′〉, then w is k′-l′-faulty in Acont;
if pred(w) = 〈?,m〉, then w is ambiguous and m-faulty in Acont;
if pred(w) = ⊥, then w is surely faulty in Acont;

(iv) for a ∈ Σo, w,wa ∈ P(L∗(Acont)), 〈pred(w), pred(wa)〉 are k-l-compatible.

Intuitively, condition (i) requires that the control cannot introduce deadlocks, and
conditions (ii),(iii) ensure that the predictions have the intended semantics. Condition (iv)
ensures compatibility between two subsequent predictions along an observation. If there
exists a k-l-active predictor for A, we call A k-l-active-predictable, or just actively predictable.
Moreover, A is called actively safe if there exists an active predictor for A over {>}, which
entails that Acont is safe.

FSTTCS 2020

48:8 Active Prediction for Discrete Event Systems

I Example 14. In the LTS A of Figure 1, assume that Σ1 = {a, c}, Σ2 = {a, b}, Σc = {a, b, c}.
Let h = 〈cont, pred〉 be defined by:

cont(ε) = {b, c, d, f}, and cont(w) = Σ otherwise;
pred(ε) = pred(w) = >, where w ∈ cΣ∗o ∩ P(L∗(A)), pred(b) = 〈1, 1〉, pred(bd) = 〈0, 1〉,
and pred(bda+) = ⊥.

In this example, h is a 1-1-active predictor.

Proposition 15 and Proposition 16 will exhibit a tight correspondence between the
existence of a k-l-predictor for A and the existence of a controller that makes A k-l-predictable.
Additionally, Proposition 16 shows that the set of predictions used in a predictor can be
limited to a finite set, either committing the prediction to a lower and upper bound for the
occurrence of a fault, or just a lower bound.

I Proposition 15. If h = 〈cont, pred〉 is a k-l-active predictor for an LTS A, then Acont is
k-l-predictable.

I Proposition 16. Let A be an LTS. If there exists a controller cont such that Acont is live
and k-l-predictable, then there exist k-l-active predictors h = 〈cont, pred〉 for A over both
Pk,l and Pk,ω.

Finally, we introduce the notion of pilot as an automata-based representation of k-l-active
predictors. In Section 3 we will show how to find a finite-state pilot when A is actively
predictable and finite-state.

I Definition 17 (pilot). Let A be an LTS, then C = 〈BC , contC , predC〉 is called pilot for A
over P′ ⊆ P if BC = 〈Qc, qc0,Σo, T c〉 is a deterministic LTS with labellings 〈contC , predC〉 :
Qc → 2Σ × P′. Let hC = 〈cont, pred〉 associated with C be defined by cont(w) = contC(q) and
pred(w) = predC(q) for all w ∈ P(L∗(A)), where q is the unique state such that qc0

w=⇒ q.
Then C is a k-l-active predictor for A if hC is one.

3 Controller construction

We solve the decision and synthesis problems simultaneously. We try to construct a pilot-
based k-l-active predictor over some P′ ⊆ P for an LTS A. The construction succeeds if
and only if A is k-l-actively predictable. According to Definition 13, the main challenges in
building an active predictor are to ensure that (i) the controlled system remains live, (ii) the
fault can be predicted at least k observations before its occurrences, and (iii) the prediction
information is provided.

Our solution consists in building a turn-based game (see [12] for turn-based games) by
taking into account the control that has already been performed.

I Definition 18 (turn-based game). A game G with two players called Control and Environ-
ment is a tuple 〈VC , VE , E, v0,WIN 〉, where:

VC , VE are the vertices owned by Control and Environment, respectively, and VG = VC]VE
denoting all vertices, with v0 ∈ VC being an initial vertex;
E ⊆ VG × VG is a set of directed edges such that for all v ∈ VG, there exists (v, v′) ∈ E;
WIN ⊆ V ωG is a set of winning sequences.

Given a sequence ρ = v0v1...vn, we denote ρ[i] = vi. A play is a sequence of V ωG such that
ρ[0] = v0 and 〈ρ[i], ρ[i+ 1]〉 ∈ E for all i ≥ 0; we call ρk := ρ[0] · · · ρ[k], for some k ≥ 0, a
partial play if ρ[k] ∈ VC , and define last(ρk) := ρ[k]. We write Play∗(G) for the set of partial
plays of G. A play ρ is called winning (for Control) if ρ ∈WIN .

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:9

A Büchi game 〈VC , VE , E, v0, VF 〉 defines a game 〈VC , VE , E, v0,WIN 〉 such that WIN =
{ ρ ∈ V ωG | ρ[i] ∈ VF for infinitely many i }. A reachability game 〈VC , VE , E, v0, VF 〉 defines
a game 〈VC , VE , E, v0,WIN 〉 such that WIN = V ∗G VFV

ω
G . A safety game 〈VC , VE , E, v0, VF 〉

defines a game 〈VC , VE , E, v0,WIN 〉 such that WIN = V ωF .

I Definition 19 (strategy). Let G = 〈VC , VE , E, v0,WIN 〉 be a game. A strategy (for Control)
is a function θ : Play∗(G)→ VG such that (last(ξ), θ(ξ)) ∈ E for all ξ ∈ Play∗(G). A play ρ
adheres to θ if ρ[i] ∈ VC implies ρ[i+ 1] = θ(ρi) for all i ≥ 0. A strategy is called winning
if every play ρ that adheres to θ is winning. A positional (also called memoryless) strategy
is a function θ′ : VC → VG such that (v, θ′(v)) ∈ E for all v ∈ VC ; we call θ′ winning if the
strategy θ with θ(ξ) = θ′(last(ξ)) is winning.

To verify k-l-active predictability of a given system, the controller that we propose
needs to memorize two subsets of states with the corresponding prediction information
〈Qc, Qf , p〉. The subset Qc (resp. Qf) represents the possible states reached by a correct
(resp. faulty) run after the last observable action, and Qc ∪ Qf 6= ∅. The prediction
information p ∈ P′ is (non-deterministically) decided based on the current observations.
We denote Reach(〈Qc, Qf , p〉) := Qc ∪ Qf and Q̃ := 2Q \ {∅}. The set of possible tuples
memorized by the controller is defined as SP′ = ScP′ ∪ SaP′ ∪ SfP′ , where:

ScP′ = Q̃× {∅} × { p ∈ P′ | κ(p) ≥ 0 }
SaP′ = Q̃× Q̃×

(
P′ ∩ ({?} × N+

ω)
)

SfP′ = {∅} × Q̃× {⊥}
In the following, we will simply write S for SP′ when P′ is clear from context.

The controller needs to update the state subsets after an observable action, for which we
first define some sets of possible next states from a given state q after a ∈ Σo.

NOA(q, a) = { q′ | q σ=⇒
A
q′, σ ∈ Σ∗uoa }

NOCA(q, a) = { q′ | q σ=⇒
A
q′, σ ∈ (Σuo \ {f})∗a }

NOFA(q, a) = { q′ | q σ=⇒
A
q′, σ ∈ Σ∗uofΣ∗uoa }

One can omit the subscript A when there is no ambiguity. The extension to a set of states is
defined in a natural way, e.g. NO(Q′, a) =

⋃
q∈Q′ NO(q, a). We now define how the controller

updates its tuple once an observable action occurs. In the following, � represents a state in
which the controller has lost, and we denote S� := S ∪ {�}.

IDefinition 20 (knowledge update). Let A be an LTS, P′ ⊆ P, and k ≥ 0. Then the knowledge
transition relation ∆k

A ⊆ S × Σo × S� is defined as follows. Let s = 〈Qc, Qf , p〉 ∈ S and
a ∈ Σo. Then 〈s, a, s′〉 ∈ ∆k

A if and only if:
1. either s′ = 〈NOC (Qc, a),NOF(Qc, a) ∪NO(Qf , a), p′〉 ∈ S and 〈p, p′〉 are k-l-compatible;
2. or s′ = � when there is no s′′ ∈ S such that 〈s, a, s′′〉 ∈ ∆k

A.

Notice that, given s and a, the choice of s′ is largely deterministic except for p′, which
must be k-l-compatible with p. When s′ has no prediction consistent with the updated
correct resp. faulty state subsets, cf Definition 13(iii), then the only possible update is to �.

I Example 21. Consider the LTS in Figure 1 and assume that Σ1 = {a, c}, Σ2 = {a, b} and
Σc = {a, b, c}.
1. Let s = 〈{q0}, ∅,>〉. If the observable action a is chosen, then we have 〈s, a, s′〉 ∈ ∆k

A,
where s′ = 〈{q1, q4}, ∅,>〉. Notice that 〈>,>〉 are k-l-compatible.

2. Let s = 〈{q2, q5}, ∅,>〉 after observing a and d. If a is chosen from here, we can only
have 〈s, a,�〉 ∈ ∆k

A. The reason is that after a, the system can end up in either q3 (with
a fault) or in q5 (without fault), the next prediction should thus be an ambiguous one,

FSTTCS 2020

48:10 Active Prediction for Discrete Event Systems

i.e., 〈?,m〉. However, 〈>, 〈?,m〉〉 are not k-l-compatible. It follows that there does not
exist s′′ ∈ S such that 〈s, a, s′′〉 ∈ ∆k

A. Hence we have 〈s, a,�〉 ∈ ∆k
A by Definition 20.

The objective of Control is to obtain a winning play by suitably restricting the possible
actions, and any winning strategy corresponds to a controller with which the controlled
system is predictable. The game begins with Control to choose a prediction for ε. Then
the game proceeds in rounds: 1) Control restricts the set of possible actions to some Σ′; 2)
Environment chooses a ∈ Σ′ to determine the next state. 3) Control updates its knowledge.

The choices of Control are subject to some restrictions. Indeed, each state s = 〈Qc, Qf , p〉
represents Control’s knowledge about the current potential states of A as well as the
corresponding prediction information. To ensure that the controlled system remains live, the
set of possible actions Σ′ must not cause deadlocks in any state reachable by unobservable
actions from Qc ∪Qf . Also, Control cannot prevent the uncontrollable actions. So we define
the admissible sets and the game as follows, where we use ΣPO(q) = {a ∈ Σo | q

σ=⇒ q′′, σ ∈
Σ∗uoa } to denote the possible next observable actions from the state q, which can be extended
to a set of states in a natural way.

I Definition 22 (admissible action set). Let A = 〈Q, q0,Σ, T 〉 be an LTS and Q′ ⊆ Q be a
subset of states. We call Σ′ ⊆ Σo an admissible set for Q′ if it fulfills the following conditions:

Σuco ⊆ Σ′ as any action in Σuco is observable but not controllable.
for all q′ ∈ Q′, q ∈ Q, and σ ∈ Σ∗uo, q′

σ=⇒ q implies ΣPO(q) ∩ Σ′ 6= ∅.
The set of admissible sets for Q′ are denoted as adm(Q′), which is not empty when Q′ 6= ∅
as A is a live and convergent LTS.

I Example 23. Consider the same LTS as in Example 21. Let Q′ = {q0}. Then adm(Q′) =
{Σ′ | Σ′ ⊆ Σo, {d} (Σ′}. In other words, adm(Q′) contains all subsets of Σo = {a, b, c, d}
that include d, except the singleton {d}, which is not an admissible set as it blocks the system.
More precisely, the set of possible next observable actions from q0 is ΣPO(q0) = {a, b, c},
whose intersection with {d} is empty. Thus {d} cannot be an admissible set for Q′.

The vertices of our controller-synthesis game consist of an initial vertex ι, the states
of S�, a set V1 := S × 2Σo where Control has chosen a set of permitted actions, and a set
V2 := S × Σo where Environment has chosen an observable action. The winning condition
assures that once a fault has been predicted, it will eventually happen.

I Definition 24 (controller-synthesis game). Let A be an LTS and P′ ⊆ P. We denote
Gk,lA,P′ the Büchi game 〈VC , VE , E, ι, VF 〉, where VC = {ι} ∪ S� ∪ V2, VE = V1, VF =(
Q̃× {∅} × {>}

)
∪
(
{∅} × Q̃× {⊥}

)
⊆ S, and E = Eι ∪ E1 ∪ E2 ∪ E3 ∪ {〈�,�〉}, where

Eι =
{ 〈
ι, 〈{q0}, ∅, p〉

〉
| p is k-l-initial

}
⊆ {ι} × S;

E1 =
{ 〈
s, 〈s,Σ′〉

〉
| s ∈ S, Σ′ ∈ adm(Reach(s))

}
⊆ S × V1;

E2 =
{ 〈
〈s,Σ′〉, 〈s, a〉

〉
| s ∈ S, a ∈ ΣPO(Reach(s)) ∩ Σ′

}
⊆ V1 × V2;

E3 =
{ 〈
〈s, a〉, s′

〉
| 〈s, a, s′〉 ∈ ∆k

A
}
⊆ V2 × S�.

Note that the set V2 records the sequence of observable actions that occur during a play.

I Example 25. Figure 3 depicts a part of a game for some k, l and the LTS of Figure 1, for
which we assume again Σ1 = {a, c}, Σ2 = {a, b} and Σc = {a, b, c}. From ι, Controller can
choose any k-l-initial prediction; we consider the case where > is chosen, so s0 = 〈{q0}, ∅,>〉.
Then from Example 23, we have adm(Reach(s0)) = adm({q0}) = {Σ′ | Σ′ ⊆ Σo, {d} (Σ′}.
Environment cannot choose the action d even when d is in the admissible set since d /∈
ΣPO(Reach(s0)). After Environment chooses an available action (say a, leading to 〈s0, a〉),
Control updates its knowledge and chooses a new prediction, say >, leading to s1, with q1, q4

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:11

ι

s0 s0,Σo

s0, {a, b, d}

s0, {c, d}

s0, b

s0, c

s0, a s1 s1, {d} s1, d s4 s4, {a, d} s4, a �

s2

s3

Figure 3 Part of the game for the LTS in Figure 1 (Example 25):
s0 = 〈{q0}, ∅,>〉, s1 = 〈{q1, q4}, ∅,>〉, s2 = 〈{q1}, ∅, p2〉, s3 = 〈{q4}, ∅, p3〉, and s4 = 〈{q2, q5}, ∅,>〉.

as the possible new states. From here, d is the only choice for Environment. Suppose that
Control then again chooses > as its new prediction in s4, thus s4 = 〈{q2, q5}, ∅,>〉. If a is
now chosen, from the second case of Example 21, we know that the game enters �. To avoid
losing, Control needs to switch to a different prediction early enough.

Now we establish the strong connection between winning strategies and active predictors.

I Proposition 26. Given h = 〈cont, pred〉 a k-l-active predictor over P′ for an LTS A, there
exists a corresponding winning strategy θh in the game Gk,lA,P′ .

The existence of a winning strategy implies the existence of a positional one due to
well-known results of game theory (see e.g. [12] for all results here related to turn-based
games). For the reverse direction, we next define a pilot from a positional winning strategy
in Gk,lA,P′ before proving that this pilot is a k-l-active predictor.

I Definition 27. Let θ be a positional winning strategy in Gk,lA,P′ . We define a pilot Cθ :=
〈Bθ, contθ, predθ〉 over P′ as follows:
Bθ = 〈Qθ, qθ0 ,Σo, T θ〉, where
1. Qθ = {q ∈ S | q = last(ξθ) and ξθ ∈ Play∗(Gk,lA,P′) adhering to θ}
2. qθ0 = θ(ι)
3. T θ(s, a) = θ(〈s, a〉)
contθ(s) = Σ′ ∪ Σuo for any s ∈ Qθ, where θ(s) = 〈s,Σ′〉;
predθ(s) = p, for any s = 〈Qc, Qf , p〉 ∈ Qθ

I Proposition 28. Let θ be a positional winning strategy in Gk,lA,P′ . Then Cθ is a k-l-active
predictor over P′ for A.

Combining the results of Propositions 26 and 28, we obtain that the active-predictability
problem for an LTS A with n states reduces to solving a Büchi game with 2O(n) vertices.
Since Büchi games can be solved in polynomial time, we obtain the following result:

I Theorem 29. The active-predictability problem for finite-state LTS belongs to EXPTIME.

We conclude the section with a supplementary result showing that due to the special
structure of Gk,lA,P′ it can actually be solved in linear time (w.r.t. the size of the game), and
not in quadratic time as performed for general Büchi games.

I Proposition 30. If A is a finite-state LTS and P′ ⊆ P, then Gk,lA,P′ can be solved in O(|E|).

FSTTCS 2020

48:12 Active Prediction for Discrete Event Systems

4 Bound analysis

We first prove that it is EXPTIME-hard to decide whether a given LTS A is actively k-l-
predictable, independently of k and `. The proof (developed in [14]) is similar to the proof
in [13] that active diagnosability is EXPTIME-hard and relies on a reduction from safety
games with imperfect information [3].

I Theorem 31. The active-predictability decision problem is EXPTIME-hard.

Together with Theorem 29, we obtain the following corollary.

I Corollary 32. The active-predictability decision problem is EXPTIME-complete.

We study the relation between active predictability and active safety. Theorem 33 relates
the maximal advance warning for fault predictions to the number of states in A.

I Theorem 33. Let A be an LTS with n states. If A is 2n-active-predictable, then it is
actively safe.

Proof. If A is 2n-ω-active-predictable then by definition there exists a 2n-ω-active predictor
h = 〈cont, pred〉 over P′ := Pk,ω for A, and by Proposition 26 there exists a winning strategy
θ in Gk,ωA,P′ . In turn, this winning strategy provides a pilot Cθ = 〈B, cont′, pred ′〉 according
to Proposition 28; let B = 〈Q, q0,Σo, T 〉. We shall construct a new pilot C for A over {>},
proving that A is actively safe.

Remember that Q is the set of Controller-owned vertices in Gk,ωA,P′ that can be reached
by plays adhering to θ and that these vertices are a subset of SP′ . For q, q′ ∈ Q, let us
write q ≺ q′ if q′ is reachable from q in B. Since θ is positional and winning, ≺ must be an
acylic relation between those states of Q that are not members of VF , i.e. their associated
prediction is neither > nor ⊥ (cf Definition 24). We now call q ∈ Q a cutoff if q is of the form
〈Qc, Qf , p〉 and there exists a state q′ = 〈Qc, Qf , p′〉 with p′ 6= p and q′ ≺ q. Let co(q), the
corresponding state of q, denote the state that is ≺-minimal among all the choices for q′; due
to the structure of the states outside VF , co(q) is unique and not a cutoff itself. Moreover, a
state of Q is called useless if it is either a cutoff or all its (immediate) predecessors in B are
useless, and useful otherwise.

Remember that SP′ is a union of ScP′ , SaP′ , and SfP′ , where ScP′ contains the states of the
form 〈Qc, ∅, p〉, with κ(p) ≥ 0. Thus, states in ScP′ are only reached through correct runs
in Acont′ . Let S′ := { 〈Qc, ∅, p〉 | κ(p) = 0 }. It follows from the construction of Gk,ωA,P′ (cf
Definition 20 and Definition 24) that any path from q0 to a state from S′ is of length at least
2n, so by pigeonhole principle, any path leading to S′ contains a cutoff. Since SaP′ ∪ SfP′ can
only be reached by going through S′, those states are useless.

We can now construct the desired pilot C by “folding” cutoffs back onto their corresponding
states. We remark in this context that Reach(q) = Reach(co(q)), and therefore the admissible
control choices for both states are the same; proving that the resulting controlled system is
live depends only on this property. Since the controlled system never admits a fault, the
prediction can be > in all cases. More formally, C := 〈〈Q′, q0,Σo, T ′〉, cont′, pred ′′〉, where
Q′ is the useful subset of Q, and for all q ∈ Q′, a ∈ Σo:

T ′(q, a) = T (q, a) if T (q, a) ∈ Q′ and T ′(q, a) = co(T (q, a)) otherwise;
pred ′′(q) = >. J

Theorem 33 implies that if a system is not actively safe, then there is an exponential
upper bound on the advance warning that an active predictor can issue. This bound is
asymptotically precise, as the following family of examples shows.

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:13

I Theorem 34. There exists a family of systems (An)n≥1 with O(n) states such that An is
not actively safe but 2n-active-predictable.

p

sn−1 s1 s0

q q′

p′ p′′

n− 1
Σn−1

1 Σ1 0
Σ0

Γn−1 Γ1

n− 1
1 0

u

f
n

Γn
n f

n

.

Figure 4 A 2n-active predictable LTS with O(n) states, where Σo = Σc = {0, ..., n}, Σi =
{i + 1, ..., n}, and Γi = {0, ..., i− 1}.

Proof. Figure 4 shows a family of LTS with O(n) states but an alphabet of size O(n) and
O(n2) transitions. We first provide a proof for this family as it is easier to understand. After
this, we provide a more complex example with a constant-size alphabet and O(n) states and
transitions.

Variable-size alphabet

Consider the LTS shown in Figure 4. The observable actions are {0, . . . , n}, all of which are
controllable. There are only two unobservable actions, u and the fault f . We abbreviate by
Σi := {i+ 1, . . . , n} the actions larger than i for 0 ≤ i < n, and by Γi := {0, . . . , i− 1} the
actions smaller than i for 0 < i ≤ n.

The initial state is p. Evidently An is actively safe if a controller can avoid both p′ and q;
as we shall see, this is impossible. However, the system is actively predictable if the controller
can at least avoid q. We shall see that this is indeed possible while entering p′ only after 2n
steps, by simulating a binary counter.

We can assume (w.l.o.g.) that the controller permits a single action from Σo in each step
and hence the controlled system will admit a single infinite observation sequence ρ. Having
allowed a prefix σ of ρ, let R(σ) be the set of states that this sequence can lead to. If the
controller wants to keep the system from making a fault, it must ensure that R(σ) remains
within the set R := {p, s0, . . . , sn−1}. When R(σ) ⊆ R, let us associate a measure defined as
I(σ) :=

∑
si∈R(σ) 2i. We observe the following:

R(ε) = {p}, hence I(ε) = 0.
If si ∈ R(σ), then the controller must not allow action i in the next step, otherwise the
system may go to q, rendering it unpredictable.
As long as I(σ) < 2n − 1, the controller must permit an action i such that I(σi) > I(σ).
To see this, let si /∈ R(σ), then R(σi) = (R(σ) ∪ {si}) \ {s0, . . . , si−1}. We shall assume
that i is chosen minimally, so I(σi) = I(σ) + 1.
Therefore, after 2n − 1 steps, the controlled system will have performed a sequence σ̂
with I(σ̂) = 2n − 1. The only possible course of action for the controller is to permit
n from now on, i.e. ρ = σ̂nω. We then have R(σ̂n) = {p, p′}, R(σ̂nn) = {p′, p′′}, and
R(σ̂nnn) = {p′′}.

FSTTCS 2020

48:14 Active Prediction for Discrete Event Systems

Going backwards, we can now associate predictions with each prefix of ρ: pred(σ̂nk) = ⊥
for k ≥ 3, pred(σ̂nn) = 〈?, 1〉, pred(σ̂n) = 〈0, 2〉, and pred(σ) = 〈2n − |σ|, 2〉 for every prefix
σ of σ̂. Thus, An is 2n-2-active predictable. Notice that the system could be made 2n-1-active
predictable if states s0, . . . , sn−1 transitioned with n to p′ instead, which we avoided simply
to keep the drawing of the automaton planar.

Constant-size alphabet

To see that the proof with a variable-size alphabet can be adapted to an alphabet of
constant size, consider the LTS A′n in Figure 5. A′n has O(n) states and three observable
and controllable actions 0, 1, a and two unobservable actions u and f . Initially, the LTS
performs an a going to either p or r. The LTS then simulates An of Figure 4, using a unary
encoding, in the following sense: Let code(i) = 1i0n−ia, for i = 0, . . . , n. The reader can
verify, case-by-case, that for any two states u, v ∈ {p, p′, s0, . . . , sn−1, q} and i ∈ {0, . . . , n},
we have u i−→ v in An iff u code(i)−−−−→ v in A′n. Moreover, the controller must account for the
possibility that the system has gone to state r. Then, to keep the controlled system live, the
only possible sequences that the controller can enforce are code(i) for i = 0, . . . , n, and we
have r code(i)−−−−→ r for i < n. After the initial a, the controller must therefore admit code(σ̂n),
for σ̂ as in An. On this basis, a closer look shows that A′n is k-l-active predictable for
k = 1 + (n+ 1) · 2n and l = n+ 2. J

Note that Theorem 34 does not contradict Proposition 8, which establishes linear predic-
tion bounds w.r.t. the number of states of A. However, Proposition 8 talks about passive
predictability, whereas Theorem 34 is about active predictability.

5 Conclusion and perspectives

We have extended the prediction paradigm by introducing parameters related to the number
of observations before fault may or must occur. Within this framework, we have established
that active predictability is EXPTIME-complete through a procedure for synthetising active
predictors that builds a Büchi game. Solving this game is proved linear in the number of
edges in the game. We have shown that if the observation threshold for eventual prediction
is chosen large enough (namely ≥ 2n with n the number of states in the system), then
active predictability is equivalent to active safety. Furthermore we have exhibited a family of
systems proving that this bound is tight.

Out of several possible extensions for the present results, three stand out as natural
continuations. First, we want to introduce a measure that quantifies the faultiness of the
system, and then aim to find an active predictor that minimizes this criterium, or at least
ensures a value below some threshold. Second, we plan to study the notion of prediagnosis
introduced in [2] that combines predictability and diagnosability for controllable systems.
Finally, we also want to study active predictability for probabilistic systems, as we had
previously done for diagnosis in [1].

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:15

p p1 pn−1 pn p′

p′′

r r1 rn−1

tn−1tn−2t1t0

sn−1sn−2s1s0

q

q′

a 1 1 a

f

a, 1

a 1 1

0 0 0

0a

0 0 0

00

aaaa

a a a a

1110
10

0
00

0

0

00

1

1

0, 1

a

aaaa

uf

a, 1

0

1

1

0

0

1

0

.

Figure 5 Variant of Figure 4 with constant-size alphabet, with Σo = Σc = {0, 1, a}.

References

1 N. Bertrand, E. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis for probabilistic
systems. In FOSSACS 2014, Grenoble, France, volume 8412 of LNCS, pages 29–42, 2014.

2 N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of Diagnosis and Predictability in
Probabilistic Systems. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’14), volume 29 of LIPIcs, pages 417–429, New
Delhi, India, December 2014.

3 D. Berwanger and L. Doyen. On the power of imperfect information. In Proc. FSTTCS,
volume 2 of LIPICS, pages 73–82, Bangalore, India, 2008.

4 S. Böhm, S. Haar, S. Haddad, P. Hofman, and S. Schwoon. Active diagnosis with observable
quiescence. In Proc. CDC: 54th IEEE Conf. on Decision and Control, pages 1663–1668, Osaka,
Japan, December 2015.

FSTTCS 2020

48:16 Active Prediction for Discrete Event Systems

5 L. Brandán Briones and A. Madalinski. Bounded predictability for faulty discrete event
systems. In 30nd International Conference of the Chilean Computer Science Society, SCCC,
pages 142–146, Curico, Chile, November 2011.

6 C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems - Second Edition.
Springer, 2008.

7 F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundamenta
Informaticae, 88:497–540, 2008.

8 F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundam.
Informaticae, 88(4):497–540, 2008.

9 E. Chanthery and Y. Pencolé. Monitoring and active diagnosis for discrete-event systems. In
Proc. SafeProcess’09, pages 1545–1550, 2009.

10 E. Dallal and S. Lafortune. On most permissive observers in dynamic sensor activation
problems. IEEE Trans. Autom. Control., 59(4):966–981, 2014.

11 S. Genc and S. Lafortune. Predictability of event occurrences in partially-observed discrete-
event systems. Autom., 45(2):301–311, 2009. doi:10.1016/j.automatica.2008.06.022.

12 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A
Guide to Current Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

13 S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions for active diagnosis.
Journal of Computer and System Sciences, 83(1):101–120, 2017.

14 Stefan Haar, Serge Haddad, Stefan Schwoon, and Lina Ye. Active Prediction for Discrete Event
Systems. working paper or preprint, September 2020. URL: https://hal.archives-ouvertes.
fr/hal-02951944.

15 A. Madalinski and V. Khomenko. Predictability verification with parallel LTL-X model
checking based on Petri net unfoldings. IFAC Proceedings Volumes, 45(20):1232–1237, 2012.
8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.

16 M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems.
IEEE Transactions on Automatic Control, 43(7):908–929, July 1998.

17 M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability
of discrete-event systems. IEEE Trans. Aut. Cont., 40(9):1555–1575, 1995.

18 L. Ye, P. Dague, and F. Nouioua. Predictability Analysis of Distributed Discrete Event
Systems. In 52nd IEEE Conference on Decision and Control, pages 5009–5015, Florence, Italy,
December 2013.

19 X. Yin and S. Lafortune. A uniform approach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE Trans. Autom. Control., 61(8):2140–2154,
2016.

20 X. Yin and S. Lafortune. A general approach for optimizing dynamic sensor activation for
discrete event systems. Autom., 105:376–383, 2019.

21 X. Yin and Z. Li. Decentralized fault prognosis of discrete event systems with guaranteed
performance bound. Autom., 69:375–379, 2016.

22 T-S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans. Automat. Contr., 47(9):1491–1495, 2002.

https://doi.org/10.1016/j.automatica.2008.06.022
https://hal.archives-ouvertes.fr/hal-02951944
https://hal.archives-ouvertes.fr/hal-02951944

	Introduction
	The Active Prediction Problem
	Controller construction
	Bound analysis
	Conclusion and perspectives

