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1 Introduction

Logical methods in Computer Science have a long history, as witnessed e.g. by the relative
longevity of SQL in relational database management. More recently, Courcelle’s theorem,
which combines second-order logic and tree decompositions of graphs, showed that a many
NP-complete algorithmic problems in graph theory can be solved in polynomial time on
graphs with bounded tree-width (and even on graphs with bounded clique-width). At the
heart of the latter result is the notion of monadic second-order transductions, which are a
way to encode a graph within a structure using coloring and monadic second-order logic
formulas. In this presentation we consider first-order transductions, for which the formulas
have to be first-order formulas. As a counterpart for this strong restriction, many algorithmic
problems become fixed parameter tractable when restricted to nowhere dense classes, which
include classes excluding a topological minor thus, in particular, classes of planar graphs and
classes of graphs with bounded degrees.

In this setting, the main challenge is to extend results obtained in the sparse setting (for
bounded expansion classes and nowhere dense classes) to the dense setting, in a similar way
the results about monadic second-order model checking have been extended from classes
with bounded tree-width to classes with bounded clique-width.

2 Sparse classes

The study of classes of sparse graphs has long been divided into two dual points of view: on the
one hand, classes of graphs with bounded degrees – and particularly classes of regular graphs,
enjoy strong connections with group theory and important combinatorial properties deriving
from spectral properties. On the other hand, classes excluding a minor are strongly related
to topological graph theory, as witnessed by Robertson and Seymour’s Graph Structure
Theorem [36], which is probably the most important result in structural graph theory. It was
believed for a long time that at the source of this duality lied a fundamental gap between
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2:2 First-Order Transductions of Graphs

the notions of minor and topological minor. However, the Graph Structure Theorem has
recently been extended to graphs excluding a topological minor by Grohe and Marx [17] (see
also [9]), witnessing that both notions are closer than expected, even though this extension
builds on two types of blocks, namely graphs almost embedded on a surface and graphs with
almost bounded degrees.

Another unifying approach [21] was proposed fifteen years ago by Nešetřil and the author,
based on the concepts of shallow minors [33], of low tree-depth decompositions [22], of
generalized coloring numbers [19, 39], and of quasi-wideness [7]. This approach led to a
taxonomy of classes of sparse graphs, with two main dividing lines, which respectively
delineate classes with bounded expansion [23] and nowhere dense classes [24, 25]. These
types of graph classes received numerous characterizations, and we shall use two of them as
definitions.

For a graph G and a non-negative integer k, we denote by TMk(G) (where TM stands for
topological minor) the set of all graphs H such that some ≤ k-subdivision of H is a subgraph
of G and, by extension, for a class C we define TMk(C ) =

⋃
G∈C TMk(G). A class of graphs

C is nowhere dense if TMk(C ) has bounded clique number (or, equivalently, if TMk(C ) is
not the class G of all graphs) for every integer k for every non-negative integer k. A class C

has bounded expansion if, for each integer k, there is a uniform bound on the average degrees
of the graphs in TMk(C ) (or, equivalently, if each of the class TMk(C ) is degenerate).

It is remarkable that bounded expansion and nowhere-denseness can be defined indiffer-
ently using shallow topological minors (as above), shallow minors, or shallow immersions
(see [8]). Also, bounded expansion can be defined indifferently using the average degree, the
degeneracy, the chromatic number [8], and even the fractional chromatic number [10]. For an
in-depth study of bounded expansion and nowhere dense classes, we refer the reader to [26].

The main aspect of sparse classes is probably that vertices are easily separated. This
property, which may be formalized in terms of neighborhood covers and uniform quasi-
wideness, is the core of the model checking algorithm of Grohe, Kreutzer, and Siebertz, who
proved the following result [16].

▶ Theorem 2.1. For every nowhere dense class C and every ε > 0 there is an algorithm that
checks in time f(θ) n1+ε if a graph G ∈ C with n vertices satisfies a first-order sentence θ.

For monotone classes of graphs, under standard assumptions from complexity theory,
nowhere-denseness is actually a necessary condition for first-order model checking to be
fixed-parameter tractable.

Also, one of the manifestations of these separability properties lies in the low neighborhood
complexity of bounded expansion and nowhere dense classes. Precisely, for a class C and
an integer d define the maximum number πC

d of traces of the balls of radius d on subsets of
vertices of size n in graphs in C :

πC
d (n) = sup

G∈C
max

A⊆V (G),|A|=n

∣∣{A ∩ Nd(v) : v ∈ V (G)}
∣∣.

Then we have the following characterizations.

▶ Theorem 2.2. A monotone class C has bounded expansion if and only if πC
d (n) = O(n)

for every integer d and it is nowhere dense if and only if πC
d (n) = O(n1+ε) for every integer

d and every ε > 0.

The above characterization of bounded expansion classes was proved by Reidl, Villaamil,
and Stavropoulos [35]; the difficult direction of the characterization of nowhere dense classes
was proved by Gajarskỳ et al. [13] for the case d = 1 and by Eickmeyer et al. [11] for the



P. Ossona de Mendez 2:3

general case. These characterizations have been dramatically strengthened to bounds on
the shattering functions of first-order definable families of subsets of vertices by Pilipczuk,
Siebertz, and Toruńczyk [32], thus unveiling a deep connection between the notions of sparse
classes and the model theoretical notion of classes with low VC-density.

Also, it follows from another separation property, namely uniform quasi-wideness, that
for a monotone class of graphs, nowhere-denseness, stability and dependence are equivalent
properties, where the last two refer to the model theoretical fundamental dividing lines
identified by Shelah in its classification theory [37]. Precisely, based on a result of Podewski
and Ziegler [34] Adler and Adler [1] proved the following collapse.

▶ Theorem 2.3. For a monotone class of graphs C the following are equivalent:
1. C is nowhere dense;
2. C is stable;
3. C is monadically stable;
4. C is dependent;
5. C is monadically dependent.

These two examples witness an intimate connection between graph theoretical and model
theoretical dividing lines. This suggests a possible extension of the ideas and constructions
introduced to deal with sparse graphs by using techniques borrowed from model theory, like
interpretations and transductions. The hope, behind the search for an extension, is the
possibility to define a dense analog of sparsity for hereditary classes of graphs, which would
witness a relatively low complexity. In particular, we expect to cover the case of the small
hereditary classes, which are classes with O(nc n!) labeled graphs with n vertices.

Another outcome of this connection between graph theory and model theory lies in the
existence of totally Borel model theoretical limits for sequences of graphs in a nowhere
dense graph. Here the notion of convergence consists in the convergence, for every first-
order formula φ(x) of the satisfaction probability of φ(x) when considering a uniform and
independent random assignment of the vertices to the free variables [27], which generalizes
the existence of graphing limits for locally convergent sequence of graphs with bounded
degrees (see [20]).

3 Transductions

A (first-order) transduction is a way to encode a structure within another structure by
means of a coloring and a first-order formula. Precisely, a transduction T from graphs to
graphs is defined by a first-order formula φ(x, y) with two free-variable in the language of
vertex-colored graphs. The atomic formulas of this language are of the form x = y, E(x, y)
(meaning x is adjacent to y) and Mi(x) with i ∈ N (meaning x has color i). For a graph G,
the set T(G) contains all the graphs H with vertex set A ⊆ V (G), for which there is a vertex
coloring G+ of G such that H |= E(u, v) if and only if G+ |= φ(u, v). It follows directly from
the definition that T(G) is a hereditary class of graphs. A class D is a T-transduction of a
class C if D ⊆ T(C ) :=

⋃
G∈C T(G). The intuition here is that the graphs in the class D are

non essentially more complex than the graphs in the class C as they can be “encoded” within
them. It is easily checked that the existence of a transduction from a class to another defines
a quasi-order. This quasi-order has a maximum, the class of all graphs. Classes that are not
equivalent to this class – which are in some sense reasonably difficult – are exactly those
graphs classes that are monadically dependent, in the model theoretical sense, as follows
from [3]. It also follows from [3] that the so-called monadically stable classes of graphs are
exactly those class that have no transduction to the class of all half-graphs.

STACS 2021



2:4 First-Order Transductions of Graphs

Admittedly, checking if there exists a transduction from a class C to a class D may be
a highly difficult task. However, the special case where D is the class of all graphs (that
is checking if a class is not monadically dependent) is usually easier to handle. Moreover,
if a class C is monadically dependent then checking the existence of a transduction from
C to the class of all half-graphs (that is checking if C is not monadically stable) is much
easier as it is surprisingly sufficient to check if arbitrarily large half-graphs are semi-induced
subgraphs of graphs in C [28].

The structure of the transduction quasi-order seems to be difficult to establish [31]. As
nowhere dense classes are monadically stable [2], every transduction of a nowhere dense class
is also monadically stable. The converse statement is the object of the next conjecture.

▶ Conjecture 3.1. Every monadically stable class of graphs is a transduction of a nowhere
dense class.

In general, when H is a transduction of a known graph G and that both the transduction
and the vertex-coloring used by the transduction to get G are known, the problem of checking
if H satisfies a first-order sentence can be easily transformed in the problem of checking if
the (colored) graph G satisfies a derived formula. However, when only H and some basic
information about G and the transduction are known, the problem may become much more
difficult. For instance, if a graph G is a transduction of a graph with maximum degree d,
computing such a pre-image and a transduction is provably hard. However, Gajarský et al.
[12] proved the following (see [14] for some extension of this result).

▶ Theorem 3.2. For every transduction T and every integer d there exist an integer d′

(depending on T and d) and an interpretation I such that if G is a T-transduction of a graph
H with maximum degree d, then there is a graph H ′ of maximum degree d′, computable in
polynomial time from G, such that G = I(H ′).

This supports the next conjecture.

▶ Conjecture 3.3. First-order model checking is fixed-parameter tractable on monadically
stable classes of graphs.

Some results have been obtained toward this conjecture, showing that first-order model
checking is fixed-parameter tractable on transductions of bounded expansion classes, provided
that a specific decomposition of the graphs in the graphs (a so-called depth-2 low shrub-depth
cover) is given [15]. This result is proved by proving that first-order transductions transport
low shrub-depth covers, which are a generalization of low tree-depth decompositions. A side
consequence of this is that transductions of bounded expansion classes are linearly χ-bounded
(see [15, 30, 28]). Some related results have been obtained for monadically stable classes
with bounded linear rank-width [29] (showing that they are computable transductions of
classes with bounded pathwidth) and for monadically stable classes with bounded rank-width
(showing that they are computable transductions of classes with bounded treewidth) [28].

4 Partially ordered graphs

The use of transductions has been used to extend some properties of bounded expansion
classes and nowhere dense classes within the monadically stable realm. To go further, it
is necessary to introduce, at least locally, some order-like substructures. A way to it is to
consider classes of partially ordered graphs, that is graphs with an additional partial order on
the vertices, a special important case being ordered graphs, which are graphs with a total
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order on the vertices. Another example are tree-ordered graphs, which are graphs with a
tree-order on the vertices. It appears that that the concept of ordered graphs particularly fits
to the study of the recently introduced twin-width invariant [6], inspired by a width invariant
defined on permutations by Guillemot and Marx [18]. Classes with bounded twin-width
include several well studied classes of graphs, like classes of graphs excluding a minor, unit
interval graphs, and classes with bounded clique-width. These classes are small [4] (contain
at most O(nc n!) graphs with n vertices), and have fixed parameter tractable first-order
model checking when a contraction sequence of the graphs is provided [6]. An essential
property of twin-width is that its boundedness is preserved by transductions, as proved by
Bonnet et al. [6].

▶ Theorem 4.1. Every transduction of a class with bounded twin-width has bounded twin-
width.

Simon and Toruńczyk [38] recently announced the following characterization of bounded
twin-width classes, which has been independently proved by Bonnet et al. [5]:

▶ Theorem 4.2. A class of graphs has bounded twin-width if and only if it is the reduct of a
monadically dependent class of ordered graphs.

It is remarkable that for hereditary classes C of ordered graphs one can prove that, under
the standard FPT ̸= AW[∗] assumption from complexity theory, monadic dependence is
equivalent to fixed parameter tractability of first-order model checking [5].

It might be possible that the characterization given by Theorem 4.2 could extend to the
whole realm of monadically dependent classes, by considering tree-orders instead of linear
orders.

▶ Conjecture 4.3. Every monadically dependent class of graphs is a transduction of a
monadically dependent class of tree-ordered graphs, whose reduct (obtained by forgetting the
partial order) is monadically stable.
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