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Abstract
In this paper we explore a family of type isomorphisms in System F whose validity corresponds,
semantically, to some form of the Yoneda isomorphism from category theory. These isomorphisms
hold under theories of equivalence stronger than βη-equivalence, like those induced by parametricity
and dinaturality. We show that the Yoneda type isomorphisms yield a rewriting over types, that
we call Yoneda reduction, which can be used to eliminate quantifiers from a polymorphic type,
replacing them with a combination of monomorphic type constructors. We establish some sufficient
conditions under which quantifiers can be fully eliminated from a polymorphic type, and we show
some application of these conditions to count the inhabitants of a type and to compute program
equivalence in some fragments of System F.
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1 Introduction

The study of type isomorphisms is a fundamental one both in the theory of programming
languages and in logic, through the well-known proofs-as-programs correspondence: type
isomorphisms supply programmers with transformations allowing them to obtain simpler
and more optimized code, and offer new insights to understand and refine the syntax of type-
and proof-systems.

Roughly speaking, two types A,B are isomorphic when one can transform any call by
a program to an object of type A into a call to an object of type B, without altering the
behavior of the program. Thus, type isomorphisms are tightly related to theories of program
equivalence, which describe what counts as the observable behavior of a program, so that
programs with the same behavior can be considered equivalent.

The connection between type isomorphisms and program equivalence is of special impor-
tance for polymorphic type systems like System F (hereafter Λ2). In fact, while standard
βη-equivalence for Λ2 and the related isomorphisms are well-understood [10, 12], stronger
notions of equivalence (as those based on parametricity or free theorems [37, 19, 1]) are often
more useful in practice but are generally intractable or difficult to compute, and little is
known about the type isomorphisms holding under such theories.

© Paolo Pistone and Luca Tranchini;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 35; pp. 35:1–35:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.pistone2@unibo.it
mailto:luca.tranchini@gmail.com
https://doi.org/10.4230/LIPIcs.CSL.2021.35
https://arxiv.org/abs/1907.03481
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 The Yoneda Reduction of Polymorphic Types

@X.X ñ X ñ A ” ArX ÞÑ 1` 1s (˚)
@X.pAñ Xq ñ pB ñ Xq ñ C ” CrX ÞÑ µX.A`Bs (˚˚)
@X.pX ñ Aq ñ pX ñ Bq ñ D ” DrX ÞÑ νX.AˆBs (˚ ˚ ˚)

Figure 1 Other examples of Yoneda type isomorphisms, where X only occurs positively in A,B,C
and only occurs negatively in D.

@X.X ñ X ñ @Y.p@Z.pZ ñ Xq ñ p@W.pW ñ Zq ñW ñ Xq ñ Z ñ Y q ñ pX ñ Y q ñ Y
p˚q
” @Y.p@Z.pZ ñ 1` 1q ñ p@W.pW ñ Zq ñW ñ 1` 1q ñ Z ñ Y q ñ p1` 1 ñ Y q ñ Y
(‹)
” @Y.p@Z.pZ ñ 1` 1q ñ pZ ñ 1` 1q ñ Z ñ Y q ñ p1` 1 ñ Y q ñ Y
p˚˚˚q
” @Y.ppνZ.p1` 1q ˆ p1` 1qq ñ Y q ñ p1` 1 ñ Y q ñ Y

p˚˚q
” µY.pνZ.p1` 1q ˆ p1` 1qq ` p1` 1q ” 1` 1` 1` 1` 1` 1

Figure 2 Short proof that a Λ2-type has 6 inhabitants, using type isomorphisms.

Type Isomorphisms with the Yoneda Lemma. Our starting point is the observation that
the Yoneda lemma, a cornerstone of category theory, is sometimes invoked [5, 16, 7, 35, 17]
to justify some type isomorphisms in Λ2 like e.g.

@X.pAñ Xq ñ pB ñ Xq ” B ñ A @X.pX ñ Aq ñ pX ñ Bq ” Añ B (‹)

which do not hold under βη-equivalence, but only under stronger equivalences. Such
isomorphisms are usually justified by reference to the interpretation of polymorphic programs
as (di)natural transformations [5], a well-known semantics of Λ2 related to both parametricity
[28] and free-theorems [36], and yielding a not yet well-understood equational theory over
the programs of Λ2 [15, 11, 23], that we call here the ε-theory. Other isomorphisms, like
those in Fig. 1, can be justified in a similar way as soon as the language of Λ2 is enriched
with other type constructors like 1, 0,`,ˆ,ñ and least/greatest fixpoints µX.A, νX.A.

All such type isomorphisms have the effect of eliminating a quantifier, replacing it with a
combination of monomorphic type constructors, and can be used to test if a polymorphic
type has a finite number of inhabitants (as illustrated in Fig. 2) or, as suggested in [7], to
devise decidable tests for program equivalence.

In this paper we develop a formal study of the elimination of quantifiers from polymorphic
types using a class of type isomorphisms, that we will call Yoneda type isomorphisms, which
generalize the examples above, and we explore its application for counting type inhabitants
as well as to establish properties of program equivalence in Λ2.

Eliminating Quantifiers with Yoneda Reduction. To give the reader a first glimpse of
our approach, we compare the use of Yoneda type isomorphisms to count type inhabitants
with some well-known sufficient conditions for a simple type A to have a unique or finitely
many inhabitants [2, 9]: we show that whenever a simple type A satisfies either of these
conditions, its universal closure @ ~X.A can be converted (as in Fig. 2) to either 1 or 1`¨ ¨ ¨` 1
by applying Yoneda type isomorphisms and usual βη-isomorphisms.

We then turn to investigate the quantifier-eliminating rewriting over types arising from
the left-to-right orientation of Yoneda type isomorphisms. A major obstacle here is that the
rewriting must take into account possible applications of βη-isomorphisms, whose axiom-
atization is challenging in presence of the constructors `, 0 [13, 18] (as well as µ, ν). For
this reason we introduce a family of rewrite rules, that we call Yoneda reduction, defined
not directly over types but over a class of finite trees which represent the types of Λ2 (but
crucially not those made with 0,`, . . . ) up to βη-isomorphism.
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Using this rewriting we establish some sufficient conditions for eliminating quantifiers,
based on elementary graph-theoretic properties of such trees, which in turn provide some new
sufficient conditions for the finiteness of type inhabitants of polymorphic types. First, we
prove quantifier-elimination for the types satisfying a certain coherence condition which can
be seen as an instance of the 2-SAT problem. We then introduce a more refined condition
by associating each polymorphic type A with a value κpAq P t0, 1,8u, that we call the
characteristic of A, so that whenever κpAq ‰ 8, A rewrites into a monomorphic type, and
when furthermore κpAq “ 0, A converges to a finite type. In the last case our method
provides an effective way to count the inhabitants of A. The computation of κpAq is somehow
reminiscent of linear logic proof-nets, as it is obtained by inspecting the existence of cyclic
paths in a graph obtained by adding some “axiom-links” to the tree-representation of A.

Program Equivalence in System F with Finite Characteristic. Computing program equiva-
lence under the ε-theory can be a challenging task, as this theory involves global permutations
of rules which are difficult to detect and apply [11, 23, 34, 27, 36]. Things are even worse at
the semantic level, since computing with dinatural transformations can be rather cumbersome,
due to the well-known fact that such transformations need not compose [5, 21].

Nevertheless, our approach to quantifier-elimination based on the notion of characteristic
provides a way to compute program equivalence without the appeal to ε-rules, free theorems
and parametricity, since all polymorphic programs having types of finite characteristic can be
embedded inside well-known monomorphic systems. To demonstrate this fact, we introduce
two fragments Λ2κď0 and Λ2κď1 of Λ2 in which types have a fixed finite characteristic, and
we prove that these are equivalent, under the ε-theory, respectively, to the simply typed
λ-calculus with finite products and co-products (or, equivalently, to the free bicartesian
closed category B), and to its extension with µ, ν-types (that is, to the free cartesian closed
µ-bicomplete category µB [29, 6]). Using well-known facts about B and µB [31, 6, 22], we
finally establish that the ε-theory is decidable in Λ2κď0 and undecidable in Λ2κď1.

Preliminaries and Notations

We will presuppose familiarity with the syntax of Λ2 (in the version à la Church) and its
extensions Λ2p,Λ2pµν with sum and product types, as well as µ and ν-types. We indicate by
Λ,Λp,Λpµν their respective quantifier-free fragments. The syntax of these systems is recalled
in App. A. We let V “ tX,Y, Z, . . . u indicate the countable set of type variables.

Let S indicate any of the type systems above. We let Γ $S t : A indicate that the
judgement Γ $ t : A is derivable in S. We indicate as trxs a term with a unique free variable
x, and we let trxs : A $Γ

S B be shorthand for Γ, x : A $S t : B.
A theory of S is a class of equations over well-typed terms satisfying usual congruence

rules. Standard theories of Λ2,Λ2p,Λ2pµν are those generated by βη-equivalence and by
contextual equivalence, recalled in App. A. We will also consider a less standard theory, the
ε-theory, described in App. B. For all theory T including βη-equivalence, we let CTpSq be
the category whose objects are the types of S and whose arrows are the T-equivalence classes
of terms trxs : A $S B. CTpSq is cartesian closed as soon as S contains products, meaning in
particular that CTpSqpAˆB,Cq » CTpSqpA,B ñ Cq.

By a T-isomorphism, indicated as A ”T B, we mean a pair of terms trxs : A $S B,
urxs : B $T A such that trurxss »T x and urtrxss »T x (where trurxss is trx ÞÑ us).

CSL 2021



35:4 The Yoneda Reduction of Polymorphic Types

2 Yoneda Type Isomorphisms

In this section we introduce an axiomatization for a class of type isomorphisms that we
call Yoneda type isomorphisms. For this we will rely on the well-known distinction between
positive and negative occurrences of a variable X in a type A.

I Notation 2.1. Throughout the text we indicate as X (resp. X) a positive (resp. negative)
occurrence of X. When B occurs within a larger type A, we often note B as B xXy to indicate
that all occurrences of the variable X in B are positive occurrences in A, or as B xXy to
indicate that all occurrences of the variable X in B are negative occurrences in A. So for
instance, when B only contains positive occurrences of X, we write the type A “ X ñ B

as X ñ B xXy (since all positive occurrences of X in B are positive in A) and the type
A1 “ B ñ X as B xXy ñ X (since all positive occurrences of X in B are negative in A).

The focus on positive/negative occurrences highlights a connection with to the so-called
functorial semantics of Λ2 [5, 15], in which types are interpreted as functors and typed
programs as (di)natural transformations between such functors. More precisely, any positive
type A xXy gives rise to a functor ΦXA : CTpSq Ñ CTpSq, any negative type A xXy gives rise
to a functor ΦXA : CTpSqop Ñ CTpSq and, more generally, any type A gives rise to a functor
ΦX
A : CTpSqop ˆ CTpSq Ñ CTpSq. In all such cases, the action of the functor on a type A is

obtained by replacing positive/negative occurrences of X by A, and the action on programs
can be defined inductively (we recall this construction in App. A, see also [11, 24]).

With types being interpreted as functors, a polymorphic term trxs : A $Λ2 B is interpreted
as a transformation satisfying an appropriate naturality condition: when A and B have the
same variance, trxs is interpreted as an ordinary natural transformation; instead, if A and B
have mixed variances, then trxs is interpreted as a dinatural transformation.

Such (di)naturality conditions can be described syntactically through a class of equational
rules over typed programs [11, 23] generating, along with the usual βη-equations, a theory of
program equivalence that we call the ε-theory.1 These equational rules are usually interpreted
as parametricity conditions [28], or as instances of free theorems [36].

As mentioned in the introduction, our goal here is not that of investigating the ε-theory
directly, but rather to explore a class of type isomorphisms that hold under this theory (that
is, of isomorphisms in the syntactic categories CεpSq, with S “ Λ2,Λ2p,Λ2pµν). For example,
in functorial semantics a type of the form @X.A xXy ñ B xXy is interpreted as the set of
natural transformations between the functors A xXy and B xXy. Now, if A xXy is of the form
A0 ñ X (i.e. it is a representable functor), using the ε-theory we can deduce (see App. B) a
“Yoneda lemma” in the form of the quantifier-eliminating isomorphism below:

@X.pA0 ñ Xq ñ B xXy ” B xX ÞÑ A0y (1)

Similarly, if A xXy , B xXy are both negative and A xXy is of the form X ñ A0 (i.e. it is a
co-representable functor), we can deduce another quantifier-eliminating isomorphism:

@X.pX ñ A0q ñ B xXy ” B xX ÞÑ A0y (2)

Observe that both isomorphisms (‹) from the Introduction are instances of (1) or (2).

1 We define this theory formally in App. B, but this is not necessary to understand this paper.



P. Pistone and L. Tranchini 35:5

As we admit more type-constructors in the language, we can use the ε-theory to deduce
stronger schemas for eliminating quantifiers. For instance, using least and greatest fixed points
µX.A xXy , νX.A xXy of positive types, we can deduce the stronger schemas [35] below.

@X.pA xXy ñ Xq ñ B xXy ” B xX ÞÑ µX.A xXyy (3)
@X.pX ñ A xXyq ñ C xXy ” C xX ÞÑ νX.A xXyy (4)

Note that (1) and (2) can be deduced from (3) and (4) using the isomorphisms µX.A ”βη
νX.A ”βη A, when X does not occur in A. Moreover, adding sum and product types enables
the elimination of the quantifier @X also from a type of the form A “ @X.pA11 xXy ñ

A12 xXy ñ Xq ñ pA21 xXy ñ A22 xXy ñ Xq ñ B xXy by using βη-isomorphisms:

A ”βη @X.
´´

ř

i“1,2
ś

j“1,2Aij xXy
¯

ñ X
¯

ñ B xXy ” B
A

X ÞÑ µX.
´

ř

i“1,2
ś

j“1,2Aij xXy
¯E

These considerations lead to introduce the following class of isomorphisms:

I Definition 1. A Yoneda type isomorphism is any instance of the schemas ”X , ”X below

@X.@~Y.
A

@~Zk.xAjk xXyyj ñ X
E

k
ñ B xXy ”X @~Y.B

A

X ÞÑ tµX.u
ř

k

´

D~Zk.
ś

j Ajk xXy
¯E

@X.@~Y.
A

@~Zk.X ñ Aj xXy
E

k
ñ B xXy ”X @~Y.B

A

X ÞÑ tνX.u@~Zk.
ś

j Aj xXy
E

where, given a list L “ xi1, . . . , iky, and an L-indexed list of types pAiqiPL, xAiyiPL ñ B is a
shorthand for Ai1 ñ . . .ñ Aik ñ B, the expressions tµX.u, tνX.u indicate that the binder
µX. (resp. νX.) is applied only if X (resp. X) actually occurs in some of the Ajk (resp. Aj),
and D~Y.A is a shorthand for @Y 1.p@~Y.Añ Y 1q ñ Y 1).

For all types A,B of Λ2pµν , we write A ”Y B when A can be converted to B using
”X ,”X and the partial2 axiomatization of βη-isomorphisms in Fig. 9-11 (App. A).

Since ”X and ”X are ε-isomorphisms (see App. B), whenever A ”Y B, A and B are
interpreted as isomorphic objects in all dinatural and parametric models of Λ2.

3 Counting Type Inhabitants with Yoneda Type Isomorphisms

A first natural application of Yoneda type isomorphisms is to count the inhabitants of a
simple type: given such a type A, with free variables ~X, if @ ~X.A ”Y 0` 1` ¨ ¨ ¨ ` 1 “

řk
i“1 1,

then A has exactly k proofs (up to ε-equivalence). Let us start with a “warm-up” example.

I Example 2. In [9] it is proved that the type A “ ppppX ñ Y q ñ X ñ Zq ñ pY ñ Zq ñ

W q ñ pY ñ Zq ñW has a unique inhabitant. Here’s a quick proof of @XY ZW.A ”Y 1:

@XY ZW.ppppX ñ Y q ñ X ñ Zq ñ pY ñ Zq ñW q ñ pY ñ Zq ñW

”W @XY Z.pY ñ Zq ñ
´

`

pX ñ Y q ñ X ñ Z
˘

ˆ
`

Y ñ Z
˘

¯

”Z @XY.
`

pX ñ Y q ñ X ñ Y
˘

ˆ
`

Y ñ Y
˘

”βη

´

@XY.
`

pX ñ Y q ñ X ñ Y
˘

¯

ˆ

´

@Y.Y ñ Y
¯

”X

´

@Y.Y ñ Y
¯

ˆ

´

@Y.Y ñ Y
¯

”Y 1ˆ 1 ”βη 1

2 The axiomatization in Fig. 9-11 is complete for the βη-isomorphisms of Λ2 [12], but fails to be complete
(already at the propositional level) in presence of sums and the empty type [13, 18].
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35:6 The Yoneda Reduction of Polymorphic Types

The literature on counting simple type inhabitants is vast (e.g. [2, 9, 8, 32]) and includes
both complete algorithms and simpler sufficient conditions for a given type to have a unique
or finite number of inhabitants. The latter provide then an ideal starting point to test our
axiomatic theory of type isomorphisms, as several of these conditions are based on properties
like the number of positive/negative occurrences of variables.

We tested Yoneda type isomorphisms on two well-known sufficient conditions for unique
inhabitation. A simple type A is balanced when any variable occurring free in A occurs
exactly once as X and exactly once as X. A is negatively non-duplicated if no variable occurs
twice in A as X. An inhabited simple type which is balanced or negatively duplicated has
exactly one inhabitant [2]. The theory ”Y subsumes these conditions in the following sense:

I Proposition 3. Let ArX1, . . . , Xns be an inhabited simple type with free variables X1, . . . , Xn.
If ArX1, . . . , Xns is either balanced or negatively non-duplicated, then @X1 . . .@Xn.A ”Y 1.

Observe that, since the type in Example 2 is neither balanced nor negatively non-
duplicated, type isomorphisms provide a stronger condition than the two above.

We tested another well-known property, dual to one of the previous ones: a simple type A
is positively non-duplicated if no variable occurs twice in A as X. A positively non-duplicated
simple type has a finite number of proofs [9]. We reproved this fact using type isomorphisms,
but this time only in a restricted case. Let the depth dpAq of a simple type A be defined by
dpXq “ 0, dpAñ Bq “ maxtdpAq ` 1, dpBqu.

I Proposition 4. Let ArX1, . . . , Xns be an inhabited simple type with free variables X1, . . . , Xn.
If A is positively non-duplicated and dpAq ď 2, then @X1 . . .@Xn.A ”Y 0` 1` ¨ ¨ ¨ ` 1.

4 From Polymorphic Types to Polynomial Trees

Read from left to right, the schemas ”X ,”X yield rewriting rules over Λ2pµν-types which
eliminate occurrences of polymorphic quantifiers. Yet, a major obstacle to study this rewriting
is that the application of ”X ,”X might depend on the former application of βη-isomorphisms
(as we did for instance in the previous section). Already for the propositional fragment
Λp, the βη-isomorphisms are not finitely axiomatizable and it is not yet clear if a decision
algorithm exists at all (see [13, 18]). This implies in particular that a complete criterion for
the conversion of a Λ2-type to a monomorphic (or even finite) type can hardly be computable.

For this reason, we restrict our goal to establishing some efficiently recognizable (in
fact, polytime) sufficient conditions for quantifier-elimination. Moreover, we will exploit the
well-known fact that the constructors 0, 1,`,ˆ, µ, ν can be encoded inside Λ2 to describe our
rewriting entirely within (a suitable representation of) Λ2-types, for which βη-isomorphisms
are completely axiomatized by the rules in Fig. 9 (see [12]).

Even if one restricts to Λ2-types, recognizing if one of the schemas ”X ,”X applies to a
Λ2-type @X.A might still require to first apply some βη-isomorphisms. For example, consider
the Λ2-type A “ @X.ppY ñ Xq ñ Y q ñ pY ñ Xq ñ Y . In order to eliminate the quantifier
@X using ”X , we first need to apply the βη-isomorphism A ñ pB ñ Cq ”βη B ñ pA ñ

Cq, turning A into @X.pY ñ Xq ñ ppY ñ Xq ñ Y q ñ Y , which is now of the form
@X.pB xXy ñ Xq ñ C xXy, with B xXy “ Y and C xXy “ ppY ñ Xq ñ Y q ñ Y . We can
then apply ”X , yielding ppY ñ Y q ñ Y q ñ Y .

To obviate this problem, we introduce below a representation of Λ2-types as labeled
trees so that βη-isomorphic types are represented by the same tree. In the next section
we will reformulate the schemas ”X ,”X as reduction rules over such trees. This approach
drastically simplifies the study of this rewriting, and will allow us to establish conditions for
quantifier-elimination based on elementary graph-theoretic properties.
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A βη-invariant representation of Λ2-types. We introduce a representations of Λ2-types as
rooted trees whose leaves are labeled by colored variables, with colors being any c P Colors “
tblue, redu. We indicate such variables as either Xc or simply as X,X. Moreover, we indicate
as c the unique color different from c.

By a rooted tree we indicate a finite connected acyclic graph with a chosen vertex, called

its root. If pGiqiPI is a finite family of rooted trees, we indicate as

 

Gi
(

iPI

u

the tree with root

u obtained by adding an edge from any of the roots of the trees Gi to u.

I Definition 5. The sets E and E of positive and negative Λ2-trees are inductively defined
by:

E :“
!

Ei
)

iPI
X

~Y

E :“
!

Ei
)

iPI
X

~Y

where X is a variable, ~Y indicates a finite set of variables, and the edge in E (resp. E) with

label X (resp. X) is called the head of E (resp. of E). The trees
t uH X

H

and
t uH X

H

are

indicated simply as X and X.

Free and bound variables of a tree E “
!

Ei
)

iPI
X

~Y

are defined by fVpEq “
Ťn
i“1 fVpEiqY

tXu ´ ~Y and bVpEq “
Ťn
i“1 bVpEiq Y ~Y .

We can associate a positive and a negative Λ2-tree to any Λ2-type as follows. Let us say
that a type A of Λ2 is in normal form (shortly, in NF) if A “ @~Y.A1 ñ . . . ñ An ñ X

where each of the variables in ~Y occurs in A1 ñ . . .ñ An ñ X at least once, and the types
A1, . . . , An are in normal form. It can be checked that any Λ2-type is βη-isomorphic to a
type in NF, that we indicate as NFpAq.

I Definition 6. For all A P Λ2, with NFpAq “ @~Y.A1 ñ . . .ñ An ñ X, let

tpAq “

!

tpAiq
)

i“1,...,n
X

~Y

tpAq “

!

tpAiq
)

i“1,...,n
X

~Y

The tree-representation of Λ2-types captures βη-isomorphism classes, in the sense that
A ”βη B iff tpAq “ tpBq (this is proved in detail in [26]). For instance, the two βη-isomorphic
types @XY.pX ñ Xq ñ p@Z.X ñ Zq ñ pY ñ Xq ñ Y and @X.pX ñ Xq ñ @Y.pY ñ

Xq ñ pX ñ @Z.Zq ñ Y translate into the same Λ2-tree, shown in Fig. 4b (where underlined
node labels and dashed edges can be ignored, for now).

Polynomial Trees. To formulate the schemas ”X ,”X in the language of rooted trees
we exploit an encoding of the types of the form µX.D~Y.

ř

kPK

ś

jPJk
Ajk xXy and

νX.@~Y.
ś

jPJ Aj xXy as certain special trees employing two new constants ‚ and N. This
encoding is easily seen to be a small variant, in the language of finite trees, of the usual
second-order encodings.

We first introduce a handy notation for “polynomial” types, i.e. types corresponding to
a generalized sum of generalized products. Following [14], any such type A is completely
determined by a diagram of finite sets I f

Ð J
g
Ñ K and a I-indexed family of types pAiqiPI ,

so that A “
ř

kPK

ś

jPJk
Afpjq, where Jk :“ g´1pkq. In the following, we will call the given

of a finite diagram I
f
Ð J

g
Ñ K, and an I-indexed family paiqiPI a polynomial family, and

indicate it simply as pajkqkPK,jPJk (in fact, we already implicitly used this notation in Def. 1).

CSL 2021



35:8 The Yoneda Reduction of Polymorphic Types

τpXq “ X τ

¨

˝

!

Ei
)

iPI
F

~Y

˛

‚“ @ ~X.τpE1q ñ . . .ñ τpEnq ñ τpFq

τ

¨

˚

˚

˚

˚

˚

˝

$

’

’

&

’

’

%

!

EjkrX ÞÑ ‚s

)

j
‚

~Yk

,

/

/

.

/

/

-

k
‚

‚

˛

‹

‹

‹

‹

‹

‚

“ µX.D~Yk.
ř

kPK

ś

jPJk
τpEjkrXsq τ

¨

˚

˚

˚

˚

˚

˝

!

EjrX ÞÑ Ns
)

j
N

~Y N

N

˛

‹

‹

‹

‹

‹

‚

“ νX.@~Y.
ś

jPJ τpEjrXsq

Figure 3 Translation of simple polynomial trees into monomorphic types.

We now enrich the class of Λ2-trees as follows:

I Definition 7 (Polynomial trees). Let ‚,N indicate two new constants.
the set P of positive polynomial trees is defined by adding to the clauses defining positive
Λ2-trees two new clauses:

$

’

’

&

’

’

%

!

Ejk xX ÞÑ ‚y

)

j
‚

~Xk

,

/

/

.

/

/

-

k
‚

‚

!

Ej xX ÞÑ Ny
)

j
N

~X N

N

where X is some variable, pEjk xXyqk,j (resp. pEj xXyqj) is a polynomial family (resp. a
family) of positive polynomial trees with no occurrence of X, and p ~XkqkPK is a K-indexed
family of finite sets of variables.
the set P of negative polynomial trees is defined by adding to the clauses defining negative
Λ2-trees two new clauses:

$

’

’

&

’

’

%

!

Ejk xX ÞÑ ‚y

)

j
‚

~Xk

,

/

/

.

/

/

-

k
‚

‚

!

Ej xX ÞÑ Ny
)

j
N

~X N

N

where X is some variable, pEjk xXyqk,j (resp. pEj xXyqj) is a polynomial family (resp. a
family) of negative polynomial trees with no occurrence of X, and p ~XkqkPK is a K-indexed
family of finite sets of variables.

We indicate by P the set of all polynomial trees, and by P0 the set of all polynomial trees
with no bound variables, which are called simple.

Any polynomial tree E P P can be converted into a type τpEq of Λ2pµν as illustrated in
Fig. 3. It is easily checked that, whenever E is simple, τpEq has no quantifier. Moreover, one
can check that for all Λ2-type, τptpAqq “ A.

We conclude this section with some basic example of polynomial trees.

I Example 8. The constant types 0 and 1 are represented as positive/negative trees by

0 “
‚

‚
, 0 “

‚

‚
and 1 “

‚ ‚

‚
, 1 “

‚ ‚

‚
.

The diagram t1, 2u 1,3 ÞÑ1;2 ÞÑ2
Ð t1, 2, 3u 1,2 ÞÑ1;3 ÞÑ2

Ñ t1, 2u, along with the family pXiqiPt1,2u,
yields the polynomial family pEjkqk,j , with E11 “ E32 “ X1 and E21 “ X2, and yields the

polynomial tree
‚ X2 ‚

H

‚ ‚

H ‚

‚

encoding the type µX1.pX1 ˆX2q `X1.

The diagram t1, 2u id
Ð t1, 2u Ñ t1u with the same family as above yields the polynomial

tree
N N

H

X2 N

H N
N

encoding the type νX1.X1 ˆX2.
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E1 “

X X

H

X Y

Y X

X

(a) @X.pX ñ Xq ñ p@Y.X ñ Y q ñ X.

E2 “

X X

H

X Z

Z

Y X

H Y

XY

(b) @XY.pX ñ Xq ñ p@Z.X ñ Zq ñ pY ñ Xq ñ Y .

Figure 4 Polynomial trees with highlighted modular nodes and modular pairs.

5 Yoneda Reduction

In this section we introduce a family of rewriting rules  X , X over polynomial trees, that
we call Yoneda reduction, which correspond to the left-to-right orientation of the isomorphisms
”X ,”X . We will adopt the following conventions:

I Notation 5.1. We make the assumption that all bound variables of a polynomial tree E
are distinct. More precisely, for any X P bVpEq, we suppose there exist unique nodes rX and
hX such that rX : ~X, for some set of variable ~X such that X P ~X, and hX is the head of the
sub-tree whose root is rX .

We will call two distinct nodes parallel if they are immediate successors of the same node,
and we let the distance dpα, βq between two nodes in a polynomial tree be the number of
edges of the unique path from α to β.

Using polynomial trees we can identify when a quantifier can be eliminated from a
type independently from βη-isomorphisms, by inspecting a simple condition on the tree-
representation of the type based on the notion of modular node, introduced below.

I Definition 9. For all X P bVpEq, a terminal node α : Xc in E is said modular if α ‰ hX ,
1 ď dpα, rXq ď 2 and α has no parallel node of label Xc. A pair of nodes of the form
pα : X,β : Xq is called a X-pair, and a X-pair is said modular if one of its nodes is modular.

In the trees in Fig. 4 the modular nodes are underlined and the modular pairs are
indicated as dashed edges.

I Definition 10. A variable X P bVpEq is said eliminable when every X-pair of E is modular.
For every color c, we furthermore call X c-eliminable if every node α : Xc is modular.

We let eliminable be a shorthand for “blue-eliminable” and eliminable be a shorthand
for “red-eliminable”. These notions are related as follows:

I Lemma 11. X is eliminable iff it is either eliminable or eliminable.

Proof. If X is neither eliminable nor eliminable, then there exist non-modular nodes α :
X,β : X, whence the X-pair pα, βq is not modular. Conversely, suppose X is eliminable but
not eliminable. Hence there is a non modular node α : X. For all node β : X, since the
X-pair pα, βq is modular, β is modular. We deduce that X is eliminable. J

I Example 12. The variable X is eliminable but not eliminable in the tree in Fig. 4a, and
it is both eliminable and eliminable in the tree in Fig. 4b.

The proposition below shows that a variable X is eliminable (resp. eliminable) in the tree
of a Λ2-type @X.A exactly when @X.A matches, up to βη-isomorphisms, with the left-hand
type of the schema ”X (resp. ”X).
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(a) X eliminable in E.
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(b) X eliminable in E.
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(c) X eliminable in E.
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(d) X eliminable in E.

Figure 5 Yoneda reduction of X-eliminable trees.

I Proposition 13. X is eliminable in E iff E is as in Fig. 5a left, for some polynomial
family pDjkxXyqkPK,jPJk , family pFlxXyqlPL and blue variable Y (possibly X itself).
X is eliminable in E iff E is as in Fig. 5b left, for some polynomial family
pDjkxXyqkPK,jPJk , family pEkxXyqkPK , family pFlxXyqlPL and blue variable Y ‰ X.
X is eliminable in E iff E is as in Fig. 5c left, for some polynomial family
pDjkxXyqkPK,jPJk , family pEkxXyqkPK , family pFlxXyqlPL and red variable Y ‰ X.
X is eliminable in E iff E is as in Fig. 5d left, for some polynomial family
pDjkxXyqkPK,jPJk , family pFlxXyqlPL and red variable Y (possibly X itself).

For all four cases of Prop. 13 we define a rewriting rule which eliminates X.

I Definition 14 (Yoneda reduction). Let F P P and X P bVpFq be an eliminable variable. The
rules F Xc F1 consist in replacing the subtree E of F rooted in rX as illustrated in Fig. 5.

I Example 15. The tree in Fig. 4b rewrites as illustrated in Fig. 6.

By inspecting the rules in Fig. 5 one can check that E  Xc E1 implies τpEq ”Y τpE1q.
From this we can deduce by induction:

I Lemma 16. For all Λ2-type A, if tpAq ˚ E P P0, then A ”Y τpEq P Λpµν .

The lemma above suggests to study the elimination of quantifiers from Λ2-types by studying
the convergence of Λ2-trees onto simple polynomial trees. This will be our next goal.
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E2  X

µ` Y Z

Z Y

Y

 Z

µ` Y 0

H Y

Y

 Y

µ` 0 0

H 0

H

¨

˚

˝

µ` E “
‚ ‚

H

E ‚

H ‚

‚

˛

‹

‚

Figure 6 Yoneda reduction of the polynomial tree E2 from Fig. 4b.

6 The Characteristic of a Polymorphic Type

In this section we exploit Yoneda reduction to establish two sufficient conditions to convert a
Λ2-type A into a quantifier-free type A1 such that A ”Y A

1.

The Coherence Condition. When a reduction is applied to E, several sub-trees of E can be
either erased or copied and moved elsewhere. Hence, the resulting tree E1 might well have a
greater size and even a larger number of bound variables than E. Nevertheless, sequences of
Yoneda reductions always terminate, as one can define a measure which decreases at each
step (see [26]).

I Proposition 17. There is no infinite sequence of Yoneda reductions.

Although sequences of reductions always terminate, they need not terminate on a simple
polynomial tree, that is, on the encoding of a monomorphic type. This can be due to
several reasons. Firstly, one bound variable might not be eliminable. Secondly, even if all
variables are eliminable, this property need not be preserved by reduction. For example,
take the type A “ @X.@Y.pX ñ Y ñ Xq ñ ppY ñ Xq ñW q ñ Z: although X and Y are
both eliminable (in the associated tree), if we apply a reduction to X, then Y ceases to be
eliminable, and similarly if we reduce Y first. Such conflicts can be controlled by imposing a
suitable coherence relation on variables.

I Definition 18. Let E be a polynomial tree, X,Y P bVpEq and c, d P Colors. Xc and Y d are
said coherent if there exists no parallel modular nodes of the form α : Xc, β : Y d in E.

I Example 19. In the tree in Fig. 4b, Y and Z are coherent, while X and Y are not.

I Definition 20 (coherence condition). Let E be a polynomial tree. A valuation of E is any
map φ : bVpEq Ñ Colors. For all valuation φ of E, we call E φ-coherent if for all X P bVpEq,
X is φpXq-eliminable, and moreover for all Y ‰ X P bVpEq, XφpXq is coherent with Y φpY q.
We call E coherent if it is φ-coherent for some valuation φ of E.

I Remark 21 (Coherence is an instance of 2-SAT). The problem of checking if a polynomial tree
E is coherent can be formulated as an instance of 2-SAT (a well-known polytime problem):
consider n Boolean variables x1, . . . , xn (one for each bound variable of E), and let aci be xi if
c “ blue and  xi if c “ red. Consider then the 2-CNF A^B, where A is the conjunction of
all aci _ aci such that Xi is not c-eliminable in E, and B is the conjunction of all aci _ adj , for
all incoherent Xc

i and Xd
j . Then a coherent valuation of E is the same as a model of A^B.

As observed before, a reduction E  X E1 might copy or erase some bound variables
of E. One can then define a map g : bVpE1q Ñ bVpEq associating any variable in E1
with the corresponding variable in E of which it is a copy. A sequence of reductions
E0  X

c1
1
¨ ¨ ¨ Xcnn En induces then, for 1 ď i ď n, maps gi : bVpEiq Ñ bVpEi´1q, and we let

Gi : bVpEiq Ñ bVpE0q be g1 ˝ g2 ˝ ¨ ¨ ¨ ˝ gi.
The rewriting properties of coherent trees are captured by the following notion:
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X X

H

X Z

Z

Y X

H Y

XY

(a) Alternate path in
@XY.pX ñ Xq ñ p@Z.X ñ Zq ñ pY ñ Xq ñ Y .

Y X

H

Z X

H Z Y

Z Y

XY

(b) Cyclic alternate path in
@XY.pY ñ Xq ñ p@Z.pZ ñ Xq ñ pZ ñ Y qq ñ Y .

Figure 7 Examples of alternate paths.

I Definition 22 (standard reduction). A sequence of reductions E0  X
c1
1
¨ ¨ ¨  Xcnn En is

said standard if for all i, j “ 1, . . . , n, GipXiq
ci is coherent with GjpXjq

cj in E0. We say
that E strongly converges under standard reduction if all standard reductions starting from E
terminate on a simple polynomial tree.

Using the fact that coherence is stable under standard reduction (see [26]) we obtain:

I Theorem 23. E is coherent iff E strongly converges under standard reduction.

Using Lemma 16 we further deduce:

I Corollary 24. Let A be a type of Λ2. If tpAq is coherent, then there exists a Λpµν-type A1
such that A ”Y A

1.

The Characteristic. We now introduce a refined condition for coherent trees, which can be
used to predict whether a type rewrites into a finite type (i.e. one made up from 0, 1,`,ˆ,ñ
only) or into one using µ, ν-constructors.

An intuition from Section 2 is that, for a type of the form @X.pA xXy ñ Xq ñ B xXy

(which rewrites into B xX ÞÑ µX.A xXyy) to reduce to one without µ, ν-types, the variable
X must not occur in A at all. However, the property “X does not occur in A” need not be
preserved under reduction. Instead, we will define a stronger condition that is preserved by
standard reduction by inspecting a class of paths in the tree of a type.

I Definition 25. Let E be a polynomial Λ2-tree and let ĺ indicate the natural order on the
nodes of E having the root of E as its minimum. A down-move in E is a pair α B β, such
that, for some bound variable X P bVpEq, pα, βq is an X-pair and β is modular. An up-move
in E is a pair α B β such that α ‰ β, α is a modular node with immediate predecessor γ,
β : X for some X P bVpEq, and γ ĺ β. An alternating path in E is a sequence of nodes
α0 . . . α2n such that α2i B α2i`1 is a down-move and α2i`1 B α2i`2 is an up-move.

In Fig. 7b are illustrated some alternating paths. Observe that whenever X occurs in
A xXy, we can construct a cyclic alternate path in the tree of @X.pA xXy ñ Xq ñ B xXy:
down-move from an occurrence of X in A to the modular node labeled X, then up-move
back to X. We deduce that if no cyclic alternate path exists, then any subtype of the form
above must be such that X does not occur in A. This leads to introduce the following:

I Definition 26. For any polynomial tree E, the characteristic of E, κpEq P t0, 1,8u is
defined as follows: if E is coherent, then κpEq “ 0 if it has no cyclic alternating path, and
κpEq “ 1 if it has a cyclic alternating path; if E is not coherent, κpEq “ 8.

The characteristic is indeed stable under standard reduction (see [26]).
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I Lemma 27. For all E,E1, if E reduces to E1 by standard reduction, then κpE1q ď κpEq.

Using the observation above and Lemma 27 we can easily prove:

I Proposition 28. Suppose κpEq P t0, 1u and E reduces to E1 P P0 by standard reduction. If
κpEq “ 0, then τpE1q P Λp, and if κpEq “ 1, then τpE1q P Λpµν .

For a Λ2-type A, we can define its characteristic as κpAq “ κptpAqq. From Prop. 28 and
Lemma 16 we deduce then a new criterion for finiteness:

I Corollary 29. Let A be a closed Λ2-type. If κpAq “ 0, then A ”Y 0` 1` ¨ ¨ ¨ ` 1.

The criterion based on the characteristic can be used to capture yet more finite Λ2-types.
In fact, whenever a type A reduces to a type with characteristic 0, we can deduce that
A ”Y 0` 1` ¨ ¨ ¨ ` 1. Note that such a type A need not even be coherent. For instance, the
(tree of) the type A “ @XY.p@Z.ppZ ñ Zq ñ Xq ñ Xq ñ Y ñ Y , is not coherent (since
the variable Z is not eliminable), but reduces, by eliminating X, to (the tree of) @Y.Y ñ Y ,
which has characteristic 0, and in fact we have that A ”Y 1.

As this example shows, a type A can reduce to a finite sum 0` 1` ¨ ¨ ¨ ` 1 even if some
of its subtypes cannot be similarly reduced. In fact, while we can eliminate all quantifiers
from the type A above, we cannot do this from its subtype @Z.ppZ ñ Zq ñ Xq ñ Xq. By
contrast, in the next section we show that the characteristic satisfies nice compositionality
conditions that will allow us to define suitable fragments of Λ2.

7 System F with Finite Characteristic

In this section we explore the use of Yoneda reduction to compute program equivalence in
Λ2. We introduce two fragments of Λ2 in which types have a fixed finite characteristic, and
we show that the ε-theory for such fragment can be computed by embedding polymorphic
programs into well-known monomorphic systems.

First, we have to check that the types with a fixed finite characteristic do yield well-defined
fragments of Λ2. This requires to check two properties. First, the characteristic has to be
compositional: a subtype of a type of characteristic k cannot have a higher characteristic,
since every subtype of a type of the fragment must be in the fragment itself. Second, since a
universally quantified variable can be instantiated with any other type of the fragment, the
characteristic must be closed by instantiation: if @X.A and B have characteristic k, then
ArB{Xs must have characteristic (at most) k.

I Lemma 30. (compositionality) If A is a sub-type of B, then κpAq ď κpBq.
(closure by instantiation) κpArB{Xsq ď maxtκp@X.Aq, κpBqu.

Thanks to Lemma 30 the following fragments can be seen to be well-defined.

I Definition 31 (Systems Λ2κďk). For k “ 0, 1, let Λ2κďk be the subsystem of Λ2 with same
typing rules and types restricted to the types of Λ2 of characteristic k.

We recall that the free bicartesian closed category is the category B “ CβηpΛpq and the
free cartesian closed µ-bicomplete category µB [29, 6] is the category CβηpΛpµνq. The β and
η-rules for Λp and Λpµν are recalled in App. A.

B and µB can be embedded in Λ2 by the usual second order encoding (that we note 7
and recall in [26]). In fact, it is easily seen that any type of Λp (resp. of Λpµν) is encoded by
a type of Λ2κď0 (resp. of Λ2κď1). Moreover, it is well-known (see [28, 16]) that the η-rules of
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Λpµν are preserved in Λ2 only up to dinaturality (i.e. up to the ε-theory). This embedding
yields then a functor 7 : µBÑ CεpΛ2κď1q, which restricts to a functor from B to CεpΛ2κď0q.

Conversely, from Proposition 28, we already know that the types of Λ2κď0 (resp. Λ2κď1)
are isomorphic, modulo the ε-theory, to types of Λp (resp. Λpµν).

I Proposition 32. For all Λ2κď0-type (resp. Λ2κď1-type) A there exists a type A5 of Λp
(resp. Λpµν) such that A ”ε A5.

Proof. Since all isomorphisms ”Y are valid under the ε-theory, we can obtain A5 from any
standard reduction of the tree of A, using Prop. 28. For technical reasons we will consider a
particular reduction, described in detail in [26]. J

In [26] we show that the embedding of types above scales to an embedding of terms: for all
term t such that Γ $Λ2κď1 t : A, we define a term t5 such that Γ5 $Λpµν t

5 : A5 holds (with the
construction scaling well to Λ2κď0 and Λp). This yields then a functor 5 : CεpΛ2κď1q Ñ µB.
restricting to a functor from CεpΛ2κď0q to B.

The two functors 7 and 5 preserve all the relevant structure (products, coproducts,
exponentials, initial algebras, final coalgebras), but they are not strictly inverse: pA5q7 is not
equal to A, but only ε-isomorphic to it (e.g. for A “ @X.pp@Y.Y ñ Y q ñ Xq ñ X, we have
A5 “ 1 and pA5q7 “ @X.X ñ X). Nevertheless, the following equivalences of categories hold:

I Theorem 33. CεpΛ2κď0q – B, CεpΛ2κď1q – µB.

The proof of Theorem 33 (in [26]) is done by checking (by way of β-, η- and ε-rules, see
App. B) that both Λ2κď1 and Λpµν embed fully in a suitable fragment of Λ2pµν , using the
lemma below (with C “ CεpΛ2κď1q, D “ µB and fpAq “ A5):

I Lemma 34. Let C,D be full subcategories of a category E. Let f : ObpCq Ñ ObpDq be
surjective and suppose there is a map u associating each object a of C with an isomorphism
ua : aÑ fpaq in E. Then f extends to an equivalence of categories F : CÑ D.

Theorem 33 can be used to deduce properties of program equivalence in Λ2κď0 and Λ2κď1

from well-known properties of program equivalence for B and µB. In fact, it is known that
βη-equivalence in Λp (i.e. arrow equivalence in B) is decidable and coincides with contextual
equivalence [31], while contextual equivalence for µB is undecidable [6]. Using Theorem 33
we can deduce similar facts for Λ2κď0 and Λ2κď1:

I Theorem 35. The ε-theory for Λ2κď0 is decidable and coincides with contextual equivalence.
Both the ε-theory and contextual equivalence for Λ2κď1 are undecidable.

The first claim of Theorem 35 is proved by defining a new embedding t ÞÑ t6 of Λ2κď0

into Λp, exploiting the well-known fact that for the terms of the system Λ2p one can obtain a
normal form under β-reduction and commutative conversions [33]3. Using the isomorphisms
dArxs, d´1

A rxs between A and A5, a term t such that Γ $Λ2κď0 t : A holds is first translated
into u “ dArtrxi ÞÑ d´1

Ai
rxisss (where Γ “ x1 : A1, . . . , xn : An), and then t6 is defined as the

normal form of u. From the fact that Γ5 $Λ2p t
6 : A5 and that t6 is in normal form, we can

deduce that Γ5 $Λp t
6 : A5 holds, so the embedding is well-defined.

Using the embedding t ÞÑ t6 we establish the proposition below, from which the first
claim of Theorem 35 descends (since »βη and »ctx coincide and are decidable in Λp).

3 Actually, [33] does not consider commuting conversions for 0, but these can be added without altering
the existence of normal forms.
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I Proposition 36. Γ $Λ2κď0 t »ε u : A iff Γ $Λ2κď0 t »ctx u : A iff Γ5 $Λp t
6 »βη u

6 : A5.

For the second claim of Theorem 35, the undecidability of contextual equivalence in
Λ2κď1 immediately follows from its undecidability in µB by the encoding 7. Instead, we do
not know if the ε-theory and contextual equivalence coincide in this case, as it is not clear
whether the embedding t ÞÑ t6 scales to Λ2κď1: this depends on the existence of normal
forms for commutative conversions, which are not known to hold in presence of µ, ν-types
(although this is conjectured in [20]).

The undecidability of the ε-theory is proved in [26] following a different strategy: we first
observe that the ε-rules for Λ2κď1 imply some uniqueness rule for inductively/co-inductively
defined functions. For instance, under the ε-theory, the usual type of natural numbers
int “ @X.pX ñ Xq ñ pX ñ Xq is associated with a uniqueness rule for functions defined
by iteration of the following form: for any type C and functions f : int ñ C and h : C ñ C,
if fpx ` 1q » hpfpxqq, then f is equivalent to the function defined by iterating h on fp0q,
i.e. f » λx.xChpfp0qq. Similarly, the type of the usual recursor of Λ2 is associated with a
uniqueness rule for functions defined by recursion.

It is well-known that any equational theory over a system containing the simply typed
λ-calculus, a type of natural numbers and a recursion operator, and satisfying a uniqueness
rule for recursively defined functions as above, is undecidable [22]. It suffices then to check
that Λ2κď1, under the ε-theory, provides such a system.

8 Conclusion

Related Work. The connection between parametricity, dinaturality and the Yoneda iso-
morphism is well-known [5, 28, 16]. The extension of this correspondence to initial algebras
comes from [35]. [7] exploits this connection to define a schema to test the equivalence of two
programs t, u of type @X.pF xXy ñ Xq ñ pG xXy ñ X 1q ñ H xXy by first instantiating X
as α “ µX.F xXy and then applying t, u to the canonical morphism F xX ÞÑ αy ñ α (in
fact, this is exactly how one side of the isomorphisms ”X are constructed). The possibility
of expressing program equivalence through naturality conditions has recently attracted new
attention due to [3], where these are investigated using ideas from homotopy type theory.
Type isomorphisms in Λ2 with the Yoneda lemma are also discussed in [17]. In [25] a similar
restriction based on the Yoneda isomorphism is used by the first author to describe a fragment
of second order multiplicative linear logic with a decidable program equivalence.

Future Work. The definition of the characteristic employs an acyclicity condition which is
reminiscent of linear logic proof-nets. In particular, we would like to investigate whether the
alternating paths can be related to the cyclic proofs for linear logic systems with µ, ν-types
[4]. Moreover, the notion of characteristic seems likely to scale to second order multiplicative-
exponential linear logic, an extension which might lead to better expose the intrinsic duality
in the tree-shapes in Fig. 5.

The application of Yoneda isomorphisms to count type inhabitants suggests that these
can be related to some canonical proof-search strategy, as already suggested in [30], that we
would like to investigate further. Moreover, the appeal to least/greatest fixpoints suggests a
connection with the proof-technique to count inhabitants by computing fixpoints of polynomial
equations [38]. For example, given A “ pY 1 ñ Xq ñ pX ñ Y 2 ñ Xq ñ X, one can show by
proof-theoretic reasoning that the number |A| of inhabitants of A is a solution of the fixpoint
equation |A| “ |AY1 | ` p|A| ˆ |AY2 |q, where AYi “ pY 1 ñ Xq ñ pX ñ Y 2 ñ Xq ñ Y i,
which implies |A| “ 0, since |AYi | “ 0. On the other hand, Yoneda type isomorphisms yield
the strikingly similar computation @~Y X.A ”X @~Y.µX.Y 1`pXˆY 2q ”~Y µX.0`pXˆ0q ” 0.
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A Type Systems, Type Isomorphisms and Equational Theories

The typing rules and β-, η-rules of Λ2,Λ2p,Λ2pµν are recalled in Fig. 8. The standard
axiomatization of βη-isomorphisms for Λ2 and Λ2p are recalled in Fig. 9 and 10, and a
“minimalistic” axiomatization of βη-isomorphisms for µ, ν-types is illustrated in Fig. 11.

The contextual equivalence relation for Λ2pµν and Λp is defined by

Γ $ t »ctx u : A iff for all context C : pΓ $ Aq ñ p$ 1` 1q, Crts »βη Crus

The contextual equivalence relation for Λ2 is defined by
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Γ, x : A $ x : A
Γ, x : A $ t : B

Γ $ λx.t : AÑ B

Γ $ t : AÑ B Γ $ u : A
Γ $ tu : B

Γ $ t : A
X R FV pΓq

Γ $ ΛX.t : @X.A
Γ $ t : @X.A

Γ $ tB : ArB{Xs

(a) Typing rules for Λ2.

Γ $ t : A Γ $ u : B
Γ $ xt, uy : AˆB

Γ $ t : A1 ˆA2

Γ $ πAii t : Ai Γ $ ‹ : 1

Γ $ t : Ai
Γ $ ιit : A1 `A2

Γ $ t : A1 `A2 pΓ, y : Ai $ ui : Cqi“1,2

Γ $ δCpt, y.u1, y.u2q : C
Γ $ t : 0

Γ $ ξAt : A

Γ $ t : A xX ÞÑ µX.A xXyy

Γ $ inAt : µX.A xXy
Γ $ t : A xX ÞÑ By ñ B

Γ $ foldAptq : µX.A xXy ñ B

Γ $ t : νX.A xXy
Γ $ outAt : A xX ÞÑ νX.A xXyy

Γ $ t : B ñ A xX ÞÑ By

Γ $ unfoldAptq : B ñ νX.A xXy

(b) Typing rules for `,ˆ, 0, 1, µ, ν.

pλx.tqu »β tru{xs pΛX.tqB »β trB{Xs

Γ $ t : AÑ B
Γ $ t »η λx.tx : AÑ B

Γ $ t : @X.A
Γ $ t »η ΛX.tX : @X.A

(c) β and η-rules for Λ2.

´

πAii xt1, t2y »β ti

¯

i“1,2

´

δCpιit, y.u1, y.u2q »β uirt{ys
¯

i“1,2

Γ $ t : AˆB
Γ $ t »η xπ

A
1 t, π

B
2 ty : AˆB

Γ $ t : 1
Γ $ t »η ‹ : 1

Γ $ t : A`B urxs : A`B $Γ C

Γ $ urts »η δCpt, y.urι1ys, y.urι2ysq : C
Γ $ t : 0 urxs : 0 $Γ A

Γ $ urts »η ξAt : A

(d) β and η-rules for `,ˆ, 0, 1.

foldP ptqpinPuq »β tpΦXP pfoldP ptqxqrx ÞÑ usq

outP punfoldP ptquq »β ΦXP punfoldP ptqxqrx ÞÑ tus

Γ $ u : A xX ÞÑ Cy ñ C trxs : µX.A xXy $Γ C trinAxs » uΦXA ptq : A xX ÞÑ µX.A xXyy $Γ C

trxs »η foldApuqx : µX.A xXy $Γ C

Γ $ u : C ñ A xX ÞÑ Cy trxs : C $Γ νX.A xXy ΦXA ptqrx ÞÑ uxs » outAt : C $Γ A xX ÞÑ νXA xXyy

trxs »η unfoldApuqx : C $Γ νX.A xXy

(e) β and η-rules for µ, ν.

Figure 8 Typing rules and βη-rules.
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Añ pB ñ Cq ” B ñ pAñ Cq

@X.@Y.A ” @Y.@X.A

A ” @X.A pX R FV pAqq Añ @X.B ” @X.Añ B

Figure 9 Axiomatization of βη-isomorphisms for Λ2.

Aˆ 1 ” A 1 ñ A ” A

Aˆ pB ˆ Cq ” pAˆBq ˆ C AˆB ” B ˆA

pAˆBq ñ C ” Añ pB ñ Cq @X.AˆB ” @X.Aˆ @X.B

A` 0 ” A Aˆ 0 ” 0 0 ñ A ” 1

A` pB ` Cq ” pA`Bq ` C A`B ” B `A

Aˆ pB ` Cq ” pAˆBq ` pAˆ Cq pA`Bq ñ C ” pAñ Cq ˆ pB ñ Cq

Figure 10 Axiomatization of βη-isomorphisms for Λ2p.

Γ $ t »ctx u : A iff for all context C : pΓ $ Aq ñ p$ @X.X ñ X ñ Xq, Crts »βη Crus

It is a standard result that contextual equivalence (for either Λ2pµν or Λ2) is closed under
congruence rules and thus generates an equational theory ctx.

For all positive typeA xXy and negative typeB xXy the functors ΦXA : CβηpΛ2q Ñ CβηpΛ2q
and ΦXB : CβηpΛ2qop Ñ CβηpΛ2q are defined by letting ΦXA pCq “ ArC{Xs, ΦXB pCq “ BrC{Xs

and for all trxs : C $ D,

ΦXXptq “ t (5)
ΦXY ptq “ x (6)

ΦXpCñDqptq “ λy.ΦXDptrΦXC pyqsq (7)

ΦXp@X.Cqptq “ ΛY.ΦXC ptY q (8)

One can check that ΦXA pxq »η x and ΦXA ptrurxssq »β ΦXA ptq
”

x ÞÑ ΦXA puq
ı

.
The definition above can be extended to the types defined using all other constructors,

yielding functors ΦXA : CβηpΛ2pµνq Ñ CβηpΛ2pµνq and ΦXB : CβηpΛ2pµνqop Ñ CβηpΛ2pµνq.

B The ε-Theory and the Yoneda Isomorphisms

In this section we describe the equational theory induced by the interpretation of polymorphic
programs as dinatural transformations (for a suitable fragment of Λ2pµν), that we call the
ε-theory, and we show that the type isomorphisms ”X and ”X from Section 2 hold under
this theory.

We will work for simplicity in an ad-hoc fragment Λ2p˚µ,ν of Λ2pµν , in which we require

CSL 2021
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µX.A ” νX.A ” A pX R FV pAqq

µX.A xXy ” A xX ÞÑ µX.A xXyy νX.A xXy ” A xX ÞÑ νX.A xXyy

Figure 11 Axiomatization of βη-isomorphisms for µ, ν-types.

that all universal types are of one of the two forms below:

@X.
A

@~Yk.
@

Ajk xXy
D

j
ñ X

E

k
ñ B xXy @X.

A

@~Yj .X ñ Aj xXy
E

j
ñ B xXy (9)

As this set of types is stable by substitution, all type rules and equational rules of Λ2pµν
scale well to Λ2p˚µ,ν .

To each universal type @X.C of Λ2p˚µ,ν as in Eq. (9) left (resp. Eq. (9) right) we associate
the ε-rule illustrated in Fig. 12a (resp. Fig. 12b).4 From the viewpoint of category theory,
the two ε-rules express strong dinaturality conditions [35] for the transformations induced by
polymorphic programs (illustrated in Fig. 12c and Fig. 12d).

I Definition 37 (ε-theory). The ε-theory of Λ2p˚µ,ν is the smallest congruent equational
theory closed under β-, η-equations as well as ε-rules.

We will show that the isomorphism schema ”X , that we recall below, holds under the
ε-theory (a similar argument can be developed for the isomorphism schema ”X , see [26]).

@X.
A

@~Yk.
@

Ajk xXy
D

j
ñ X

E

k
ñ B xXy ” B

C

X ÞÑ tµX.u
ÿ

k

˜

D~Yk.
ź

j

Ajk xXy

¸G

(10)

I Notation B.1. Let L “ xi1, . . . , iky be a list. If ptkqiPL is a L-indexed list of terms, we let
for any term u, uxtkyiPL be shorthand for uti1 . . . tik ; if xxi1 , . . . , xiky is a L-indexed list of
variables, we let for any term u, λxxkyiPL.u be shorthand for λxi1 . . . λxik .u.

In the case of Eq. (10) we can construct terms

akrxzjyjs “ in7Kk ppackr~Ykspprod7Jkj xzjyjqq :
@

Ajk xX ÞÑ αy
D

j
$ T xX ÞÑ αy

âk “ Λ~Yk.λxzjyj .inT pakrxzjyjsq : @~Yk.xAjkxX ÞÑ αyyj ñ α

where T xXy “
ř

k D
~Yk.

ś

j Ajk xXy and α “ µX.T xXy, in7Ik : Xk ñ
ř7I
k Xk and prodj :

xXjyj ñ
ś7Jk
j Xj are defined composing usual sum and product constructors, and pack is

defined as follows:

packrB1, . . . , Bks “ λx.ΛZ.λf.xB1 . . . Bkf : ArB1{Y1, . . . , Bk{Yks ñ D~Y.A

With such terms we can then construct a term

sAjk,Brxs “ xxâkyk :
A

@~Yk.
@

Ajk xX ÞÑ αy
D

j
ñ α

E

k
ñ B xX ÞÑ αy $ B xX ÞÑ αy

Moreover, using sum and product destructors we can construct terms

brx, Zs : T xX ÞÑ Zy $∆ Z

tAjk,Brx, Zs : B xX ÞÑ αy $

A

@~Yk.
@

Ajk xX ÞÑ Zy
D

j
ñ Z

E

k
ñ B xX ÞÑ Zy

4 Observe that @X.C might well be of both forms (9) left and right
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t : @X.C
´

ek : @~Yk.xAjk xEyyj ñ E
¯

k
´

fk : @~Yk.xAjk xF yyj ñ F
¯

k

vrxs : E $ F

vrek~Ykxzjyjs » fk~YkxΦXAjkpvqrzjsyj : xAjk xX ÞÑ Eyyj $ F

Γ $ ΦXB pvq
”

x ÞÑ tExekyk

ı

» tF xfkyk : B xX ÞÑ F y

(a) ε-rule for the left-hand type in Eq. (9).

t : @X.C
´

ej : @~Yk.E ñ Aj xEy
¯

j
´

fj : @~Yk.F ñ Aj xF y
¯

j

vrxs : E $ F

ΦXAj pvrxsqrejxs » fjvrxs : E $ Aj xX ÞÑ F y

Γ $ ΦXB pvq
”

x ÞÑ tF xfjyj

ı

» tExejyj : B xX ÞÑ Ey

(b) ε-rule for the left-hand type in Eq. (9).

@

@~Yk.xAjkxEyyj ñ E
D

k
BxEy

1 x@~Yk.xAjkxEyyj ñ F yk

@

@~Yk.xAjkxF yyj ñ F
D

k
BxF y

xykyk ÞÑtExykyk

x@~Yk.xAjkxEyyjñvyk

Bpvq

xekyk

xfkyk

xykyk ÞÑtF xykyk

x@~Yk.xAjkxvyyjñF yk

(c) Strong dinaturality diagram for the ε-rule (a).

x@~Yj .E ñ AjxEyyj BxEy

1 x@~Yj .E ñ AjxF yyj

x@~Yj .F ñ AjxF yyj BxF y

xyjyj ÞÑtExyjyj

@~Yj .xEñAjxvyyjxejyj

xfjyj

xyjyj ÞÑtF xyjyj

@~Yj .xvñAjxF yyj

Bpvq

(d) Strong dinaturality diagram for the ε-rule (b).

Figure 12 ε-rules and their associated strong dinaturality diagrams.

where ∆ “ txfk : @~Yk.xAjk xX ÞÑ Zyyj ñ Zyku and

brx, Zs “ δ7K
´

x,
A

z.unpackpzq
`

Λ~Yk.λy.fk~Ykxπ7Jkj pyqyj
˘

E

k

¯

tAjk,Brx, Zs “ λxfkyk.ΦXB
`

foldT pλx.brx, Zsqx
˘

where πji and δ7Kpt, xz.ukykq indicate suitable generalized product and sum destructors which
can be defined inductively using product and sum destructors, and the term unpack is defined
as follows:

unpack “ ΛZ.λx.λf.fZx : @Z.
´

D~Y.A
¯

ñ p@~Y.Añ Zq ñ Z
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One can check that brx, αs
“

xfk ÞÑ âkyk
‰

: T xX ÞÑ αy $ α is βη-equivalent to inTx, from
which we deduce

foldT
´

λx.brx, αs
“

xfk ÞÑ âkyk
‰

¯

x »βη foldT pλx.inTxqx »η x

In this way the isomorphism ”X are realized in CεpΛ2p˚µ,νq by the two terms below:5

srxs “ sAjk,Brxαs trxs “ ΛX.tAjk,Brx,Xs

We can compute then

srtrxss »β ΦXB
´

foldT
`

λx.brx, αs
“

xfk ÞÑ xâkyk
‰˘

x
¯

»βη ΦXB pxq »η x

and

trsrxss »β ΛX.λxfkyk.ΦXB
´

foldT pλx.brx,Xsqx
¯”

x ÞÑ xαxâkyk
ı

»ε ΛX.λxfkyk.xXxfkyk »η x

where the central ε-equivalence is justified using the ε-rule in Fig. 12a with E “ α, F “ X,
ek “ âk and vrxs “ foldT pλx.brx,Xsqx, with the last premise given by the computation
below:

´

foldT pλx.brx,Xsqx
¯”

x ÞÑ âk~Ykxzjyj
ı

»β

´

foldT pλx.brx,Xsq
¯

inT pakrxzjyjsq

»β
`

λx.brx,Xs
˘

´

`

ΦXT pfoldT pλx.brx,Xsqxq
˘

”

x ÞÑ akrxzjyjs
ı¯

»β fk~Yk

A

ΦXAjkpfoldT pλx.brx,Xsqxqrx ÞÑ zjs
E

j

where the last β-equation can be checked by unrolling the definition of ΦXT :

ΦXT ptq “ δ7K
´

x,
A

z.unpackpzq
`

Λ~Yk.λx.in7Kk ppackr~Ykspprod7JkxΦXAjk ptrx ÞÑ π
7Jk
j pxqsqyjqq

˘

E

k

¯

5 We are here supposing that X does occur in at least some of the Ajk (so that µX. actually occurs in the
left-hand type of ”X). If this is not the case, the construction can be done in a similar (and simpler)
way.
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