
What’s Decidable About (Atomic) Polymorphism?
Paolo Pistone # Ñ

University of Bologna, Italy

Luca Tranchini #Ñ

Eberhard Karls Universität Tübingen, Germany

Abstract
Due to the undecidability of most type-related properties of System F like type inhabitation or
type checking, restricted polymorphic systems have been widely investigated (the most well-known
being ML-polymorphism). In this paper we investigate System Fat, or atomic System F, a very
weak predicative fragment of System F whose typable terms coincide with the simply typable ones.
We show that the type-checking problem for Fat is decidable and we propose an algorithm which
sheds some new light on the source of undecidability in full System F. Moreover, we investigate free
theorems and contextual equivalence in this fragment, and we show that the latter, unlike in the
simply typed lambda-calculus, is undecidable.

2012 ACM Subject Classification Theory of computation Ñ Type theory; Theory of computation
Ñ Higher order logic

Keywords and phrases Atomic System F, Predicative Polymorphism, ML-Polymorphism, Type-
Checking, Contextual Equivalence, Free Theorems

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.27

Related Version Full Version: https://arxiv.org/abs/2105.00748

Funding Luca Tranchini: DFG TR1112/4-1 “Falsity and Refutation. On the negative side of logic”

1 Introduction

Polymorphism has been a central topic in programming language theory since the late sixties.
Today, most general purpose programming languages employ some kind of polymorphism. At
the same time, under the Curry-Howard correspondence, quantification over types corresponds
to quantification over propositions, that is, to second-order logic. In particular, System
F, the archetypical type system for polymorphism, can be seen as a proof-system for (the
ñ,@-fragment of) second-order intuitionistic logic.

In spite of the numerous applications of polymorphism, practically all interesting type-
related properties of (Curry-style) System F (e.g. type checking, type inhabitation, etc.)
are undecidable, making this language impractical for any reasonable implementation. This
is one of the reasons why a wide literature has investigated more manageable subsystems
of System F. Notably, ML-polymorphism [41, 42, 40] has found much success due to its
decidable type-checking.

Another direction of research was that of investigating predicative subsystems of System F
[32, 33, 34, 6]. In particular, the so-called finitely stratified polymorphism [33] yields a
stratification of System F through a sequence of predicative systems pFnqnPN of growing
expressive power (notably, F0 is the simply typed λ-calculus STλC, and ML-polymorphism
coincides with the rank-1 part of F1). Yet, in spite of such limitations, type checking becomes
undecidable already at level 1 of this hierarchy [18].

Could one tell exactly at which point, in the range from the simply typed λ-calculus and
ML to full System F, the type-related properties of polymorphism become undecidable?

© Paolo Pistone and Luca Tranchini;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 27; pp. 27:1–27:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.pistone2@unibo.it
http://logica.uniroma3.it/pistone/
mailto:luca.tranchini@gmail.com
https://sites.google.com/site/lucatranchini/
https://doi.org/10.4230/LIPIcs.FSCD.2021.27
https://arxiv.org/abs/2105.00748
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 What’s Decidable About (Atomic) Polymorphism?

F0 “ STλC Fat ML F1 F

TI decidable [59] undecidable [52] open undecidable [57] undecidable [37]
TC decidable [25] decidable decidable [40] undecidable [18] undecidable [64]
T decidable [25] decidable decidable [40] undecidable [18] undecidable [64]

CE
(for numerical

functions)
decidable [44] decidable undecidable undecidable undecidable˚

CE
(full) decidable [44] undecidable undecidable undecidable undecidable˚˚

Figure 1 Decidable and undecidable properties of System F and some predicative fragments (in
bold the properties established in the present paper).
˚: easy consequence of Rice’s theorem and the typability of all primitive recursive functions in F
(see also Remark 18).
˚˚: consequence of the undecidability of (CE) for numerical functions.

Atomic Polymorphism. In more recent times Ferreira et al. have undertaken the investiga-
tion of what can be seen as the least expressive predicative fragment of F, System Fat, or
atomic System F [12, 11, 13, 15, 16, 10, 9]. The predicative restriction of Fat is such that
a universally quantified type @X.A can be instantiated solely with an atomic type, i.e. a
type variable. In this way Fat sits in between level 0 (i.e. STλC) and level 1 of the finitely
stratified hierarchy. Actually, Fat can be seen as a type refinement system (in the sense
of [39]) of STλC, since all terms typable in Fat are simply typable (cf. Lemma 7).

In spite of its very limited expressive power, Ferreira et al. have shown that, thanks to
polymorphism, Fat enjoys some proof-theoretic properties that STλC lacks. In particular,
they defined a predicative variant of the usual encoding of sum and product types inside
F, yielding an embedding of intuitionistic propositional logic inside Fat. However, while
propositional logic is decidable, provability in second-order propositional intuitionistic logic,
even with the atomic restriction, is undecidable [56]. This argument (as recently observed
in [52]) can be extended to show that the type inhabitation property, which is decidable for
STλC, is undecidable for Fat.

Contributions

In this paper we investigate the following type-related properties of System Fat:

Type inhabitation (TI): given A, is there t such that $ t : A?
Type-checking (TC): given Γ, A, t, does Γ $ t : A?
Typability (T): given Γ, t, is there A such that Γ $ t : A?
Contextual equivalence (CE): given A, t, u such that $ t, u : A, do Crts and Crus reduce

to the same Boolean, for all context Cr s : A ñ Bool?

In Fig. 1 we sum up what is already known and what is established in this paper (in bold)
about such properties in predicative fragments of System F. Our main results are that in
Fat (TC) and (T) are both decidable, and that (CE) is decidable if one restricts oneself to
numerical functions, and undecidable in the general case.

Several decidability properties of Fat are tight, meaning that they all fail already for F1.
In these cases, our arguments can be used to shed some new insights on the broader question
of understanding where the source of undecidability for such properties in full System F lies.

P. Pistone and L. Tranchini 27:3

Plan of the paper

After recalling the syntax of F and its fragment in Curry-style and Church-style, we address
the properties (TI), (TC), (T) and (CE).

Type Inhabitation. In Section 3 we shortly discuss the undecidability of (TI), by showing
how the argument in [57] for System F applies to Fat too. This argument yields an encoding
inside Fat of an undecidable fragment of first-order intuitionistic logic. We also observe that
Fat is actually equivalent to a first-order system, namely to the ñ,@-fragment 1Monñ,@ of
first-order monadic intuitionistic logic in a language with a unique monadic predicate. To
our knowledge, the undecidability of 1Monñ,@ has not been previously observed (although
some slightly more expressive fragments - e.g. including a primitive disjunction [19] or finitely
many monadic predicates [54] - have been proven undecidable).

Type-Checking and Typability. In Section 4 we consider the type-checking problem. The
undecidability of (TC) for System F was established by Wells in [64], and was later extended
to all predicative systems Fn, for n ą 0 [18]. In all these cases this result was obtained
by reducing an undecidable variant of second-order unification (SOU) to the type-checking
problem. On the other hand, the decidability of (TC) for ML (and F0 “ STλC) is based
on the famous Hindley-Milner algorithm [40], which reduces this problem to first-order
unification (FOU), which is decidable.

The fundamental source of undecidability of SOU is the presence of cyclic dependences
between second order variables, expressed in the simplest case by equations of the form
Xptq “ fpv1, . . . , vk´1, Xpuq, vk`1, . . . , vnq. In fact, acyclic SOU is decidable [36]. When type-
checking polymorphic programs, such cyclic dependencies are generated by self-applications,
i.e. terms of the form λx⃗.xt1 . . . tk´1xtk`1 . . . tn. In fact, in this case the type @X.A assigned
to the variable x must satisfy a cyclic equation of the form

ArX ÞÑ C1s “ B1 ñ . . . ñ Bk´1 ñ ArX ÞÑ C2s ñ Bk`1 ñ . . . ñ Bn

(where C1, C2 are suitable type instantiations of X). By constrast, no term containing a
self-application can be typed in STλC, since cyclic equations cannot be solved by FOU.

Since the terms typable in Fat can also be typed in STλC (cf. Lemma 7), it follows
that self-applications cannot be typed in Fat either. Using this observation, we describe
a type-checking algorithm for Fat which works in two phases: first, it checks (using FOU)
the presence of cyclic dependencies, and returns failure if it detects one; then, if phase 1
succeeds, it applies (a suitable variant of) acyclic SOU to decide type-checking. From the
decidability of (TC), we deduce the decidability of (T) by a standard argument (see [4]).

Contextual Equivalence. Studying the typable terms of Fat might not seem very interesting
from a computational viewpoint, as these terms are already typable in STλC. However,
due to the presence of some form of polymorphism, investigating programs in Fat can
be interesting for equational reasoning, as we do in Sections 5 and 6. In standard type
systems, beyond the standard notions of program equivalence arising from the operational
semantics (i.e. βη-equivalence), there may exist several other congruences arising from either
denotational models or from some notion of contextual equivalence. In STλC, it is well-known
that »βη coincides with the congruence induced by any infinite extensional model [58], as well
as with several notions of contextual equivalence (see [5], [7]). In polymorphic type systems
the picture is rather different, since βη-equivalence is usually weaker than the congruences

FSCD 2021

27:4 What’s Decidable About (Atomic) Polymorphism?

arising from extensional models (see [3, 23]), and also weaker than standard notions of
contextual equivalence. Moreover, while βη-equivalence is decidable, contextual equivalence
is undecidable. Since in many practical situations (see [62, 1]) it is more convenient to reason
up to notions of equivalence stronger than βη-equivalence, several techniques to compute
(approximations of) contextual equivalence have been investigated, e.g. free theorems [63],
parametricity [53], and dinaturality [3].

Our investigation of contextual equivalence starts in Section 5 with an exploration of
equational reasoning in Fat using free theorems. We show that the predicative encodings
of sum and product types of Ferreira et al. produce products and coproducts in Fat in
the categorical sense, provided terms are considered up to (CE) (a fact which is known
to hold in F for the usual, impredicative, encodings [23, 61]). We then investigate (CE)
for typable numerical functions. Using the fact that the primitive recursive functions are
uniquely defined in System F up to (CE), we show that (CE) for the representable numerical
functions is decidable in Fat, and undecidable in ML. Such results rely on the observation
that (CE) becomes undecidable as soon as some super-polynomial function (like bounded
multiplication) becomes representable. From this it can be deduced that (CE) is undecidable
in all fragments Fn, for n ą 0, of the finitely stratified hierarchy as well.

Finally, in Section 6 we establish that (CE) is undecidable also in Fat, by showing that the
type inhabitation problem for a suitable extension of Fat can be reduced to it. This result,
together with the previous ones, shows that there is no hope to get a decidable contextual
equivalence for polymorphic programs through a predicative restriction, and one has rather
to look for other kinds of restrictions (see for instance [49]).

2 Predicative Polymorphism and System Fat

The systems we consider in this paper are all restrictions of usual Church-style and Curry-style
System F. The types are defined in both cases by the grammar

A,B ::“ X | A ñ B | @X.A

starting from a countable set Var2 of type variables X1, X2, The terms of Church-style
System F are defined by the grammar below:

tA, uA ::“ xA | pλxA.tBqAñB | tBñAuB | pΛX.tAq@X.A | pt@X.ACqArC{Xs

For readability, we will often omit type annotations, when these can be guessed from the
context. The terms of Curry-style System F are standard λ-terms, with typing rules defined
as in Fig. 2, where Γ indicates a partial function from term variables to types with a finite
support, and by X R FVpΓq we indicate that X does not occur free in any type in ImpΓq.
We call the type C occurring in pt@X.ACqArC{Xs and in the rule @E in Fig. 2 the witness of
the type instantiation.

We indicate term contexts (i.e. terms with a hole r s) as Cr s, Dr s. Moreover, we let
Cr s : A $ B be a shorthand for x ÞÑ A $ Crxs : B.

System F is impredicative: any type can figure as a witness. In particular, one can
construct “circular” instantiations, in which a term of type @X.A is instantiated with the
same type as witness. A predicative fragment of System F is one in which witnesses are
restricted in such a way to avoid such circular instantiations.

We will focus on three predicative fragments of System F, both in Church- and Curry-style.
The first is System F1, which is the fragment of F in which witnesses are quantifier-free.
The second is System Fat, which is the fragment of F in which witnesses are atomic, that is,

P. Pistone and L. Tranchini 27:5

Γpxq “ A
VarΓ $ x : A

Γ, x ÞÑ A $ t : B
AbsΓ $ λx.t : A ñ B

Γ $ t : A ñ B Γ $ u : A ApplΓ $ tu : B

Γ $ t : B X R FVpΓq
@IΓ $ t : @X.A

Γ $ t : @X.A
@EΓ $ t : ArC{Xs

Figure 2 Typing rules for Curry-style System F.

type variables. The third is system ML [41, 40], which essentially coincides with the rank 1
fragment of F1. For any type A, the rank rpAq is the maximum number of nesting between
ñ and @, and is defined inductively by rpXq “ 0, rpA ñ Bq “ maxtrpAq ` 1, rpBqu and
rp@X1 . . . Xn.Aq “ rpAq ` 1 (where n ą 0 and A does not start with a quantifier). To define
ML (since type-checking is decidable in ML, we limit ourselves to Curry-style) one first has
to enrich the set of λ-terms with the let-constructor, and add a rule

Γ, x ÞÑ A $ t : B Γ $ u : A
letΓ $ let x be u in t : B

ML is the fragment of the resulting system in which typing rules only contain judgements
Γ $ t : A, where rpAq ď 1 and for all B P ImpΓq, rpBq ď 1.

Observe that in F1 one can encode let x be u in t by pλx.tqu, so that the rule above
becomes derivable. This is not possible in ML, due to the rank restriction.

Impredicative and Predicative Encodings. It is well-known that sum and product types
can be encoded inside System F by letting

Ar`B “ @X.pA ñ Xq ñ pB ñ Xq ñ X

ArˆB “ @X.pA ñ B ñ Xq ñ X

where the type variable X is fresh. The encoding of term constructors ιip¨q, x¨, ¨y and term
destructors CaseCp¨, xA.¨, xB .¨q and πip¨q is given (in Church-style) by:

ι1ptq “ ΛX.λfAñX .λgBñX .ft CaseCpt, xA.u, xB .vq “ tCpλxA.uqpλxB .vq

ι2ptq “ ΛX.λfAñX .λgBñX .gt π1ptq “ tAλxA.λyB .x

xt, uy “ ΛX.λfAñBñX .ftu π2ptq “ tBλxA.λyB .y

At the level of provability, the encoding is faithful: a type is inhabited in the extension
of System F with sum and product types iff the encoded type is inhabited in System F.
Moreover, the encoding of r` satisfies the disjunction property: Ar`B is inhabited iff either A
or B are inhabited.

At the level of conversions, the encoding translates β-reduction step for sum and product
types into (finite sequences of) β-reduction steps in F. On the other hand, the η-rules for
sums and products are not translated by the β- and η- rules of System F. Yet, the equivalence
generated by β- and η-rules is preserved by contextual equivalence in System F (more on this
in Section 5).

The encoding of sum and product types is impredicative: the encoding of term destructors
requires witnesses of arbitrary complexity. Notably, given a term t of type Ar`B, the term
CaseA r`Bpt, xA.ι1pxq, xB .ι2pxqq, of type Ar`B, has a circular instantiation of Ar`B.

FSCD 2021

27:6 What’s Decidable About (Atomic) Polymorphism?

In [12], and more recently in [9] some alternative, predicative, encodings were defined
having System Fat as target. The fundamental observation is that the unrestricted @E rule
is derivable from the restricted one for the types of the form Ar`B and ArˆB (the authors
call this phenomenon instantiation overflow). In fact, for any type C of System F one can
define contexts IO`

Cr s : Ar`B $ pA ñ Cq ñ pB ñ Cq ñ C and IOˆ
Cr s : ArˆB $ pA ñ B ñ

Cq ñ C by induction on C:

IO`
X r s “ IOˆ

X r s “ r sX

IO`
C1ñC2

r s “ λfAñC1ñC2 .λgBñC1ñC2 .λyC1 .IO`
C2

r spλzA.fzyqpλzB .gzyq

IOˆ
C1ñC2

r s “ λfAñBñC1ñC2 .λyC1 .IO`
C2

r spλzA.λwB .fzwyq

IO`
@Y.C1 r s “ λfAñ@Y.C1

.λgAñ@Y.C1

.ΛY.IO`
C1 r spλzA.fzY qpλzB .gzY q

IOˆ
@Y.C1 r s “ λfAñBñ@Y.C1

.ΛY.IO`
C1 r spλzA.λwB .fzwY q

One can thus encode the type destructors as for F, but replacing the type application xC in
CaseCpt, xA.u, xB .vq with either IO`

Crxs or IOˆ
Crxs.

At the level of provability, this embedding is faithful when restricted to simple types, i.e. for
the intuitionistic propositional calculus (see [13]): a simple type (possibly containing finite
sums and products) is inhabited iff its encoding is inhabited in Fat. However, faithfulness does
not hold for the extension of Fat with sum and product types (see [47]). In particular, one can
construct types C,D of F such that C r`D is inhabited in Fat while C `D is not inhabited in
the extension of Fat with sums and products. This also implies that the disjunction property
fails for C r`D in Fat, since neither C nor D are inhabited.

Interestingly, at the level of conversions, this encoding is stronger than the usual one: it
translates not only β-reductions, but also the permutative conversions and a restricted form
of η-conversion for sums, into sequences of β and η-reductions of Fat (see [11, 14, 9]).

3 Type Inhabitation

In this section we discuss type inhabitation in the systems Fat and F1. We briefly recall the
undecidability argument for (TI) in System F from [57], and observe that this applies to Fat
(a more detailed reconstruction can be found in [52]).

The argument in [57] (which was later simplified in [8]) is based on an embedding inside
F of an undecidable fragment of first-order logic. We recall the argument in a few more
details, so that it will be clear that the same argument shows the undecidability of type
inhabitation in both Fat and F1.

Let Dyadñ,@ indicate the ñ,@-fragment of intuitionistic first-order logic in a language
with no function symbol and a finite number of at most binary relation symbols. We consider
sequents of the form Γ $ K where Γ consists of three type of assumptions:

i. atomic formulas different from K;
ii. closed formulas of the form @α⃗.pφ1 ñ . . . ñ φn ñ ψq, where φ1, . . . , φn, ψ are atomic

formulas and each variable in ψ occurs in some the φi;
iii. closed formulas of the form @αp@βpppα, βq ñ Kq ñ Kq.

The problem of checking if a sequent Γ $ K as above is deducible in Dyadñ,@ is undecidable
([57], Theorem 8.8.2).

We fix a finite number of distinguished type variables:
for each relation symbol p, three variables p1, p2, p3;
five more variables ♠, ‚, ˝1, ˝2, ‹.

P. Pistone and L. Tranchini 27:7

We let, for any type A, A‚ :“ A ñ ‚, and we define, for all types A,B:

pAB “ pA‚ ñ p1q ñ pB‚ ñ p2q ñ p3

ppA,Bq “ pAB ñ ‹

For any type A, we let UpAq be the set of all types pA‚ ñ piq ñ ˝1, A
‚ ñ ˝2, where

i “ 1, 2. Given a finite list of types A1, . . . , An, we let UpA1, . . . , Anq ñ B be a shorthand
for C1 ñ . . . ñ Ck ñ B, where C1, . . . , Ck are the types in

Ť

i UpAiq.
Each formula φ of Dyadñ,@ is translated into a type φ as follows:

ppαi, αjq “ ppXi, Xjq K “ ♠
φ ñ ψ “ φ ñ ψ

@αi.φ “ @X⃗i.pUpXiq ñ φq

One can easily check the following by induction:

▶ Proposition 1. If φ1, . . . , φn $ φ is provable in Dyadñ,@ and αi1 , . . . , αik
are the vari-

ables that occur in FVpφq but not in FVpφ1, . . . , φnq, then x1 ÞÑ φ1, . . . , xn ÞÑ φn, y⃗ ÞÑ

UpXi1 , . . . , Xik
q $ t : φ holds in Fat for some term t.

The less trivial part is the following:

▶ Theorem 2 ([57], Theorem 11.6.14). For all formulas φ1, . . . , φn satisfying i-iii, if x1 ÞÑ

φ1, . . . , xn ÞÑ φn $ t : ♠ is deducible in System F, then φ1, . . . , φn $ K is provable in
Dyadñ,@.

Since Fat and F1 are both fragments of F, we can freely substitute them for System F in
the statement of Theorem 2. Then, together with Proposition 1 we deduce:

▶ Corollary 3. (TI) is undecidable in both Fat and F1.

▶ Remark 4. Although Fat and F1 are both undecidable, they are not equivalent at the level
of provability. For instance, the type p@X.X ñ Y q ñ pZ ñ Zq ñ Y is inhabited in F1 (by
the term λx@X.XñY .λyZñZ .xpZ ñ Zqy), but not in Fat (as easily seen by a proof-search
argument).

▶ Remark 5. The undecidability of the atomic fragment of (full) second-order intuitionistic
logic has been known since (at least) [56]. However, from this one cannot deduce the
undecidability of Fat, due to the fact that disjunction is not faithfully definable in Fat (see
also [47]).

▶ Remark 6. It is not difficult to see that System Fat is equivalent to a first-order system,
namely to the ñ,@-fragment 1Monñ,@ of monadic first-order intuitionistic logic in the
language with no function symbol and a unique monadic predicate. The equivalence is given
by an obvious bijection between formulas and types given by zppαiq “ Xi, {φ ñ ψ “ pφ ñ pψ

and {@αi.φ “ @Xi.pφ. Hence, a consequence of Corollary 3 is that provability in 1Monñ,@

is undecidable. Provability in extensions of 1Monñ,@ with either finitely many monadic
predicates, or with disjunction, is known to be undecidable [19, 18]. To the best of our
knowledge, the undecidability of 1Monñ,@ has not been observed before.

FSCD 2021

27:8 What’s Decidable About (Atomic) Polymorphism?

4 Typability and Type-checking

In usual implementations of polymorphic type systems the Church-style type discipline is
generally considered inconvenient, due to the heavy amount of type annotations. Instead,
Curry-style languages, for which a compiler can (either completely or partially) reconstruct
type annotations, are generally preferred (two standard examples are the languages ML and
Haskell). This is the reason why type-checking algorithms for polymorphic type systems in
Curry-style (or in some variants of Curry-style with partial type annotations [45]) have been
extensively investigated [24, 26, 64, 18].

However, while ML admits a decidable type checking in Curry-style (a main reason for
its success), type checking has been shown to be undecidable for System F and most of its
variants (including the predicative system F1 [18]), making the Curry-style version of such
systems impractical for implementation.

For the simply typed λ-calculus (and crucially also for ML), the type-checking problem
can be reduced to first-order unification (FOU), that is, to the problem of unifying first-order
terms (in a language with a unique binary function symbol corresponding to ñ). Typically,
an application tu : b will produce a first-order equation of the form at “ au ñ b, where at, au

are variables indicating the type of t and the type of u, respectively. As FOU is decidable,
this suffices to show that type-checking is decidable in this case.

In the case of full polymorphism FOU is not sufficient to solve type-checking. In fact,
already in F1 one can type terms, like e.g. λx.xx, which contain self-applications. Using
FOU, λx.xx yields the unsolvable equation ax “ ax ñ b, so it is not typable in either STλC
or ML. To type-check System F programs one can replace FOU with either semi-unification
[24, 26] or second order unification (SOU) [45, 18]. Here we focus on the latter: in SOU
one tries to unify equations involving terms constructed from first-order variables a, b, c, . . .
as well as second order variables F,G, For instance, the term λx.xx above yields the
equations

Fa “ pFbq ñ G (1)

where @X.FX indicates the type of x, and the variables a, b encode the possible witnesses which
permit to type xx (in Church-style one could indicate this with λx@X.FX .ppxaqFapxbqFbqG, so
that Eq. (1) is precisely what is needed to make the typing correct). A (non-unique) solution
to Eq. (1) is obtained by F ÞÑ λx.x, G ÞÑ Z, a ÞÑ Y ñ Z, b ÞÑ Y .

Unfortunately, SOU is undecidable [22]. Moreover, one can encode restricted (but still
undecidable) variants of SOU in the type checking problem for F1 [18], showing that (TC)
is undecidable for F1. A fundamental ingredient of these undecidability arguments is the
appeal to variable cycles (see the discussion in [36]) like the one in Eq. (1), that is, to
unification problems from which one can deduce equations of the form Fa1 . . . an “ urFs,
that is, equating a second-order variable F with some term containing F itself.

Conversely, acyclic SOU, that is, the problem of unifying SOU problems containing no
variable cycles, is decidable [36]. These observations can be used to show that type-checking
is actually decidable in Fat. In fact, a fundamental property of Fat (and a reason for its
very limited expressive power) is that any term typable in Fat is already typable in the
simply-typed λ-calculus. Indeed, the following is easily checked by induction:

▶ Lemma 7. If Γ $ t : A is derivable in the Curry-style Fat, then |Γ| $ t : |A| is derivable
in the simply typed λ-calculus, where |A| is defined by |X| “ o, |A ñ B| “ |A| ñ |B|,
|@X.A| “ |A|, and |Γ|pxq “ |Γpxq|.

P. Pistone and L. Tranchini 27:9

An immediate consequence of Lemma 7 is that one cannot type λx.xx in Fat and, more
generally, that any λ-term that would give rise to a variable cycle cannot be typed in Fat.
Observe that the converse does not hold: from the fact that |Γ| $ t : |A| holds, one cannot
deduce Γ $ t : A (take for instance t “ x, Γpxq “ X and A “ @X.X).

However, these observations suggest that type checking for Fat can be decided by reasoning
in two phases: to check if Γ $ t : A is derivable in Fat, first check if |Γ| $ t : |A| is derivable
in STλC using FOU; if this first step fails, then the original problem must fail; if the first step
succeeds, then the original type-checking problem for Fat yields an instance of (a suitable
variant of) acyclic SOU, which must be decidable. By reasoning in this way, one can thus
establish:

▶ Theorem 8. (TC) for Curry-style Fat is decidable.

In App. A (and more in detail in [50]) we describe the decision algorithm for type-checking
in Fat, which is based on a variant of second-order unification, that we call Fat-unification.
The fundamental idea is to consider SOU problems in a language with first-order sequence
variables a, b, . . . and two kinds of second-order variables: projection variables α, β, . . .

and second-order variables F,G, The intuition is that a term of the form αa1 . . . an

describes a (skolemized) witness; since the witnesses in Fat are type variables, solving for
α means associating it with either a constant function or a projection. Instead, a term of
the form Fa1 . . . an stands for the application of suitable witnesses a1, . . . , an to some type
F, hence solving for F means associating it with some function λX1 . . . Xn.ApX1, . . . , Xnq,
where ApX1, . . . , Xnq is some type expression parametric on the type variable X1, . . . , Xn.
Hence, for example, checking if Γ $ xy : @Z.Z holds in Fat, where Γpxq “ @X.X ñ X and
Γpyq “ @Y.Y , yields the equations

FX “ X ñ X GY “ Y

FpαZq “ GpβZq ñ HZ HZ “ Z

which admit the solution F ÞÑ λX.X ñ X, G,H ÞÑ λX.X and α, β ÞÑ λX.X. Instead,
checking if Γ $ xy : @Z.Z, where now Γpxq “ @X.X ñ X and Γpyq “ Y , yields the equations

FX “ X ñ X G “ Y

FpαZq “ G ñ HZ HZ “ Z

which have no solution (since one can deduce Z “ HZ “ Y), showing that (TC) fails in this
case (although |Γ| $ xy : |@Z.Z| holds in the simply typed λ-calculus).

From the decidability of (TC) one can deduce the decidability of (T) by a standard
argument: we can reduce (T) to (TC) by showing that a type A such that Γ $ t : A holds
exists iff Γ $ pλxy.yqt : @X.X ñ X holds. In fact, if Γ $ t : A holds in Fat, then from
Γ $ λxy.y : A ñ @X.pX ñ Xq we deduce Γ $ pλxy.yqt : @X.X ñ X. Conversely, from
Γ $ pλxy.yqt : @X.X ñ X, we deduce that there exists a type A such that Γ $ λxy.y : A ñ

pX ñ Xq and Γ $ t : A holds.

▶ Corollary 9. (T) for Curry-style Fat is decidable.

5 Equational Reasoning in System Fat

As a consequence of Lemma 7 from the previous section, all terms which are typable in
Curry-style Fat are simply typable. In other words, Fat can be seen as a type refinement
system for STλC, in the sense of [39]. In particular, as we show below, the numerical
functions which can be typed in Fat are precisely the simply typable ones (i.e. the so-called
extended polynomials [55, 16]).

FSCD 2021

27:10 What’s Decidable About (Atomic) Polymorphism?

For this reason, investigating the typable terms of Fat might seem not very interesting
from a computational viewpoint. However, in this section we show that studying such terms
can be interesting for equational reasoning. In fact, similarly to System F, standard notions
of contextual equivalence for Fat are stronger than βη-equivalence, and one can exploit
well-known techniques, like the free theorems [63], to compute equivalences of Fat-typable
terms (which do not hold when viewing these terms as typed in STλC).

We first recall two standard notions of contextual equivalence:

▶ Notation 10. We let Bool “ @X.X ñ X ñ X and Nat “ @X.pX ñ Xq ñ pX ñ Xq. We
let t “ λxy.x and f “ λxy.y indicate the two normal forms of type Bool, and for all n P N,
we let n “ λfx.pfqnx indicate the n-th Church numeral.

▶ Definition 11 (contextual equivalence). Let F˚ P tFat,ML,F1,Fu. For all closed terms
t, u of type A in F˚, we let

t »F ˚

Bool u : A iff for any context Cr s : A $ Bool in F˚, Crts »βη Crus;
t »F ˚

Nat u : A iff for any context Cr s : A $ Nat in F˚, Crts »βη Crus.

It is easily seen that »F ˚

Bool and »F ˚

Nat are congruences of the terms of F˚. Moreover,
in System F these two congruences coincide, due to the fact that the identity relation
id : Nat ñ Nat ñ Bool is typable. Since this function is also typable in ML, the same holds
for ML and F1. On the other hand, since the identity relation is not simply typable, we can
deduce (see Lemma 16 below) that it is not typable in Fat. For this reason the congruences
»

Fat
Bool and »

Fat
Nat must be treated separately in this case. In what follows we will mostly focus

on the latter, since the former identifies distinct normal forms of type Nat, which is not
convenient for obvious computational reasons.

▶ Remark 12. The typability of the identity relation id implies that any extensional model
of F must be infinite, since for all n P N, the interpretations of n and n ` 1 cannot
coincide. Instead, it is not difficult to construct an extensional model of Fat in which
any type is interpreted by a finite set (to give an idea, let Ck be a collection of sets of
cardinality bounded by a fixed k P N; one can let then JXK P Ck, A ñ B “ JBKJAK and
J@X.AK “

ś

SPCk
JAKrX ÞÑ Ss).

The so-called free theorems are a class of syntactic equations for typable terms which
can be justified by relying on either relational parametricity [53] or dinaturality [3]. We let
t « u : A indicate that t, u have type A in System F, and that the equivalence t » u can be
deduced using β-, η-rules, standard congruence rules (i.e. reflexivity, symmetry, transitivity
and context closure), as well as instances of free theorems for System F.

Free theorems can be used to deduce contextual equivalence of Fat-terms, thanks to the
following:

▶ Lemma 13 (free theorems in Fat). Let t, u be terms of type A in Fat. If t « u : A, where
t, u are seen as terms of System F, then t »

Fat
Nat u : A.

Proof. From t « u : A it follows t »F
Nat u : A, since »F

Nat is the coarsest congruence not
equating normal forms of type Nat. From t »F

Nat u : A we deduce t »
Fat
Nat u : A, since any

context in Fat is a context in F. ◀

We discuss below two applications of free theorems to study (CE) in Fat.

P. Pistone and L. Tranchini 27:11

Categorical Products and Coproducts. As mentioned in Section 2, the usual encoding of
products and coproducts in System F preserves β-equivalence but not η-equivalence. For this
reason, the encodings of ˆ and ` do not form categorical products and coproducts in System
F up to βη-equivalence (more precisely, in the syntactic category in which objects are the
types of System F and arrows are the typable terms up to »βη). Instead, it is well-known
[51, 23, 61] that η-equivalence of ˆ and ` is preserved in System F up to free theorems:
hence ˆ and ` do form categorical products and coproducts in System F up to »F

Nat (more
precisely, in the syntactic category whose arrows are the typable terms up to »F

Nat).
In a similar way, the predicative encodings of ˆ and ` in Fat, although preserving some

restricted case of η-equivalence, still do not form categorical products and coproducts in Fat
up to »βη. We will show that they similarly do form categorical products and coproducts in
Fat up to »

Fat
Nat, as a consequence of the application of free theorems.

For simplicity, we here only consider the case of `. However, our argument scales
straightforwardly to the encoding of all finite polynomial types, i.e. of all types of the form
řk

i“1
śki

j“1 Aij (see the [47] for a more detailed discussion).
The fundamental step is showing that the impredicative and predicative encodings are

equivalent up to free theorems:

▶ Lemma 14. For all types A,B,C and terms x ÞÑ A $ u : C and x ÞÑ B $ v : C, the
equivalence IO`

Cryspλx.uqpλx.vq « CaseCpy, x.u, x.vq : C holds in System F.

Proof. The free theorem associated with the type Ar`B is the schematic equation

CaseEpt1, x.Crt2s, x.Crt3sq « C
”

CaseDpt1, x.t2, x.t3q

ı

(2)

where $ t1 : Ar`B, x ÞÑ A $ t2 : D, x ÞÑ B $ t2 : D and Cr s : D $ E. In fact, this equation
is an instance of the dinaturality condition for the type Ar`B (see [51, 23, 49]).

We argue by induction on C:
if C “ Y , then IO`

Cryspλx.uqpλx.vq “ yY pλx.uqpλx.vq “ CaseCpy, x.u, x.vq;
if C “ C1 ñ C2, then

IO`
Cryspλx.uqpλx.vq “

´

λfgz.IO`
C2

ryspλx.fxzqpλx.gxzq

¯

pλx.uqpλx.vq

[I.H.]
«

´

λfgz.CaseC2 py, x.fxz, x.gxzq

¯

pλx.uqpλx.vq

»β λz.CaseC2 py, x.uz, x.vzq

« λz.
´

CaseCpy, x.u, x.vq

¯

z

»η CaseCpy, x.u, x.vq

where in the penultimate step we applied Eq. (2) with the context Cr s “ r sz : C $ C2.
if C “ @Z.C 1, then

IO`
Cryspλx.uqpλx.vq “

´

λfg.ΛZ.IO`
C1 ryspλx.fxZqpλx.gxZq

¯

pλx.uqpλx.vq

[I.H.]
«

´

λfg.ΛZ.CaseC1 py, x.fxZ, x.gxZq

¯

pλx.uqpλx.vq

»β ΛZ.CaseC1 py, x.uZ, x.vZq

« ΛZ.
´

CaseCpy, x.u, x.vq

¯

Z

»η CaseCpy, x.u, x.vq

where in the penultimate step we applied Eq. (2) with the context Cr s “ r sZ : C $ C 1. ◀

FSCD 2021

27:12 What’s Decidable About (Atomic) Polymorphism?

▶ Proposition 15. Ar`B is a categorical coproduct in Fat up to »
Fat
Nat.

Proof. It suffices to check that the η-rule of the coproduct (see [29]) holds in Fat. By
translating this rule in F one obtains the equation

y « CaseA r`Bpy, x.ι1pxq, x.ι2pxqq : Ar`B

which holds in F up to free theorems (see [51, 23, 61]). Using Lemma 14 we thus deduce
that y « IO`

A r`B
ryspλx.ι1pxqqpλx.ι2pxqq : Ar`B holds in F, and by Lemma 13 we deduce

y »
Fat
Nat IO`

A r`B
ryspλx.ι1pxqqpλx.ι2pxqq : Ar`B. ◀

Numerical Functions. We now consider the representable numerical functions, that is, the
closed typable terms of type Nat ñ . . . ñ Nat ñ Nat. In this case we can strengthen Lemma
7 as follows:

▶ Lemma 16. For any β-normal λ-term t, $ t : Nat ñ . . . ñ Nat ñ Nat holds in Curry-style
Fat iff $ t : |Nat| ñ . . . ñ |Nat| ñ |Nat| holds in STλC.

Proof. One direction follows from Lemma 7. For the converse one, let t (which we can
suppose w.l.o.g. to be of the form λx1 . . . xk.u) be such that $ t : |Nat| ñ . . . ñ |Nat| ñ |Nat|.
By letting NatrXs “ pX ñ Xq ñ pX ñ Xq we deduce that txi ÞÑ NatrXsu $ u : NatrXs

holds in Fat, and thus that txi ÞÑ Natu $ u : NatrXs holds too, from which we conclude
$ u : Nat ñ . . . ñ Nat ñ Nat. ◀

A consequence of Lemma 16 is that the representable numerical functions in Fat are
precisely the extended polynomials, i.e. the smallest class of functions arising from projections,
constant functions, addition, multiplication and the iszero function. Instead, it is well-
known that the predecessor function (which is not an extended polynomial) is typable in
ML [17] and, more generally, the representable functions of ML are included in the class E3
of the Grzegorczyk hierarchy [33].

Still, in both STλC and Fat the same extended polynomial can be represented by
different normal forms. For instance the two normal forms λxyfz.xpyfqz and λxyfz.ypxfqz

(encoding the algorithms n,m ÞÑ m` ¨ ¨ ¨ `m
loooooomoooooon

n times

and n,m ÞÑ n` ¨ ¨ ¨ ` n
looooomooooon

m times

) both represent the

multiplication function.
In System F, one can show that all primitive recursive functions are uniquely defined up

to free theorems, that is, that for any two terms t, u representing the same primitive recursive
function, one can prove t « u (see [48], Section 7.5). Using Lemma 13 we deduce then:

▶ Lemma 17. For all t, u : Nat ñ . . . ñ Nat ñ Nat in F˚ P tFat,ML,F1,Fu, if for all
p1, . . . , pk P N, tp1 . . .pk »βη up1 . . .pk : Nat, then t »F˚

Nat u.

▶ Remark 18. From Lemma 17 and the fact that all primitive recursive functions are typable
in F, one can deduce that »F

Nat for numerical functions is undecidable in F as a consequence
of Rice’s theorem.

The problem EqC of deciding f “ g, where f, g belong to some subclass C of the primitive
recursive functions, is well-investigated. In particular, it is known that:

if C is the class of extended polynomials, then EqC is decidable [38];
if C contains projections, constants, +, ˆ and bounded multiplication, then EqC is
undecidable [31].

From these facts, using Lemma 17, we deduce then:

P. Pistone and L. Tranchini 27:13

▶ Proposition 19.
(i) The problem of deciding »

Fat
Nat over numerical functions in Fat is decidable.

(ii) The problem of deciding »F˚

Nat over numerical functions in F˚ P tML,F1u is undecidable.

Proof. (i) is immediate from Lemma 16 and Lemma 17. To prove (ii) it suffices to show that
the representable functions in ML are closed under bounded multiplication. We show this
fact in detail in [50], App. B. ◀

An immediate corollary is that (CE) is undecidable in both ML and F1.

6 Contextual Equivalence is Undecidable

In this section we show that the congruences »
Fat
Nat and »

Fat
Bool are both undecidable. To do this,

we will reduce the type inhabitation problem for a suitable extension of Fat to contextual
equivalence. We discuss in some detail the undecidability argument for »

Fat
Bool, while the (very

similar) argument for »
Fat
Nat can be found in [50], App. C.

Let F♣
at be the extension of Fat with new a type constant ♣ and a new term constant

‹ : ♣. It is not difficult to see that the undecidability argument for (TI) from Section 3 also
applies to F♣

at.
Let rJ : @X.X ñ X and Id :“ ΛX.λx.x be the unique closed β-normal term of type rJ.
The fundamental idea will be to construct, for each type A of F♣

at, two terms tA, uA of
type pA˚

r`rJq ñ Bool (where A˚ “ Y ñ ArY {♣s, for some fresh Y), such that tA »
Fat
Bool uA

holds in Fat iff A is inhabited in F♣
at.

Let us fix a type A of F♣
at, a variable Y not occurring free in A, and let A˚ “ Y ñ ArY {♣s.

We let uA, vA be the terms below:

uA “ λx.f vA “ λx.IO`
Boolr spλx.tqpλx.fq

First observe that if there exists some term t such that $ t : A holds in F♣
at, then

we can construct a context Kr s : pA˚
r`rJq ñ Bool $ Bool separating uA and vA: let

t˚ “ λy.try{‹s, so that $ t˚ : A˚ and let Kr s “ r spι1pt˚qq. We then have KruAs »β f and
KrvAs »β IO`

Boolrι1pt˚qspλx.tqpλx.fq »βη pλx.tqt˚ »β t.
The difficult part is to show that if A is not provable in F♣

at, then no context Kr s :
pA˚

r`rJq ñ Bool $ Bool can separate uA and vA. We will establish this fact by analyzing all
possible β-normal term contexts of type pA˚

r`rJq ñ Bool $ Bool.
In the following, for a term context Kr s, we let Kr s : A $Γ B be a shorthand for

Γ, x ÞÑ A $ Kr s : B (where we suppose that Γ is not defined on x).
We let G1-G4 be the families of term contexts defined by mutual recursion as shown in

Fig. 3, and typed according to the contexts below

Γ “ tx1 ÞÑ Z1, x1
1 ÞÑ Z1, . . . , xp ÞÑ Zp, x1

p ÞÑ Zpu Θ “ tw1 ÞÑ W1, . . . , wq ÞÑ Wqu

∆ “ ty1 ÞÑ A˚
ñ Y1, . . . , yr ÞÑ A˚

ñ Yru Σ “ tz1 ÞÑ rJ ñ Y1, . . . , zr ÞÑ rJ ñ Yru (3)

for some p, q, r P N and variables Z1, . . . , Zp,W1, . . . ,Wq, Y1, . . . , Yr pairwise distinct and
disjoint from A.

It can be checked that none of these contexts can separate uA and vA (see [50]):

▶ Lemma 20.
1. For all Cr s P G1, CruAs »βη CrvAs.
2. If Dr s P G2, then DruAs »βη DrvAs »βη ziId.
3. If Er s P G3, then EruAs »βη ErvAs.
4. If Fr s P G4, then FruAs »βη FrvAs »βη wi.

FSCD 2021

27:14 What’s Decidable About (Atomic) Polymorphism?

G1 : Cr s ::“ xi | x1
i | Er sZjCr sCr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Zj

G2 : Dr s ::“ zipΛW.λw.Fr sq | Er sYiDr sDr s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Yi

G3 : Er s ::“ t | f | r spΛY.λy.λz.Dr sq : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Bool

G4 : Fr s ::“ w | Er sWiFr sFr s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Wi

Figure 3 Contexts G1-G4.

The key ingredient is a lemma stating that, when A is not inhabited in F♣
at, the families

of contexts G1-G4 can be used to generate all possible term contexts.

▶ Lemma 21. Let Kr s : pA˚
r`rJq ñ Bool $x1 ÞÑZ,x1

1 ÞÑZ Z be a β-normal term context. If A
is not inhabited in F♣

at, then Kr s P G1.

Proof. We will prove the following claim: either there exists contexts Γ,Θ,∆,Σ as in Eq. (3),
for some p, q, r P N and variables Z1, . . . , Zp,W1, . . . ,Wq, Y1, . . . , Yr pairwise distinct and
disjoint from A, and a context Hr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ A˚, or Kr s P G1. If the main
claim is true we can deduce the statement of the lemma as follows: suppose Kr s R G1; then
let θ be the substitution sending all variables in Γ,Θ,∆,Σ plus Y onto ♣ and being the
identity on all other variables. Then Hθr s : pp♣ ñ Aqr`rJq ñ Bool $Γθ,Θθ,∆θ,Σθ: ♣ ñ A.
Then we have Γθ,Θθ,∆θ,Σθ $ t : A, where t “ Hθrλx.ts‹ and we can conclude that $ t1 : A
holds, where t1 is obtained from t by substituting the variables in Γ and Θ by ‹ and those in
∆ and Σ by λx.‹.

Let us prove the main claim. Suppose by contradiction that for no Γ,Θ,∆,Σ there exists
a context Hr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ A˚. We will show by simultaneous induction the
following claims:
1. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Zi, then Kr s P G1;
2. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Yi, then Kr s P G2;
3. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Bool and Kr s is an
elimination context, then Kr s P G3;

4. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Wi, then Kr s P G4.

The main claim then follows from 1. by taking Γ “ tx ÞÑ Z, x1 ÞÑ Zu and Θ “ ∆ “ Σ “ H.
We argue for each case separately:

1. There exist two possibilities for Kr s:
a. Kr s “ xi (resp. “ x1

i), hence Kr s P G1;
b. Kr s “ K1r sZK1r sK2r s, where K1r s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Bool and Kir s :
pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Z, and where K1r s is an elimination context. By the
induction hypothesis then K1r s P G3, Kir s P G1, hence Kr s P G1.

2. There exist three possibilities for Dr s:
a. Kr s “ yiK1r s, where K1r s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ A˚, but this case is excluded by
the hypothesis;

b. Kr s “ zipΛW.λw.K1r sq, where K1r s : pA˚
r`rJq ñ Bool $Γ,ΘYtw ÞÑW u,∆,Σ W and where

W does not occur in Γ,Θ,∆,Σ. By the induction hypothesis then K1r s P G4, hence
Kr s P G2;

c. Kr s “ K1r sYiK1r sK2r s, where K1r s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Bool, Kir s : pA˚

r`rJq ñ

Bool $Γ,Θ,∆,Σ Yi, and K1r s is an elimination context. By the induction hypothesis this
implies K1r s P G3 and Ki P G2, so we can conclude Kr s P G2.

P. Pistone and L. Tranchini 27:15

3. If Kr s is an elimination context, then it must be Kr s “ xK1r s, where K1r s : pA˚
r`rJq ñ

Bool $ΓYtx1 ÞÑZ1,x2 ÞÑZ2
u,Θ,∆,Σ A˚

r`rJ. Moreover, K1 must be of the form ΛY.λy.λz.K2r s,
where K2r s : pA˚

r`rJq ñ Bool $ΓYtx1 ÞÑZ1,x2 ÞÑZ2
u,Θ,∆Yty ÞÑA˚

ñY u,ΣYtz ÞÑ rJñY u Y , and
where Y is distinct from all variables in Γ Y tx1 ÞÑ Z 1, x2 ÞÑ Z2u,Θ,∆,Σ; then by the
induction hypothesis we deduce K2r s P G2, and thus Kr s P G3.

4. There are two possible cases:
a. Kr s “ wi, hence Kr s P G4;
b. Kr s “ K1r sWiK1K2, where K1r s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Bool, Kir s : pA˚
r`rJq ñ

Bool $Γ,Θ,∆,Σ Wi and K1r s is an elimination context. By the induction hypothesis this
implies K1r s P G3 and Ki P G4, whence Kr s P G4. ◀

▶ Proposition 22. uA fi
Fat
Bool vA iff A is inhabited in F♣

at.

Proof. We only need to show one side of the statement: suppose A is not inhabited in
F♣

at. Any context Kr s : pA˚
r`rJq ñ Bool $ Bool can be written, up to η-equivalence, as

Kr s “ ΛZ.λx1x2.K1r s, with K1r s : pA˚
r`rJq ñ Bool $x1 ÞÑZ,x2 ÞÑZ Bool. As we can suppose

Kr s to be β-normal, by Lemma 21, it must be K1r s P G1. Hence, by Lemma 20 we deduce
that KruAs »βη KrvAs. ◀

▶ Theorem 23. The congruences »
Fat
Bool and »

Fat
Nat are both undecidable.

7 Conclusion

Related works. The literature on ML-polymorphism, both at theoretical and applicative
level, is vast. Several extensions of ML to account for first-class polymorphism while retaining
a decidable type-checking have been investigated, mostly following two directions: first,
that of considering type systems with explicit type annotations (as the system PolyML [20]);
second, that of encoding first-class polymorphism in a ML-style system by means of coercions
(as in System Fc [60] or in MLF [30]). In the last case, coherently with our discussion of
FOU and SOU, the price to pay to remain decidable is that self-applications of λ-abstracted
variables must come with explicit type annotations. This approach is currently followed in
the design of the Haskell compiler, which supports first-class polymorphism.

Predicative restrictions of System F and their expressive power have been also largely
investigated [32, 33, 6]. For example, the numerical functions representable in Leivant’s finitely
stratified polymorphism are precisely those at the third level of Grzegorczyk’s hierarchy
[33], and transfinitely stratified systems have been shown to represent all primitive recursive
functions [6]. In [34] a system with expressive power comparable to System Fat is shown to
characterize the polytime functions.

Research by Ferreira and her collaborators on System Fat has mostly focused on predicative
translations of intuitionistic logic and their reduction properties [12, 11, 10]. As mentioned
before, these translations rely on the observation that for certain types the unrestricted
@E-rule is admissible in Fat. The characterization of the class of types satisfying this property
is an open problem (a partial characterization is described in [46]).

Another way to obtain interesting subsystems of System F is by restricting the class of
types which can be universally quantified (instead of the admissible witnesses). For instance,
the system in [2] forbids quantifier nestings, while the system in [35] only allows quantification
@X.A when X occurs at depth at most 2 in A (i.e. when X occurs at most twice to the left
of an implication). Interestingly, both systems have the expressive power of Gödel’s System
T (which is not a first-order system).

FSCD 2021

27:16 What’s Decidable About (Atomic) Polymorphism?

Another kind of restrictions on the shape of types have been investigated by the authors
in [49], motivated by ideas from the categorical semantics of polymorphism [3]. The two
resulting fragments Λ2κď0,Λ2κď1 are equivalent, respectively, to the simply typed λ-calculus
with finite sums and products, and to its extension with least and greatest fixpoints (in
particular, (CE) is decidable in Λ2κď0).

Finally, polymorphism in linear type systems has been investigated too. Interestingly,
(TI) [28, 27] and (CE) [43] remain undecidable even in this case.

Future work. The main interest we found in investigating Fat was to shed some new light
on the source of undecidability of type-related properties for full System F. Yet, one might
well ask whether the decidability of type-checking makes Fat a reasonable candidate for
implementations. Admittedly, our decision algorithm, which was only oriented to prove
decidability, is not very practical: checking failure is coNP with respect to the number of type
symbols. Yet, it does not seems unlikely that more optimized algorithms can be developed.

By the way, given that the terms typable in Fat are simply typable, would an implemen-
tation of atomic polymorphism be interesting at all? In contrast with ML, type-checking
atomically polymorphic programs is decidable at any rank. One could thus investigate
extensions of ML with first class atomic polymorphism (realistically, in presence of other
type constructors like e.g. some restricted version of dependent types, see [65]).

A more interesting direction, suggested by our decision algorithm, would be to investigate
systems with full, impredicative, polymorphism, but obeying some condition ensuring acyclic-
ity, so that TC (based on SOU) remains decidable. One would thus retain some advantages
of first-class polymorphism (e.g. the modularity/genericity of programs) while admitting
self-applications only in “ML-style” (or with explicit type annotations, as in MLF [30]). For
instance, a way to ensure acycliclity might be to require that a polymorphic λ-abstracted
variable be used in an affine way, i.e. at most once.

References
1 Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for free:

parametricity, with and without types. In Proceedings of the ACM on Programming Languages,
volume 1 of ICFP, page Article No. 39, New York, 2017.

2 Thorsten Altenkirch and Thierry Coquand. A finitary subsystem of the polymorphic λ-calculus.
In Samson Abramsky, editor, Typed Lambda Calculi and Applications, pages 22–28, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

3 E.S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70:35–64, 1990.

4 Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science,
pages 117–309. Oxford University Press, 1992.

5 Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Perspectives
in Logic. Cambridge University Press, 2013.

6 Norman Danner and Daniel Leivant. Stratified polymorphism and primitive recursion. Mathe-
matical Structures in Computer Science, 9(4):507–522, 1999.

7 Kosta Došen and Zoran Petrić. The typed Böhm theorem. Electronic Notes in Theoretical
Computer Science, 50(2):117–129, 2001.

8 Andrej Dudenhefner and Jakob Rehof. A simpler undecidability proof for system F inhabitation.
In TYPES 2018, pages 2:1–2:11, 2018.

9 José Espírito Santo and Gilda Ferreira. A refined interpretation of intuitionistic logic
by means of atomic polymorphism. Studia Logica, 108(3):477–507, 2020. doi:10.1007/
s11225-019-09858-1.

https://doi.org/10.1007/s11225-019-09858-1
https://doi.org/10.1007/s11225-019-09858-1

P. Pistone and L. Tranchini 27:17

10 José Espírito Santo and Gilda Ferreira. The Russell-Prawitz embedding and the atomization
of universal instantiation. Logic Journal of the IGPL, July 2020. jzaa025.

11 Fernando Ferreira and Gilda Ferreira. Commuting conversions vs. the standard conversions of
the "good" connectives. Studia Logica, 92(1):63–84, 2009.

12 Fernando Ferreira and Gilda Ferreira. Atomic polymorphism. Journal of Symbolic Logic,
78(1):260–274, 2013.

13 Fernando Ferreira and Gilda Ferreira. The faithfulness of Fat: a proof-theoretic proof. Studia
Logica, 103(6):1303–1311, 2015.

14 Gilda Ferreira. η-conversions of IPC implemented in atomic F. Logic Journal of the IGPL,
25(2):115–130, June 2016.

15 Gilda Ferreira and Bruno Dinis. Instantiation overflow. Reports on Mathematical Logic,
51:15–33, 2016.

16 Gilda Ferreira and Vasco T Vasconcelos. The computational content of atomic polymorphism.
Logic Journal of the IGPL, 27(5):625–638, December 2018.

17 Steven Fortune, Daniel Leivant, and Michael O’Donnell. The expressiveness of simple and
second-order type structures. Journal of the ACM, 30(1):151–185, 1983.

18 Ken-etsu Fujita and Aleksy Schubert. The undecidability of type related problems in the type-
free style system F with finitely stratified polymorphic types. Information and Computation,
218:69–87, 2012.

19 Dov M. Gabbay. Semantical Investigations in Heyting’s Intuitionistic Logic, volume 148.
Springer Science + Business, Dordrecht, 1981.

20 Jacques Garrigue and Didier Rémy. Extending ml with semi-explicit higher-order polymorphism.
In Martín Abadi and Takayasu Ito, editors, Theoretical Aspects of Computer Software, pages
20–46, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

21 Paola Giannini and Simona Ronchi Della Rocca. Characterization of typings in polymorphic
type discipline. In Proceedings of the 3-th Annual IEEE Symposium on Logic in Computer
Science, pages 61–70, Edinburgh, 1988.

22 Warren D. Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13(2):225–230, 1981.

23 Ryu Hasegawa. Categorical data types in parametric polymorphism. Mathematical Structures
in Computer Science, 4(1):71–109, 2009.

24 Fritz Henglein. Polymorphic type inference and semi-unification. PhD thesis, The State
University of New Jersey, 1989.

25 Roger J. Hindley. The principal type scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29–60, 1069.

26 Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. The undecidability of the semi-unification
problem. Information and Computation, 102(1):83–101, 1993.

27 Yves Lafont. The undecidability of second order linear logic without exponentials. The Journal
of Symbolic Logic, 61(02):541–548, 1996. doi:10.2307/2275674.

28 Yves Lafont and Andre Scedrov. The Undecidability of Second Order Multiplicative Linear
Logic. Information and Computation, 125(1):46–51, 1996. doi:10.1006/inco.1996.0019.

29 Joachim Lambek and Philip J. Scott. Introduction to higher order categorical logic. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1988.

30 Didier Le Botlan and Didier Rémy. Mlf: Raising ml to the power of system f. In Proc. of the
International Conference on Functional Programming (ICFP ’03), pages 27–38, 2003.

31 R. D. Lee. Decidable classes of recursive equations. PhD thesis, University of Leicester, 1969.
32 Daniel Leivant. Stratified polymorphism. In LICS ’89. Proceedings of the 4th Annual Symposium

on Logic in Computer Science. IEEE, 1989.
33 Daniel Leivant. Finitely stratified polymorphism. Information and Computation, 93(1):93–113,

1991.
34 Daniel Leivant. A foundational delineation of Poly-time. Information and Computation,

110(2):391–420, 1994.

FSCD 2021

https://doi.org/10.2307/2275674
https://doi.org/10.1006/inco.1996.0019

27:18 What’s Decidable About (Atomic) Polymorphism?

35 Daniel Leivant. Peano’s lambda calculus: the functional abstraction implicit in arithmetic.
In Logic, meaning and computation, Essays in Memory of Alonzo Church, volume 305 of
Synthese Library, Studies in Epistemology, Logic, Methodology and Philosophy of Science,
pages 313–329. Springer Netherlands, 2001.

36 Jordi Levy. Decidable and undecidable second-order unification problems. In Tobias Nipkow,
editor, Rewriting Techniques and Applications, pages 47–60, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

37 M. H. Löb. Embedding first order predicate logic in fragments of intuitionistic logic. Journal
of Symbolic Logic, 41:705–718, 1976.

38 Jan Małolepszy, Małgorzata Moczurad, and Marek Zaionc. Schwichtenberg-style lambda
definability is undecidable. In Philippe de Groote and J. Roger Hindley, editors, Typed Lambda
Calculi and Applications, pages 267–283, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

39 Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 3–16, New York, NY, USA, 2015. Association for Computing
Machinery.

40 R. Milner and L. Damas. The principal type schemes for functional programs. In Symposium
on Principles of Programming Languages, ACM, 1982.

41 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Science, 17(3):248–375, 1978.

42 Robin Milner. The standard ml core language. Polymorphism, 2(2), 1985.
43 Le Than Dung Nguyen, Paolo Pistone, Thomas Seiller, and Lorenzo Tortora de Falco. Finite

semantics of polymorphism, complexity and the expressive power of type fixpoints, 2019. URL:
https://hal.archives-ouvertes.fr/hal-01979009.

44 Vincent Padovani. Filtrage d’ordre supérieur. PhD thesis, Université Paris 7, 1996.
45 Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Fundamenta

Informaticae, 19(1-2):185–199, 1993.
46 Paolo Pistone. Proof nets and the instantiation overflow property, 2018. arXiv:1803.09297.
47 Paolo Pistone and Luca Tranchini. The naturality of natural deduction II. some remarks on

atomic polymorphism, 2020. arXiv:1908.11353.
48 Paolo Pistone and Luca Tranchini. The Yoneda Reduction of Polymorphic Types (extended

version), 2020. arXiv:1907.03481.
49 Paolo Pistone and Luca Tranchini. The Yoneda Reduction of Polymorphic Types. In Christel

Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 35:1–35:22, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

50 Paolo Pistone and Luca Tranchini. What’s decidable about (atomic) polymorphism?, 2021.
Available at arXiv:2105.00748.

51 Gordon Plotkin and Martin Abadi. A logic for parametric polymorphism. In TLCA ’93,
International Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture
Notes in Computer Science, pages 361–375. Springer Berlin Heidelberg, 1993.

52 M Clarence Protin. Type inhabitation of atomic polymorphism is undecidable. Journal of
Logic and Computation, January 2021. exaa090.

53 John C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A. Mason, editor,
Information Processing ’83, pages 513–523. North-Holland, 1983.

54 Aleksy Schubert, Paweł Urzyczyn, and Konrad Zdanowski. On the Mints hierarchy in first-order
intuitionistic logic. Logical Methods in Computer Science, 12(4:11):1–25, 2016.

55 Helmut Schwichtenberg. Definierbare funktionen im λ-kalkül mit typen. Archiv für mathema-
tische Logik und Grundlagenforschung, 17(3):113–114, 1975.

56 S. K. Sobolev. The intuitionistic propositional calculus with quantifiers. Mathematical Notes
of the Academy of Sciences of the USSR, 22(528-532), 1977.

https://hal.archives-ouvertes.fr/hal-01979009
http://arxiv.org/abs/1803.09297
http://arxiv.org/abs/1908.11353
http://arxiv.org/abs/1907.03481
https://arxiv.org/abs/2105.00748

P. Pistone and L. Tranchini 27:19

57 Morten Heine Sorensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomorphism,
volume 149 of Studies in logic and the foundations of mathematics. Elsevier Science, 2006.

58 R. Statman. Completeness, invariance and λ-definability. The Journal of Symbolic Logic,
47(1):17–26, 1982.

59 Richard Statman. intuitionistic propositional logic is polynomial-space complete. Theoretical
Computer Science, 9(1):67–72, 1979.

60 Marin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly.
System f with type equality coercions. In TLDI ’07 Proceedings of the 2007 ACM SIGPLAN
Internatinal workshop in Types in languages design and implementation, pages 53–66. ACM
New York, 2007.

61 Luca Tranchini, Paolo Pistone, and Mattia Petrolo. The naturality of natural deduction.
Studia Logica, https://doi.org/10.1007/s11225-017-9772-6, 2017.

62 J. Voigtländer. Proving correctness via free theorems: the caser of the destroy/build-rule. In
Proceedings of the ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 13–20, New York, 2008. ACM press.

63 Philip Wadler. Theorems for free! In Proceedings of the fourth international conference on
functinoal programming languages and computer architecture - FPCA ’89, 1989.

64 J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98:111–156, 1998.

65 Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’99, pages 214–227, New York, NY, USA, 1999. Association for Computing Machinery.

A Fat-unification

In this section we describe a decidable unification problem, that we call Fat-unification, and
we show that this problem captures type-checking for Fat.

A decidable second-order unification problem. We consider a second-order language
composed of three different sorts of variables: sequence variables a, b, c, . . . , projection
variables αn, βn, γn, . . . and second-order variables Fn,Gn, . . . (where in the last two cases n
indicates the arity of the variable). The language includes expressions of three sorts, noted
x˚y, ˚ and T p˚q; the expressions of each type are defined by the grammars below:

a, b, c ::“ xX1 . . . Xny | a | αna1 . . . an psort x˚yq

ϕ, ψ ::“ X | πlpaq | Fna1 . . . an | Φ ñ Ψ psort ˚q

Φ,Ψ ::“ @a.ϕ psort T p˚qq

A Fat-unification problem is a pair pU,Eq, where U is a set of equations of the form
ϕ “ ψ between expressions of type ˚, and E is a set of constraints of the form pα : aq or
pa : kq, where k P N.

Given a Fat-unification problem pU,Eq, for all projection variable αn occurring in U , let
degpαq indicate the maximum l such that πlpαna1 . . . anq occurs in U .

A substitution for a Fat-unification problem pU,Eq is given by the following data:
for each sequence variable a, a natural number kS

a P N;
for each projection variable αn, a pair pkS

α , Spαqq made of a natural number kS
α ě

degpαq and a sequence Spαq “ xSpαq1, . . . , SpαqkS
α

y, where Spαqi is either of the form
λx1.xn.X or of the form λx1.xn.π

lpxjq, where l is such that, whenever αna1 . . . an

occurs in U , l ď kS
aj

;

FSCD 2021

https://doi.org/10.1007/s11225-017-9772-6

27:20 What’s Decidable About (Atomic) Polymorphism?

for each second-order variable Fn, a function SpFq of the form λρ1.ρn.Apρ1, . . . , ρnq,
where Apρ1, . . . , ρnq is given by the grammar

A,B ::“ X | πlpρiq | A ñ B | @X.A

with i P t1, . . . , nu and l being such that, if Fna1 . . . an occurs in U , then l ď kS
ai

(where
kS
a is k if a “ xX1, . . . , Xky, is kS

a if a “ a, and is kS
α if a “ αra1 . . . ar).

Given a substitution S, we define (1) for any expression a of sort x˚y, a sequence Spaq of
type variables, (2) for any expression ϕ of sort ˚, a type Spϕq, and (3) for any expression Φ
of sort T p˚q, a type SpΦq as follows:

if a “ a, Spaq is an arbitrary sequence of pairwise distinct variables xSpaq1, . . . , Spaqka y

(chosen in such a way that if a ‰ b, Spaq and Spbq are disjoint);
if a “ xX1, . . . , Xry, then Spaq “ xX1, . . . , Xry;
if a “ αna1 . . . an, then Spaq “ xU1, . . . , UkS

α
y where for all i ď kS

α :
if Spαqi “ λx⃗.X, then Ui “ X;
if Spαqi “ λx⃗.πlpxjq, then Ui “ Spajql;

if ϕ “ X, then Spϕq “ X;
if ϕ “ πlpaq, then Spϕq “ Spaql;
if ϕ “ Fa1 . . . an, and SpFq “ λρ⃗.A, then Spϕq “ Arπlpρiq ÞÑ Spaiqls;
if ϕ “ Φ ñ Ψ, then Spϕq “ SpΦq ñ SpΨq;
if Φ “ @a.ϕ, then SpΦq “ @Spaq.Spϕq.

A substitution S for pU,Eq is a unifier of pU,Eq if the following hold:
1. for any equation ϕ “ ψ P U , Spϕq “ Spψq holds;
2. for any constraint of the form α : a P E, kS

a “ kS
α ;

3. for any constraint of the form a : k P E, kS
a “ k.

We let Fat-unification indicate the problem of finding a unifier for a Fat-unification
problem. The rest of this subsection is devoted to establish the following:

▶ Theorem 24. Fat-unification is decidable.

A Fat-unification problem pU,Eq is in normal form if if contains no equation of the form
Φ1 ñ Ψ1 “ Φ2 ñ Ψ2. Any unification problem can be put in normal form by repeatedly
applying the following simplification rule:

U ` tp@a1.ϕ1q Ñ p@b1.ψ1q “ p@a2.ϕ2q Ñ p@b2.ψ2qu
`

U ` tϕ1 “ ϕ2, ψ1 “ ψ2u
˘“

a2 ÞÑ a1, b2 ÞÑ b1
‰

Given a Fat-unification problem in normal form pU,Eq, we say that an equation ϕ “ ψ

can be deduced from U if ϕ “ ψ can be deduced from a finite set of equations in U by applying
standard first-order equality rules. We say that two second-order variables F,G are equivalent
(noted F » G) if an equation of the form Fa1 . . . an “ Gb1 . . . bn can be deduced from U ; we
say that F is connected with G (noted F⇝ G) if an equation of the form Fa1 . . . an “ Φ ñ Ψ,
where U occurs in Φ ñ Ψ, can be deduced from U . We say that pU,Eq has a variable cycle
if there exist variables F1, . . . ,Fk such that F1

»
⇝ F2

»
⇝ . . .

»
⇝ Fn

»
⇝ F1 (where F »

⇝ G means
that F is connected with some variable equivalent to G).

▶ Lemma 25. Let pU,Eq be a unification problem in normal form. If pU,Eq has a variable
cycle, then it has no solution.

P. Pistone and L. Tranchini 27:21

Proof. To prove the lemma we show that any unification problem pU,Eq yields a first-
order unification problem U˚ and that any unifier of pU,Eq yields a unifier of U˚. For
the translation, we fix a constant c, and we associate any second-order variable F with a
first-order variable xF; any expression is translated into a first order expression by:

a˚ “ c

Fna1 . . . an “ xF

pΦ ñ Ψq˚ “ Φ˚ ñ Ψ˚

p@a.ϕq˚ “ ϕ˚

We finally let U˚ “ tϕ˚ “ ψ˚ | ϕ “ ψ P Uu. Observe that if F » G in U , then xF “ xG
in U˚, and if F⇝ G in U , then U˚ contains an equation of the form xF “ t ñ u, where xG
occurs in t ñ u. Hence a variable cycle in pU,Eq induces a variable cycle in U˚.

For any substitution S for pU,Eq, we define a first-order substitution S˚ as follows: given
λρ⃗.A we define A˚ by X˚ “ c, pπlpρiqq˚ “ c, pA ñ Bq˚ “ A˚ ñ B˚ and p@X.Aq˚ “ A˚.
We let then S˚pxFq “ SpFq˚.

One can easily check that if S is a unifier for pU,Eq, then S˚ is a unifier of U˚. As
a consequence, if pU,Eq has a variable cycle, so does U˚, and by well-known facts about
first-order unification, U˚ has no unifier, and so neither pU,Eq does. ◀

Let us call a unification problem pU,Eq simple if it contains no expression of the form
Φ ñ Ψ. If pU,Eq has no variable cycle, then it can be reduced to a simple unification problem
by applying the following rules:

U ` tX “ Φ ñ Ψu

tX “ Y u

U ` tπlpaq “ Φ ñ Ψu

tX “ Y u

U ` tFna1
1 . . . a

1
n “ p@c1.ϕ1q ñ p@d1.ψ1q, . . . ,Fnar

1 . . . a
r
n “ p@cr.ϕrq ñ p@dr.ψrqu

U
”

Fna⃗ ÞÑ pFn`1
1 a⃗c ñ Fn`1

2 a⃗dq

ı

`

"

Fn`1
1 a1

1 . . . a
1
nc1 “ ϕ1, . . . ,Fn`1

1 ar
1 . . . a

r
ncr “ ϕr

Fn`1
2 a1

1 . . . a
1
nd1 “ ψ1, . . . ,Fn`1

2 ar
1 . . . a

r
ndr “ ψr

*

Where in the first two rules Y is any type variable distinct from X, and in the last rule we
suppose that U contains no equation of the form Fna1 . . . an “ Φ ñ Ψ. Observe that, by
acycliclity, F cannot occur in either ϕi or ψi. One can argue by induction on the well-founded
preorder »

⇝ that all terms of the form Φ ñ Ψ can be eliminated by applying a finite number
of instances of the rules above.

The last step to ensure decidability is showing (1) that all solutions to a Fat-unification
problem pU,Eq can be generated algorithmically and (2) that one can suppose that, if a
solution exists at all, this can be found within a finite search-space (that is, one in which
only projections πlpaq, with l less than some fixed value K depending on the size of pU,Eq,
occur). Step (2) ensures that, if a solution is not found after a finite search, one can conclude
that no solution exists at all. These are the two ingredients of the proof of the proposition
below, which is shown in detail in [50].

▶ Proposition 26. There is an algorithm that generates all unifiers of a simple unification
problem, if there exists any, and returns failure otherwise.

Type-checking Fat by second-order unification. A type-checking problem is a triple pΓ, t, Aq

where Γ is a term context, t is a λ-term with FV ptq Ď Γ and A is a type. A Fat-solution
of a type-checking problem is a type derivation in Fat of Γ $ t : A. We wish to prove the
following:

FSCD 2021

27:22 What’s Decidable About (Atomic) Polymorphism?

Γpxq “ A A ĺ B
X⃗ R FV pΓq

Γ $ x : @X⃗ : B
Γ, x ÞÑ A $ t : B

X⃗ R FV pΓq
Γ $ λx.t : @X⃗.A ñ B

Γ $ t : A ñ B Γ $ u : A B ĺ C
X⃗ R FV pΓq

Γ $ tu : @X⃗.C

Figure 4 Synthetic typing rules for Curry-style Fat.

▶ Theorem 27. For any type-checking problem pΓ, t, Aq, there exists a Fat-unification problem
VpΓ, t, Aq such that pΓ, t, Aq has a solution in Fat iff VpΓ, t, Aq has a unifier.

The first step is to associate with each term t finite sets of sequence variables, projection
variables and second-order variables as follows (we suppose that no variable occurs both free
and bound in t, and that any bound variable is bound exactly once):

with each variable x in t, we associate two sequence variables ax, bx, a projection variable
α1

x, and two second-order variables F1
x,G1

x;
with each subterm of t of the form uv, we similarly associate two sequence variables
auv, buv, a projection variable α1

uv and two second-order variables F2
uv,G1

uv;
with each subterm of t of the form λx.u, we associate a sequence variable bλx.u, and a
second order variable G1

λx.t.

Given a set of equations U and a sequence variable a not occurring in U , we let Ua be
the set of equations obtained by replacing all terms αna1 . . . an by αn`1a1 . . . ana and all
term Fna1 . . . an by Fn`1a1 . . . ana.

We define a set of equations Uptq, by induction on t as follows:
Upxq is formed by the equation

Fxpαxbxq “ Gxbx

Upλx.tq is formed by Uptqbλx.t plus the equations

Gλx.tbλx.t “ p@ax.Fxaxb⃗bλx.tq ñ @bt.Gtbtbλx.t

Uptuq is formed by Uptqbtu,Upuqbtu plus the equations:

Gtbtbtu “ p@bu.Gububtuq ñ p@atu.Ftuatubtuq

Ftupαtubtuqbtu “ Gtubtu

We let VpΓ, t, Aq “ pUpΓ, t, Aq,EpΓ, t, Aqq, where UpΓ, t, Aq is the union of Uptq and all
equations @ax.Fxax “ Γpxq and @bt.Gtbt “ A. EpΓ, t, Aq is formed by all constraints of
the form pαx : axq and pαtu : btq, as well as all constraints of the form pax : kq, where
Γpxq “ @X1 . . . Xk.C, all constraints of the form pbu : 0q where t contains a subterm of the
form uv, and the constraint pbt, hq, where A “ @X1 . . . Xh.A

1.
To show that solving VpΓ, t, Aq is equivalent to checking if Γ $ t : A, as in [21], we first

define synthetic typing rules for Curry-style Fat as shown in Fig. 4, where A ĺ B holds when
A “ @X1 . . . Xn.A and B “ ArX1 ÞÑ Y1, . . . , Xn ÞÑ Yns.

One can check by induction on t that a synthetic type derivation of Γ $ t : A yields
a unifier of VpΓ, t, Aq. Conversely, we show that from a unifier S for VpΓ, t, Aq we can
construct a synthetic typing derivation of Γ $ t : A. We argue by induction on t:

P. Pistone and L. Tranchini 27:23

if t “ x, then we have Γpxq “ @X1 . . . XN .SpFxqX⃗, where N “ kS
ax

, A “

@Y1 . . . YP .SpGxqY⃗ , where P “ kS
bx

, and moreover, SpFxqpSpαxq1Y⃗ q . . . pSpαxqN Y⃗ q “

SpGxqY⃗ (using the fact that kS
αx

“ kS
ax

“ N). Observe that pSpαxqj Y⃗ q is a variable, and
we deduce then that Γpxq ĺ SpGxqY⃗ ; since we can suppose that Y⃗ does not occur in Γ,
we deduce then that

Γpxq “ @X⃗.SpFxqX⃗ @X⃗.SpFxqX⃗ ĺ SpGxqY⃗
Y⃗ R FV pΓqΓ $ x : A

if t “ λx.u, then we have that A “ @X1 . . . XN .A1 ñ A2, where A1 “

@Y1 . . . YP .SpFxqY⃗ X⃗ and A2 “ @Z1 . . . ZQ.SpGuqZ⃗X⃗, N “ kS
bλx.u

, P “ kS
ax

, Q “ kS
bu

and where we can suppose that the Xi do not occur free in Γ; since Uptq “ Upuqbλx.t we
deduce that S unifies VpΓ Y tx : A1u, u, A2qq. By I.H. we deduce then the existence of a
type derivation of Γ, x : A1 $ u : A2, and since the Xi do not occur in Γ we finally have

[I.H.]
Γ, x : A1 $ u : A2

X⃗ R FV pΓqΓ $ t : A

if t “ uv, then we have that A “ @X1 . . . XN .SpGuvqX⃗,
SpGuqX⃗ “ p@Y1 . . . YP .SpGvqY⃗ X⃗q ñ p@Z1 . . . ZQ.SpFuvqZ⃗X⃗q and that
SpFuvqpSpαuvq1X⃗q . . . pSpαuvqN X⃗qX⃗ “ SpGuvqX⃗, where N “ kS

buv
, P “ kS

bu
and

Q “ kS
auv

, and where we use the fact that kS
bu

“ 0. Moreover, for any choice of the vari-
ables X⃗, we have that S unifies VpΓ, u, p@Y1 . . . YP .SpGvqY⃗ X⃗q ñ @Z1 . . . ZQ.SpFuvqZ⃗X⃗q

and VpΓ, v,@Y1 . . . YP .SpGuqY⃗ X⃗q; by choosing the X⃗ so that they do not occur free in Γ,
using the I.H. and the fact that kS

αuv
“ kS

auv
“ Q, we deduce then

[I.H.]
Γ $ u : p@Y1 . . . YP .SpGqvY⃗ X⃗q ñ p@Z1 . . . ZQ.SpFuvqZ⃗X⃗q

[I.H.]
Γ $ v : @Y1 . . . YP .SpGvqY⃗ X⃗ @Z1 . . . ZQ.SpFuvqZ⃗X⃗ ĺ SpGuvqX⃗

X⃗ R FV pΓqΓ $ t : A

FSCD 2021

	1 Introduction
	2 Predicative Polymorphism and System {F_{at}}
	3 Type Inhabitation
	4 Typability and Type-checking
	5 Equational Reasoning in System {F_{at}}
	6 Contextual Equivalence is Undecidable
	7 Conclusion
	A {F_{at}}-unification

