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—— Abstract

A labelled Markov decision process is a labelled Markov chain with nondeterminism, i.e., together
with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval
Markov chains. Motivated by applications of equivalence checking for the verification of anonymity,
we study the algorithmic comparison of two labelled MDPs, in particular, whether there exist
strategies such that the MDPs become equivalent/inequivalent, both in terms of trace equivalence
and in terms of probabilistic bisimilarity. We provide the first polynomial-time algorithms for
computing memoryless strategies to make the two labelled MDPs inequivalent if such strategies
exist. We also study the computational complexity of qualitative problems about making the total
variation distance and the probabilistic bisimilarity distance less than one or equal to one.
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1 Introduction

Given a model of computation (e.g., finite automata), and two instances of it, are they
semantically equivalent (i.e., do they accept the same language)? Such equivalence problems
can be viewed as a fundamental question for almost any model of computation. As such,
they permeate computer science, in particular, theoretical computer science.

In labelled Markov chains (LMCs), which are Markov chains whose states (or, equivalently,
transitions) are labelled with an observable letter, there are two natural and very well-studied
versions of equivalence, namely trace (or language) equivalence and probabilistic bisimilarity.

The trace equivalence problem has a long history, going back to Schiitzenberger [33]
and Paz [29] who studied weighted and probabilistic automata, respectively. Those models
generalize LMCs, but the respective equivalence problems are essentially the same. It can
be extracted from [33] that equivalence is decidable in polynomial time, using a technique
based on linear algebra. Variants of this technique were developed in [38, 16]. More recently,
the efficient decidability of the equivalence problem was exploited, both theoretically and
practically, for the verification of probabilistic systems, see, e.g., [22, 23, 30, 28, 27]. In
those works, equivalence naturally expresses properties such as obliviousness and anonymity,
which are difficult to formalize in temporal logic. In a similar vein, inequivalence can mean
detectibility and the lack of anonymity.
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Probabilistic bisimilarity is an equivalence that was introduced by Larsen and Skou [26].
It is finer than trace equivalence, i.e., probabilistic bisimilarity implies trace equivalence.
A similar notion for Markov chains, called lumpability, can be traced back at least to the
classical text by Kemeny and Snell [21]. Probabilistic bisimilarity can also be computed in
polynomial time [2, 13, 39]. Indeed, in practice, computing the bisimilarity quotient is fast
and has become a backbone for highly efficient tools for probabilistic verification such as
PrisMm [25] and STORM [19].

In this paper, we study equivalence problems for (labelled) Markov decision processes
(MDPs), which are LMCs plus nondeterminism, i.e., each state may have several actions
(or “moves”) one of which is chosen by a controller, potentially randomly. An MDP and a
controller strategy together induce an LMC (potentially with infinite state space, depending
on the complexity of the strategy). The nondeterminism in MDPs gives rise to a spectrum of
equivalence queries: one may ask about the existence of strategies for two given MDPs such
that the induced LMCs become trace/bisimulation equivalent, or such that they become
trace/bisimulation inequivalent. Another potential dimension of this spectrum is whether to
consider general strategies or more restricted ones, such as memoryless or even memoryless
deterministic (MD) ones.

In this paper, we focus on memoryless strategies, for several reasons. First, these questions
for unrestricted strategies quickly lead to undecidability. For example, in [17, Theorem 3.1] it
was shown that whether there exists a general strategy such that a given MDP becomes trace
equivalent with a given LMC is undecidable. Second, memoryless strategies are sufficient for
a wide range of objectives in MDPs, and their simplicity means that even if it was known
that a general strategy exists to accomplish (in)equivalence one might still wonder if there
also exists a memoryless strategy. Third, probabilistic bisimilarity is a less natural notion for
LMCs induced by general strategies: such LMCs will in general have an infinite state space,
even when the MDP is finite. Fourth, applying a memoryless strategy in an MDP is related
to choosing an instance of an interval Markov chain (IMC). IMCs are like Markov chains,
but the transitions are labelled not with probabilities but with probability intervals. IMCs
were introduced by Jonsson and Larsen [20] and have been well studied in verification-related
domains [34, 7, 12, 3, 6], but also in areas such as systems biology, security or communication
protocols, see, e.g., [11]. Selecting a memoryless strategy in an MDP corresponds to selecting
a probability from each interval (one out of generally uncountably many). Parametric Markov
chains and parametric MDPs are further related models, see, e.g., [18, 41] and the references
therein.

LMCs can also be compared in terms of their distance. We consider two natural distance
functions between two LMCs: the total variation distance (between the two trace distributions)
and the probabilistic bisimilarity distance [15]. Both distances can be at most 1. The total
variation (resp. probabilistic bisimilarity) distance is 0 if and only if the LMCs are trace
equivalent (resp. probabilistic bisimilar). Further, the probabilistic bisimilarity distance is an
upper bound on the total variation distance [8]. It was shown in [9] (resp. [37]) that whether
the total variation (resp. probabilistic bisimilarity) distance of two LMCs equals 1 can be
decided in polynomial time. This raises the question whether these results can be extended
to MDPs, i.e., what is the complexity of deciding whether there exists a memoryless strategy
to make the distance less than 1 or equal to 1, respectively. It turns out that some of these
problems are closely related to the corresponding (in)equivalence problem.

Instead of comparing two MDPs with initial distributions/states, one may equivalently
compare two initial distributions/states in a single MDP (by taking a disjoint union of the
states). In this paper we study the computational complexity of the following problems:
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TV =0 (TV > 0), which asks whether there is a memoryless strategy such that the two

initial distributions are (not) trace equivalent in the induced labelled Markov chain;

TV =1 (TV < 1), which asks whether there is a memoryless strategy such that the two

initial distributions (do not) have total variation distance one;

PB =0 (PB > 0), which asks whether there is a memoryless strategy such that the two

initial states are (not) probabilistic bisimilar;

PB =1 (PB < 1), which asks whether there is a memoryless strategy such that the two

initial states (do not) have probabilistic bisimilarity distance one.
In Sections 3 and 4 we provide the first polynomial-time algorithms for TV > 0 and PB > 0,
respectively. We also show how to compute memoryless strategies that witness trace and
probabilistic bisimulation inequivalence, respectively. In Section 5 we discuss TV = 1 and
PB =1, and in Section 6 we establish the complexity of the remaining four problems, which
are about making the distance small (= 0 or <1). We conclude in Section 7. Table 1
summarises the results in the paper. Missing proofs can be found in the full version of this
paper [24].

Table 1 Summary of the results. These results also imply results for the problems which state
“for all memoryless strategies”. For example, TV > 0 is the complement of the decision problem
whether for all memoryless strategies the two initial distributions are trace equivalent in the induced
labelled Markov chains.

Problem Complexity
TV =0 dR-complete
TV >0 in P

TV =1 | NP-hard and in IR
TV <1 JR-complete
PB=0 NP-complete
PB>0 in P
PB=1 NP-complete
PB<«1 NP-complete

2 Preliminaries

We write R for the set of real numbers and N the set of nonnegative integers. Let S be a finite
set. We denote by Distr(S) the set of probability distributions on S. By default we view
vectors, i.e., elements of R¥, as row vectors. For a vector p € [0,1]% we write [u| := >, g pu(s)
for its L1-norm. A vector u € [0,1]° is a distribution (resp. subdistribution) over S if |u| = 1
(resp. 0 < |u| < 1). We denote column vectors by boldface letters; in particular, 1 € {1}*
and 0 € {0} are column vectors all whose entries are 1 and 0, respectively. For s € S we
write &5 for the (Dirac) distribution over S with d5(s) =1 and d5(r) = 0 for r € S\ {s}. For
a (sub)distribution p we write support(p) = {s € S| u(s) > 0} for its support.

A labelled Markov chain (LMC) is a quadruple (S, L, T, ) consisting of a nonempty finite
set S of states, a nonempty finite set L of labels, a transition function 7 : S — Distr(S), and
a labelling function ¢ : S — L.

We denote by 7(s)(t) the transition probability from s to ¢t. Similarly, we denote by
7(5)(E) = >_,cp 7(s)(t) the transition probability from s to £ C S. A trace in a LMC M
is a sequence of labels w = ajas - - - a, where a; € L. We denote by L=" the set of traces
of length at most n. Let M : L — [0,1]5% specify the transitions, so that >, M(a)
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is a stochastic matrix, M (a)(s,t) = 7(s)(¢) if £(s) = a and M (a)(s,t) = 0 otherwise. We
extend M to the mapping M : L* — [0,1]°*% with M(w) = M(ay)---M(a,) for a trace
w = ay---ap. If the LMC is in state s, then with probability M (w)(s,s’) it emits a trace
w and moves to state s’ in |w| steps. For a trace w € L*, we define Run(w) := {w}L¥; i.e.,
Run(w) is the set of traces starting with w. To an initial distribution 7 on S, we associate
the probability space (L, F,Praq ), where F is the o-field generated by all basic cylinders
Run(w) with w € L* and Prag, : F — [0,1] is the unique probability measure such that
Prag - (Run(w)) = |7 M(w)|. We generalize the definition of Pray . to subdistributions 7 in
the obvious way, yielding sub-probability measures. We may drop the subscript M if it is
clear from the context.

Given two initial distributions p and v, the total variation distance between u and v is
defined as follows:

dtv(,uvy) = sup |Pr/L(E) - PTV(E”'
EcF

We write p = v to denote that p and v are trace equivalent, i.e., |Pr,(Run(w))| =
|Pr, (Run(w))| holds for all w € L*. We have that trace equivalence and the total variation
distance being zero are equivalent [9, Proposition 3(a)].

The pseudometric probabilistic bisimilarity distance of Desharnais et al. [14] , which we

SxS

denote by dy, is a function from S x S to [0, 1], that is, an element of [0, 1] . It can be

defined as the least fixed point of the following function:

1 if £(s) # £(t)

A(d)(s,t) = min w(u,v) d(u,v) otherwise
wEQ(T(S)7T(t))uUZES ( ) ( )

where the set Q(u,v) of couplings of p,v € Distr(S) is defined as Q(p,v) =
{w e Distr(S x 8) | Yyegwls,t) = pu(s) N> cgw(s,t) =v(t) }. Note that a coupling w €
) is a joint probability distribution with marginals 1 and v (see, e.g., [4, page 260-262]).

An equivalence relation R C S x S is a probabilistic bisimulation if for all (s,t) € R,
£(s) = £(t) and 7(s)(E) = 7(¢t)(E) for each R-equivalence class E. Probabilistic bisimilarity,
denoted by ~ ¢ (or ~ when M is clear), is the largest probabilistic bisimulation. For all
s, t €8, s~tif and only if dpp(s,t) = 0 [14, Theorem 1].

A (labelled) Markov decision process (MDP) is a tuple (S, A, L, p,¢) consisting of a
finite set S of states, a finite set A of actions, a finite set L of labels, a partial function
¢ : S x A -+ Distr(S) denoting the probabilistic transition, and a labelling function £ : S — L.
The set of available actions in a state s is A(s) = {m € A | ¢(s, m) is defined}. A memoryless
strategy for an MDP is a function « : S — Distr(A) that given a state s, returns a probability
distribution on all the available actions at that state. Such strategies are also known as
positional, as they do not depend on the history of past states. A strategy « is memoryless
deterministic (MD) if for all states s there exists an action m € A(s) such that a(s)(m) = 1;
we thus view an MD strategy as a function a: § — A.

For the remainder of the paper, we fix an MDP D = (S, A, L, ¢, ). Given a memoryless
strategy o for D, an LMC D(«a) = (S, L,7,{) is induced, where 7(5)(t) = >_,c a(5) (s)(m) -
©(s,m)(t). The matrix M, specifies the transitions of the LMC D(«) as is defined previously.

We fix two initial distributions g and v on S (resp. two initial states s and t) for problems
related to total variation distance (resp. probabilistic bisimilarity distance).
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3 Trace Inequivalence

In this section we show that one can decide in polynomial time whether there exists a
memoryless strategy « so that p Z v in D(«). In terms of the notation from the introduction,
we show that TV > 0 is in P. Define the following column-vector spaces.

Vi = (Mg, (a1)My, (a2) -+ - My, (am)1 : «; is a memoryless strategy; a; € L) and

Vo = (My(w)1 : v is @ memoryless strategy; w € L*) and
V3 = (My(w)1 : o is an MD strategy; w € L*).

Here and later we use the notation (-) to denote the span of (i.e., the vector space spanned by)
a set of vectors. By the definitions, we have that y = v in all LMCs induced by all memoryless
strategies « if and only if pM, (w)1 = vM,(w)1 holds for all memoryless strategies o and
all w e L*. It follows:

» Proposition 1. For all distributions p,v over S we have:
3 a memoryless strategy o such that u #Z v in D(a) < uv # vv for some v € Vs.

To decide TV > 0 and to compute the “witness” memoryless strategy such that p Z v in
the induced LMC, it suffices to compute a basis for V,; more precisely, a set of a and w such
that the vectors M, (w)1 span V5. As the set of memoryless strategies is uncountable, this is
not straightforward. From the definitions, we know V3 C V5 C V;. We will show V; C V3 and
thus establish the equality of these three vector spaces. It follows from [17, Theorem 5.12]
that computing a basis for V; is in P. It follows that our problem TV > 0 is also in P, but
this does not explicitly give the witnessing memoryless strategy. Since Vo = V3, there must
exist an MD strategy that witnesses y Z v. To find this MD strategy, one can go through all
MD strategies (potentially exponentially many). In the following, by considering the vector
spaces while restricting the word length, we show that a witness MD strategy can also be
computed in polynomial time.

We define the following column-vector spaces. For each j € N,

VI = (M, (a1) My, (a) - - - M, (ax)1 : a; is a memoryless strategy; a; € L; k < j) and
V] = (M, (w)1 : a is a memoryless strategy; w € L=7) and

V] = (M, (w)1 : a is an MD strategy; w € L=7).

Let o be an MD strategy and m be an action available at state i. Recall that an MD
strategy can be viewed as a function a : § — A. We define a*~™ to be the MD strategy such
that a'?M(i) = m and o™ (s) = a(s) for all s € S\ {i}. Let c; € {0,1}° be the column
bit vector whose only non-zero entry is the ith one. For a set B C R®, we define (B) to be
the vector space spanned by B.

We call a column vector an MD vector if it is of the form M, (w)1 for an MD strategy «
and w € L*. Let P be a set of MD strategy and word pairs, i.e., P = {(ay,w1), (a2, wa), -+,
(¥, W)} where «; is an MD strategy and w; € L*. We define a function B transforming
such a set P to the set of corresponding MD vectors, i.e., B(P) = {M,, (w1)1, My, (w2)1,-- -,
M., (w,)1}.

n

» Lemma 2. Let j € N. For all MD strategies a1 and oz, a € L and w € LS7, we have
M,, (a)M,,(w)1 € (V] UB({(a,aw)})) where « is the MD strategy defined by

i) = { (i) if e gV

as(i) otherwise

49:5
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The next lemma shows that a basis for V{ for some j < |S| consisting only of MD vectors
can be computed in polynomial time.

» Lemma 3. Let j € N with j <|S|. One can compute in polynomial time a set P; =
{(ag,wo), -+, (g, wk)} in which all a; are MD strategies and all w; are in LS7 such that
B(P;) is a basis of Vi.

Proof sketch. We prove this lemma by induction on j. The base case where j = 0 is
vacuously true with Py = {(ag,wo)} where ap is an arbitrary MD strategy, wy = ¢ and
B(Py) = {1}. For the induction step, assume that we can compute in polynomial time a set
P; = {(aw,wo), - -, (ag, w)} where all the strategies are MD strategies and all the words
are in L=J such that B(P;) is a basis for V{. We show that the statement holds for j + 1.
Define

Y={agtU{ai7M:s€ 5, me A(s)} and M = {M,(a) RS :a € ¥, ac L}
Next, we present Algorithm 1 which computes a set P;4; in polynomial time such that

forall M e M and all b € B(P;) : M -b € (B(Pj4+1)) (1)

Algorithm 1 Polynomial-time algorithm computing Pj4.

Pj+1 = Pj
foreach o; € £, a € L and (az,w) € P; do
if Mo, (a)Ma,(w)1l & (B(Pj11)) then
add (a, aw) to Pj11 where « is the MD strategy defined as

OV VN

ao(i) otherwise.

a(i):{ ai(i) ife; ¢V}

5 end

6 end

All the vectors in B(Pjy1) are linearly independent, as we only add a pair if the corres-
ponding vector is linearly independent to the existing vectors in B(Pj41) (lines 3-4). Since
B(P;) is a basis for VJ, we can decide whether ¢; € V{ for i € S in polynomial time, and
thus compute a pair (o, aw) on line 4 in polynomial time. Since |3| and |L| are polynomial
in the size of the MDP, |P;| < |S], the number of iterations is polynomial in the size of the
MDP. The construction of P;; is then in polynomial time. It remains to show that after
adding (o, aw) to Pjy1 (line 4), we have M - b = M,, (a) My, (w)1 € (B(Pj4+1)) . Since the
pair (a2, w) is in Pj, we have w € L=/, Then,

M-b

Mofl(a)Moé2 (w)l

e VIUB({(a,aw)})) [Lemma 2] |

(B(P;) UB({(a,aw)})) [B(P;) is a basis for V{ by induction hypothesis]
= (B(P;U{(a,aw)}))

Since P; C Pj41 (line 1), we have B(P;) C B(Pj+1). By adding the pair (o, aw) to Pjy1, we
have (B(P; U{(a,aw)})) C (B(Pj11)), and thus M - b € (B(Pj;1)).
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Finally, we show that the set Pjy; satisfies V7' = (B(Pj;1)). We have

(B(Pj+1)) € 128 for all (a,w) € Pj41 : a is an MD strategy and w € L=/ 1!
- V{ e from the definitions
We prove the other direction VJ ' C (B(Pj;1)) in [24]. <

Combining classical linear algebra arguments about equivalence checking (see, e.g., [38])
with Lemma 3, we obtain:

» Lemma 4.

1. For all j < |S| we have Vi =V = VJ.

2. We have Vy =V, = Vg = VP57t = PISImt — plsi=t
Thus we obtain:

» Proposition 5. One can compute in polynomial time a set P = {(ap, wo), -+, (o, wi)}
of MD strategy and word pairs such that B(P) is a basis of V5.

Proof. By Lemma 4 it suffices to invoke Lemma 3 for j = |S| — 1. <
Now we can prove the main theorem of this section.

» Theorem 6. The problem TV >0 is in P. Further, for any positive instance of the problem
TV > 0, we can compute in polynomial time an MD strategy o and a word w that witness

pu# v, i.e., Pr, p)(Run(w)) # Pry, pa)(Run(w)).

Proof. A polynomial algorithm follows naturally from Proposition 5 and Proposition 1. We
first compute a set P of MD strategy and word pairs such that B(P) is a basis for Vy. For
each b € B(P), we check whether ub # vb and output “yes” indicating a positive instance
if the inequality holds. Otherwise, we have ub = vb for all b € B(P), and the algorithm
outputs “no” indicating that p = v holds for all memoryless strategies.

If the instance is positive, there exists a vector b € B(P) such that yub # vb. Since b
is an MD vector which corresponds to a pair (o, w) € P, we have uM,(w)1 # vM,(w)1,
equivalently Pr, () (Run(w)) # Pr, p(a)(Run(w)). <

4 Probabilistic Bisimulation Inequivalence

In this section we show that one can decide in polynomial time whether there exists a
memoryless strategy « so that s ¢ ¢ in D(a), i.e., we show that PB > 0 is in P.

For some MDPs, there might be memoryless strategies such that s ¢¢ ¢ in the induced
LMC but no such strategy is MD. The MDP in Figure 1 is such an example. Similar to
the or-gate construction of [8, Theorem 2], we have s ~ ¢ if and only if ¢1 ~ g2 or g2 ~ gs.
We have g ~ ¢ if the MD strategy maps g2 to the action that goes to state u, otherwise
g2 ~ g3 if the MD strategy maps g2 to the action that goes to state v. This rules out the
algorithm that goes through all the MD strategies.

We define an equivalence relation and run the classical polynomial-time partition re-
finement as shown in Algorithm 2, with an equivalence relation =x defined below. At the
beginning, all states are in the same equivalence class. In a refinement step, a pair of states
is split if there could exist a memoryless strategy that makes them not probabilistic bisimilar.
Two states s,¢ remain in the same equivalence class until the end if and only if they are
probabilistic bisimilar under all memoryless strategies.

49:7
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Figure 1 In this MDP no MD strategy witnesses s o t. All states have the same label except
state v. By default the transition probabilities out of each action are uniformly distributed.

Algorithm 2 Partition Refinement.
i=0;Xo:={5}
repeat
t:=14+1
X =5/=x,_,
until X; = X,

(S N VN

The correctness of this approach is not obvious, as some splits that occurred in differ-
ent iterations of the algorithm may have been due to different, potentially contradictory,
memoryless strategies. Furthermore, the algorithm does not compute a memoryless strategy
that witnesses s ¢ t. The key to solving both problems will be Lemma 11.

A partition of the states S is a set X consisting of pairwise disjoint subsets E of
S with Jgex = S. Recall that ¢(s,m)(s’) is the transition probability from s to s’
when choosing action m. Similarly, ¢(s,m)(E) is the transition probability from s to
E C S when choosing action m. We write ¢(s,m)(X) to denote the vector (probability
distribution) (¢(s,m)(E))gex. We define ¢(s)(X) = {p(s,m)(X) : m € A(s)}, which is a
set of probabilistic distributions over the partition X when choosing all available actions of
s. Each partition is associated with an equivalence relation =x on S: s =x s’ if and only if
- Us) =L(s");

- s# 5 = Jp(s)(X)] = 1 and ¢(s)(X) = ¢(s")(X).

Let S/=x denote the set of equivalence classes with respect to =x, which forms a
partition of S. We present in Table 2 the partitions of running the algorithm on the MDP in
Figure 1. Notice that states s and t are no longer in the same equivalence class at the end.

Table 2 Example of running Algorithm 2 on the MDP in Figure 1.

Xo = {5}

X1 = {{v}, 5\ {v}}

X2 = {{v},{a2}, {as}, S\ {v, 42,45} }

Xs = {{v} {2} {as} {sa}. {su}, {ta}, {t}, {5, 01, 0} }

Xo = {{v} {a2} {as} {sa} {su}, {ta}, {to}. {3} {t} {an,u} }
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The following lemma is standard, and claims that the partition gets finer.

» Lemma 7. For alli € N, we have =x,,, C =x,.

it1

If the loop in Algorithm 2 is performed [S| — 1 times then X|g_; consists of |S| one-
element sets. Hence at most after |S| — 1 refinement steps the partition X; cannot be refined.
We aim at proving that s =x,_, ¢ if and only if s ~p(q) t for all memoryless strategies a.
In the following lemma we show the forward direction:

» Lemma 8. Let X be a partition and X = S/=x. We have =x C ~p(a) for all memoryless
strategies .

For the converse, to guarantee = X|s)-1 is not too fine, it suffices to show that there exists
a memoryless strategy o’ such that ~par) € =x where X = S/=x. To do that, we define
the equivalence relations ~f, ) with 0 <i < |S| for all memoryless strategies «.

Let a be a memoryless strategy. Let 7 be the transition function for the LMC D(«).
Define the equivalence relation ~f,,, with 0 <i < [S| on St s ~, ) 5" if and only if
- Us) = L(s");
- i>0 = 7(s)(F) =7(s)(E) for all E € S/Ng(i).

Note that for the LMC D(«), we have Ng(;) - NiD(a) for all i € N and N‘g(‘;)l is the
probabilistic bisimilarity for the LMC D(«) (see, e.g., [2]).

Since the witness strategy might not be MD, we compute a set of prime numbers that
can be used to form the weights of the actions. The prime numbers are used to rule out
certain “accidental” bisimulations. We denote by size(D) the size of the representation of an
object D. We represent rational numbers as quotients of integers written in binary.

Foruw € S, m € A(u) and E C S, we express ¢(u, m)(E) as an irreducible fraction 237:5
where a, m g and b, m g are coprime integers. Similarly, for v € S, m;,ms € A(u) and
E C S, o(u,m)(E) — ¢(u,my)(E) is expressed as an irreducible fraction 7“"t"2:2 that

w,mq,mo, E
Cu,m1,ms,E a0d dy m, m, £ are coprime integers. Let N C N be the following set:

N = {bympe:uesS meAu)and E € J, X;}U
{cumime, g i u €S, my,my € A(u), E €Y, X; and cym,,my, 5 > 0}.

We denote by 0(x) the number of different prime factors of a positive integer =, and by 6(N)
the number of different prime factors in N where N is a set of positive integers.

» Lemma 9. 0(N) is polynomial in size(D).

Using the prime number theorem, we obtain the following lemma which guarantees that
one can find |S| extra different prime numbers other than the prime factors in N in time
polynomial in size(D).

» Lemma 10. One can find |S| different prime numbers in time polynomial in size(D) such
that any of them is coprime to all numbers in the set N.

To each u € S, we assign a different prime number p, that is coprime with all b € N.
This can be done in polynomial time by Lemma 10. We have

putbforalbe N and u#v = py, #py, forallu,ve s (2)

We define a partial memoryless strategy for D to be a partial function o’ : S + Distr(.A)
that, given a state s € S, returns o/(s) € Distr(.A(s)) if a/(s) is defined. A memoryless
strategy « is compatible with a partial memoryless strategy o/, written as o 3 o, if and
only if a(s) = a/(s) for all s such that o/(s) is defined. We construct the partial memoryless
strategy iteratively.
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» Lemma 11. Leti € N with i < |S|. One can compute in polynomial time a partial strategy
o such that NiD(a) C =x, foralla J af.

Proof sketch. We prove the statement by induction on i. Let s,t € S. The base case is
i = 0. By definition, we have if s Zx, t then £(s) # £(t). We also have if {(s) # £(t), then
S 76%(&) t in D(«) for all memoryless strategy a. We simply let «f, be the empty partial
function such that o J af, holds for any memoryless strategy a.

For the induction step, assume that we can compute in polynomial time a partial strategy
o such that NiD(a) C =y, forall « J o, ie., if s Zx, t then s 74%(&) t in D(a). We show
the statement holds for ¢ + 1.

Algorithm 3 Polynomial-time algorithm constructing o ;.

1o, =0
2 foreach u € S such that |o(u)(X;)| =1 and |o(u)(X;41)| #1 do

3 pick my, my € A(u) such that for a set E € X171 : o(u,m)(E) > o(u, ms)(F)
4 | afy(u)(my) =
5|y (w)(ms) =

6 end

‘ [l

u

3

1
Du

Algorithm 3 computes the partial memoryless strategy o; ; in polynomial time. We
show that o, does not overwrite o, for all k < j. It follows that for any o J aj,, it satisfies

a J ;. Let a 3 aj,,. Assume s #x,,, t. We distinguish the two cases: s 76%(&) t and

s Né)(a) t. For both cases we can derive s 741‘D+(}x) t, ie., NiDJr(la) C =x,,, as desired. The
details can be found in [24]. <

For example, let py,, the prime number assigned to state g2 in Figure 1, be 3 which is coprime
with numbers in N = {1,2}.! We show how the partial strategy o} is constructed. On line 1
of Algorithm 3, o} is equal to o, the empty partial function. Since |¢(g2)(Xo)| = 1 and
lp(g2)(X1)] = 2, we enter the for loop. We can pick my,my € A(q2) and E = S\ {v} € X;
on line 3, since p(g2, m1)(E) = 1> 0 = ¢(g2, m2)(E). We then define the strategy for go
(line 4 and 5): o4 (g2)(m1) = % and o/ (g2)(m2) = 2. We have completed the construction of
o) as |p(u)(Xo)| = |e(u)(X1)| =1 for all other state w.

» Theorem 12. One can compute in polynomial time a memoryless strategy f such that
~pg) € ~p(a) for all memoryless strategies a.

Proof. By invoking Lemma 11 for ¢ = |S| — 1, a partial strategy aiS|_1 can be computed in

polynomial time such that N‘g(l(:)l C=x4_, forallad 045|_1. Since N‘g(l(:)l = ~D(a), W

have ~p(,) € =x5,_, for all o J O‘iS|—1' Let 8 be a memoryless strategy defined by

Blu) = g1 (u) if g _; (u) is defined
Om, where m, € A(u) otherwise

By definition the memoryless strategy (§ is compatible with af S|-1° We have:

— !
~p() € =x5 B2 ajgq

C ~p(q) for all strategy a Xsj-1 = S/=x,5_, and Lemma 8 <

! We have 2 € N since ¢(s, ms)({sa}) = & where m, is the only available action at state s.
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Figure 2 In this MDP, no MD strategy witnesses dt,(ds,d:) = 1 (nor dpp(s,t) = 1). States s, and
t, have label b while all other states have label a.

» Corollary 13. The problem PB > 0 is in P. Further, for any positive instance of the
problem PB > 0, we can compute in polynomial time a memoryless strategy that witnesses

s b t.

5 The Distance One Problems

In this section, we summarise the results for the two distance one problems, namely TV =1
and PB = 1. The existential theory of the reals, ETR, is the set of valid formulas of the form

Jzq ... 3z, R(x1, ... 20),

where R is a boolean combination of comparisons of the form p(zi,...,2,) ~ 0, in
which p(x1,...,2,) is a multivariate polynomial (with rational coefficients) and ~ €
{<,>,<,>,=,#}. The complexity class IR [32] consists of those problems that are many-
one reducible to ETR in polynomial time. Since ETR is NP-hard and in PSPACE [5, 31], we
have NP C dR C PSPACE.

For some MDPs there exist memoryless strategies that make dy,(ds,d:) = 1 but no such
strategy is MD. For example, consider the MDP in Figure 2 which has two MD strategies. We
have dg,(ds, ;) = % which is less than 1 in the LMC induced by any of the two MD strategies,
and dy,(ds,d:) = 1 in the LMC induced by any other strategy. Thus, we cannot simply guess
an MD strategy. We show that the problem TV = 1 is in JR, using the characterization
from [9, Theorem 21] of total variation distance 1 in LMCs and some reasoning on convex
polyhedra:

» Theorem 14. The problem TV =1 is in IR.

The problem TV =1 is NP-hard, and PB = 1 is NP-complete. The hardness results for
both problems are by reductions from the Set Splitting problem. Given a finite set S and a
collection C of subsets of 5, Set Splitting asks whether there is a partition of S into disjoint
sets S7 and Ss such that no set in C is a subset of S; or Ss.

Let (S,C) be an instance of Set Splitting where S = {ey,--- ,e,} and C = {Cy,--- ,Cp,}
is a collection of subsets of S. We construct an MDP D consisting of the following states: two
states s and t, a state e; for each element in .S, twin states C; and C’J’- for each element in C,
two sink states u and v. State v has label b while all other states have label a. State s (t) has a
single action which goes with uniform probability X to states C; (C}) for 1 < i < m. For each
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Figure 3 The MDP in the reduction from Set Splitting for NP-hardness of TV =1 (or PB = 1).

e; € Cj, there is an action from state C; and C]‘ leading to state e; with probability one. Each
state e; has two actions going to the sink states u and v with probability one, respectively. We
have: (S,C) € Set Splitting <= Jmemoryless strategy « such that dy,(0s,0;) = 1in D(«).

For example, let S = {e1,ea,e3} and C = {C1,C2} with Cy = {e1, e} and Cy = {e3, e3}.
Figure 3 shows the corresponding MDP. The MD strategy highlighted, corresponding to the
partition of S; = {e1,e3} and Sy = {e2}, witnesses dy, (05, 0:) = 1.

» Theorem 15. The Set Splitting problem is polynomial-time many-one reducible to TV = 1,
hence TV =1 is NP-hard.

The problem PB = 1 is NP-complete. The MDP in Figure 2 is also an example of no
MD strategy witnessing dy(s,t) = 1, which rules out the algorithm of simply guessing an
MD strategy. By [36], deciding whether dp(s,t) = 1 in an LMC can be formulated as a
reachability problem on a directed graph induced by the LMC. One can nondeterministically
guess the graph induced by the LMC and use Algorithm 3 to construct a memoryless strategy
that witnesses dps(s,t) = 1.

» Theorem 16. The problem PB =1 is NP-complete.

6 Making Distances Small

In this section, we summarise the results for the remaining problems, which are all about
making the distance small (equal to 0 or less than 1).

We show that TV = 0 and TV < 1 are dR-complete. The proof for the membership of
TV = 0 in 3R is similar to [17, Theorem 4.3]. For both hardness results we provide reductions
from the Nonnegative Matriz Factorization (NMF) problem, which asks, given a nonnegative
matrix J € Q"*™ and a number r € N, whether there exists a factorization J = A - W with
nonnegative matrices A € R"*" and W € R™*™. The NMF problem is IR-complete by [35,
Theorem 2], see also [10, 40, 1] for more details on the NMF problem. The reduction is
similar to [17, Theorem 4.5].

» Theorem 17. The problem TV = 0 is IR-complete.
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Figure 4 In this MDP, no MD strategy witnesses dp(s,t) = 0. States s, and ¢, have label b
while all other states have label a.

T

Figure 5 In this MDP, no MD strategy witnesses dps(s,t) < 1. States s, and ¢, have label b while
all other states have label a.

» Theorem 18. The problem TV <1 is dR-complete.

Finally, we show that PB = 0 and PB < 1 are NP-complete. For some MDPs there exist
memoryless strategies that make dp(s,t) = 0 (resp. dpp(s,t) < 1) but no such strategy is
MD. Indeed, for the MDP in Figure 4 (resp. Figure 5), it is easy to check that the only

strategy « which makes dpp(s,t) = 0 (resp. dpu(s,t) < 1), requires randomness, that is,
a(s)(m1) = a(s)(ms) = 3, where m; and m, are the two available actions of state s. Thus,

to show the NP upper bound, we cannot simply guess an MD strategy. Instead, one can
nondeterministically guess a partition of the states and check in polynomial time if the
partition is a probabilistic bisimulation.

The hardness results for both problems are by reductions from the Subset Sum problem.

The reduction is similar to [17, Theorem 4.1].
» Theorem 19. The problem PB = 0 is NP-complete.

By [36], deciding whether d,;(s,t) <1 in an LMC can be formulated as a reachability
problem on a directed graph induced by the LMC. In addition to a partition, our NP
algorithm also guesses the graph induced by the LMC.

» Theorem 20. The problem PB < 1 is NP-complete.

7 Conclusions

We have studied the computational complexity of qualitative comparison problems in labelled
MDPs. Motivated by the connection between obliviousness/anonymity and equivalence, we
have devised polynomial-time algorithms to decide the existence of strategies for trace and
bisimulation inequivalence. In case of trace inequivalence, there always exists an MD witness
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strategy, and our algorithm computes it. The trace inequivalence algorithm is based on linear-
algebra arguments that are considerably more subtle than in the LMC case. For bisimulation
inequivalence, MD strategies may not exist, but we have devised a polynomial-time algorithm
to compute a memoryless strategy witnessing inequivalence; here the randomization is based
on prime numbers to rule out certain “accidental” bisimulations. The other 6 problems do
not have polynomial complexity (unless P = NP), and we have established completeness
results for all of them except TV = 1, where a complexity gap between NP and IR remains.

Concerning the relationship to interval Markov chains and parametric Markov chains
mentioned in the introduction, the lower complexity bounds that we have derived in this
paper carry over to corresponding problems in these models. Transferring the upper bounds
requires additional work, as, e.g., even the consistency problem for IMCs (i.e., whether there
exists a Markov chain conforming to an IMC) is not obvious to solve. Nevertheless, the
algorithmic insights of this paper will be needed.
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