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—— Abstract

Streaming Data String Transducers (SDSTs) were introduced to model a class of imperative and a

class of functional programs, manipulating lists of data items. These can be used to write commonly
used routines such as insert, delete and reverse. SDSTs can handle data values from a potentially
infinite data domain. The model of Streaming String Transducers (SSTs) is the fragment of SDSTs
where the infinite data domain is dropped and only finite alphabets are considered. SSTs have been
much studied from a language theoretical point of view. We introduce data back into SSTs, just
like data was introduced to finite state automata to get register automata. The result is Streaming
String Register Transducers (SSRTs), which is a subclass of SDSTs.

We use origin semantics for SSRTs and give a machine independent characterization, along
the lines of Myhill-Nerode theorem. Machine independent characterizations for similar models
are the basis of learning algorithms and enable us to understand fragments of the models. Origin
semantics of transducers track which positions of the output originate from which positions of the
input. Although a restriction, using origin semantics is well justified and is known to simplify many
problems related to transducers. We use origin semantics as a technical building block, in addition
to characterizations of deterministic register automata. However, we need to build more on top of
these to overcome some challenges unique to SSRTs.
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1 Introduction

Transductions are in general relations among words. Transducers are theoretical models that
implement transductions. Transducers are used in a variety of applications, such as analysis
of web sanitization frameworks, host based intrusion detection, natural language processing,
modeling some classes of programming languages and constructing programming language
tools like evaluators, type checkers and translators. Streaming Data String Transducers
(SDSTs) were introduced in [2] to model a class of imperative and a class of functional
programs, manipulating lists of data items. Transducers have been used in [16] to infer
semantic interfaces of data structures such as stacks. Such applications use Angluin style
learning, which involves constructing transducers by looking at example operations of the
object under study. Since the transducer is still under construction, we need to make
inferences about the transduction without having access to a transducer which implements it.
Theoretical bases for doing this are machine independent characterizations, which identify
what kind of transductions can be implemented by what kind of transducers and give a
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template for constructing transducers. Indeed the seminal Myhill-Nerode theorem gives a
machine independent characterization for regular languages over finite alphabets, which form
the basis of Angluin style learning of regular languages [3]. A similar characterization for a
fragment of SDSTSs is given in [5] and is used as a basis to design a learning algorithm.

Programs deal with data from an infinite domain and transducers modeling the programs
should also treat data as such. For example in [16], the state space reduced from 10° to 800
and the number of learning queries reduced from billions to 4000 by switching to a transducer
model that can deal with data from an infinite domain. We give a machine independent
characterization for a fragment of SDSTs more powerful than those in [16, 5]. The additional
power comes from significant conceptual differences. The transducers used in [16] produce
the output in a linear fashion without remembering what was output before. For example,
they cannot output the reverse of the input strings, which can be done by our model. The
model studied in [5] are called Streaming String Transducers (SSTs), the fragment obtained
from SDSTs by dropping the ability to deal with data values from an infinite domain. We
retain this ability in our model, called Streaming String Register Transducers (SSRTs). It is
obtained from SDSTs by dropping the ability to deal with linear orders in the data domain.
Apart from Angluin style learning algorithms, machine independent characterizations are
also useful for studying fragments of transducer models. E.g. in [5], machine independent
characterization of SSTs is used to study fragments such as non-deterministic automata with
output and transductions definable in First Order logic.

We use origin semantics of transducers, which are used in [5] to take into account how
positions of the output originate from the positions of the input. Using origin semantics is
known to ease some of the problems related to transducers, e.g., [7]. Origin semantics is a
restriction, but a reasonable one and is used extensively in this paper.

Contributions

Machine independent characterizations are known for automata over data values from an
infinite domain [15, 4] and for streaming transducers over finite alphabets [5], but not for
streaming transducers over data values, which is what we develop here. This involves both
conceptual and technical challenges. In [15, 4], data values that must be remembered by an
automaton while reading a word from left to right are identified using a machine independent
definition. We lift this to transducers and identify that the concept of factored outputs
from [5] is necessary for this. Factored outputs can let us ignore some parts of transduction
outputs, which is necessary to define when two words behave similarly. However, [5] does not
deal with data values from an infinite domain and it takes quite a bit of manipulation with
permutations on data values to make ideas from there work here. In transductions, suffixes
can influence how prefixes are transformed. This is elegantly handled in [5] using two way
transducer models known to be equivalent to SSTs. There are no such models known when
data values are present. To handle it in a one way transducer model, we introduce data
structures based on trees that keep track of all possible suffixes. This does raise the question
of whether there are interesting two way transducer models with data values. Recent work
[6] has made progress in this direction, which we discuss at the end of this extended abstract.
We concentrate here on SDSTs and its fragments, which are known to be equivalent to
classes of imperative and functional programming languages. In [2], it is explained in detail
which features of programming languages correspond to which features of the transducer.
Over finite alphabets, streaming string transducers are expressively equivalent to regular
transductions, which are also defined by two way deterministic finite-state transducers and
by monadic second order logic [1].
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Related Works

Studying transducer models capable of handling data values from an infinite domain is an
active area of research [13, 14]. Streaming transducers like SDSTs have the distinctive feature
of using variables to store intermediate values while computing transductions; this idea
appears in an earlier work [11] that introduced simple programs on strings, which implement
the same class of transductions as those implemented by SSTs. An Angluin style learning
algorithm for deterministic automata with memory is given in [17]. A machine independent
characterization of automata with finite memory is given in [8], which is further extended
to data domains with arbitrary binary relations in [9]. The learning algorithm of [17] is
extended to Mealy machines with data in [16]. However, Mealy machines are not as powerful
as SSRTs that we consider here. Using a more abstract approach of nominal automata, [19]
presents a learning algorithm for automata over infinite alphabets. Logical characterizations
of transducers that can handle data are considered in [12]. However, the transducers in

that paper cannot use data values to make decisions, although they are part of the output.

Register automata with linear arithmetic introduced in [10] shares some of the features of the
transducer model used here. Here, data words stored in variables can be concatenated, while
in register automata with linear arithmetic, numbers stored in variables can be operated
upon by linear operators.

Most proofs and some technical details in this extended abstract are skipped due to space
constraints. All the proofs and technical details can be found in the full version.

2 Preliminaries

Let I be the set of integers, N be the set of non-negative integers and D be an infinite set of
data values. We will refer to D as the data domain. For i,j € I, we denote by [i, j] the set

{k|i <k <j}. For any set S, S* denotes the set of all finite sequences of elements from S.

The empty sequence is denoted by €. Given u,v € S*, v is a prefiz (resp. suffix) of w if there
exists w € S* such that u = vw (resp. u = wv). The sequence v is an infiz of u if there are
sequences wi, ws such that u = wivws.

Let 3, T be finite alphabets. We will use ¥ for input alphabet and I" for output alphabet. A
data word over ¥ is a word in (X x D)*. A data word with origin information over I is a word

in (I' x D x N)*. Suppose ¥ = {title, firstName, lastName} and I' = {givenName, surName}.

An example data word over ¥ is (title, Mr.)(firstName, Harry)(lastName, Tom). If we were to
give this as input to a device that reverses the order of names, the output would be the data
word with origin information (surName, Tom, 3)(givenName, Harry, 2), over I'. In the triple
(givenName, Harry, 2), the third component 2 indicates that the pair (givenName, Harry)
originates from the second position of the input data word. We call the third component
origin and it indicates the position in the input that is responsible for producing the output
triple. If a transduction is being implemented by a transducer, the origin of an output
position is the position of the input that the transducer was reading when it produced the
output. The data value at some position of the output may come from any position (not
necessarily the origin) of the input data word. We write transduction for any function from
data words over ¥ to data words with origin information over T.

For a data word w, |w| is its length. For a position i € [1,|w|], we denote by data(w, %)
(resp. letter(w,i)) the data value (resp. the letter from the finite alphabet) at the it
position of w. We denote by data(w, *) the set of all data values that appear in w. For
positions i < j, we denote by wli, j] the infix of w starting at position ¢ and ending at
position j. Note that w[l,|w|] = w. Two data words wy,ws are isomorphic (denoted by
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wy =~ wy) if |wi| = |ws|, letter(wi,i) = letter(ws,i) and data(w;,i) = data(wy,j) iff
data(ws,i) = data(ws, j) for all positions 4,5 € [1,|w;|]. For data values d,d’, we denote
by w[d/d'] the data word obtained from w by replacing all occurrences of d by d’. We say
that d’ is a safe replacement for d in w if w[d/d’'] ~ w. Intuitively, replacing d by d’ doesn’t
introduce new equalities/inequalities among the positions of w. For example, d; is a safe
replacement for dy in (a,ds)(b, dz), but not in (a,d;)(b, ds).

A permutation on data values is any bijection 7 : D — D. For a data word u, 7(u)
is obtained from u by replacing all its data values by their respective images under 7. A
transduction f is invariant under permutations if for every data word u and every permutation
7, f(m(u)) = 7(f(u)) (permutation can be applied before or after the transduction).

Suppose a transduction f has the property that for any triple (v,d,0) in any output
f(w), there is a position ¢ < o in w such that data(w,i) = d. If the data value d is output
from the origin o, then d should have already occurred in the input on or before 0. Such
transductions are said to be without data peeking. We say that a transduction has linear
blow up if there is a constant K such that for any position o of any input, there are at most
K positions in the output whose origin is o.

Streaming String Register Transducers

We present an extension of SSTs to handle data values, just like finite state automata were
extended to finite memory automata [18]. Our model is a subclass of SDSTs, which can store
intermediate values (which can be long words) in variables. E.g., reversing an input word can
be achieved as follows: as each input symbol is read, concatenate it to the back of a variable
maintained for this purpose. At the end, the variable will have the reverse of the input.
There are also registers in these models, which can store single data values. Transitions can
be enabled/disabled based on whether the currently read data value is equal/unequal to the
one stored in one of the registers.

» Definition 1. A Streaming String Register Transducer (SSRT) is an eight tuple S =
E,T,Q, 9, R, X,0,A), where

the finite alphabets 3,1 are used for input, output respectively,

Q is a finite set of states, qo is the initial state,

R is a finite set of registers and X is a finite set of data word variables,

0:Q— ((T'x f%) U X)* is a partial output function, where R=RU {curr}, with curr

being a special symbol used to denote the current data value being read and

AC(QxXx®xQx28xU) is a finite set of transitions. The set ® consists of all

Boolean combinations of atomic constraints of the form r= or r# for r € R. The set U is

the set of all functions from the set X of data word variables to (I' x R) U X)*.

It is required that

For every q € Q and x € X, there is at most one occurrence of x in O(q) and

for every transition (q,0,¢,q', R, ud) and for every x € X, x appears at most once in

the set {ud(y) |y € X}.

We say that the last two conditions above enforce a SSRT to be copyless, since it prevents
multiple copies of contents being made.

A waluation wval for a transducer S is a partial function over registers and data word
variables such that for every register r € R, either val(r) is undefined or is a data value in
D, and for every data word variable z € X, val(x) is a data word with origin information
over I'. The valuation val and data value d satisfies the atomic constraint r= (resp. r7) if
val(r) is defined and d = val(r) (resp. undefined or d # val(r)). Satisfaction is extended to
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Boolean combinations in the standard way. We say that a SSRT is deterministic if for every
two transitions (¢, 0, ¢,q¢’', R',u) and (q,0,¢’,¢", R”,u’) with the same source state ¢ and
input symbol o, the formulas ¢ and ¢’ are mutually exclusive (i.e., ¢ A ¢’ is unsatisfiable).
We consider only deterministic SSRTs here.

A configuration is a triple (g, val, i) where ¢ € Q) is a state, val is a valuation and 4 is the
number of symbols read so far. The transducer starts in the configuration (g, val.,0) where
qo is the initial state and val. is the valuation such that val.(r) is undefined for every register
r € R and val.(z) = € for every data word variable x € X. From a configuration (g, val, i),
the transducer can read a pair (o,d) € ¥ x D and go to the configuration (¢’, val’,i + 1) if
there is a transition (¢, 0, ¢, ¢, R',ud) and 1) d and val satisfies ¢ and 2) val’ is obtained
from wval by assigning d to all the registers in R’ and for every x € X, setting val'(x) to
ud(z)[y — val(y), (v, curr) — (v,d,i + 1), (v,7) = (v, val(r),i+ 1)] (in wd(z), replace every
occurrence of y by wval(y) for every data word variable y € X, replace every occurrence of
(v, curr) by (v,d,i+1) for every output letter v € T and replace every occurrence of (v, ) by
(v, val(r),i+ 1) for every output letter v € I and every register r € R). After reading a data
word w, if the transducer reaches some configuration (g, val,n) and O(q) is not defined, then
the transducer’s output [S](w) is undefined for the input w. Otherwise, the transducer’s
output is defined as [S](w) = O(q)[y — val(y), (v, curr) — (v,d,n), (v,7) — (v, val(r),n)],
where d is the last data value in w.

Intuitively, the transition (g, 0, ¢, q’, R', ud) checks that the current valuation val and the
data value d being read satisfies ¢, goes to the state ¢/, stores d into the registers in R’ and
updates data word variables according to the update function ud. The condition that z
appears at most once in the set {ud(y) | y € X} ensures that the contents of any data word
variable are not duplicated into more than one variable. This ensures, among other things,
that the length of the output is linear in the length of the input. The condition that for every
two transitions (¢, 0, ¢, ¢, R', ud) and (q,0,¢’,¢", R",ud’) with the same source state and
input symbol, the formulas ¢ and ¢’ are mutually exclusive ensures that the transducer cannot
reach multiple configurations after reading a data word (i.e., the transducer is deterministic).

» Example 2. Consider the transduction that is the identity on inputs in which the first
and last data values are equal. On the remaining inputs, the output is the reverse of the
input. This can be implemented by a SSRT using two data word variables. As each input
symbol is read, it is appended to the front of the first variable and to the back of the second
variable. The first variable stores the input and the second one stores the reverse. At the
end, either the first or the second variable is output, depending on whether the last data
value is equal or unequal to the first data value (which is stored in a register).

In Section 3, we define an equivalence relation on data words and state our main result in
terms of the finiteness of the index of the equivalence relation and a few other properties. In
Section 4, we prove that transductions satisfying certain properties can be implemented by
SSRTs (the backward direction of the main result) and we prove the converse in Section 5.

3 How Prefixes and Suffixes Influence Each Other

As is usual in many machine independent characterizations (like the classic Myhill-Nerode
theorem for regular languages), we define an equivalence relation on the set of data words to
identify similar ones. If the equivalence relation has finite index, it can be used to construct
finite state models. We start by looking at what “similar data words” mean in the context of
transductions.
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Suppose L is the set of all even length words over some finite alphabet. The words a
and aaa do the same thing to any suffix v: a-v € L iff aaa -v € L. So, a and aaa are
identified to be similar with respect to L in the classic machine independent characterization.
Instead of a language L, suppose we have a transduction f and we are trying to identify
words u1,us that do the same thing to any suffix v. The naive approach would be to check
if f(uy -v) = f(uz -v), but this does not work. Suppose a transduction f is such that
fla-b) =(a,1)(b,2), f(aaa-b) = (a,1)(a,2)(a,3) - (b,4) and f(c-b) = (¢,1)(b,2)(b,2) (we
have ignored data values in this transduction). The words a and aaa do the same thing to
the suffix b (the suffix is copied as it is to the output), as opposed to ¢ (which copies the
suffix twice to the output). But f(a-b) # f(aaa - b). The problem is that we are not only
comparing what a and aaa do to the suffix b, but also comparing what they do to themselves.
We want to indicate in some way that we want to ignore the parts of the output that come
from a or aaa: f(a|v) = left- (b,2) and f(aaa | b) = left - (b,4). We have underlined
a and aaa on the input side to indicate that we want to ignore them; we have replaced
a and aaa in the output by left to indicate that they are coming from ignored parts of
the input. This has been formalized as factored outputs in [5]. This is still not enough
for our purpose, since the outputs (b,2) and (b,4) indicate that a and aaa have different
lengths. This can be resolved by offsetting one of the outputs by the difference in the lengths:
fla]v) =1left: (b,2) = f_o(aaa | b). The subscript —2 in f_5(aaa | b) indicates that we
want to offset the origins by —2. We have formalized this in the definition below, in which
we have borrowed the basic definition from [5] and added data values and offsets.

» Definition 3 (Offset factored outputs). Suppose f is a transduction and uvw is a data word
over ¥. For a triple (v, d, 0) in f(uvw), the abstract origin abs(o) of o is left (resp. middle,
right) if o is in u (resp. v, w). The factored output f(u | v | w) is obtained from f(uvw) by
first replacing every triple (7, d,0) by (*,x,abs(0)) if abs(o) = left (the other triples are
retained without change). Then all consecutive occurrences of (x,%,1left) are replaced by a
single triple (x,*,1left) to get f(u | v | w). Similarly we get f(u | v | w) and f(u | v | w)
by using (*,*,middle) and (x,*,right) respectively. We get f(u | v) and f(u | v) similarly,
except that there is no middle part. For an integer z, we obtain f,(u | v) by replacing every
triple (7,d,0) by (v,d,0+ z) (triples (x,*,1left) are retained without change).

Let w = (a,d1)(a,d2)(b,ds)(c,dy) and f be the transduction in Example 2. Then f(w) =
(c,ds,4)(b,ds, 3)(a,d2,2)(a,dy, 1) (assuming dy # dy). The factored output f((a,d1)(a,ds)
(b,ds3) | (c,da)) is (¢, da,4)(b,ds, 3)(*, *, Left).

It is tempting to say that two data words u; and ug are equivalent if for all v, f(u1 | v) =
f2(ug | v), where z = |u;| — |ug|. But this does not work; continuing with the transduction
f from Example 2, no two data words from the infinite set {(a,d;) | ¢ > 1} would be
equivalent: f((a,d;) | (a,d;)) # f((a,d;) | (a,d;)) for i # j. To get an equivalence relation
with finite index, we need to realize that the important thing is not the first data value, but
its (dis)equality with the last one. So we can say that for every 4, there is a permutation 7;
on data values mapping d; to dy such that f(m;(a,d;) | v) = f((a,d1) | v). This will get us
an equivalence relation with finite index but it is not enough, since the transducer model we
build must satisfy another property: it must use only finitely many registers to remember
data values. Next we examine which data values must be remembered.

Suppose L is the set of all data words in which the first and last data values are equal.
Suppose a device is reading the word djdadsd; from left to right and trying to determine
whether the word belongs to L (we are ignoring letters from the finite alphabet here). The
device must remember d; when it is read first, so that it can be compared to the last data
value. A machine independent characterization of what must be remembered is given in
[4, Definition 2]; it says that the first occurrence of dy in dydadsd; is L-memorable because
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replacing it with some fresh data value dy (which doesn’t occur in the word) makes a
difference: djdedsd; € L but dydodsdy ¢ L. We adapt this concept to transductions, by
suitably modifying the definition of “making a difference”.

» Definition 4 (memorable values). Suppose f is a transduction. A data value d is f-

memorable in a data word u if there exists a data word v and a safe replacement d' for d in
u such that f(uld/d'] | v) # f(u|v).

Let f be the transduction of Example 2 and d;, ds, d3, d} be distinct data values. We have
f(didads | d1) = (*,%,1left)(d1,4) and f(d\dads | d1) = (d1,4)(x,*,1eft). Hence, d; is
f-memorable in djdads.

We have to consider one more phenomenon in transductions. Consider the transduction
f whose output is € for inputs of length less than five. For other inputs, the output is
the third (resp. fourth) data value if the first and fifth are equal (resp. unequal). Let
dy,ds,ds,dy,ds,d} be distinct data values. We have f(didadsdy | v) = € = f(djdadsdy | v)
if v =€ and f(didadsdy | v) = (*,%,1eft) = f(d}d2dsdy | v) otherwise. Hence, d; is not
f-memorable in dydsdsds. However, any device implementing f must remember d; after
reading djdadsdy, so that it can be compared to the fifth data value. Replacing d; by d} does
make a difference but we cannot detect it by comparing f(didadsdy | v) and f(djdadsdy | v).
We can detect it as follows: f(didadsdy | di) = (ds,3) # (da,4) = f(d1dadsdy | ds). Changing
the suffix from dy to ds influences how the prefix djdadsdy is transformed (in transductions,
prefixes are vulnerable to the influence of suffixes). The value d; is also contained in the
prefix dydz, but f(dids | v) = f(didz | v[d1/ds]) for all v. To detect that dydz is vulnerable,
we first need to append dzds to dids and then have a suffix in which we substitute d; with
something else. We formalize this in the definition below; it can be related to the example
above by setting u = dyds, v’ = dsdy and v = d;.

» Definition 5 (vulnerable values). A data value d is f-vulnerable in a data word u if there
erist data words u',v and a data value d' such that d does not occur in u', d’ is a safe
replacement for d in u-u' -v and f(u-u' |v[d/d]) # f(u-u' | v).

Consider the transduction f defined as f(u) = fi(u) - fa(u); for ¢ € [1,2], f; reverses its
input if the i*" and last data values are distinct. On other inputs, f; is the identity (f; is
the transduction given in Example 2). In the two words dydadsd;dads and dydodsdadids, dy
and dg are f-memorable. For every data word v, f(didadsdidads | v) = f(didadsdadids | v),
so it is tempting to say that the two words are equivalent. But after reading didodsd dads, a

transducer would remember that ds is the latest f-memorable value it has seen. After reading
dydsdsdadyds, the transducer would remember that d; is the latest f-memorable value it has
seen. Different f-memorable values play different roles and one way to distinguish which
is which is to remember the order in which they occurred last. So we distinguish between
didodzdydads and dydadsdadids. Suppose ds,dy are two data values in some data word u.
We say that dy is fresher than dy in u if the last occurrence of d; in w is to the right of the
last occurrence of dy in u.

» Definition 6. Suppose f is a transduction and u is a data word. We say that a data value
d is f-influencing in u if it is either f-memorable or f-vulnerable in u. We denote by ifl;(u)
the sequence dy, - - - dy, where {dp,,...,d1} is the set of all f-influencing values in u and for
alli € [1,m—1], d; is fresher than d;+1 in u. We call d; the i'™" f-influencing data value in u.
If a data value d is both f-vulnerable and f-memorable in u, we say that d is of type vm. If
d is f-memorable but not f-vulnerable (resp. f-vulnerable but not f-memorable) in u, we say
that d is of type m (resp. v). We denote by aifly(u) the sequence (dm,t(dy,)) -+ (d1,t(d1)),
where t(d;) is the type of d; for all i € [1,m)].
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To consider two data words u; and us to be equivalent, we can insist that aifl f(ul) =
aifly(uz). But as before, this may result in some infinite set of pairwise non-equivalent data
words. We will relax the condition by saying that there must be a permutation 7 on data
values such that aifls(m(uz)) = aifly(ug). This is still not enough; we have overlooked one
more thing that must be considered in such an equivalence. Recall that in transductions,
prefixes are vulnerable to the influence of suffixes. So if u; is vulnerable to changing the
suffix from v; to vg, then 7(uz) must also have the same vulnerability. This is covered by
the third condition in the definition below.

» Definition 7. For a transduction f, we define the relation =¢ on data words as u1 =5 us
if there exists a permutation ™ on data values satisfying the following conditions:

M. fo(m(u2) | v) = M. f(u | v), where z = |ui| — |ug|,

aifly(m(ug)) = aifly(ug) and

for all w, vy, vz, flur - | v1) = flur-u | va) iff f(r(uz) -] v1) = f(r(ua) - u | va).
As in the standard lambda calculus notation, Av.f,(u | v) denotes the function that maps

each input v to f.(u | v). It is routine to verify that for any data word v and permutation 7,
m(u) =y u, since 7 itself satisfies all the conditions above. We denote by [u]; the equivalence
class of =f containing u.

» Lemma 8. If f is invariant under permutations, then =y is an equivalence relation.
Following is the main result of this extended abstract.

» Theorem 9. A transduction f is implemented by a SSRT iff [ satisfies the following
properties: 1)f is invariant under permutations, 2) f is without data peeking, 3) f has linear
blow up and 4) =y has finite indez.

4 Constructing a SSRT from a Transduction

In this section, we prove the reverse direction of Theorem 9, by showing how to construct
a SSRT that implements a transduction, if it satisfies the four conditions in the theorem.
SSRTs read their input from left to right. Our first task is to get SSRTs to identify influencing
data values as they are read one by one. Suppose a transducer that is intended to implement
a transduction f has read a data word uw and has stored in its registers the data values that
are f-influencing in u. Suppose the transducer reads the next symbol (o, ¢e). To identify the
data values that are f-influencing in w - (o, e), will the transducer need to read the whole
data word u - (o, e) again? The answer turns out to be no, as the following result shows. The
only data values that can possibly be f-influencing in u - (0, e) are e and the data values that
are f-influencing in u.

» Lemma 10. Let f be a transduction, u be a data word, o € ¥ and d,e be distinct
data values. If d is not f-memorable (resp. f-vulnerable) in u, then d is not f-memorable
(resp. f-vulnerable) in u - (o, €).

Next, suppose that d is f-influencing in uv. How will we get the transducer to detect
whether d continues to be f-influencing in u - (0,¢€)? The following result provides a partial
answer. If u; =¢ ug and the ¢*" f-influencing value in u; continues to be f-influencing in
uy - (0,€), then the i*" f-influencing value in uy continues to be f-influencing in us - (o, €).

The following result combines many such similar results into a single one.

» Lemma 11. Suppose f is a transduction that is invariant under permutations and without
data peeking. Suppose ui,us are data words such that w1 =5 ug, ifls(uy) = dﬁ”d;”_l s d%
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and ifly(ug) = d3*dy~"---d}. Suppose d) € D is not f-influencing in uy, dJ € D is not

f-influencing in us and o € X. For all i,j € [0,m], the following are true:

1. di is f-memorable (resp. f-vulnerable) in uy - (o,d}) iff db is f-memorable (resp. f-
vulnerable) in uy - (o, dJ).

2. uy - (o,d)) =5 ug - (0,d3).

If w1 = uo, there exists a permutation 7 such that aifls(u;) = aifls(m(u2)). Hence, all
data words in the same equivalence class of =; have the same number of f-influencing values.
If =/ has finite index, then there is a bound (say I) such that any data word has at most I

f-influencing data values. Consider a SSRT S} with the set of registers R = {ry,...,rr}.

The states are of the form ([u], ptr), where u is some data word and ptr: [1,]if1lf(u)|]] = R
is a pointer function. Let ptr, be the trivial function from () to R. The transitions can be
designed to satisfy the following.

» Lemma 12. Suppose the SSRT S§* starts in the configuration (([e]s, ptr, ), vale,0) and
reads some data word u. It reaches the configuration (([u]s, ptr), val, |u|) such that val(ptr(i))
is the i f-influencing value in u for all i € [1,]if1s(u)]].

The details of constructing S}ﬂ can be found in the full version. In short, the idea is that we
can hard code rules such as “if the data value just read is the i*" f-influencing value in w, it
continues to be f-influencing in the new data word”. Lemma 11 implies that the validity of
such rules depend only on the equivalence class [u]; containing u and does not depend on u
itself. So the SSRT need not remember the entire word w; it just remembers the equivalence
class [u]; in its control state. The SSRT can check whether the new data value is the ;*®
f-influencing value in w, by comparing it with the register ptr (7).

Next we will extend the transducer to compute the output of a transduction. Suppose
the transducer has read the data word u so far. The transducer doesn’t know what is the

suffix that is going to come, so whatever computation it does has to cover all possibilities.

The idea is to compute {f(u | v) | v € (X x D)*} and store them in data word variables, so
that when it has to output f(u) at the end, it can output f(u | €). However, this set can
be infinite. If = has finite index, we can reduce it to a finite set. Recall the transduction
f from Example 2 and the infinite set of data words {(a,d;) | ¢ > 1}. For any i # j,
fl(a,d) | (a,ds)) # f((a,d;) | (a,d;)) for ¢ # j. But for every i, there is a permutation m;
on data values mapping d; to dy so that f(m;(a,d;) | v) = f((a,d1) | v) for any data word
v. We have revealed that all data words in {(a,d;) | © > 1} are equivalent by applying a

permutation to each data word, so that they all have the same f-influencing data values.

We formalize this idea below.

» Definition 13. Let f be a transduction and I1 be the set of all permutations on the set of
data values D. An equalizing scheme for f is a function E : (3 x D)* — II such that there
exists a sequence d102 - -+ of data values satisfying the following condition: for every data
word u and every i € [1,]if1;(u)|], the i f-influencing data value of E(u)(u) is &;.

Note that E(u)(u) denotes the application of the permutation E(u) to the data word u.

We will write E(u)(u) as uq for short (intended to be read as “equalized w”). Note that
E(u)~'(uy) = u. Left parts that have been equalized like this will not have arbitrary
influencing data values — they will be from the sequence 6105 - --. For the transduction in
Example 2, the first data value is the only influencing value in any data word. An equalizing
scheme will map the first data value of all data words to d;.

The relation =y identifies two prefixes when they behave similarly. We now define a
relation that serves a similar propose, but for suffixes.
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» Definition 14. For a transduction f and equalizing scheme E, we define the relation E?
on data words as vy =§ vy if for every data word u, f(ug | v1) = f(ug | v2).

It is routine to verify that EJ]ZJ is an equivalence relation. Saying that v; and wve are
similar suffixes if f(u | v1) = f(u | v2) for all u doesn’t work; this may result in infinitely
many pairwise unequivalent suffixes (just like =; may have infinite index if we don’t apply
permutations to prefixes). So we “equalize” the prefixes so that they have the same f-
influencing data values, before checking how suffixes influence them.

» Lemma 15. Suppose f is a transduction satisfying all the conditions of Theorem 9. If E
is an equalizing scheme for f, then EJIZJ has finite index.

Suppose we are trying to design a SSRT to implement a transduction f, which has the
property that = has finite index. The SSRT can compute the set {f(uq | v) | v € (¥ x D)*},
which is finite (it is enough to consider one representative v from every equivalence class of
=7). At the end when the SSRT has to output f(u), it can output E(u)~'(f(uq | €)) = f(w).
The SSRT never knows what is the next suffix; at any point of time, the next suffix could
be €. So the SSRT has to apply the permutation E(u)~! at each step. Letting V be
a finite set of representatives from every equivalence class of EJ]? , the SSRT computes
{f(u| E(u)~(v)) | v € V} at every step.

Now suppose the SSRT has computed {f(u | E(u)~1(v)) | v € V}, stored them in data
word variables and it reads the next symbol (o, d). The SSRT has to compute {f(u - (o,d) |
E(u-(0,d))"1(v)) | v € V} from whatever it had computed for w.

To explain how the above computation is done, we use some terminology. In factored
outputs of the form f(u | v), f(u | v), f(w ]| v | w) or f(u | v | w), a triple is said to
come from w if it has origin in u or it is the triple (x,%,1left). A left block in such a
factored output is a maximal infix of triples, all coming from the left part u. Similarly,

a non-right block is a maximal infix of triples, none coming from the right part. Middle
blocks are defined similarly. For the transduction f in Example 2, f((a,d1)(b,d2)(c,d3))
is (C, dg, 3)(b, dQ, 2)(&, dl, 1) In f((a, dl)(b, dg) | (C7 dg)), (b, dg, 2)(&, dl, 1) is a left block.
In f((a,dy) | (b,d2) | (¢,ds3)), (b,ds,2) is a middle block. In f((a,d1) | (b,d2) | (¢,d3)),
(*, *,midd1le)(*, %, left) is a non-right block, consisting of one middle and one left block.

The concretization of the i*! left block (resp. middle block) in f(u | v | w) is defined to be
the i'" left block in f(u | vw) (resp. the i*" middle block in f(u | v | w)). The concretization
of the i*" non-right block in f(u | v | w) is obtained by concatenating the concretizations of
the left and middle blocks that occur in the i** non-right block. The following is a direct
consequence of the definitions.

» Proposition 16. The i" left block of f(u-(o,d) | v) is the concretization of the i*" non-right
block of f(u | (o,d) | v).

For the transduction f from Example 2, the first left block of f((a,d1)(b,d2) | (¢,d3)) is
(b,da,2)(a,dy, 1), which is the concretization of (*,*,middle)(x,*, left), the first non-right
block of f((a,d1) | (b,d2) | (¢c,d3)).

From Proposition 16, we deduce that the i*® left block of f(u - (c,d) | E(u - (o,d))"(v))
is the concretization of the i*® non-right block of f(u | (o,d) | E(u- (0,d))"*(v)). The
concretizations come from the left blocks of f(u | (o,d) - E(u - (0,d))~!(v)) and the middle
blocks of f(u | (0,d) | E(u-(0,d))"(v)). In the absence of data values, the above two
statements would be as follows: The i'! left block of f(u-o | v) is the concretization of the it!
non-right block of f(u | o | v). The concretizations come from the left blocks of f(u | g -v)
and the middle blocks of f(u | o | v). This technique of incrementally computing factored
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outputs was introduced in [5] for SSTs. In SSTs, f(u | o -v) would have been computed as
f(u | v') when u was read, where v’ is some word that influences prefixes in the same way as
o -v. But in SSRTs, only f(u | E(u)~!(v")) would have been computed for various v’; what
we need is f(u | (0,d) - E(u- (0,d))~!(v)). We work around this by proving that a v’ can be
computed such that f(u | (o,d) - E(u- (0,d))"*(v)) = f(u | E(u)~'(v")). This needs some

technical work, which can be found in the full version. The end result is summarized below.

» Lemma 17. Suppose f is a transduction satisfying all the conditions in Theorem 9, E is
an equalizing scheme for f, u,v are data words and (o,d) € ¥ x D. There are functions g,
and gs such that f(u- (o,d) | E(u- (0,d))~'(v)) = g1 ([, 1€1;(u), d,v, f(u | ()~ (),
where v’ = ga([u]f,1£15(u), d,v).

The functions g; and g need to be applied by the SSRT and that is possible. For go, it only
needs [u]; (stored in the control state), if1,(u) (stored in the registers), d (this is the latest
data value that has been read) and v (which is from a finite set and can be hardcoded). For
g1, it additionally needs f(u | E(u)~!(v')), which would have been be stored in one of the
data word variables when u was read.

Suppose vi,v2 € V and v = go([u]f,ifls(u),d,v1) = g2([u]f, ifls(u),d,v2). We
have f(u - (o,d) | E(u-(o,d) " (v1)) = g1([uly,ifls(u),d,v1, f(u | E(u)~'(v'))) and
fu-(o,d) | E(u-(0,d)) " (v2)) is equal to g1 ([u]f, 1£1(u),d, v2, f(u | E(u)~*(v"))). The
SSRT would have stored f(u | E(u)~!(v")) in a data word variable and now it is needed for
two computations. But in SSRTS, the contents of one data word variable cannot be used in
two computations, since SSRTs are copyless. This problem is solved in [5] for SSTs using
a two way transducer model equivalent to SSTs. In this two way model, the suffix can be
read and there is no need to perform computations for multiple suffixes. We cannot use that
technique here, since there are no known two way models equivalent to SSRTs.

We solve this problem by not performing the two computations of g; immediately. Instead,
we remember the fact that there is a multiple dependency on a single data word variable. The
actual computation is delayed until the SSRT reads more symbols from the input and gathers
enough information about the suffix to discard all but one of the dependencies. Suppose
we have delayed computing f(u - (0,d) | E(u- (o,d))~!(v1)) due to some dependency. After
reading the next symbol, f(u - (o,d) | E(u- (o,d))~!(vy1)) itself might be needed for multiple
computations. We keep track of such nested dependencies in a tree data structure called
dependency tree. Dependency trees can grow unboundedly, but if EJ]ZJ has finite index, it can
be shown that some parts can be discarded from time to time to keep their size bounded. We
store such reduced dependency trees as part of the control states of the SSRT. The details of
this construction can be found in the full version and the end result is summarized below.

Proof sketch of reverse direction of Theorem 9. Let f be a transduction that satisfies all
the properties stated in Theorem 9. We extend the SSRT S}fl. The states will be of the
form ([u] s, ptr,T) where [u]; and ptr are as before and T is a reduced dependency tree. The
SSRT will have a finite set of data word variables X. After reading any data word u, the
SSRT will reach the configuration (([u]y, ptr,T), val, |u|) that satisfies the following property.
For any equivalence class [1}]]‘3J of E}E, there is a leaf node 6 of 7" such that the path from the
root of T to # will determine a sequence z in X* (z is a sequence of data word variables)
and val(z) = f(u | E(u)~*(v)) (val(z) is the concatenation of the contents of data word
variables according to the sequence z). After reading the entire input u, the SSRT outputs
f(u) = f(u| E(u)~t(¢)) using the leaf of T' corresponding to [e]f <
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5 Properties of Transductions Implemented by SSRTs

In this section, we prove the forward direction of our main result (Theorem 9). We begin by
identifying data words after reading which, a SSRT reaches similar configurations

» Definition 18. For a SSRT S, we define a binary relation =g on data words as follows:

uy =g ug if they satisfy the following conditions. Suppose f is the transduction implemented

by S, which reaches the configuration (g, valy, |u1|) after reading uy and reaches (g2, vals, |usl)

after reading us.

1. ¢1 = qo,

2. for any two registers r1,ro, we have vali(ry) = valy (r2) iff vala(r1) = vala(rs),

3. for any register r, valy(r) is the i f-memorable value (resp. f-vulnerable value) for
some i in uy iff valy(r) is the i™ f-memorable value (resp. f-vulnerable value) in us,

4. for any data word variable x, we have valy (z) = € iff vala(x) = € and

5. for any two subsets X1,Xo C X and any arrangements x1,x2 of X1, Xa respectively,
valy(x1) = valy (x2) iff vala(x1) = vala(x2).

An arrangement of a finite set X; is a sequence in X7 in which every element of X; occurs

exactly once. It is routine to verify that =g is an equivalence relation of finite index.
Suppose a SSRT S reads a data word u, reaches the configuration (g, val, |u|) and from

there, continues to read a data word v. For some data word variable x € X, if val(z) is some

data word z, then none of the transitions executed while reading v will split z — it might

be appended or prepended with other data words and may be moved to other variables

but never split. Suppose X = {z1,...,2,,}. The transitions executed while reading v can

arrange val(z1),. .., val(z,,) in various ways, possibly inserting other data words (whose

origin is in v, so they will be replaced by (*,*,right) in [S](u | v)) in between. Hence,

any left block of [S](u | v) is val(x), where x is some arrangement of some subset X’ C X.

Recall that a left block of [S](u | v) is a maximal infix that doesn’t contain (x,*,right)).

Proof sketch of forward direction of Theorem 9. Suppose a SSRT S implements a trans-
duction f. It can be shown that =g refines =, so = has finite index. The most difficult
part of this proof is to prove that if u; =g s, then there exists a permutation 7 such that
for all data words w,vi,va, f(u1-u|vi) = flur-u|ve) iff f(m(uz) -u|vi) = f(m(uz) u|wva).
The idea is to show that if f(u1-w | v1) # f(u1-u | v2), then for some arrangements x1, x2 of
some subsets X1, Xo C X, valy(x1) # vali(x2) (valy (vesp. valy) is the valuation reached by
S after reading uy (resp. us)). Since u; =g ug, this implies that vala(x1) # vala(x2), which
in turn implies that f(m(u2) - u | v1) # f(7(u2) - u | va). <

6 Future Work

One direction to explore is whether there is a notion of minimal canonical SSRT and if a
given SSRT can be reduced to an equivalent minimal one. Adding a linear order on the data
domain, logical characterization of SSRTs and studying two way transducer models with
data are some more interesting studies.

Using nominal automata, techniques for finite alphabets can often be elegantly carried
over to infinite alphabets, as done in [19], for example. It would be interesting to see if the
same can be done for streaming transducers over infinite alphabets. Using concepts from the
theory of nominal automata, recent work [6] has shown that an atom extension of streaming
string transducers is equivalent to a certain class of two way transducers. This model of
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transducers is a restriction of SSRTs and is robust like regular languages over finite alphabets.
It would also be interesting to see how can techniques in this extended abstract be simplified
to work on the transducer model presented in [6].
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