
Clustering Under Perturbation Stability in
Near-Linear Time
Pankaj K. Agarwal
Department of Computer Science, Duke University, Durham, NC, USA
pankaj@cs.duke.edu

Hsien-Chih Chang
Department of Computer Science, Dartmouth College, Hanover, NH, USA
hsien-chih.chang@dartmouth.edu

Kamesh Munagala
Department of Computer Science, Duke University, Durham, NC, USA
kamesh@cs.duke.edu

Erin Taylor
Department of Computer Science, Duke University, Durham, NC, USA
ect15@cs.duke.edu

Emo Welzl
Department of Computer Science, ETH Zürich, Switzerland
emo@inf.ethz.ch

Abstract
We consider the problem of center-based clustering in low-dimensional Euclidean spaces under the
perturbation stability assumption. An instance is α-stable if the underlying optimal clustering
continues to remain optimal even when all pairwise distances are arbitrarily perturbed by a factor of
at most α. Our main contribution is in presenting efficient exact algorithms for α-stable clustering
instances whose running times depend near-linearly on the size of the data set when α ≥ 2 +

√
3.

For k-center and k-means problems, our algorithms also achieve polynomial dependence on the
number of clusters, k, when α ≥ 2 +

√
3 + ε for any constant ε > 0 in any fixed dimension. For

k-median, our algorithms have polynomial dependence on k for α > 5 in any fixed dimension; and
for α ≥ 2 +

√
3 in two dimensions. Our algorithms are simple, and only require applying techniques

such as local search or dynamic programming to a suitably modified metric space, combined with
careful choice of data structures.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases clustering, stability, local search, dynamic programming, coreset, polyhedral
metric, trapezoid decomposition, range query

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.8

Related Version A full version of the paper is available at https://arxiv.org/abs/2009.14358.

Funding Work on this paper was partially supported by NSF grants IIS-18-14493, CCF-20-07556,
CCF-1637397 and IIS- 1447554; ONR award N00014-19-1-2268; and DARPA award FA8650-18-C-
7880.
Hsien-Chih Chang: This work was done when the author was affiliated with Duke University.

1 Introduction

Clustering is a fundamental problem in unsupervised learning and data summarization, with
wide-ranging applications that span myriad areas. Typically, the data points are assumed to
lie in a Euclidean space, and the goal in center-based clustering is to open a set of k centers
to minimize the objective cost, usually a function over the distance from each data point

© Pankaj K. Agarwal, Hsien-Chih Chang, Kamesh Munagala, Erin Taylor, and Emo Welzl;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:hsien-chih.chang@dartmouth.edu
mailto:kamesh@cs.duke.edu
mailto:ect15@cs.duke.edu
mailto:emo@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.8
https://arxiv.org/abs/2009.14358
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Clustering Under Perturbation Stability in Near-Linear Time

to its closest center. The k-median objective minimizes the sum of distances; the k-means
minimizes the sum of squares of distances; and the k-center minimizes the longest distance.
In the worst case, all these objectives are NP-hard even in 2D [48,50].

A substantial body of work has focused on developing polynomial-time approximation
algorithms and analyzing natural heuristics for these problems. Given the sheer size of
modern data sets, such as those generated in genomics or mapping applications, even a
polynomial-time algorithm is too slow to be useful in practice – just computing all pairs of
distances can be computationally burdensome. What we need is an algorithm whose running
time is near-linear in the input size and polynomial in the number of clusters.

Because of NP-hardness results, we cannot hope to compute an optimal solution in
polynomial time, but in the worst case an approximate clustering can be different from an
optimal clustering. We focus on the case when the optimal clustering can be recovered under
some reasonable assumptions on the input that hold in practice. Such methodology is termed
“beyond worst-case analysis” and has been adopted by recent work [2, 8, 23]. In recent years,
the notion of stability has emerged as a popular assumption under which polynomial-time
optimal clustering algorithms have been developed. An instance of clustering is called stable
if any “small perturbation” of input points does not change the optimal solution. This
is natural in real datasets, where often, the optimal clustering is clearly demarcated, and
the distances are obtained heuristically. Different notions of stability differ in how “small
perturbation” is defined, though most of them are related. In this paper, we focus on the
notions of stability introduced in Bilu and Linial [23] and Awasthi, Blum, and Sheffet [14]. A
clustering instance is α-perturbation resilient or α-stable if the optimal clustering does not
change when all distances are perturbed by a factor of at most α. Similarly, a clustering
instance is α-center proximal if any point is at least a factor of α closer to its own optimal
center than any other optimal center. Awasthi, Blum, and Sheffet showed that α-stability
implies α-center proximity [14]. This line of work designs algorithms to recover the exact
optimal clustering – the ground truth – in polynomial time for α-stable instances.

This paper also focuses on recovering the optimal clustering for stable clustering instances.
But instead of focusing on polynomial-time algorithms and optimizing the value of α, we ask
the question: Can algorithms be designed that compute exact solutions to stable instances of
Euclidean center-based clustering that run in time near-linear in the input size? We note
that an (1 + ε)-approximation solution, for an arbitrarily small constant ε > 0, may differ
significantly from an optimal solution (the ground truth) even for stable instances, so one
cannot hope to use an approximation algorithm to recover the optimal clustering.

1.1 Our Results
In this paper, we make progress on the above question, and present near-linear time algorithms
for finding optimal solutions of stable clustering instances with moderate values of α. In
particular, we show the following meta-theorem:

I Theorem 1. Let X be a set of n points in Rd for some constant d, let k ≥ 1 be an integer,
and let α ≥ 2 +

√
3 be a parameter. If the k-median, k-means, or k-center clustering instance

for X is α-stable, then the optimal solution can be computed in Õ(npoly k + f(k)) time.

In the above theorem, the Õ notation suppresses logarithmic terms in n and the spread
of the point set. The function f(k) depends on the choice of algorithm, and we present
the exact dependence below. We also omit terms depending solely on the dimension, d.
Furthermore, the above theorem is robust in the sense that the algorithm is not restricted to
choosing the input points as centers (discrete setting), and can potentially choose arbitrary

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:3

points in the Euclidean plane as centers (continuous setting, sometimes referred to as the
Steiner point setting) – indeed, we show that these notions are identical under a reasonable
assumption on stability.

At a more fine-grained level, we present several algorithms that require mild assumptions
on the stability condition. In the results below, as well as throughout the paper, we present
our results both for the Euclidean plane, as well as generalizations to higher (but fixed
number of) dimensions.

Dynamic Programming. In Section 3, we present a dynamic programming algorithm that
computes the optimal clustering in O(nk2 + n polylogn) time for α-stable k-means, k-
median, and k-center in any fixed dimension, provided that α ≥ 2 +

√
3 + ε for any

constant ε > 0. For d = 2, it suffices to assume that α ≥ 2 +
√

3.
Local Search. In Sections 4 and 5, we show that the standard 1-swap local-search algorithm,

which iteratively swaps out a center in the current solution for a new center as long as
the resulting total cost improves, computes an optimal clustering for α-stable instances of
k-median assuming α > 5. We also show that it can be implemented in O(nk2 log3 n log ∆)
for d = 2 and in O(nk2d−1 polylogn log ∆) for d > 2; ∆ is the spread of the point set.1

Coresets. In the full version of the paper, we use multiplicative coresets to compute the
optimal clustering for k-means, k-median and k-center in any fixed dimension, when
α ≥ 2 +

√
3. The running time is O(nk2 + f(k)) where f(k) is an exponential function

of k.

I Remark 2. While the current analysis of the dynamic programming based algorithm
suggests that it is better than the local-search and coreset based approaches, the latter are
of independent interest – our local-search analysis is considerably simpler than the previous
analysis [38], and coresets have mostly been used to compute approximate, rather than exact,
solutions. We also note that our analysis of the local-search algorithm is probably not tight.
Furthermore, variants of all three approaches might work for smaller values of α.

Techniques. The key difficulty with developing fast algorithms for computing the optimal
clustering is that some clusters could have a very small size compared to others. This issue
persists even when the instances are stable. Imagine a scenario where there are multiple
small clusters, and an algorithm must decide whether to merge these into one cluster while
splitting some large cluster, or keep them intact. Now imagine this situation happening
recursively, so that the algorithm has multiple choices about which clusters to recursively
split. The difference in cost between these options and the size of the small clusters can be
small enough that any (1 + ε)-approximation can be agnostic, while an exact solution cannot.
As such, work on finding exact optima use techniques such as dynamic programming [10]
or local search with large number of swaps [26, 38] in order to recover small clusters. Other
work makes assumptions lower-bounding the size of the optimal clusters or the spread of
their centers [34].

Our main technical insight for the first two results is simple in hindsight, yet powerful:
For a stable instance, if the Euclidean metric is replaced by another metric that is a good
approximation, then the optimal clustering does not change under the new metric and in
fact the instance remains stable albeit with a smaller stability parameter. In particular,

1 The spread of a point set is the ratio between the longest and shortest pairwise distances.

FSTTCS 2020

8:4 Clustering Under Perturbation Stability in Near-Linear Time

we replace the Euclidean metric with an appropriate polyhedral metric – that is, a convex
distance function where each unit ball is a regular polyhedron – yielding efficient procedures
for the following two primitives:

Cost of 1-swap. Given a candidate set of centers S, maintain a data structure that
efficiently updates the total cost if center x ∈ S is replaced by center y /∈ S.
Cost of 1-clustering. Given a partition of the data points, maintain a data structure
where the cost of 1-clustering (under any objectives) can be efficiently updated as partitions
are merged.

We next combine the insight of changing the metrics with additional techniques. For
local search, we build on the approach in [26, 31, 38] that shows local search with t-swaps for
large enough constant t finds an optimal solution for stable instances in polynomial time for
any fixed-dimension Euclidean space. None of the prior analysis directly extends as is to
1-swap, which is critical in achieving near-linear running time – note that even when t = 2
there is a quadratic number of candidate swaps per step.

For the dynamic programming algorithm, we use the following insight: In Euclidean
spaces, for α ≥ 2 +

√
3, the longest edge of the minimum spanning tree over the input points

partitions the data set in two, such that any optimal cluster lies completely in one of the
two sides of the partition. Combined with the change of metrics one can achieve near-linear
running time.

Due to length constraints of the paper, the coreset result, most of algorithmic details,
and many proofs can be found in the full version of the paper.

1.2 Related Work
All of k-median, k-means, and k-center are widely studied from the perspective of approxi-
mation algorithms and are known to be hard to approximate [36]. Indeed, for general metric
spaces, k-center is hard to approximate to within a factor of 2 − ε [43]; k-median is hard
to (1 + 2/e)-approximate [44]; and k-means is hard to (1 + 8/e)-approximate in general
metrics [29], and is hard to approximate within a factor of 1.0013 in the Euclidean setting [47].
Even when the metric space is Euclidean, k-means is still NP-hard when k = 2 [7,32], and
there is an nΩ(k) lower bound on running time for k-median and k-means in 4-dimensional
Euclidean space under the exponential-time hypothesis [27].

There is a long line of work in developing (1 + ε)-approximations for these problems
in Euclidean spaces. The holy grail of this work has been the development of algorithms
that are near-linear time in n, and several techniques are now known to achieve this. This
includes randomly shifted quad-trees [11], coresets [4, 15, 37, 40, 41], sampling [46], and local
search [26,28,30], among others.

There are many notions of clustering stability that have been considered in literature [1,6,
13,17,18,22,35,45,52]. The exact definition of stability we study here was first introduced in
Awasthi et al. [14]; their definition in particular resembles the one of Bilu and Linial [23] for
max-cut problem, which later has been adapted to other optimization problems [9,10,19,49,51].
Building on a long line of work [14,16,20,21], which gradually reduced the stability parameter,
Angelidakis et al. [10] present a dynamic programming based polynomial-time optimal
algorithm for discrete 2-stable instances for all center-based objectives.

Chekuri and Gupta [25] show that a natural LP-relaxation is integral for the 2-stable
k-center problem. Recent work by Cohen-Addad [31] provides a framework for analyzing
local search algorithms for stable instances. This work shows that for an α-stable instance
with α > 3, any solution is optimal if it cannot be improved by swapping d2/(α − 3)e

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:5

centers. Focusing on Euclidean spaces of fixed dimensions, Friggstad et al. [38] show that
a local-search algorithm with O(1)-swaps runs in polynomial time under a (1 + δ)-stable
assumption for any δ > 0. However, none of the algorithms for stable instances of clustering
so far have running time near-linear in n, even when the stability parameter α is large, points
lie in R2, and the underlying metric is Euclidean.

On the hardness side, solving (3−δ)-center proximal k-median instances in general metric
spaces is NP-hard for any δ > 0 [14]. When restricted to Euclidean spaces in arbitrary
dimensions, Ben-David and Reyzin [22] showed that for every δ > 0, solving discrete (2− δ)-
center proximal k-median instances is NP-hard. Similarly, the clustering problem for discrete
k-center remains hard for α-stable instances when α < 2, assuming standard complexity
assumption that NP 6= RP [20]. Under the same complexity assumption, discrete α-stable
k-means is also hard when α < 1+δ0 for some positive constant δ0 [38]. Deshpande et al. [34]
showed it is NP-hard to (1 + ε)-approximate (2− δ)-center proximal k-means instances.

2 Definitions and Preliminaries

Clustering. Let X = {p1, . . . , pn} be a set of n points in Rd, and let δ : Rd × Rd → R≥0
be a distance function (not necessarily a metric satisfying triangle inequality). For a set
Y ⊆ Rd, we define δ(p, Y) := miny∈Y δ(p, y). A k-clustering of X is a partition of X into k
non-empty clusters X1, . . . , Xk. We focus on center-based clusterings that are induced by
a set S := {c1, . . . , ck} of k centers; each Xi is the subset of points of X that are closest
to ci in S under δ, that is, Xi := {p ∈ X | δ(p, ci) ≤ δ(p, cj)} (ties are broken arbitrarily).
Assuming the nearest neighbor of each point of X in S is unique (under distance function δ),
S defines a k-clustering of X. Sometimes it is more convenient to denote a k-clustering by
its set of centers S.

The quality of a clustering S of X is defined using a cost function $(X,S); cost function $
depends on the distance function δ, so sometimes we may use the notation $δ to emphasize
the underlying distance function. The goal is to compute S∗ := arg minS $(X,S) where the
minimum is taken over all subsets S ⊂ Rd of k points. Several different cost functions have
been proposed, leading to various optimization problems. We consider the following three
popular variants:

k-median clustering: the cost function is $(X,S) =
∑
p∈X δ(p, S).

k-means clustering: the cost function is $(X,S) =
∑
p∈X(δ(p, S))2.

k-center clustering: the cost function is $(X,S) = maxp∈X δ(p, S).

In some cases we wish S to be a subset of X, in which case we refer to the problem as
the discrete k-clustering problem. For example, the discrete k-median problem is to compute
arg minS⊆X,|S|=k

∑
p∈X δ(p, S). The discrete k-means and discrete k-center problems are

defined analogously.
Given point set X, distance function δ, and cost function $, we refer to (X, δ, $) as a

clustering instance. If $ is defined directly by the distance function δ, we use (X, δ) to denote
a clustering instance. Note that a center of a set of points may not be unique (e.g. when δ is
defined by the L1-metric and $ is the sum of distances) or it may not be easy to compute
(e.g. when δ is defined by the L2-metric and $ is the sum of distances).

Stability. Let X be a point set in Euclidean space Rd. For α ≥ 1, a clustering instance
(X, δ, $δ) is α-stable if for any perturbed distance function δ̃ (not necessary a metric) satisfying
δ(p, q) ≤ δ̃(p, q) ≤ α · δ(p, q) for all p, q ∈ Rd, any optimal clustering of (X, δ, $δ) is also an
optimal clustering of (X, δ̃, $δ̃). Note that the cluster centers as well as the cost of optimal
clustering may be different for the two instances. We exploit the following property of
stability, which follows directly from its definition.

FSTTCS 2020

8:6 Clustering Under Perturbation Stability in Near-Linear Time

I Lemma 3. Let (X, δ) be an α-stable clustering instance with α > 1. Then the optimal
clustering O of (X, δ) is unique.

Metric approximations. The next lemma, which we rely on heavily throughout the paper,
is the observation that a change of metric preserves the optimal clustering as long as the
new metric is a β-approximation of the original metric satisfying β < α.

I Lemma 4. Given point set X, let δ and δ′ be two metrics satisfying δ(p, q) ≤ δ′(p, q) ≤
β · δ(p, q) for all p and q in X for some β. Let (X, δ) be an α-stable clustering instance with
α > β. Then the optimal clustering of (X, δ) is also the optimal clustering of (X, δ′), and
vice versa. Furthermore, (X, δ′) is an (α/β)-stable clustering instance.

Polyhedral metric. In light of the metric approximation lemma, we would like to approxi-
mate the Euclidean metric without losing too much stability, using a collection of convex
distance functions generalizing the L∞-metric in Euclidean space. Let N ⊆ Sd−1 be a
centrally-symmetric set of γ unit vectors (that is, if u ∈ N then −u ∈ N) such that for any
unit vector v ∈ Sd−1, there is a vector u ∈ N within angle arccos(1 − ε) = O(

√
ε). The

number of vectors needed in N is known to be O(ε−(d−1)/2). We define the polyhedral metric
δN : Rd × Rd → R≥0 to be δN (p, q) := maxu∈N 〈p− q, u〉.

Since N is centrally symmetric, δN is symmetric and thus a metric. The unit ball under
δN is a convex polyhedron, thus the name polyhedral metric. By construction, an easy
calculation shows that for any p and q in Rd, ‖p− q‖ ≥ δN (p, q) ≥ (1− ε) · ‖p− q‖. By scaling
each vector in N by a 1 + ε factor, we can ensure that (1 + ε) · ‖p− q‖ ≥ δN (p, q) ≥ ‖p− q‖.
By taking ε to be small enough, the optimal clustering for α-stable clustering instance
(X, ‖·‖, $) is the same as that for (X, δN , $) by Lemma 4, and the new instance (X, δN , $) is
(1− ε)α-stable if the original instance (X, ‖·‖, $) is α-stable.

Center proximity. A clustering instance (X, δ) satisfies α-center proximity property [14] if
for any distinct optimal clusters Xi and Xj with centers ci and cj and any point p ∈ Xi,
one has α · δ(p, ci) < δ(p, cj). Awasthi, Blum, and Sheffet showed that any α-stable instance
satisfies α-center proximity [14, Fact 2.2] (also [10, Theorem 3.1] under metric perturbation).
Optimal solutions of α-stable instances satisfy the following separation properties.2

α-center proximity implies that (α− 1) · δ(p, ci) < δ(p, q) for any p ∈ Xi and any q 6∈ Xi.

For α ≥ 2, a point is closer to its own center than to any point of another cluster.3
For α ≥ 2 +

√
3, α-center proximity implies that δ(p, p′) < δ(p, q) for any p, p′ ∈

Xi and any q 6∈ Xi. In other words, from any point p in X, any intra-cluster distance to
a point p′ is shorter than any inter-cluster distance to a point q.

We make use of the following stronger intra-inter distance property on α-stable instances,
which allows us to compare any intra-distance between two points inXi and any inter-distance
between a point in Xi and a point in Xj .

I Lemma 5. Let (X, δ) be an α-stable instance, α > 1, and let X1 be a cluster in an optimal
clustering with q ∈ X \X1 and p, p′, p′′ ∈ X1. If δ is a metric, then δ(p, p′) ≤ δ(p′′, q) for
α ≥ 2 +

√
5. If δ is the Euclidean metric in Rd, then δ(p, p′) ≤ δ(p′′, q) for α ≥ 2 +

√
3.

Finally, we note that it is enough to consider the discrete version of the clustering problem
for stable instances.

2 We give an additional list of known separation properties in the full version of the paper.
3 They are known as weak center proximity [20] and strict separation property [18, 22] respectively.

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:7

I Lemma 6. For any α-stable instance (X, δ, $δ) with α ≥ 2 +
√

3, any continuous optimal
k-clustering is a discrete optimal k-clustering and vice versa.

3 Efficient Dynamic Programming

We now describe a simple, efficient algorithm for computing the optimal clustering for
the k-means, k-center, and k-median problem assuming the given instance is α-stable for
α ≥ 2 +

√
3. Roughly speaking, we make the following observation: if there are at least two

clusters, then the two endpoints of the longest edge of the minimum spanning tree of X belong
to different clusters, and no cluster has points in both subtrees of the minimum spanning
tree delimited by the longest edge. We describe the dynamic programming algorithm in
Section 3.1 and then describe the procedure for computing cluster costs in Section 3.2. We
summarize the results in this section by the following theorem.

I Theorem 7. Let X be a set with n points lying in Rd and k ≥ 1 an integer. If the k-means,
k-median, or k-center instance for X under the Euclidean metric is α-stable for α ≥ 2+

√
3+ε

for any constant ε > 0, then the optimal clustering can be computed in O(nk2 + npolylogn)
time. For d = 2 the assumption can be relaxed to α ≥ 2 +

√
3.

3.1 Fast Dynamic Programming
The following lemma is the key observation for our algorithm.

I Lemma 8. Let (X, δ, $) be an α-stable k-clustering instance with α ≥ 2 +
√

3 and k ≥ 2,
and let T be the minimum spanning tree of X under metric δ. Then (1) The two endpoints
u and v of the longest edge e in T do not belong to the same cluster; (2) each cluster lies in
the same connected component of T \ {e}.

Algorithm. We fix the metric δ and the cost function $. For a subset Y ⊆ X and for an
integer j between 1 and k − 1, let µ(Y ; j) denote the optimal cost of an j-clustering on
Y (under δ and $). Recall that our definition of j-clustering required all clusters to be
non-empty, so it is not defined for |Y | < j. For simplicity, we assume that µ(Y ; j) =∞ for
|Y | < j. Let T be the minimum spanning tree on X under δ, let uv be the longest edge in
T ; let Xu and Xv be the set of vertices of the two components of T \ {uv}. Then µ(X; k)
satisfies the following recurrence relation:

µ(X; k) =


µ(X; 1) if k = 1,
∞ if k > |X|,
min1≤i<k {µ(Xu; i) + µ(Xv; k − i)} if |X| > 1 and k > 1.

(1)

Using recurrence (1), we compute µ(X; k) as follows. Let R be a recursion tree, a binary
tree where each node v in R is associated with a subtree Tv of T . If v is the root of R, then
Tv = T . Recursion tree R is defined recursively as follows. Let Xv ⊆ X be the set of vertices
of T in Tv. If |Xv| = 1, then v is a leaf. Each interior node v of T is also associated with
the longest edge ev of Tv. Removal of ev decomposes Tv into two connected components,
each of which is associated with one of the children of v. After having computed T , R can be
computed in O(n logn) time by sorting the edges in decreasing order of their costs.4

4 Tree R is nothing but the minimum spanning tree constructed by Kruskal’s algorithm.

FSTTCS 2020

8:8 Clustering Under Perturbation Stability in Near-Linear Time

For each node v ∈ R and for every i between 1 and k− 1, we compute µ(Xv; i) as follows.
If v is a leaf, we set µ(Xv; 1) = 0 and µ(Xv; i) =∞ otherwise. For all interior nodes v, we
compute µ(Xv; 1) using the algorithms described in Section 3.2. Finally, if v is an interior
node and i > 1, we compute µ(Xv; i) using the recurrence relation (1). Recall that if w and
z are the children of v, then µ(Xw; `) and µ(Xz; r) for all ` and r have been computed before
we compute µ(Xv; i).

Let τ(n) be the time spent in computing T plus the total time spent in computing
µ(Xv, 1) for all nodes v ∈ R. Then the overall time taken by the algorithm is O(nk2 + τ(n)).
What is left is to compute the minimum spanning tree T and all µ(Xv, 1) efficiently.

3.2 Efficient Implementation
In this section, we show how to obtain the minimum spanning tree and compute µ(Xv; 1)
efficiently for 1-mean, 1-center, and 1-median when X ⊆ Rd. We can compute the Euclidean
minimum spanning tree T in O(n logn) time in R2 [54]. We can then compute µ(Xv; 1)
efficiently either under Euclidean metric (for 1-mean), or switch to the L1-metric and compute
µ(Xv; 1) efficiently using Lemma 4 (for 1-center and 1-median).

There are two difficulties in extending the 2D data structures to higher dimensions. No
near-linear time algorithm is known for computing the Euclidean minimum spanning tree for
d ≥ 3, and we can work with the L1-metric only if α ≥

√
d (Lemma 4). We address both of

these difficulties by working with a polyhedral metric δN . Let α ≥ 2 +
√

3 + Ω(1) be the
stability parameter. By taking the number of vectors in N (defined by the polyhedral metric)
to be large enough, we can ensure that (1− ε)‖p− q‖ ≤ δN (p, q) ≤ ‖p− q‖ for all p, q ∈ Rd.
By Lemma 4, X is an α-stable instance under δN for α ≥ 2 +

√
3. We first compute the

minimum spanning tree of X in O(npolylogn) time under δN using the result of Callahan
and Kosaraju [24], and then compute µ(Xv, 1).

Data structure. We compute µ(Xv; 1) in a bottom-up manner. When processing a node v
of R, we maintain a dynamic data structure Ψv on Xv from which µ(Xv; 1) can be computed
quickly. The exact form of Ψv depends on the cost function to be described below. Before
that, we analyze the running time τ(n) spent on computing every µ(Xv; 1). Let w and z be
the two children of v. Suppose we have Ψw and Ψz at our disposal and suppose |Xw| ≤ |Xz|.
We insert the points of Xw into Ψz one by one and obtain Ψv from which we compute
µ(Xv; 1). Suppose Q(n) is the update time of Ψv as well as the time taken to compute
µ(Xv; 1) from Ψv. The total number of insert operations performed over all nodes of R is
O(n logn) because we insert the points of the smaller set into the larger set at each node
of R [42,53]. Hence τ(n) = O(Q(n) · n logn). We now describe the data structure for each
specific clustering problem.

1-mean. We work with the L2-metric. Here the center of a single cluster consisting of Xv

is the centroid σv :=
(∑

p∈Xv p
)
/|Xv|, and µ(Xv; 1) =

∑
p∈Xv‖p‖

2 − |Xv| · ‖σv‖2. At each
node v, we maintain

∑
p∈Xv p and

∑
p∈Xv‖p‖

2. Point insertion takes O(1) time so Q(n) = 1.

1-center. As mentioned in the beginning of the section, we can work with the L1-metric for
d = 2. We wish to find the smallest L1-disc (a diamond) that contains Xv. Let e+ = (1, 1)
and e− = (−1, 1). Then the radius ρv of the smaller L1-disc containing Xv is

ρv = 1
2 max

{
max
p∈Xv

〈p, e+〉 − min
p∈Xv

〈p, e+〉, max
p∈Xv

〈p, e−〉 − min
p∈Xv

〈p, e−〉
}
. (2)

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:9

We maintain the following four terms maxp∈Xv 〈p, e+〉, minp∈Xv 〈p, e+〉, maxp∈Xv 〈p, e−〉,
and minp∈Xv 〈p, e−〉 at v. A point can be inserted in O(1) time and ρv can be computed
from these four terms in O(1) time. Therefore, Q(n) = O(1). For d > 2, we work with a
polyhedral metric and compute the smallest ball B(Xv) that contains Xv. For full details,
see the full version of the paper.

1-median. Similar to 1-center, we work with the polyhedral metric. Fix a node v of T . For
a point x ∈ Rd, let Fv(x) =

∑
p∈Xv δN (x, p) which is a piecewise-linear function. Our goal is

to compute ξ∗v = arg minx∈Rd Fv(x). Our data structure is a dynamic range-tree [3] used for
orthogonal range searching that can insert a point in O(logn) time. Using multi-dimensional
parametric search [5], ξ∗v can be computed in O(poly logn) time after each update; see the
full version of the paper for details.

4 k-Median: Single-Swap Local Search

We customize the standard local-search framework for the k-clustering problem [30,31,39].
In order to recover the optimal solution, we must define near-optimality more carefully.
Let (X, δ) be an instance of α-stable k-median in R2 for α > 5. By Lemma 6, it suffices
to consider the discrete k-median problem In Section 4, we describe a simple local-search
algorithm for finding the optimal clustering of (X, δ). In Section 4 we show that the algorithm
terminates within O(k log(n∆)) iterations. We obtain the following.

I Theorem 9. Let (X, δ) be an α-stable instance of the k-median problem for some α > 5
where X is a set of n points in R2 equipped with Lp-metric δ. The 1-swap local search
algorithm terminates with the optimal clustering in O(k log(n∆)) iterations.

Local-search algorithm. The local-search algorithm maintains a k-clustering induced by
a set S of k cluster centers. At each step, it finds a pair of points x ∈ X and y ∈ S such
that $(X,S + x − y) is minimized. If $(X,S + x − y) ≥ $(X,S), it stops and returns the
k-clustering induced by S. Otherwise it replaces S with S + x − y and repeats the above
step. The pair (x, y) will be referred to as a 1-swap.

Local-search analysis. The high-level structure of our analysis follows Friggstad et al. [39],
however new ideas are needed for 1-swap. In this subsection, we denote a k-clustering by the
set of its cluster centers. Let S be a fixed k-clustering, and let O be the optimal clustering.
For a subset Y ⊆ X, we use $(Y) and $∗(Y) to denote $(Y, S) and $(Y,O), respectively.
Similarly, for a point p ∈ X, we use nn(p) and nn∗(p) to denote the nearest neighbor of p in
S and in O, respectively; define δ(p) to be δ(p, S) and δ∗(p) to be δ(p,O). We partition X
into four subsets as follows:

X00 :=
{
p ∈ X | nn(p) ∈ S \O,nn∗(p) ∈ O \ S

}
;

X01 :=
{
p ∈ X | nn(p) ∈ S \O,nn∗(p) ∈ S ∩O

}
;

X10 :=
{
p ∈ X | nn(p) ∈ S ∩O,nn∗(p) ∈ O \ S

}
;

X11 :=
{
p ∈ X | nn(p) ∈ S ∩O,nn∗(p) ∈ S ∩O

}
.

Observe that for any point p in X11, nn(p) = nn∗(p) and $(p) = $∗(p); for any point p in
X01, one has $(p) ≤ $∗(p); and for any point p in X10, one has $(p) ≥ $∗(p). Costs δ(p) and
δ∗(p) are not directly comparable for point p in X00. A k-clustering S is C-good for some
parameter C ≥ 0 if $(X) ≤ $∗(X) + C · $∗(X00).

I Lemma 10. Any C-good clustering S for an α-stable clustering instance (X, δ, $) must be
optimal for α ≥ C + 1.

FSTTCS 2020

8:10 Clustering Under Perturbation Stability in Near-Linear Time

Figure 1 Illustration of candidate swaps S in R2. The blue dots belong to set S, the red dots
belong to set O; the only purple dot is in S ∩O. The thick gray segments indicate pairs inside the
stars; each star has exact one blue dot as its center. The black pairs are the candidate swaps. Notice
that the partitions of S and O form connected components.

Proof. Define a perturbed distance function δ̃ : X × X → R≥0 with respect to the given
clustering S as follows:

δ̃(p′, p) :=
{
α · δ(p′, p) if p 6= nn(p′),
δ(p′, p) otherwise.

Note that δ̃ is not symmetric. Let $̃(·, ·) denote the cost function under the perturbed
distance function δ̃. The optimal clustering under perturbed cost function is the same as the
original optimal clustering O by the stability assumption. Since nn(p) = nn∗(p) if and only
if p ∈ X11, the cost of O under the perturbed cost can be written as:

$̃(X,O) = α · $(X00, O) + α · $(X01, O) + α · $(X10, O) + $(X11, O).

By definition of perturbed distance δ̃, $̃(X,S) = $(X,S). Now, by the assumption that
clustering S is C-good,

$̃(X,S) = $(X,S) ≤ $(X,O) + C · $(X00, O)
≤ (C + 1) · $(X00, O) + $(X01, O) + $(X10, O) + $(X11, O)

≤ $̃(X,O);

the last inequality follows by taking α ≥ C + 1. This implies that S is an optimal clustering
for (X, δ̃), and thus is equal to O. J

Next, we prove a lower bound on the improvement in the cost of a clustering that is not
C-good after performing a 1-swap. Following Arya et al. [12], define the set of candidate
swaps S as follows: For each center i in S, consider the star Σi centered at i defined as the
collection of pairs Σi := {(i, j) ∈ S ×O | nn(j) = i}. Denote center(j) to be the center of the
star where j belongs; in other words, center(j) = i if j belongs to Σi.

For i ∈ S, let Oi := {j ∈ O | center(j) = i} be the set of centers of O in star Σi. If |Oi| = 1,
then we add the only pair (i, j) ∈ Σi to the candidate set S. Let S∅ := {i ∈ S | Oi = ∅}.
Let O>1 contain centers in O that belong to a star of size greater than 1. We pick |O>1|
pairs from S∅×O>1 such that each point of O>1 is matched only once and each point of S∅
is matched at most twice and add them to S; this is feasible because |S∅| ≥ |O>1|/2. Since
each center in O belongs to exactly one pair of S, |S| = k. By construction, if |Σi| ≥ 2, then
i does not belong to any candidate swap. See Figure 1.

I Lemma 11. For each point p in X01, X10, or X11, the set of candidate swaps S satisfies∑
(i,j)∈S

(δ(p)− δ′(p)) ≥ δ(p)− δ∗(p); (3)

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:11

and for each point p in X00, the set of candidate swaps S satisfies∑
(i,j)∈S

(δ(p)− δ′(p)) ≥ (δ(p)− δ∗(p))− 4δ∗(p), (4)

where $′ is the cost function on X defined with respect to S′ := S − i+ j, and δ′(p) is the
distance between p and its nearest neighbor in S′.

Proof. For point p in X11, both nn(p) and nn∗(p) are in S′, so δ′(p) = δ(p) = δ∗(p). For
point p in X01, δ(p) ≤ δ∗(p); when nn(p) is being swapped out by some in 1-swap S′, nn∗(p)
must be in S′. For point p in X10, δ(p) ≥ δ∗(p); center nn(p) will never be swapped out by
any 1-swap in S, so δ′(p) ≤ δ(p). By construction of S, there is exactly one choice of S′ that
swaps nn∗(p) in; for that particular swap we have δ′(p) = δ∗(p). In all three cases one has
inequality (3). Our final goal is to prove inequality (4). Consider a swap (i, j) in S. There
are three cases to consider:

j = nn∗(p). There is exactly one swap for which j = nn∗(p). In this case δ(p) ≤ δ∗(p),
therefore δ(p)− δ′(p) ≥ δ(p)− δ∗(p).
j 6= nn∗(p) and i 6= nn(p). Since nn(p) ∈ S′, δ′(p) ≤ δ(p). Therefore δ(p)− δ′(p) ≥ 0.
j 6= nn∗(p) and i = nn(p). By construction, there are most two swaps in S that may
swap out nn(p). We claim that i 6= center(nn∗(p)). Indeed, if i = center(nn∗(p)), then
by construction, Σi = {(i,nn∗(p))} because the center of star of size greater than one is
never added to a candidate swap. But this contradicts the assumption that j 6= nn∗(p).
The claim implies that center(nn∗(p)) ∈ S′ and thus δ′(p) ≤ δ(p, center(nn∗(p))). We
obtain a bound on δ(p, center(nn∗(p))) as follows:

δ(p, center(nn∗(p))) ≤ δ(p,nn∗(p)) + δ(nn∗(p), center(nn∗(p)))
≤ δ∗(p) + δ(nn∗(p),nn(p))
≤ δ∗(p) + (δ∗(p) + δ(p)) = δ(p) + 2δ∗(p).

Therefore, δ(p) − δ′(p) ≥ δ(p) − δ(p, center(nn∗(p))). Putting everything together, we
obtain:∑

S′∈S
(δ(p)− δ′(p)) ≥ (δ(p)− δ∗(p)) + 0 + 2(δ(p)− δ(p)− 2δ∗(p)) = δ(p)− 5δ∗(p).

J

Using Lemma 11, we can prove the following.

I Lemma 12. Let S be a k-clustering of (X, δ) that is not C-good for some fixed constant
C > 4+ε with arbitrarily small ε > 0. There is always a 1-swap S′ such that $′(X)−$∗(X) ≤
(1− ε/(1 + ε)k) · ($(X)− $∗(X)), where $′ is the cost function defined with respect to S′.

Proof. By Lemma 11 one has $(X)−$′(X) ≥ ($(X)−$∗(X)−Ψ(X00))/k for some 1-swap S′
and its corresponding cost function $′(·). Since S is not C-good, $(X)− $∗(X) > C · $∗(X00).
Rearranging and plugging the definition of Ψ(·), we have

$′(X)− $∗(X) ≤ $(X)− $∗(X)− ($(X)− $∗(X)−Ψ(X00))/k
≤ $(X)− $∗(X)− ($(X)− $∗(X)− 4 · $∗(X00)) /k
≤ $(X)− $∗(X)
− ($(X)− $∗(X) + (M − 1) · ($(X)− $∗(X))− 4M · $∗(X00)) /Mk

≤
(

1− ε

(1 + ε)k

)
· ($(X)− $∗(X)),

where the last inequality holds by taking M to be arbitrarily large (say M > 1 + 1/ε). J

FSTTCS 2020

8:12 Clustering Under Perturbation Stability in Near-Linear Time

Figure 2 L1 Voronoi diagram V , quadrant decomposition Ṽ , and trapezoid decomposition V ‖.

5 Efficient Implementation of Local Search

We describe an efficient implementation of each step of the local-search algorithm in this
section. By Lemma 4, it suffices to implement the algorithm using a polyhedral metric δN .
We show that each step of 1-swap can be implemented in O(nk2d−1 polylogn) time under
the assumption that α > 5. We obtain the following:

I Theorem 13. Let (X, δ) be an α-stable instance of the k-median problem where X ⊂ Rd
and δ is the Euclidean metric. For α > 5, the 1-swap local search algorithm computes the
optimal k-clustering of (X, δ) in O(nk2d−1 polylogn) time.

For simplicity, we present a slightly weaker result for d = 2 using the L1-metric, as it is
straightforward to implement and more intuitive. Using the L1-metric requires α > 5

√
2.

The extension to higher dimensional Euclidean space using the polyhedral metric is described
in the full version of the paper, which works for α > 5.

Voronoi diagram under L1 norm. First, we fix a point x ∈ X \ S to insert and a center
y ∈ S to drop. Define S′ := S + x − y. We build the L1 Voronoi diagram V of S′. The
cells of V may not be convex, but they are star-shaped: for any c ∈ S′ and for any point
x ∈ Vor(c), the segment cx lies completely in Vor(c). Furthermore, all line segments on the
cell boundaries of V must have slopes belonging to one of the four possible values: vertical,
horizontal, diagonal, or antidiagonal.

Next, decompose each Voronoi cell Vor(c) into four quadrants centered at c. Denote the
resulting subdivision of V as Ṽ . We compute a trapezoidal decomposition V ‖ of the diagram
Ṽ by drawing a vertical segment from each vertex of Ṽ in both directions until it meets an
edge of V ; V ‖ has O(k) trapezoids, see Figure 2. For each trapezoid τ ∈ V ‖, let Xτ := X ∩ τ .
The cost of the new clustering S′ can be computed as $(X,S′) =

∑
τ∈V ‖ $(Xτ , S

′).

Range-sum queries. Now we discuss how to compute $(Xτ , S
′). Each trapezoid τ in cells

Vor(c) is associated with a vector u(τ) ∈ {±1}2, depending on which of the four quadrants
τ belongs to with respect to the axis-parallel segments drawn passing through the center c
of the cell. If τ lies in the top-right quadrant then u(τ) = (1, 1). Similarly if τ lies in the
top-left (resp. bottom-left, bottom-right) then u(τ) = (−1, 1) (resp. (−1,−1), (1,−1)).

$(Xτ , S
′) =

∑
x∈Xτ

‖x− c‖1 =
∑
x∈Xτ

〈x− c, u(τ)〉 =
∑
x∈Xτ

〈x, u(τ)〉 − |Xτ | · 〈c, u(τ)〉. (5)

We preprocess X into a data structure that answers the following query:
TrapezoidSum(τ, u): Given a trapezoid τ and a vector u ∈ {±1}2, return |X ∩ τ | as
well as

∑
x∈X∩τ 〈x, u〉.

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:13

1-Swap(X,S):
input: Point set X and centers S
for each point x ∈ X \ S and center y ∈ S:

S′ ← S + x− y
V ← L1 Voronoi diagram of S′

Ṽ ← decompose each cell Vor(c) into four quadrants centered at c
V ‖ ← trapezoidal decomposition of Ṽ
for each trapezoid τ ∈ V ‖:

$(Xτ , S′)← TrapezoidSum(τ, u(τ))
$(X,S′)←

∑
τ∈V ‖ $(Xτ , S′)

return (x, y) with the lowest $(X,S + x− y)

Figure 3 Efficient implementation of 1-swap under 1-norm.

The above query can be viewed as a 3-oriented polygonal range query [33]. We construct
a 3-level range tree Ψ on X. Omitting the details (which can be found in [33]), Ψ can be
constructed in O(n log2 n) time and uses O(n log2 n) space. Each node ξ at the third level of
Ψ is associated with a subset Xξ ⊆ X. We store w(ξ, u) :=

∑
x∈Xξ〈x, u〉 for each u ∈ {±1}2

and |Xξ| at ξ. For a trapezoid τ , the query procedure identifies in O(log3 n) time a set Ξτ of
O(log3 n) third-level nodes such that X ∩ τ = ∪ξ∈ΞτXξ and each point of X ∩ τ appears as
exactly one node of Ξτ . Then

∑
x∈Xτ 〈x, u〉 =

∑
ξ∈Ξτ w(ξ, u) and |Xτ | =

∑
ξ∈Ξτ |Xξ|.

With the information stored at the nodes in Ξτ , TrapezoidSum(τ, u) query can be
answered in O(log3 n) time. By performing TrapezoidSum(τ, u(τ)) query for all τ ∈ V ‖,
$(Xτ , S

′) can be computed in O(k log3 n) time since V ‖ has a total of O(k) trapezoids.
We summarize the implementation of 1-swap algorithm in Figure 3. The 1-swap procedure

considers at most nk different k-clusterings. Therefore we obtain the following.

I Lemma 14. Let (X, δ, $) be a given clustering instance where δ is the L1 metric, and
let S be a given k-clustering. After O(n logn) time preprocessing, we find a k-clustering
S′ := S + x− y minimizing $(X,S′) among all choices of (x, y) in O(nk2 log3 n) time.

6 Conclusion

We presented near-linear time algorithms for finding optimal solutions of stable clustering
instances for the k-means, k-medians, and k-center problem. We note that variants of all
three approaches might work for smaller values of α. The value of α assumed in our results in
larger than what is known for polynomial-time algorithm (e.g. α ≥ 2 in Angelidakis et al. [10])
and that in some applications the input may not satisfy our assumption, but our results
are a big first step toward developing near-linear time algorithms for stable instances. We
are not aware of any previous near-linear time algorithms for computing optimal clustering
even for larger values of α. We leave the problem of reducing the assumption on α as an
important open question.

References
1 Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study. In Proceedings

of of the 12th International Conference on Artificial Intelligence and Statistics, volume 5 of
JMLR Proceedings, pages 1–8, 2009.

2 Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal geometric algorithms.
Journal of the ACM (JACM), 64(1):3, 2017.

FSTTCS 2020

8:14 Clustering Under Perturbation Stability in Near-Linear Time

3 Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its relatives. Contem-
porary Mathematics, 223:1–56, 1999.

4 Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approximation
via coresets. Combinatorial and computational geometry, 52:1–30, 2005.

5 Pankaj K Agarwal and Jiří Matoušek. Ray shooting and parametric search. SIAM Journal on
Computing, 22(4):794–806, 1993.

6 Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering
with same-cluster queries. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:21, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ITCS.2018.40.

7 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

8 Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed
polynomial time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 429–437. ACM, 2017.

9 Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, and Chen Dan. Bilu-
Linial stability, certified algorithms and the independent set problem. Preprint, October
2018.

10 Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev. Algorithms for stable and
perturbation-resilient problems. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 438–451. ACM, 2017.

11 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean
k-medians and related problems. In STOC, volume 98, pages 106–113, 1998.

12 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, January 2004. doi:10.1137/S0097539702416402.

13 Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
In Advances in neural information processing systems, pages 3216–3224, 2016.

14 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1–2):49–54, 2012.

15 Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 250–257.
ACM, 2002.

16 Ainesh Bakshi and Nadiia Chepurko. Polynomial time algorithm for 2-stable clustering
instances. Preprint, July 2016.

17 Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without the
approximation. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete
algorithms, pages 1068–1077. Society for Industrial and Applied Mathematics, 2009.

18 Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for
clustering via similarity functions. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 671–680. ACM, 2008.

19 Maria-Florina Balcan and Mark Braverman. Nash equilibria in perturbation-stable games.
Theory of Computing, 13(1):1–31, 2017.

20 Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center clustering under perturbation
resilience. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages
68:1–68:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICALP.2016.68.

21 Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. SIAM
Journal on Computing, 45(1):102–155, 2016.

https://doi.org/10.4230/LIPIcs.ITCS.2018.40
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.4230/LIPIcs.ICALP.2016.68

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:15

22 Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look. Theoretical
Computer Science, 558(1):51–61, 2014.

23 Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics, Probability and
Computing, 21(5):643–660, 2012.

24 Paul B Callahan and S Rao Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In Proceedings of the fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 291–300. Society for Industrial and Applied Mathematics, 1993.

25 Chandra Chekuri and Shalmoli Gupta. Perturbation resilient clustering for k-center and
related problems via LP relaxations. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David
Steurer, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2018), volume 116 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 9:1–9:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.9.

26 Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k-means. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 430–440, Philadelphia, PA, USA, 2018. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=3174304.3175298.

27 Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Roytman. The bane
of low-dimensionality clustering. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’18, pages 441–456, Philadelphia, PA, USA, 2018.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=3174304.3175300.

28 Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time approxi-
mation schemes for clustering in doubling metrics. Preprint, June 2019.

29 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT Approximations for k-Median and k-Means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

30 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM Journal on
Computing, 48(2):644–667, 2019.

31 Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering
instances. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 49–60. IEEE, 2017.

32 Sanjoy Dasgupta. The hardness of k-means clustering. Technical report, Department of
Computer Science and Engineering, University of California, September 2008.

33 Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
geometry. In Computational geometry, pages 1–17. Springer, 1997.

34 Amit Deshpande, Anand Louis, and Apoorv Vikram Singh. On Euclidean k-means clustering
with α-center proximity. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2087–2095, 2019.

35 Abhratanu Dutta, Aravindan Vijayaraghavan, and Alex Wang. Clustering stable instances of
Euclidean k-means. In Advances in Neural Information Processing Systems, pages 6500–6509,
2017.

36 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 434–444. ACM, 1988.

37 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A ptas for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Computational
geometry, pages 11–18. ACM, 2007.

FSTTCS 2020

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.9
http://dl.acm.org/citation.cfm?id=3174304.3175298
http://dl.acm.org/citation.cfm?id=3174304.3175300
http://dl.acm.org/citation.cfm?id=3174304.3175300

8:16 Clustering Under Perturbation Stability in Near-Linear Time

38 Zachary Friggstad, Kamyar Khodamoradi, and Mohammad R. Salavatipour. Exact algo-
rithms and lower bounds for stable instances of Euclidean k-means. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 2958–
2972, Philadelphia, PA, USA, 2019. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=3310435.3310618.

39 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.
doi:10.1137/17M1127181.

40 Sariel Har-Peled. No, coreset, no cry. In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 324–335. Springer, 2004.

41 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 291–300.
ACM, 2004.

42 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

43 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, May 1985.

44 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 731–740. ACM, 2002.

45 Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm.
In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science
(FOCS), pages 299–308. IEEE, 2010.

46 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+ epsilon)-
approximation algorithm for k-means clustering in any dimensions. In Annual Symposium on
Foundations of Computer Science, volume 45, pages 454–462. IEEE COMPUTER SOCIETY
PRESS, 2004.

47 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017.

48 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is NP-hard. Theoretical Computer Science, 442:13–21, 2012.

49 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-Linial stable
instances of max cut and minimum multiway cut. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms, pages 890–906. SIAM, 2014.

50 Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric
location problems. SIAM journal on computing, 13(1):182–196, 1984.

51 Matúš Mihalák, Marcel Schöngens, Rastislav Šrámek, and Peter Widmayer. On the complexity
of the metric TSP under stability considerations. In International Conference on Current
Trends in Theory and Practice of Computer Science, pages 382–393. Springer, 2011.

52 Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness
of Lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012.

53 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, 1983.

54 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman, editors. Handbook of discrete and
computational geometry. Chapman and Hall/CRC, 2017.

http://dl.acm.org/citation.cfm?id=3310435.3310618
https://doi.org/10.1137/17M1127181

	Introduction
	Our Results
	Related Work

	Definitions and Preliminaries
	Efficient Dynamic Programming
	Fast Dynamic Programming
	Efficient Implementation

	k-Median: Single-Swap Local Search
	Efficient Implementation of Local Search
	Conclusion

