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Abstract
We show a new simple algorithm that checks whether a given higher-order grammar generates a
nonempty language of trees. The algorithm amounts to a procedure that transforms a grammar
of order n to a grammar of order n − 1, preserving nonemptiness, and increasing the size only
exponentially. After repeating the procedure n times, we obtain a grammar of order 0, whose
nonemptiness can be easily checked. Since the size grows exponentially at each step, the overall
complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation (and
hence the whole algorithm) is linear in the size of the grammar, assuming that the arity of employed
nonterminals is bounded by a constant. The same algorithm allows to check whether an infinite tree
generated by a higher-order recursion scheme is accepted by an alternating safety (or reachability)
automaton, because this question can be reduced to the nonemptiness problem by taking a product
of the recursion scheme with the automaton.

A proof of correctness of the algorithm is formalised in the proof assistant Coq. Our transfor-
mation is motivated by a similar transformation of Asada and Kobayashi (2020) changing a word
grammar of order n to a tree grammar of order n− 1. The step-by-step approach can be opposed
to previous algorithms solving the nonemptiness problem “in one step”, being compulsorily more
complicated.
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1 Introduction

Higher-order grammars, also known as higher-order OI grammars [8, 16], generalize context-
free grammars: nonterminals of higher-order grammars are allowed to take arguments. Such
grammars have been studied actively in recent years, in the context of automated verification
of higher-order programs. In this paper we concentrate on a very basic problem of language
nonemptiness: is the language generated by a given higher-order grammar nonempty. This
problem, being easy for most devices, is not so easy for higher-order grammars. Indeed, it is
n-EXPTIME-complete for grammars of order n [15].

We give a new simple algorithm solving the language nonemptiness problem. The
algorithm amounts to a procedure that transforms a grammar of order n to a grammar
of order n− 1, preserving nonemptiness, and increasing the size only exponentially. After
repeating the procedure n times, we obtain a grammar of order 0, whose nonemptiness can
be easily checked. Since the size grows exponentially at each step, we reach the optimal
overall complexity of n-EXPTIME. In a more detailed view, the complexity looks even better:
the size growth is exponential only in the arity of types appearing in the grammar; if the
maximal arity is bounded by a constant, the transformation (and hence the whole algorithm)
is linear in the size of the grammar.
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53:2 Higher-Order Nonemptiness Step by Step

While a higher-order grammar is a generator of a language of (finite) trees, virtually
the same object can be seen as a generator of a single infinite tree (encompassing the
whole language). In this context, the grammars are called higher-order recursion schemes.
The nonemptiness problem for grammars is easily equivalent to the question whether the
tree generated by a given recursion scheme is accepted by a given alternating safety (or
reachability) automaton; for the right-to-left reduction, it is enough to product the recursion
scheme with the automaton. Thus, our algorithm solves also the latter problem, called
a model-checking problem. This problem is decidable and n-EXPTIME-complete not only
for safety or reachability automata, but actually for all parity automata, with multiple
proofs using game semantics [17], collapsible pushdown automata [10], intersection types [14],
or Krivine machines [20], and with several extensions [5, 3, 6, 21, 18]. The problem for
safety automata was tackled in particular by Aehlig [1] and by Kobayashi [12]. To those
algorithms we add another one. The main difference between our algorithm and all the
others is that we solve the problem step by step, repeatedly reducing the order by one, while
most previous algorithms work “in one step”, being compulsorily more complicated. The
only proofs that have been reducing the order by one, were proofs using collapsible pushdown
automata [10, 3, 6], being very technical (and contained only in unpublished appendices). A
reduction of order was also possible for a subclass of recursion schemes, called safe recursion
schemes [11], but it was not known how to extend it to all recursion schemes.

Comparing the two variants of the model-checking problem for higher-order recursion
schemes – involving safety and reachability automata, and involving all parity automata –
we have to mention two things. First, while most theoretical results can handle all parity
automata, actual tools solving this problem in practice mostly deal only with safety and
reachability automata (called also trivial and co-trivial automata) [13, 4, 22, 19]. Second,
there exists a polynomial-time (although nontrivial) reduction from the variant involving
parity automata to the variant involving safety automata [9].

Our transformation is directly motivated by a recent paper of Asada and Kobayashi [2].
They show how to transform a grammar of order n generating a language of words to a
grammar of order n− 1 generating a language of trees, so that words of the original language
are written in leaves of trees of the new language. Unexpectedly, this transformation increases
the size of the grammar only polynomially. Our transformation is quite similar, but we
start from a grammar generating a language of trees, not words. In effect, on the one hand,
we do not say anything specific about the language after the transformation (except that
nonemptiness is preserved), and on the other hand, the size growth is exponential, not
polynomial.

2 Preliminaries

For a number k ∈ N we write [k] for {1, . . . , k}.
The set of (simple) types is constructed from a unique ground type o using a binary

operation →; namely o is a type, and if α and β are types, so is α→ β. By convention,
→ associates to the right, that is, α→ β → γ is understood as α→ (β → γ). We often
abbreviate α→ · · · → α︸ ︷︷ ︸

`

→ β as α`→ β. The order of a type α, denoted ord(α), is defined

by induction: ord(α1 → · · · → αk → o) = max({0} ∪ {ord(αi) + 1 | i ∈ [k]}); for example
ord(o) = 0, ord(o→ o→ o) = 1, and ord((o→ o)→ o) = 2.

Having a finite set of typed nonterminals X , and a finite set of typed variables Y, terms
over (X ,Y) are defined by induction:

every nonterminal X ∈ X of type α is a term of type α;
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every variable y ∈ Y of type α is a term of type α;
if K1, . . . ,Kk are terms of type o, then •〈K1, . . . ,Kk〉 and ⊕〈K1, . . . ,Kk〉 are terms of
type o;
if K is a term of type α→ β, and L is a term of type α, then K L is a term of type β.

The type of a term K is denoted tp(K). The order of a term K, written ord(K), is defined
as the order of its type. We write Ω for ⊕〈〉, and • for •〈〉.

The construction ⊕〈K1, . . . ,Kk〉 is an alternative; such a term reduces to one of the terms
K1, . . . ,Kk. This construction is used to introduce nondeterminism to grammars (defined
below). In the special case of k = 0 (when we write Ω) no reduction is possible; thus Ω
denotes divergence.

The construction •〈K1, . . . ,Kk〉 can be seen as a generator of a tree node with k children;
subtrees starting in these children are described by the terms K1, . . . ,Kk. In a usual
presentation, nodes are labeled by letters from some finite alphabet. In this paper, however,
we do not care about the exact letters contained in generated trees, only about language
nonemptiness, hence we do not write these letters at all (in other words, we use a single-letter
alphabet, where • is the only letter). Actually, in the sequel we even do not consider trees;
we rather say that •〈K1, . . . ,Kk〉 is convergent if all K1, . . . ,Kk are convergent (which can
be rephrased as: the language generated from •〈K1, . . . ,Kk〉 is nonempty if the languages
generated from all K1, . . . ,Kk are nonempty).

A (higher-order) grammar is a tuple G = (X , X0,R), where X a finite set of typed
nonterminals, X0 ∈ X is a starting nonterminal of type o, and R a function assigning to
every nonterminal X ∈ X a rule of the form X y1 . . . yk → R, where tp(X) = (tp(y1)→
· · · → tp(yk)→ o), and R is a term of type o over (X , {y1, . . . , yk}). The order of a grammar
is defined as the maximum of orders of its nonterminals.

Having a grammar G = (X , X0,R), for every set of variables Y we define a reduction
relation −→G between terms over (X ,Y) and sets of such terms, as the least relation such
that
(1) XK1 . . . Kk −→G {R[K1/y1, . . . ,Kk/yk]} if the rule for X is X y1 . . . yk → R, where

R[K1/y1, . . . ,Kk/yk] denotes the term obtained from R by substituting Ki for yi for all
i ∈ [k],

(2) •〈K1, . . . ,Kk〉 −→G {K1, . . . ,Kk}, and
(3) ⊕〈K1, . . . ,Kk〉 −→G {Ki} for every i ∈ [k].

We say that a term M is G-convergent if M −→G N for some set N of G-convergent
terms. This is an inductive definition; in particular, the base case is when M −→G ∅. In
other words, M is G-convergent if there is a finite tree labeled by terms where for each node,
the node and its children satisfy one of (1)-(3). Moreover, the grammar G is convergent if its
starting nonterminal X0 is G-convergent.

3 Transformation

In this section we present a transformation, called order-reducing transformation, resulting
in the main theorem of this paper:

I Theorem 3.1. For any n ≥ 1, there exists a transformation from order-n grammars to
order-(n − 1) grammars, and a polynomial pn such that, for any order-n grammar G, the
resulting grammar G† is convergent if and only if G is convergent, and |G†| ≤ 2pn(|G|).

FSTTCS 2020



53:4 Higher-Order Nonemptiness Step by Step

Intuitions. Let us first present intuitions behind our transformation. While reducing the
order, we have to replace, in particular, order-1 functions by order-0 terms. Consider for
example a term K L of type o, where K has type o→ o. Notice that L generates trees
that are inserted somewhere in contexts generated by K. Thus, when is K L convergent?
There are two possibilities. First, maybe K is convergent without using its argument at all.
Second, maybe K can be convergent but only using its argument, and then L also has to be
convergent. Notice that in the first case K Ω is convergent (i.e., K is convergent even if the
argument is not convergent), and in the second case K • is convergent (i.e., K is convergent
if its argument is convergent). In the transformation, we transform K into two order-0 terms,
K0 and K1 corresponding to K Ω and K •, and then we replace K L by ⊕〈K0, •〈K1, L〉〉.

As a full example, consider an order-1 grammar with the following rules:

X→ Y Z, Y x → ⊕〈•, x〉, Z→ •.

It will be transformed to the order-0 grammar with the following rules:

X→ ⊕〈Y0, •〈Y1,Z〉〉, Y0 → ⊕〈•,Ω〉, Y1 → ⊕〈•, •〉, Z→ •.

Notice that the original grammar is convergent “for two reasons”: the ⊕ node in the rule for
Y may reduce either to the first possibility (i.e., to •), or to the second possibility (i.e., to x),
in which case convergence follows from convergence of the argument Z. This is reflected by
the two possibilities available for the ⊕ node in the new rule for X: we either choose the first
possibility and we depend only on convergence of Y0, or we choose the the second possibility
and we depend on convergence of both Y1 and Z. Notice that after replacing the (old and
new) rule for Z by Z → Ω, the modified grammars remain convergent thanks to the first
possibility above. Likewise, after replacing the original rule for Y by Y x → x, the new rules
will be Y0 → Ω and Y1 → •, and the modified grammars remain convergent thanks to the
second possibility above. However, after applying both these replacements simultaneously,
the grammars stop to be convergent.

If our term K takes multiple order-0 arguments, say we have K L1 . . . Lk, while trans-
forming K we need 2k variants of the term: each of the arguments may be either used
(replaced by •) or not used (replaced by Ω). This is why we have the exponential blow-up.
Let us compare this quickly with the transformation of Asada and Kobayashi [2], which
worked for grammars generating words (i.e., trees where every node has at most one child).
In their case, at most one of the arguments Li could be used, so they needed only k + 1
variants of K; this is why their transformation was polynomial.

For higher-order grammars we apply the same idea: functions of order 1 are replaced by
terms of order 0, and then the order of any higher-order function drops down by one. For
example, consider a grammar with the following rules:

X→ T Y, T y→ y (y •), Y x → ⊕〈•, x〉.

The nonterminal Y is again of type o→ o, hence it is replaced by two nonterminals Y0,Y1 of
type o, describing the situation when the parameter x is either not used or used. Likewise,
the corresponding parameter y of T is replaced by two parameters y0, y1. The resulting
grammar will have the following rules:

X→ T Y0 Y1, T y0 y1 → ⊕〈y0, •〈y1,⊕〈y0, •〈y1, •〉〉〉〉, Y0 → ⊕〈•,Ω〉, Y1 → ⊕〈•, •〉.

Formal definition. We now formalize the above intuitions. Having a type, we are interested
in cutting off its suffix being of order 1. Thus, we use the notation α1→ · · · → αk⇒ o`→ o
for a type α1 → · · · → αk → o` → o such that either k = 0 or αk 6= o. Notice that every
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type α can be uniquely represented in this form. We remark that some among the types
α1, . . . , αk−1 (but not αk) may be o. For a type α we write gar(α) (“ground arity”) for the
number ` for which we can write α = (α1→· · ·→αk⇒ o`→ o); we also extend this to terms:
gar(M) = gar(tp(M)).

We transform terms of type α to terms of type α†, which is defined by induction:

(α1→ · · · → αk⇒ o`→ o)† =
(

(α†1)2gar(α1)
→ · · · → (α†k)2gar(αk)

→ o
)
.

Thus, we remove all trailing order-0 arguments, and we multiplicate (and recursively trans-
form) remaining arguments.

For a finite set S, we write 2S for the set of functions A : S → {0, 1}. Moreover, we
assume some fixed order on functions in 2S , and we write P (QA)A∈2S for an application
P QA1 . . . QA2|S| , where A1, . . . , A2|S| are all the function from 2S listed in the fixed order.
The only function in 2∅ is denoted ∅.

Fix a grammar G = (X , X0,R). For every nonterminal X and for every function
A ∈ 2[gar(X)] we consider a nonterminal X†A of type (tp(X))†. As the new set of nonterminals
we take X † = {X†A | X ∈ X , A ∈ 2[gar(X)]}. Likewise, for every variable y and for every
function A ∈ 2[gar(y)] we consider a variable y†A of type (tp(y))†, and for a set of variables Y
we denote Y† = {y†A | y ∈ Y, A ∈ 2[gar(y)]}.

We now define a function tr transforming terms. Its value tr(A,Z,M) is defined when M
is a term over some (X ,Y), and A ∈ 2[gar(M)], and Z : Y ⇀ {0, 1} is a partial function such
that dom(Z) contains only variables of type o. The intention is that A specifies which among
trailing order-0 arguments can be used, and Z specifies which order-0 variables (among those
in dom(Z)) can be used. The transformation is defined by induction on the structure of M ,
as follows:
(1) tr(A,Z,X) = XA for X ∈ X ;
(2) tr(A,Z, y) = yA for y ∈ Y \ dom(Z);
(3) tr(A,Z, z) = Ω if Z(z) = 0;
(4) tr(A,Z, z) = • if Z(z) = 1;
(5) tr(∅, Z, •〈K1, . . . ,Kk〉) = •〈tr(∅, Z,K1), . . . , tr(∅, Z,Kk)〉;
(6) tr(∅, Z,⊕〈K1, . . . ,Kk〉) = ⊕〈tr(∅, Z,K1), . . . , tr(∅, Z,Kk)〉;
(7) tr(A,Z,K L) = ⊕〈tr(A[`+1 7→ 0], Z,K), •〈tr(A[`+1 7→ 1], Z,K), tr(∅, Z, L)〉〉 if tp(K) =

(o`+1→ o);
(8) tr(A,Z,K L) = (tr(A,Z,K)) (tr(B,Z,L))B∈2[gar(L)] if tp(K) = (α1→ · · · → αk⇒ o`→ o)

with k ≥ 1.

For every rule X y1 . . . yk z1 . . . z` → R in R, where ` = gar(X), and for every function
A ∈ 2[`], to R† we take the rule

X†A (y†1,B)B∈2[gar(y1)] . . . (y†k,B)B∈2[gar(yk)] → tr(∅, [zi 7→ A(`+ 1− i) | i ∈ [`]], R).

In the function A it is more convenient to count arguments from right to left (then we do
not need to shift the domain in Case (7) above), but it is more natural to have variables
z1, . . . , z` numbered from left to right; this is why in the rule for X†A we assign to zi the
value A(`+ 1− i), not A(i).

Finally, the resulting grammar G† is (X †, X†0,∅,R
†).

FSTTCS 2020



53:6 Higher-Order Nonemptiness Step by Step

4 Complexity

In this section we analyze complexity of our transformation. First, we formally define the
size of a grammar. The size of a term is defined by induction on its structure:

|X| = |y| = 1, |K L| = 1 + |K|+ |L|,
|•〈K1, . . . ,Kk〉| = |⊕〈K1, . . . ,Kk〉| = 1 + |K1|+ · · ·+ |Kk|.

Then |G|, the size of G is defined as the sum of |R|+ k over all rules X y1 . . . yk → R of G.
In Asada and Kobayashi [2] such a size is called Curry-style size; it does not include sizes of
types of employed variables.

We say that a type α is a subtype of a type β if either α = β, or β = (β1→ β2) and α is a
subtype of β1 or of β2. We write AG for the largest arity of subtypes of types of nonterminals
in a grammar G. Notice that types of other objects appearing in G, namely variables and
subterms of right sides of rules, are subtypes of types of nonterminals, hence their arity is
also bounded by AG . It is reasonable to consider large grammars, consisting of many rules,
where simultaneously the maximal arity AG is respectively small.

While the exponential bound mentioned in Theorem 3.1 is obtained by applying the
order-reducing transformation to an arbitrary grammar, the complexity becomes slightly
better if we first apply a preprocessing step. This is in particular necessary, if we want
to obtain linear dependence in the size of G (and exponential only in the maximal arity
AG). The preprocessing, making sure that the grammar is in a simple form (defined below)
amounts to splitting large rules into multiple smaller rules. A similar preprocessing is present
already in prior work [13, 2, 7], however our definition of a simple form is slightly more
liberal, so that the order reduction applied to a grammar in a normal form gives again a
grammar in a normal form.

An application depth of a term R is defined as the maximal number of applications on
a single branch in R, where a compound application K L1 . . . Lk counts only once. More
formally, we define by induction:

ad(•〈K1, . . . ,Kk〉) = ad(⊕〈K1, . . . ,Kk〉) = max{ad(Ki) | i ∈ [k]},
ad(XK1 . . . Kk) = ad(y K1 . . . Kk) = max({0} ∪ {ad(Ki) + 1 | i ∈ [k]}).

We say that a grammar G is in a simple form if the right side of each its rule has application
depth at most 2.

Any grammar G can be converted to a grammar in a simple form, as follows. Consider a
rule X y1 . . . yk → R, and a subterm of R of the form f K1 . . . Km, where f is a nonterminal
or a variable, but some Ki already has application depth 2. Then we replace the occurrence
of Ki with Y y1 . . . yk (being a term of application depth 1) for a fresh nonterminal Y , and
we add the rule Y y1 . . . yk x1 . . . xs → Ki x1 . . . xs (whose right side already has application
depth 2; the additional variables x1, . . . , xs are added to ensure that the type is o). By
repeating such a replacement for every “bad” subterm of every rule, we clearly obtain a
grammar in a simple form.

I Lemma 4.1. Let G′ be the grammar in a simple form obtained by the above simplification
procedure from a grammar G. Then ord(G′) = ord(G), and AG′ ≤ 2AG, and |G′| = O(AG · |G|).
The procedure can be performed in time linear in its output size.

Proof. The parts about the order and about the running time are obvious.
Types of nonterminals originating from G remain unchanged. The type of a fresh

nonterminal Y introduced in the procedure is of the form α1→· · ·→αk→β1→· · ·→βs→ o,
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where all αi and βi are types present also in G. The arity of the whole type is k+ s, where k
is the arity of the original nonterminal X (hence it is bounded by AG), and s is bounded by
the arity of the type of Ki (hence also by AG).

In order to bound the size of the resulting grammar, notice that the considered replacement
is performed at most once for every subterm of the right side of every rule, hence the number
of replacements is bounded by |G|. Each such a replacement increases the size of the grammar
by at most O(AG). J

I Lemma 4.2. For every grammar G in a simple form, the grammar G† (i.e., the result of
the order-reducing transformation) is also in a simple form, and ord(G†) = max(0, ord(G)−1),
and AG† ≤ AG ·2AG , and |G†| = O(|G|·25·AG ). Moreover, the transformation can be performed
in time linear in its output size.

Proof. The part about the running time is obvious. It is also easy to see by induction that
ord(α†) = max(0, ord(α) − 1). It follows that the order of the grammar satisfies the same
equality, because nonterminals of G† have type α† for α being the type of a corresponding
nonterminal of G.

Recall that in the type α† obtained from α = (α1 → · · · → αk → o), every αi either
disappears or becomes (transformed and) repeated 2gar(αi) times, that is, at most 2AG times.
This implies the inequality concerning AG† .

Every compound application can be written as f K1 . . . Kk L1 . . . L`, where f is a
nonterminal or a variable, and ` = gar(f). In such a term, every Ki (after transforming)
becomes repeated 2gar(Ki) times, that is, at most 2AG times. Then, for every Li we duplicate
the outcome and we append a small prefix; this duplication happens ` times, that is, at
most AG times. In consequence, we easily see by induction that while transforming a term
of application depth d, its size gets multiplicated by at most O(22d·AG ). Moreover, every
nonterminal X is repeated 2gar(X) times, that is, at most 2AG times. Because the application
depth of right sides of rules is at most 2, this bounds the size of the new grammar by
O(|G| · 25·AG ).

Looking again at the above description of the transformation, we can notice that the
application depth cannot grow; in consequence the property of being in a simple form is
preserved. J

Thus, if we want to check nonemptiness of a grammar G of order n, we can first convert
it to a simple form, and then apply the order-reducing transformation n times. This gives us
a grammar of order 0, whose nonemptiness can be checked in linear time. By Lemmata 4.1
and 4.2, the whole algorithm works in time n-fold exponential in AG and linear in |G|.

If the original grammar G generates a language of words, we can start by applying
the polynomial-time transformation of Asada and Kobayashi [2], which converts G into an
equivalent grammar of order n− 1 (generating a language of trees); then we can continue
as above. Because their transformation is also linear in |G|, and increases the arity only
quadratically, in this case we obtain an algorithm working in time (n− 1)-fold exponential in
AG and linear in |G|.

5 Correctness

In this section we finish a proof of Theorem 3.1 by showing that the grammar G† resulting
from transforming a grammar G is convergent if and only if the original grammar G is
convergent. This proof is also formalised in the proof assistant Coq, and available at GitHub
(https://github.com/pparys/ho-transform-sbs). The strategy of our proof is similar as in

FSTTCS 2020
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53:8 Higher-Order Nonemptiness Step by Step

Asada and Kobayashi [2]. Namely, we first show that reductions performed by G can be
reordered, so that we can postpone substituting for (trailing) variables of order 0. To store
such postponed substitutions, called explicit substitutions, we introduce extended terms.
Then, we show that such reordered reductions in G are in a direct correspondence with
reductions in G†.1

Extended terms. In the sequel, terms defined previously are sometimes called non-extended
terms, in order to distinguish them from extended terms defined below. Having a finite set of
typed nonterminals X , and a finite set Z of variables of type o, extended terms over (X ,Z)
are defined by induction:

if z 6∈ Z is a variable of type o, and E is an extended term over (X ,Z ] {z}), and L is a
non-extended term of type o over (X ,Z), then E〈L/z〉 is an extended term over (X ,Z);
every non-extended term of type o over (X ,Z) is an extended term over (X ,Z).

The construction of the form E〈L/z〉 is called an explicit substitution. Intuitively, it denotes
the term obtained by substituting L for z in E. Notice that the variable z being free in E
becomes bound in E〈L/z〉, and that explicit substitutions are allowed only for the ground
type o.

Of course a (non-extended or extended) term over (X ,Z) can be also seen as a term
over (X ,Z ′), where Z ′ ⊇ Z. In the sequel, such extending of the set of variables is often
performed implicitly.

Having a grammar G = (X , X0,R), for every set Z of variables of type o we define an
ext-reduction relation  G between extended terms over (X ,Z) and sets of such terms, as the
least relation such that
(1) XK1 . . . Kk L1 . . . L`  G {R[K1/y1, . . . ,Kk/yk, z

′
1/z1, . . . , z

′
`/z`]〈L1/z

′
1〉 . . . 〈L`/z′`〉} if

` = gar(X), and R(X) = (X y1 . . . yk z1 . . . z` → R), and z′1, . . . , z′` are fresh variables
of type o not appearing in Z,

(2) •〈K1, . . . ,Kk〉 G {K1, . . . ,Kk},
(3) ⊕〈K1, . . . ,Kk〉 G {Ki} for every i ∈ [k],
(4) z〈L/z〉 G {L},
(5) z′〈L/z〉 G {z′} if z′ 6= z, and
(6) E〈L/z〉 G {F 〈L/z〉 | F ∈ F} whenever E  G F .

We say that an extended term E over (X , ∅) is G-ext-convergent if E −→G F for some
set F of G-ext-convergent extended terms. The grammar G is ext-convergent if its starting
nonterminal X0 is G-ext-convergent.

There is an “expand” function from extended terms to non-extended terms, which performs
all the explicit substitutions written in front of an extended term:

exp(K〈L1/z1〉 . . . 〈L`/z`〉) = K[L1/z1] . . . [L`/z`].

We also write exp(F) for {exp(F ) | F ∈ F} (where F is a set of extended terms). The
following lemma, saying that we can consider ext-convergence instead of convergence, can
be proved in a standard way (actually, Asada and Kobayashi have a very similar lemma [2,
Lemma 18]); a proof can be found in the full version of the paper (Appendix A).

1 Asada and Kobayashi have an additional step in their proof, namely a reduction to the case of recursion-
free grammars. This step turns out to be redundant, at least in the case of our transformation.
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I Lemma 5.1. Let G = (X , X0,R) be a grammar. An extended term E over (X , ∅) is
G-ext-convergent if and only if exp(E) is G-convergent. In particular G is ext-convergent if
and only if it is convergent.

We extend the transformation function to extended terms, by adding the following rule,
where E〈L/z〉 is an extended term over (X ,Z), and Z ∈ 2Z (the first argument is always ∅,
because all extended terms are of type o):
(9) tr(∅, Z,E〈L/z〉) = ⊕〈tr(∅, Z[z 7→ 0], E), •〈tr(∅, Z[z 7→ 1], E), tr(∅, Z, L)〉〉.

Between ext-convergence and convergence of G†. Once we know that convergence and
ext-convergence of G are equivalent (cf. Lemma 5.1), it remains to prove that ext-convergence
of G is equivalent to convergence of G†, which is the subject of Lemma 5.2:

I Lemma 5.2. Let G = (X , X0,R) be a grammar. An extended term E over (X , ∅) is
G-ext-convergent if and only if tr(∅, ∅, E) is G†-convergent. In particular G is ext-convergent
if and only if G† is convergent.

The remaining part of this section is devoted to a proof of this lemma. Fix a grammar
G = (X , X0,R). Of course the second part (concerning the grammars) follows from the first
part (concerning an extended term) applied to the starting nonterminal X0. It is thus enough
to prove the first part. We start with the left-to-right direction (i.e., from G-ext-convergence
of E to G†-convergence of tr(∅, ∅, E)). We need two simple auxiliary lemmata. The first of
them says that the tr function commutes with substitution:

I Lemma 5.3. Let R[K1/y1, . . . ,Kk/yk] be a term over (X ,Z), let A ∈ 2[gar(R)], and let
Z ∈ 2Z . Then

tr(A,Z,R[K1/y1, . . . ,Kk/yk]) = (tr(A,Z,R))[tr(B,Z,Ki)/y†i,B | i ∈ [k], B ∈ 2[gar(Ki)]].

Proof. A straightforward induction on the structure of R. J

The second lemma says that by increasing values of the function Z we can make the
transformed term only more convergent:

I Lemma 5.4. Let E be an extended term over (X ,Z ] {z}), and let Z ∈ 2Z . If tr(∅,
Z[z 7→ 0], E) is G†-convergent, then also tr(∅, Z[z 7→ 1], E) is G†-convergent.

Proof. Denote P 0 = tr(∅, Z[z 7→ 0], E) and P 1 = tr(∅, Z[z 7→ 1], E). Tracing the rules of
the transformation function, we can see that P 0 and P 1 are created in the same way, with
the exception that occurrences of z in E are transformed to Ω in P 0, and to • in P 1. Thus,
P 1 can be obtained from P 0 by replacing some occurrences of Ω to •. We know that P 0 is
G†-convergent, which means that it can be rewritten using the −→G relation until reaching
empty sets. Moreover, the subterms Ω (which are present in P 0, but not in P 1) cannot be
reached during this rewriting, because Ω is not G†-convergent. Thus, P 1 can be rewritten in
exactly the same way as P 0, so it is also G†-convergent. J

The next lemma shows how ext-reductions of G are reflected in G†:

I Lemma 5.5. Let E be an extended term over (X ,Z) and let Z ∈ 2Z . If E  G F and
tr(∅, Z, F ) is G†-convergent for every F ∈ F , then tr(∅, Z,E) is also G†-convergent.
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Proof. Induction on the definition of E  G F . We analyze particular cases appearing in
the definition. Missing details are given in the full version of the paper (Appendix B).

In Case (1) E consists of an application of arguments to some nonterminal X. For
simplicity of presentation, suppose that X has two arguments: y of positive order, and z of
order 0 (the general case is handled in the full version of the paper). Then

E = XK L, and F = {F} for F = R[K/y, z′/z]〈L/z′〉,

where R(X) = (X y z → R) and z′ is a fresh variable of type o not appearing in Z. For
j ∈ {0, 1} let

P j = tr([1 7→ j], Z,X K), and Qj = tr(∅, Z[z′ 7→ j], R[K/y, z′/z]).

First, we prove that P j −→G† {Qj}. By definition we have that

P j = X†[17→j] (tr(B,Z,K))B∈2[gar(K)] ,

and by Lemma 5.3 we have that

Qj = tr(∅, Z[z′ 7→ j], R[z′/z])[tr(B,Z[z′ 7→ j],K)/y†B | B ∈ 2[gar(K)]]

= tr(∅, [z 7→ j], R)[tr(B,Z,K)/y†B | B ∈ 2[gar(K)]]],

where the second equality holds because the z′ does not appear in K and the variables from
dom(Z) do not appear in R. Recalling that the rule for X†A is

X†[1 7→j] (y†B)B∈2[gar(y)] → tr(∅, [z 7→ j], R),

we immediately see that indeed P j −→G† {Qj}. Having this, we recall that

tr(∅, Z,E) = ⊕〈P 0, •〈P 1, L′〉〉 and tr(∅, Z, F ) = ⊕〈Q0, •〈Q1, L′〉〉 (1)

for appropriate L′ (obtained by transforming L). Recall that, by definition, a term M is
G†-convergent if and only if M −→G† N for some set N of G†-convergent terms. Thus,
the only way why tr(∅, Z, F ) can be G†-convergent (which holds by assumption) is that
either Q0 is G†-convergent, or both Q1 and L′ are G†-convergent. Because of the reduction
P j −→G† {Qj} we have that either P 0 is G†-convergent, or both P 1 and L′ are G†-convergent,
which implies that tr(∅, Z,E) is G†-convergent.

In Cases (2) and (3), when E = •〈K1, . . . ,Kk〉 or E = ⊕〈K1, . . . ,Kk〉, we have a reduction
from tr(∅, Z,E) to {tr(∅, Z, F ) | F ∈ F}, because tr distributes over •〈. . .〉 and ⊕〈. . .〉. In
Cases (4) and (5) (elimination of explicit substitution) we also have similar reductions.

Finally, in Case (6) we have that

E = E0〈L/z〉, F = {E1〈L/z〉, . . . , Ek〈L/z〉}, and E0  G {E1, . . . , Ek}.

By definition, for every i ∈ {0, . . . , k} we have that

tr(∅, Z,Ei〈L/z〉) = ⊕〈P 0
i , •〈P 1

i , L
′〉〉, where (2)

P 0
i = tr(∅, Z[z 7→ 0], Ei), P 1

i = tr(∅, Z[z 7→ 1], Ei), L′ = tr(∅, Z, L).

Thus, tr(∅, Z,Ei〈L/z〉) is G†-convergent if and only if either P 0
i is G†-convergent, or both P 1

i

and L′ are G†-convergent. By assumption this is the case for all i ∈ [k], and we have to prove
this for i = 0. If for every i ∈ [k] we have the former case (i.e., P 0

i is G†-convergent), by the
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induction hypothesis (used with the function Z[z 7→ 0]) we have that P 0
0 is G†-convergent,

and we are done. In the opposite case, for some i ∈ [k] (but for at least one of them) we
have that both P 1

i and L′ are G†-convergent, and for the remaining i ∈ [k] we have that P 0
i

is G†-convergent. Using Lemma 5.4 we deduce that if P 0
i is G†-convergent, then also P 1

i is
G†-convergent. Thus actually P 1

i is G†-convergent for every i ∈ [k], and additionally L′ is
G†-convergent. By the induction hypothesis (used with the function Z[z 7→ 1]) we have that
P 1

0 is G†-convergent, and we are also done. J

We can now conclude with the left-to-right direction of Lemma 5.2:

I Lemma 5.6. Let E be an extended term over (X , ∅). If E is G-ext-convergent, then
tr(∅, ∅, E) is G†-convergent.

Proof. Induction on the fact that E is G-ext-convergent. Because E is G-ext-convergent,
E  G F for some set F of G-ext-convergent extended terms, for which we can apply the
induction hypothesis. The induction hypothesis says that tr(∅, ∅, F ) is G†-convergent for
every F ∈ F . In such a situation Lemma 5.5 implies that tr(∅, ∅, E) is also G†-convergent, as
required. J

For a proof in the opposite direction we need the following definition. We say that a term
M G†-convergent in n steps if M −→G† {N1, . . . , Nk}, and every Ni is G†-convergent in ni
steps, and n = 1 + n1 + · · ·+ nk (i.e., we count 1 for the above reduction, and we sum the
numbers of steps needed to reduce all Ni). Clearly a term M is G†-convergent if and only if
it is G†-convergent in n steps for some n ∈ N. Notice that the number n is not determined
by M (i.e., that the same term M can be G†-convergent in n steps for multiple values of n).
We can now state the converse of Lemma 5.5:

I Lemma 5.7. Let E be an extended term over (X ,Z) and let Z ∈ 2Z . If tr(∅, Z,E) is
G†-convergent in n steps and E is not a variable, then there exists a set F of extended terms
such that E  G F and tr(∅, Z, F ) is G†-convergent in less than n steps for every F ∈ F .

Proof. Induction on the number of explicit substitutions in E. Depending on the shape of
E, we have several cases. Missing details are given in the full version of the paper (Appendix
C).

One case is E consists of a nonterminal X with some arguments applied. For simplicity of
presentation, we again suppose that X has two arguments: y of positive order, and z of order
0. Thus, E is of the form E = XK L. Let X y z → R be the rule for X, and let z′ be a fresh
variable of type o not appearing in Z. In such a situation, taking F = R[K/y, z′/z]〈L/z′〉
we have that E  G {F}. Recall the terms P j and Qj (for j ∈ {0, 1}) from the proof of
Lemma 5.5. In that proof we have observed that P j −→G† {Qj}. But clearly this is the
only way how P j can reduce, so if P j is G†-convergent in nj steps, then necessarily Qj is
G†-convergent in nj − 1 steps. By Equalities (1) we have that if tr(∅, Z,E) is G†-convergent
in n steps, then either P 0 is G†-convergent in n0 = n − 1 steps, or both P 1 and L′ are
G†-convergent in, respectively, n1 and n− n1 − 2 steps, for some n1 ∈ N. In the former case,
Q0 is G†-convergent in n0 − 1 = n− 2 steps, so tr(∅, Z, F ) is G†-convergent in n− 1 steps,
and we are done. In the latter case, Q1 is G†-convergent in n1 − 1 steps, so tr(∅, Z, F ) is
G†-convergent in (n1 − 1) + (n− n1 − 2) + 2 = n− 1 steps, and we are done again.

Notice that we do not have a similar case for a variable with some arguments applied,
because the whole E is not a variable, and because (by definition of an extended term) all
free variables of E are of type o.

The cases of E = •〈K1, . . . ,Kk〉 and E = ⊕〈K1, . . . ,Kk〉 are straightforward.
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It remains to assume that E is an explicit substitution. If E = z〈L/z〉, we should take
F = {L}, and if E = z′〈L/z〉 for z′ 6= z, we should take F = {z′} (in these two subcases
we cannot use the induction assumption, because it does not work for an extended term
being a single variable). Otherwise E = E0〈L/z〉, where E0 is not a variable. Recall that
tr(∅, Z,E) = ⊕〈P 0

0 , •〈P 1
0 , L

′〉〉 for P 0
0 , P

1
0 , L

′ as in the proof of Lemma 5.5. By assumption
tr(∅, Z,E) is G†-convergent in n steps, so either P 0

0 is G†-convergent in n′ = n− 1 steps, or
both P 1

0 and L′ are G†-convergent in, respectively, n′ and n− n′ − 2 steps, for some n′ ∈ N.
Let j = 0 in the former case and j = 1 in the latter case. The induction hypothesis gives us
a set {E1, . . . , Ek} such that E0  G {E1, . . . , Ek} and tr(∅, Z[z 7→ j], Ei) is G†-convergent
in less than n′ steps for every i ∈ [k]. We then take

F = {E1〈L/z〉, . . . , Ek〈L/z〉}.

Equality (2) holds now for all i ∈ {0, . . . , k}. For j = 0 we use that the fact that
tr(∅, Z,Ei〈L/z〉) −→G† {P 0

i }, which implies that tr(∅, Z,Ei〈L/z〉) is G†-convergent in less
than n′+1 = n steps, as required. For j = 1 we use that the fact that tr(∅, Z,Ei〈L/z〉) −→G†

{•〈P 1
i , L

′〉} and •〈P 1
i , L

′〉 −→G† {P 1
i , L

′}, which implies that tr(∅, Z,Ei〈L/z〉) is G†-conver-
gent in less than n′ + (n− n′ − 2) + 2 = n steps, as required. J

The next lemma finishes the proof of Lemma 5.2, and thus the proof of correctness of our
transformation:

I Lemma 5.8. Let E be an extended term over (X , ∅). If tr(∅, ∅, E) is G†-convergent then
E is G-ext-convergent.

Proof. Induction on the (smallest) number n such that tr(∅, ∅, E) is G†-convergent in n

steps. By assumption E is not a variable, because it is an extended term over (X , ∅) (no free
variables). So, by Lemma 5.5 there exists a set F of extended terms such that E  G F and
tr(∅, ∅, F ) is G†-convergent in less than n steps for every F ∈ F . By the induction hypothesis
every F ∈ F is G-ext-convergent, so by definition also E is G-ext-convergent. J

6 Conclusions

We have presented a new, simple algorithm checking whether a higher-order grammar
generates a nonempty language. One may ask whether this algorithm can be used in practice.
Of course the complexity n-EXPTIME for grammars of order n is unacceptably large (even if
we take into account the fact that we are n-fold exponential only in the arity of types, not in
the size of a grammar), but one has to recall that there exist tools solving the considered
problem in such a complexity. The reason why these tools work is that the time spent by
them on “easy” inputs is much smaller than the worst-case complexity (and many “typical
inputs” are indeed easy). Unfortunately, this is not the case for our algorithm: the size of
the grammar resulting from our transformation is always large, even if the original grammar
generated a nonempty (or empty) language for some “easy reason”. Thus, our algorithm is
mainly of a theoretical interest.

The presented transformation preserves nonemptiness, and thus can be used to solve
the nonemptiness problem for higher-order grammars. However, it seems feasible that other
problems concerning higher-order grammars (higher-order recursion schemes), like model-
checking against parity automata or the simultaneous unboundedness problem [7], can be
solved using similar transformations. Developing such transformations is a possible direction
for further work.
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