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Abstract
We display an application of the notions of kernelization and data reduction from parameterized
complexity to proof complexity: Specifically, we show that the existence of data reduction rules for
a parameterized problem having (a). a small-length reduction chain, and (b). small-size (extended)
Frege proofs certifying the soundness of reduction steps implies the existence of subexponential size
(extended) Frege proofs for propositional formalizations of the given problem.

We apply our result to infer the existence of subexponential Frege and extended Frege proofs
for a variety of problems. Improving earlier results of Aisenberg et al. (ICALP 2015), we show
that propositional formulas expressing (a stronger form of) the Kneser-Lovász Theorem have
quasipolynomial size Frege proofs for each constant value of the parameter k.

Another notable application of our framework is to impossibility results in computational social
choice: we show that, for any fixed number of agents, propositional translations of the Arrow and
Gibbard-Satterthwaite impossibility theorems have subexponential size Frege proofs.
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1 Introduction

The central task of proof complexity [10, 30] is that of understanding (and distinguishing)
the relative power of various propositional proof systems. Proving lower bounds for stronger
and stronger proof systems might (in principle) be a way to eventually confirm the various
conjectures of computational complexity. Yet we are far from being able to prove exponential
lower bounds for some concrete problems in strong proof systems.

One of the most important open problems in this area, explicitly raised by Bonet, Buss
and Pitassi [6] is that of separating the complexity of Frege proof systems (“textbook style
propositional proofs”) from that of extended Frege proof systems (which in addition can
introduce new variables as substitutes for arbitrary propositional formulas). That is, we
would like to find explicit classes of propositional formulas that have extended Frege proofs
of polynomial size but have exponential lower bounds on the size of the shortest Frege proofs.

Many classes of problems that are candidates for separating the two systems have been
proposed, e.g. statements based on linear algebra [24,36], propositional encodings of the Paris-
Harrington independence results [11], Ramsey’s theorem [31], central theorems from extremal
combinatorics [1, 34], or the Kneser-Lovász formula from combinatorial topology [2, 27]).
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So far most of the proposed examples have turned out to have sub-exponential Frege proofs
(only a couple of candidate formula classes for the purported separation have been advanced,
such as local improvement principles [28], or truncations of the octahedral Tucker lemma [2]).
On the other hand many of the tractability results listed above have been obtained using
techniques that are highly problem-specific, with relatively little transferability to more
general classes of formulas. The existence of such general methods would be highly desirable:
such general results could guide the search for examples witnessing the desired separation by
pointing to structural properties one needs to avoid in order to construct them.

The purpose of this paper is to present a more general approach for proving sub-exponential
upper bounds for the Frege and extended Frege proof complexity of some classes of proposi-
tional formulas. We point out that concepts from the theory of parameterized complexity [18],
specifically those of data reduction and kernelization [19] may be relevant to proof complexity
as well1. We give a metatheorem that translates a data reduction for the original problem
whose soundness can be witnessed by polynomial size (extended) Frege proofs into subexpo-
nential proofs for the corresponding propositional translation of the original problem. The
exact size of these proofs is controlled by three factors: the length of the data reduction
chain, the nature and size of the proofs witnessing the soundness of the reduction rules, and
the size of proofs of unsatisfiability for the formulas in the kernel.

We give several applications of our metatheorem. The use of kernelization techniques
does not only allow to tackle the complexity of new problems, but also to improve existing
results: In [2] it was shown that propositional formulas Knesern,k expressing a principle
from topological combinatorics known as the Kneser-Lovász theorem have, for every fixed
value of parameter k, quasipolynomial size Frege proofs. We improve this result by showing
quasipolynomial upper bounds for a principle stronger than the Kneser-Lovász theorem,
known as Schrijver’s theorem. Other applications of our metatheorem concern several (mostly
graph-theoretic) problems whose kernelization had previously been studied in the theory
of parameterized algorithms. The problems we study are well-known examples satisfying
two conditions: First, their negative instances have natural formulations as unsatisfiable
CNF formulas. Second, they have efficient kernelizations, often with a small kernel. The
problems we have chosen illustrate an important point: several techniques used in the
literature to prove the existence of a kernelization can often be efficiently simulated by
(extended) Frege proofs. Perhaps the most interesting set of applications of our general
metatheorem comes, however, from the theory of computational social choice [7]: as it
was recently observed, various propositional formalizations of impossibility principles in
the theory of computational social choice have computer-assisted proofs that reduce the
task of mathematically proving these theorems to the verification of a finite number of
cases of unsatisfiability of propositional formulas (using SAT solvers; see [22] for a fairly
recent overview)2. We obtain subexponential upper bounds on the complexity
of Frege proofs for propositional formulations of Arrow’s theorem and the
Gibbard-Satterthwaite theorem: quasipolynomial in general, polynomial for a
fixed number of agents.

1 This is not the first time a connection between parameterized complexity and proof complexity was
made; see e.g. [5, 16]. However, our concerns are rather different.

2 A similar phenomenon had been independently uncovered for the Kneser-Lovász theorem [2].
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2 Preliminaries

We assume basic familiarity with concepts from three distinct areas: proof complexity,
parameterized algorithms and computational social choice. We refer the reader to [7, 19, 30]
for book-length treatments of these topics. Nevertheless, for purposes of readability we
review a couple of relevant notions in the sequel:

▶ Definition 1. A Frege proof system is a sound and complete propositional proof systems
having a finite number of axioms and inference rules. An extended Frege proof augments
Frege proofs by allowing new variables to substitute complex formulas.

All Frege proof systems are equivalent up to polynomial transformations [15]. Therefore,
for concreteness, we will employ a standard “textbook proof style” system having modus
ponens as the unique inference rule. In both cases we measure the length of a proof by
the number of steps in it. Thus the effect of the extension rule in extended Frege proofs is
reducing proof length.

We use the shorthand [m] for the set {1, 2, . . . , m}, [i : j] for {i, i + 1, . . . , j}, and write
A ∼= B when sets A, B have the same cardinality. Function f(·) is called quasipolynomial if
there exists k > 0 such that f(n) = O(2O(logk(n)). We will need the following simple

▶ Lemma 2. Suppose C is a CNF formula and Z1, . . . , Zm are literals s.t. C ∧ (Z1 ∧ Z2 ∧
. . . ∧ Zm) is unsatisfiable, as witnessed by a resolution (Frege) proof of length k. Then one
can derive from C clause Z1 ∨ Z2 ∨ . . . ∨ Zm via a resolution (Frege) proof of size at most k.

▶ Definition 3 (Parameterized problem). Let Σ be an alphabet. L is a parametrized problem
over Σ∗ iff L ⊆ Σ∗×N. Define the support of L, by supp(L) = {x ∈ Σ∗|(∃k ∈ N) : (x, k) ∈ L}.

Let L be a parameterized problem in co-NP. Let ϕ be a “canonical” reduction of L

to SAT . When ϕ is clear from the context, we identify L with the set of pairs ϕ(L) :=
{(ϕ(x, k), k) : (x, k) ∈ L}, slightly abusing notation, and writing L instead of ϕ(L).

▶ Example 4 (Graph colorability). Let COL = {(G, i) | χ(G) ≤ i} . We can encode instances
(G, k) of COL as SAT instances (ϕ(G, k), k) by the reduction ϕ informally defined by:

For v ∈ V (G) and 1 ≤ i ≤ k define boolean Xv,i =TRUE iff v is colored with color i.
For every pair of distinct vertices v, w ∈ G we define variable Yv,w. The semantics is that
Yv,w = TRUE means that v and w are connected by an edge. Thus, for all sets {v, w}
that correspond to an edge we add to ϕ(G, k) the unit clause Yv,w. On the other hand,
for sets {v, w} that correspond to non-edges we add to ϕ(G, k) the unit clause Yv,w.
For every v ∈ V add Xv,1 ∨ Xv,2 ∨ . . . ∨ Xv,k. (“v must be colored with one of colors 1
to k”)
For v ∈ V and 1 ≤ i < j ≤ k add Xv,i ∨ Xv,j . (“v cannot be colored with both i and j”)
For every set v, w ∈ V and i ∈ 1 . . . k, add clause Yv,w ∨ Xv,i ∨ Xw,i. (“if v and w are
connected then they cannot both be colored with color i”)

▶ Definition 5. Define graph, Knn,k, parameterized by an integer k ≥ 1: The vertex set of
Knn,k is

(
n
k

)
, the set of subsets of {1, 2, . . . , n} with k elements. Two sets A, B represent

adjacent vertices iff A ∩ B = ∅.

The Kneser-Lovász theorem (see e.g. [17]) is a statement about the chromatic number of
Knn,k, equivalently restated as χ(Knn,k) > n − 2k + 13. It is expressed as a parameterized
problem as follows: LKn =

{
(Knk

n, i) : n ≥ 2k > 1, i ≤ n − 2k + 1
}

. Note that LKn ⊆

3 actually χ(Knn,k) = n − 2k + 2. However, the existence of a (n − 2k + 2)-coloring is easy [17].

ICALP 2021
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COL, hence we can use the translation from Example 4 to canonically translate LKn as a set
of unsatisfiable propositional formulas. Similar propositional translations of other constraint
satisfaction problems appear e.g. in [25,33].

The next problem is just the graph coloring problem, but with a different parameterization:

▶ Definition 6. An instance of the Dual Coloring problem is a pair (G, k), where G is
a graph with n vertices and k is an integer. To decide: is χ(G) ≤ n − k ? That is, let
DualCol = {(G, k) : χ(G) ≤ n − k}. We have (G, k) ∈ DualCOL ⇔ (G, n − k) ∈ COL. For
this reason the translation of DualCOL into SAT modifies the one from COL to SAT in
Example 4 in an obivious way.

Given graph G, a vertex cover in G is a set S ⊆ V (G) such that for every edge e = (v, w),
v ∈ S or w ∈ S. We denote by vc(G) the size of the smallest vertex cover of G.

▶ Example 7 (Vertex Cover). Let V C = {(G, i) | i < vc(G)} be the set of unsatisfiable
instances of Vertex Cover. We can encode (negative) instances (G, k) of V C as instances
ϕ(G, k) of SAT by the reduction ϕ informally defined as follows:

For every v ̸= w ∈ V , (v, w) ∈ E add new unit clause Yv,w to the formula. For (v, w) ̸∈ E

add new unit clause Yv,w, to the formula.
For v ∈ V (G) and i ∈ 1 . . . k define boolean variable Xv,i with the informal semantics
Xv,i is TRUE when vertex v is the i’th vertex in a vertex cover of size k. To encode this
semantics add to the formula, for every v ∈ V and i ∈ 1, . . . , k, clause Xv,i ∨ (

∨
w ̸=v Yv,w).

This ensures that if v is chosen in the vertex cover then it covers some edge (v, w). With
some extra technical complications one can do away with adding these clauses.
For every i = 1, . . . , k we add to the formula clause

∨
v∈V Xv,i.

For every v ̸= w ∈ V and 1 ≤ i ≤ k we add to the formula clause Xv,i ∨ Xw,i.

For every v ∈ V and 1 ≤ i < j ≤ k we add to the formula clause Xv,i ∨ Xv,j .

For v ̸= w ∈ V add to the formula clause Yv,w ∨ Xv,1 ∨ . . . ∨ Xv,k ∨ Xw,1 ∨ . . . ∨ Xw,k.

▶ Definition 8 (Kernelization). Let L be a parametrized problem. A kernelization algorithm
(or, shortly, kernelization) Ker for the problem L is an algorithm that works as follows:
on input (x, k), Ker outputs (in time polynomial in |(x, k)| ) a pair (x′, k′), such that the
following are true: (x, k) ∈ L iff (x′, k′) ∈ L, and |x′|, k′ ≤ g(k), where g is a computable
function. Pair (x′, k′) is called the kernel of (x, k), while g(k) is called the size of the kernel.

One can convert a kernelization into an algorithm by solving kernel instances by other
means (e.g. brute force). A kernelization is often the reflexive, transitive closure of a finite
set of data reduction rules: we apply the rules as long as possible, until we are left with an
instance, the kernel, to which no rule can be applied anymore.

▶ Definition 9 (Data reduction rule). Let L be a parameterized problem. A data reduction
rule for L is an algorithm A that maps (in time polynomial in |x| + k) an instance (x, k)
of L to an instance (x′, k′) such that (x, k) ∈ L iff (x′, k′) ∈ L (we say that the two instances
are equivalent, or that the reduction rule is safe), and |x′| ≤ |x|. In practice, a data reduction
rule may be well-defined only for |x| ≥ f(k), for some function f(·), as we can simply extend
it to smaller instances (x, k) by defining A(x, k) = (x, k). All kernelizations in this paper
have this nature, and we will assume this to be true for all the results we give in the sequel.

▶ Definition 10 (Data reduction chain). Given parameterized problem L kernelizable via data
reductions (A1, A2, . . . , Ar), a data reduction chain for instance (x, k) of L is a sequence
(x0, k0), (x1, k1), . . . , (xm, km), where (x0, k0) = (x, k), At(xm, km) = (xm, km), for all t =
1, . . . r and, for all i = 1, . . . , m there exists j ∈ 1, . . . , r such that (xi, ki) = Aj(xi−1, ki−1).
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▶ Example 11 (Data reduction for Kneser instances:). Reductions (Kn2
n, a) −→ (Kn2

n−1, a − 1)
and (Kn3

n, a) −→ (Kn3
n−1, a − 1) were used in [27] to give polynomial size extended Frege

upper bounds for Kneser formulas for k = 2, 3.
For k ≥ 2 there exists N(k) ≤ k4 such that for n > N(k) (Kk

n, a) −→ (Kk
n−1, a − 1). This

was used in [2] to give polynomial size extended Frege upper bounds for Kneser formulas.
For k ≥ 2 there exists N(k) ≤ k4 such that for n > N(k) (Knk

n, a) −→ (Knk
n− n

2k
, a − n

2k ).
This was used in [2] to give quasipolynomial size Frege proofs for Kneser formulas.

Our results will work by formalizing data reductions which solve the decision for an
instance X1 of a parameterized problem by reducing it to a smaller instance X2 of the
same problem. This will map, propositionally, to witnessing the soundness of an implication
Φ1 ⊢ Φ2. However, to make Φ2 a propositional tranlation of an instance of the same problem,
we will need to use variable substitutions Y = Ξ[X]. That is, the reduction we witness
is actually Φ1[X] ⊢ Φ2[Y ]. When we will refer to the proof complexity of witnessing an
implication Φ1 ⊢ Φ2 using (extended) Frege proofs, what we mean is that one can derive
the clauses of Φ2[Y ] using the clauses of Φ1[X] as axioms. Since they use substitutions,
these are extended Frege proofs. To convert them into Frege proofs one needs to unwind the
definitions of newly defined variables.

▶ Definition 12. A crown decomposition of a graph G (see e.g. Fig. 1 (b).) is a
decomposition of V (G) into three subsets C, H, R, C ̸= ∅ such that (1). C is an independent
set. (2). No vertex in C is adjacent to a vertex in R. (3). There exists a matching of H in
C, i.e. a set of disjoint edges covering H with the other endpoint in C.

1, 2

3, 4

2, 5 1, 3

4, 5

3, 5

1, 2

1, 4 2, 4

2, 3

1
2 3

4

5
6

7

8
9

10

11

C

H

R

Figure 1 (a). The Kneser graph Kn5,2. (b). A crown decomposition of a graph.

Given a set S and T ⊆ S, we will denote, as in [37,38], by S−T the set S \ T . We will also
write S−a instead of S−{a}. When S = [m], of course [m]−T

∼= [m − |T |] for every T ⊆ [m].

▶ Definition 13. Given a set of m objects, identified with the set [m], a preference profile
is a linear ordering of [m], i.e. a permutation π ∈ Sm. Given a, b ∈ [m] we say that a is
preferred to b (written a <π b) iff π−1(a) < π−1(b). Note that preferred objects are
lower in the ordering. We denote by top(π) the object π−1(1), i.e. the object that is
preferred in π to all others. Given a preference profile π and T ⊆ [m], denote by π−T the
restriction of π to [m]−T , and by π+T the preference profile derived from π by making all
elements a ∈ T less preferred than any other b ∈ [m] (with an arbitrary fixed order among
them, e.g. the order induced on [m] by the identical permutation).

▶ Definition 14. Given a set of m objects, identified with the set [m] and a set of n agents,
a social choice function (SCF) is a mapping s : Sn

m → Z. Z is a set equal to Sm (for
Arrow’s theorem) and to [m] (for the Gibbard-Satterthwaite theorem). A SCF is dictatorial

ICALP 2021
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if there exists i ∈ [m] such that for all R1, R2, . . . , Rn ∈ Sm, s(R1, R2, . . . , Rn) = Ri

(s(R1, R2, . . . , Rn) = top(Ri) for the Gibbard-Satterthwaite theorem). A SCF is unanimous
if whenever a is preferred to b in all profiles R1, R2, . . . , Rn then a is preferred to b in
profile s(R1, R2, . . . , Rn). SCF s satisfies the independence of irrelevant alternatives
(IIA) axiom (for Arrow’s theorem) if whenever a, b ∈ [m] are two different objects and
(R1, R2, . . . , Rn) ∈ Sn

m and (R′
1, R′

2, . . . , R′
n) ∈ Sn

m are two vectors of preference profiles
such that, for all i = 1, . . . m, Ri and R′

i agree in their relative preference of a or b, then
s(R1, R2, . . . , Rn) and s(R′

1, R′
2, . . . , R′

n) agree in their relative preference of a or b. A SCF
is onto iff it is onto as a function. Finally, for every pair (R, o), R = (R1, . . . , Rn) and
player 1 ≤ i ≤ m, denote by pr(i, o, R) the set of objects o′ s.t. R−1

i (o) ≤ R−1
i (o′) (i.e. i

weakly prefers o to o′ in Ri). A SCF s is strategyproof (for the Gibbard-Satterthwaite
theorem) iff, for every strategy profile R, if o is the outcome of preference profile R then
i cannot misrepresent its preferences as π ∈ Sm, π ̸= Ri so that the social choice for the
resulting profile s(i, R, π) is an o′ that i strictly prefers to o.

Given an SCF W : [m]n → Z and B ⊆ [m] we define function W−B : [m]n−B → Z to be
defined as follows: W−B(R1, R2, . . . , Rn) = W (R+B

1 , R+B
2 , . . . , R+B

n )−B . In other words, we
extend profiles R1, R2, . . . , Rn by making objects in B less preferred than all other objects,
apply W on the resulting profiles, then drop objects from B from the result.

3 Main (Meta)Theorem and Applications

In the next definition we formalize the complexity of simulating data reduction steps by
(extended) Frege proofs. Clearly, we want to encode the scenario where each such step can
be simulated by efficient proofs. Our main result will allow a slightly more general setting,
where the safety of each reduction step can be established by a “case by case argument with
a limited number of cases”. This will lead not to a chain but to a tree of logical reductions:

▶ Definition 15. Given reduction rule A for problem L and function h(·), the soundness
of A has (extended) Frege proofs of size h(·) iff there is an integer R ≥ 1 s.t. for
every (x, k) ̸∈ L and every step (xi, ki) → (xi+1, ki+1) in the reduction chain the following
are true:

There exists r′
i ≤ R, tautology Ξi :=

∨r′
i

t=1 Ξi,t and formulas ηi,1, . . . ηi,r′
i

isomorphic (up
to a variable renaming) to Φ(xi+1, ki+1) s.t. for t = 1, . . . , r′

i, Φ(xi, ki) ∧ Ξi,t ⊢ ηi,t.
Proving the soundness of Ξi and of all reductions Φ(xi, ki)∧Ξi,t ⊢ ηi,t can be accomplished
by (extended) Frege proofs of total size at most h(|Φ(x, k)|).

In other words, the kernelization may encode a case-by-case construction with a constant
number, at most R, of cases. Each case will lead to a different reduced formula. The
consistency of all those reductions is witnessed by proofs with a common polynomial upper
bound. Given this definition, our main (meta)theorem is:

▶ Theorem 16. Let L be a parameterized problem that is kernelizable via a finite number of
data reduction rules (A1, A2, . . . , Ar) with kernel size g(·).
1. Assume that negative instance (x, k) of L has a data reduction chains of length C(x, k),

and that the soundness of each reduction rule A1, A2, . . . , Ar can be witnessed using
extended Frege proofs of size at most h(|Φ(x, k)|), for some function h(·). Then L has

extended Frege proofs of size O((
C(x,k)∑

i=0
Ri)[h(|Φ(x, k)|) + 2O(poly(g(k)))]). In particular, if

R = 1 and for every fixed k we have C(x, k) = O(poly(|Φ(x, k)|)) then, for every fixed k,
negative instances Φ(x, k) of L have extended Frege proofs of size polynomial in |Φ(x, k)|.
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2. Assume that negative instances (x, k) of L have data reduction chains of length C(x, k) =
O(1) (O(log(|Φ(x, k)|)), respectively), where the constant may depend on k, and that
the safety of each reduction Φ(xi, ki) ⊢ Φ(xi+1, ki+1) is witnessed by Frege proofs of size
≤ p(|Φ(x, k)|), for some fixed polynomial p(·) Then for every fixed k, negative instances
(Φ(x, k), k) of L have Frege proofs of size polynomial (quasipolynomial) in |Φ(x, k)|.

Proof.

1. Given an instance (x, k) of L, and data reduction chain (x, k) = (x0, k0), (x1, k1),,
. . . (xm, km), an extended Frege proof for Φ(x, k) is obtained by concatenating the proofs
for statements Φ(xi−1, ki−1) ⊢ Φ(xi, ki) with an extended Frege proof of the kernel
instance. There is one complication, though, induced by the fact that we allow at most R

cases in the reduction: the reduction chain maps to a tree of propositional proofs, since
for each node Φ(xi, ki) we have r′

i ≤ R children Ξi,t, all isomorphic to Φ(xi+1, ki+1) (but
different). The total number of nodes in this tree is at most

∑C(x,k)
t=0 Rt.

Then the whole chain of reductions from Φ(x, k) to Φ(xm, km) can be proved to be sound
by proofs of length (

∑C(x,k)
t=0 Rt) · h(|Φ(x, k)|). There are at most RC(x,k) copies of the

kernel instance. Each of them can be proved (in brute force) in size O(2|Φ(xm,km)|) =
O(2poly(g(k))), since (xm, km) ∈ ker(L) and any unsatisfiable formula Ξ with n variables
has Frege proofs of size O(2n).
The length of the total proof is thus O(

∑C(x,k)
t=0 Rt · [h(|Φ(x, k)|) + 2poly(g(k)))]. We infer

the desired result when C(x, k) = O(poly(|Φ(x, k)|)).

2. We unwind the substitions implicit in the extended Frege proofs. For R = 1 (i.e. a
reduction chain), arguing that the blow-up due to making substitutions is quasipolynomial
as long as the chain length is logarithmic is identical to similar arguments made in [9], [2]
for other problems, and we omit further details.
In our case the complication arises since we no longer have a chain but a tree. However,
we can upper bound the complexity of Frege proofs by RC(x,k) times the complexity of a
single chain (a root-to-leaf path in this tree). As long as C(x, k) = O(log(|Φ(x, k)|)), the
term RC(x,k) has a magnitude polynomial in |Φ(x, k)|. Multiplying this polynomial by the
quasipolynomial complexity of each chain still yields a proof of complexity quasipolynomial
in |Φ(x, k)|. ◀

▶ Observation 17. There is an important uniformity aspect of kernelization that we haven’t
used in the preceding proof: the fact that data reductions are specified by polynomial time
algorithms. This issue will be important in applying the above result: often the existence
of a data reduction is proved by an algorithm whose soundness (for all instances) would be
rather cumbersome to simulate in propositional proofs. This is the case when results involve
general techniques for developing kernelizations, such as the Crown Decomposition Lemma
or the Sunflower Lemma. As long as we do not insist, however, on actually generating the
proof, but merely on proving its existence, we can get away with proving the soundness of
individual instances. That is, if we can prove the soundness of an individual application of a
propositional reduction rule, Φ(x, k) ⊢ Φ(x′, k′), taking for granted the existence/definition of
(x′, k′), we can prove the existence of efficient proofs, without actually having to generate
a propositional proof of the soundness of the reduction techniques.

Next we highlight some applications of our main (meta)theorem:

ICALP 2021
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3.1 Proof Complexity of (Dual) Coloring
▶ Theorem 18. There exists a kernelization that reduces instances (G, k) of DUALCOL
to a kernel of size at most 3k − 2. The length of reduction chain in this kernelization is
O(k). The soundness of each reduction step can be witnessed by polynomial size Frege proofs.
Hence, for every fixed k, negative instances (G, k) of DUALCOL have Frege proofs of size
polynomial in |ΦG,k|.

Proof. The kernelization is a variant of the classical one from the parameterized complexity
literature, based on crown decompositions (Definition 12). It consists of three data reductions:
(a). Let All(G) be the set of vertices v adjacent to all other vertices in G. If All(G) ̸= ∅

then (G, k) ∈ DualCol ⇔ (G \ All(G), k − |All(G)|) ∈ DualCol.

(b). If All(G) = ∅ but G has a matching of size k, x1, y1, . . . , xk, yk, with xi being matched
to yi for i = 1, . . . , k, then (G, k) ∈ DualCol (so reduce it to an arbitrary positive
instance).

(c). Assume that rules (a),(b) do not apply. Let (C, H, R) be a crown decomposition of the
graph G. Reduce (G, k) to (G′, k′), by deleting H ∪ C from G and k′ = k − |H|.

Without loss of generality, we will only apply rule (c). to crown decompositions where
|H| ≠ ∅ and all nodes in C are matched to some node in H. This is possible for the following
reason: if |H| ≠ ∅ and the original crown decomposition had other vertices in C, just move
them to R. If, on the other hand |H| = ∅ then all vertices in C would be connected to
all vertices in C ∪ R, hence to all vertices of G. But this cannot happen, since the case
All(G) ̸= ∅ is covered by the first data reduction rule.

The Crown Decomposition Lemma (Lemma 4.5 of [19]) makes sure that at least one of
reduction rules (a),(b),(c) applies to every graph with more than 3k − 2 vertices.

The safety of reduction rule (c) can be informally justified as follows: since vertices in
a crown decomposition of G are matched in a matching m, vertices v ∈ H and m(v) is C

are not connected in G, hence they can be colored with the same color. At the same time,
m(v) is connected in G to all the vertices of G′, hence must assume a color different from all
the colors of vertices of G′. Also m(v1) and m(v2) are connected, so must assume distinct
colors. In conclusion, vertices of C must use |C| different colors, and G is n − k colorable if
and only if G′ is n − k − |C| colorable. But |G′| = n − 2|C|, so G is n − k colorable if and
only if G′ is |G′| − (k − |C|) colorable.

Rule (b). does not apply to unsatisfiable instances of DualCol. Hence we have to argue
about the size of Frege proofs witnessing the soundness of rules (a) and (c), namely: Let
Φv,1[Y ] be the formula ∧w ̸=vYv,w (informally, v ∈ All(G)). We need to provide proofs that
witness that

Φ(G, k) ∧ Φv,1[Y ] ⊢ Φ(G \ {v}, k − 1), and

Φ(G, k) ⊢ Φ(G′, k′).

For the first implication, define new variables Zw,i via the substitution, for w ̸= v ∈ V (G),
Zw,i′ ↔ Xw,i ∧ Xv,l, where i′ = i for i < l, i′ = i − 1 for i > l.

We start by deriving, by resolving unit literals Yv,w (which are part of the formula), for
all w ̸= v ∈ V (G) and i, clauses Xv,i ∨ Xw,i. Then we derive, for every w ̸= v ∈ V (G) and i,
clauses Xv,i ∨ (∨j ̸=iXw,j). This is done by resolving (∨k

j=1Xw,j) and Xv,i ∨ Xw,i. We then
derive clauses Xv,i ∨ (∨k−1

i′=1Zw,i′). By resolving all these clauses against ∨k
i=1Xv,i we derive

(∨k−1
i′=1Zw,i′). Similar tricks allow deriving clauses Zw,i ∨ Zw,j and Yv,w ∨ Zv,i ∨ Zw,i from the

corresponding clauses in the X variables.
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As for the second reduction rule, intuitively we want to encode the fact that if a vertex
v ∈ G′ is colored with color i in G, then coloring it with color i − less(v), where less(v) is
the number of nodes in H colored with a color smaller than i, yields a legal coloring of G′.
This is true since all nodes in H must get colors (in G) different from all colors in G′.

For an arbitrary vertex v ∈ G′, let less(v) be the number of nodes w ∈ C (here C refers to
the class of the crown decomposition of G) such that col(w) < col(v). One can compute the
binary representation of number less(v) using Frege proofs as follows: we create a boolean
variable Tv,w which will be true iff col(w) < col(v). One can compute Tv,w as

Tv,w :=
∨
i<j

Xw,i ∧ Xv,j .

Now we simply use the predicate COUNT (Tv,w)w∈C to compute the binary representation
of less(v). Here COUNT is the Buss counting predicate [8]. We will also derive the following
formulas:

Xv,i ∨
i∨

t=1
[less[v] = t] (1)

To accomplish that, we use the pigeonhole principle PHP i+1
i to prove that

Xv,i ∨ [COUNT ((Xw,j)w∈C,j<i) ≤ i] (2)

Indeed, assuming Xv,i = TRUE we can derive any disjunction of length i + 1 consisting
of literals of type Xw,j , with w ∈ C, j < i. This is because for all w1 ̸= w2 ∈ C, k1 ̸= k2
Xw1,k1 ∨ Xw2,k1 and Xw1,k1 ∨ Xw1,k2 are clauses of Φ(G, k). By Lemma 2 we can derive
equation (2). Next, simple arguments along the lines of [8] establishes the equivalence
between formulas U ≤ i and

∨i
k=1[U = k]. Here U is a bit vector of appropriate length to

represent i. We use (2) and this to derive (1).
Now, for every v ∈ V (G′) = R we define a new variable Zv,i, designed to be true iff the

color of v in the induced coloring on G′ is j. We will enforce this by making the substitutions

Zv,j :=
i∨

j=1
Xv,i ∧ [less(v) = i − j] (3)

First note that Z respects the color classes of G: if v1, v2 have the same color in G then they
have the same color in G′. Furthermore, the substitution does not collapse two different
color classes of G into a single color class in G′: it simply relabels the colors of vertices in
G′ with elements of 1, 2, . . . , k′. Therefore, if Zv1,j = Zv2,j = TRUE then there exists an
unique i0 such that Xv1,i0 = Xv2,i0 = TRUE.

We need to derive clauses
∨k′

t=1 Zv,t as well as, for vw ∈ E(G′), Zv,j ∨ Zw,j . Deriving the
first type of clauses is easy: we use formulas (1) and Xv,1 ∨ Xv,2 ∨ . . . ∨ Xv,k.

As for the second one, nota that all clauses Xv,i ∨ Xw,i are part of Φ(G, k). Given the
observation we made above and this fact, assuming Zv,j = Zw,j = TRUE we can derive
a contradiction. By Lemma 2 we can, therefore, derive (with the same complexity) clause
Zv,j ∨ Zw,j .

◀

3.2 Proof Complexity of Schrijver’s Theorem
In this section we deal with the proof complexity of a stronger version of the Kneser-Lovász
theorem known as Schrijver’s Theorem [35]. This is a statement about the chromatic number
of the so-called stable Kneser graph SKnn,k, defined as follows:
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▶ Definition 19. Call a set A ⊆
(

n
k

)
stable if A does not contain two elements that are

consecutive (we also consider n and 1 as consecutive). Denote the set of stable sets by
(

n
k

)
st

.
The stable Kneser graph SKnn,k is the subgraph of Knn,k induced by the set

(
n
k

)
st

.

Schrijver’s theorem asserts that the chromatic number of the stable Kneser graph SKnn,k

is n − 2k + 2. We are, of course, interested mainly in the harder part of this result, the lower
bound χ(SKnn,k) > n − 2k + 1. Since SKnn,k is the subset of the Kneser graph (see e.g.
Figure 1, where the central star is the stable Kneser graph SKn5,2), this strengthens the
(harder part of the) Kneser-Lovász theorem. The propositional translation of Schrijver’s
theorem is immediate, and the resulting unsatisfiable formulas, that we will denote by
Schrijvern,k are subformulas of formulas Knesern,k. We have the following:

▶ Theorem 20. For every fixed k, formulas Schrijvern,k have Frege proofs of size quasipoly-
nomial in n.

For the (somewhat more involved) proof of this theorem, we refer the reader to [26].

3.3 Buss Meets Buss: the Proof Complexity of Vertex Cover

In this subsection we study the proof complexity of Vertex Cover, the “drosophila of parame-
terized complexity” [20]. We apply our result to a variation of the standard kernelization of
VC (called in [20] the Buss reduction, hence the title of this subsection) to prove:

▶ Theorem 21. Instances (G, k) of VC have a kernelization with a data reduction chain of
length O(k) to a kernel with at most k2 vertices. The soundness of each step in this data
reduction can be witnessed by Frege proofs of size polynomial in |Φ(G, k)|. Hence, for every
fixed k negative instances Φ(G, k) of VC have Frege proofs of size polynomial in |Φ(G, k)|.

Proof. Informally, we will use the following two data reduction rules:
(a). if G has a vertex v of degree larger than k then G has a VC of size ≤ k if and only if

G \ {v} has a VC of size ≤ k − 1. Indeed, v must be part of any VC of G of size ≤ k.
(b). if Isolated(G) denotes the set vertices v in G that are isolated then G has a VC of size

≤ k iff G \ Isolated(G) has a VC of size ≤ k.
The kernel of these two reduction rules, the set of instances (G, k) of V C such that none of
the two rules applies is composed of graphs of at most k2 vertices only [19].

To encode the soundness of these rules by polynomial-size Frege proofs we use the
predicate COUNT n

k (x1, x2, . . . , xn) from [8]. Formula COUNT n
k (x1, x2, . . . , xn) is TRUE if

and only if at least k of the variables x1, x2, . . . , xn are true. For every fixed k, COUNT n
k

can be computed by polynomial size Frege proofs.
We will define a sequence of formulas:

1. For v ∈ V , Φv,1(Y ) = COUNT n−1
k ((Yv,w)w ̸=v∈V ). Informally, Φv,1 is true in graph G iff

the degree of v is at least k.

2. For v ∈ V , Φv,2(X, Y ) = (
k∧

i=1
Xv,i) ∧ Φv,1(Y ) ∧ ΦV C(G, k)[X, Y ].

For every neighbor w of v, by resolving Yv,w with clause Yv,w ∨ Xv,1 ∨ . . . ∨ Xv,k ∨ Xw,1 ∨
. . . ∨ Xw,k. of Φv,2 we derive clause Xv,1 ∨ . . . ∨ Xv,k ∨ Xw,1 ∨ . . . ∨ Xw,k. By resolving
successively with Xv,1, . . . , Xv,k we derive clause Xw,1 ∨ . . . ∨ Xw,k.
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Formula
∧

w∈N(v)
(Xw,1 ∨ . . . ∨ Xw,k) is isomorphic to the Pigeonhole Principle PHP k

|N(v)|

which has polynomial-size Frege refutations [8]. Plugging in this proof of this statement
into our argument, we conclude that that the implication Φv,2(X, Y ) ⊢ □ can be witnessed
by polynomial size Frege proofs, hence, by Lemma 2, so does the implication Φv,1(Y ) ∧

ΦV C(G, k)[X, Y ] ⊢
k∨

i=1
Xv,i.

As for the second reduction rule, it is just as easy: for every vertex v ∈ V which is isolated
and every i = 1, . . . , k, we first derive by resolution (using negative clauses Yv,w and clause
Xv,i ∨ (

∨
w ̸=v Yv,w) unit clauses Xv,i. We then use these clauses to resolve away every other

occurrence of Xv,i from the formula, obtaining a formula isomorphic to Φ(G\Isolated(G), k).
◀

3.4 Proof Complexity of Edge Clique Cover

In this section we study the proof complexity of the following problem:

▶ Definition 22 (Edge Clique Cover). Given graph G and integer k, to decide is whether one
can find sets of vertices V1, V2, . . . , Vk ⊆ V s.t. each Vi induces a clique, and for every edge
e = (v, w) ∈ E there exists 1 ≤ i ≤ k s.t. v, w ∈ Vi (“each edge is covered by some clique”).
We represent instance (G, k) of Edge Clique Cover by propositional formula ΦG,k as follows:

For every pair of distinct vertices v, w ∈ V define a variable Yv,w. For every edge
(v, w) ∈ E(G) add unit clause Yv,w. For (v, w) ̸∈ E(G) add unit clause Yv,w.
For v ∈ V and 1 ≤ i ≤ k define boolean variable Xv,i = TRUE iff v ∈ Vi.
For v, w ∈ V and 1 ≤ i ≤ k add Xv,i ∨ Xw,i ∨ Yv,w (“if v, w ∈ Vi then vw ∈ E(G)”) and
Yv,w ∨ (∨k

j=1(Xv,j ∧ Xw,j)). Of course, as written above the latter formula is not CNF,
but it can be converted easily by expanding the last disjunction.

The following is our result for the Edge Clique Cover problem. The main technical novelty
is reducing the length of the data reduction chain (compared to the usual kernelization) from
linear to logarithmic, so that we can get quasipolynomial-size Frege proofs:

▶ Theorem 23. There exists a kernelization that reduces instances (G, k) of problem EDGE
CLIQUE COVER with graph G having n vertices to a kernel with at most 2k nodes. The
length of the data reduction chain is O(log1+ 1

2k−1
(n)). The soundness of each reduction step

can be witnessed by polynomial size Frege proofs. Consequently, for fixed k, negative instances
(G, k) of EDGE CLIQUE COVER have extended Frege proofs of polynomial size and Frege
proofs of quasipolynomial size in |ΦG,k|.

Proof. We use the following data reduction rules:
(a). If |Isolated(G)| ≥ n

2k then reduce (G, k) to (G \ Isolated(G), k).
(b). If there exists a set S ⊆ V , |S| ≥ n

2k such that vertices in S induce a clique in G, and
for all v, w ∈ S we have N [v] = N [w], where N [v] stands for the closed neighborhood of
v, then reduce G to (G′, k′), where G′ is the graph obtained by identifying vertices v, w,
and k′ = k whenever N [v] = N [w] ̸= ∅, k′ = k − 1, otherwise.

The soundness of the first reduction rule, Φ(G, k) ⊢ Φ(G\Isolated(G), k) can be witnessed
by efficient Frege proofs similar to those for the vertex cover problem.

As for the second rule, the formula

ΞS(G) := ∧w,v∈S ∧r∈V (Yv,r ↔ Yw,r)
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(where, of course, A ↔ B can be equivalently rewritten as (A ∨ B) ∧ (A ∨ B)) expresses the
fact that N [v] = N [w] for all v, w ∈ S. So we need to prove the soundness of the rule

Φ(G, k) ∧ ΞS(G) ⊢ Φ(G′, k′). (4)

Without loss of generality we will only deal with the case N [v] ̸= ∅ for all v ∈ S, (the other
case, N [v] = ∅ for all v ∈ S, can be handled with minor modifications to this argument). By
slightly abusing notation, we will denote by S the vertex of G′ obtained by contraction. Let
s ∈ S be an arbitrary vertex.

We define substitutions: Y ′
v,w := Yv,w for all v, w ∈ G′, v, w ̸= S. If, say, v = S we define

Y ′
S,w := Ys,w. Also define X ′

v,i := Xv,i for v ̸= S, X ′
S,i := Xs,i. The substitution yields a

formula isomorphic to Φ(G′, k′), and the proof of the safety is basically trivial.
To obtain the result note that the number of vertices goes down geometrically, by a ratio

of 1 − 1
2k at each step.

▶ Lemma 24. Rules (a). (b). are safe. Also, for every graph G with n > 2k vertices one of
rules (a). (b). applies.

Proof. Let G be a graph to which rules (a). (b). do not apply and which has an edge clique
cover of size k. Consider an encoding b(v) of every vertex v on k bits such that for every
v ∈ V , b(v) is a bit vector whose i’th bit is one iff v is a part of the i’th clique.

There must be a set of vertices S ⊂ V , |S| ≥ n
2k such that for all u, v ∈ S, b(u) = b(v) = b,

for some b ∈ {0, 1}k.
If b = 0k then, since every edge in G must be covered by one of the k cliques, it follows

that every v ∈ S is an isolated vertex. Hence rule (a). applies.
If, on the other hand b ̸= 0k, say bi ≠ 0, then every v ∈ S must belong to the i’th clique.

Hence S induces a clique in G. ◀

◀

3.5 Proof Complexity of the Hitting set problem
In the d-Hitting Set problem we are given an universe U and a family A of subsets of U ,
all of cardinality at most d, as well as an integer k. To decide is whether there exists a set
H ⊆ U containing at most k elements, such that H intersects every P ∈ A.

A formalization of the d-Hitting set problem as an instance of SAT is obtained as follows:

▶ Example 25. Let P = (U, A, k) be an instance of d-Hitting set. Define formula ΦP by:
For i ∈ U , j = 1, . . . , k add variable Xi,j , TRUE iff i is the j’th chosen element.
For i ≠ i′ ∈ U , 1 ≤ j ≤ k add clauses ∨i∈U Xi,j (“some i is the j’th chosen element”) and
Xi,j ∨ Xi′,j (“at most one i can be the j’th chosen element”).
For A ∈ A add (∨i∈A(∨j=1,...kXi,j)) (“some element of A is among the k chosen elements”)

Our result, which only guarantees polynomial size extended Frege proofs, is:

▶ Theorem 26. There exists a kernelization mapping instances (U, A, k) of d-HittingSet with
|U | = n elements to a kernel with at most d · d! · kd sets (hence at most d2 · d! · kd elements).
The data reductions chains in this kernelization have length O(nd/k), and their soundness
can be witnessed by polynomial-size Frege proofs. Hence for every fixed k, d, unsatisfiable
instances Φ(U,A,k) of d-HittingSet have extended Frege proofs of size O(poly(|Φ(U,A,k)|)).

Proof. We employ the standard kernelization of d-Hitting set based on sunflowers [19]:

▶ Definition 27. A sunflower with k-petals and core Y is a colection of sets S1, . . . , Sk, all
different from Y , such that for 1 ≤ i < j ≤ k, Si ∩ Sj = Y .



G. Istrate, C. Bonchiş, and A. Crăciun 135:13

We are going to propositionally encode the following informally stated data reduction
rule: let (U, A, k) be an instance of the d-Hitting set such that A contains a sunflower
S = {S1, S2, . . . , Sk+1} of cardinality k + 1 with core Y . We reduce (U, A, k) to the instance
(U ′, A′, k), where A′ = (A \ S) ∪ {Y } and U ′ = ∪X∈A′X. Indeed, consider a hitting set H

for (U, A, k). By definition, H meets every element of A \ S. If H did not meet Y then it
would have to meet each of the k + 1 disjoint petals Sj \ Y . Hence |H| ≤ k iff H meets Y .

To simulate this argument propositionally, define for i ∈ U ′ substitutions X ′
i,j := Xi,j .

We need to (a). derive clause (∨i∈Y (∨j=1,...kXi,j)) (b). for every j = 1, . . . , k, derive clauses
∨i∈U ′Xi,j .

For the first clause we show that Φ(U, A, k)∧(∧i∈Y (∧j=1,...kXi,j)) ⊢ ∅ and then we invoke
Lemma 2. To do that we first derive, for l = 1, . . . , k + 1 (by resolving literals Xi,j) clauses
(∨i∈Sl\Y (∨j=1,...kXi,j)).

Substituting each variable Xi,j , where i ∈ Sj \ Y to a new variable Yi,j yields a formula
isomorphic to PHP k

k+1 which has polynomial size Frege proofs [8]. Putting all these things
together we get polynomial-size Frege proofs witnessing the soundness of one step of the
data reduction.

The number of clauses drops at every reduction step by k, so the length of the data
reduction chain is O(nd/k). ◀

4 Proof Complexity of principles in Computational Social Choice

A great number of applications come from the theory of Social Choice [7]: motivated
by pioneering work of [38], a significant amount of research in Artificial Intelligence has
investigated the provability of such results in logical settings (see [22] for a recent survey).
We show that the most interesting of these results (Arrow’s theorem and the Gibbard-
Satterthwaite theorem) have proof complexity counterparts: the unsatisfiability of formulas
encoding them can be certified by Frege proofs of subexponential length. A first example of
application is Arrow’s Theorem. The formulas encoding the nonexistence of a social welfare
function satisfying the conditions of Arrow’s theorem are rather large. Nevertheless, such an
encoding exists, and was used explicitly in [38] to give a computer-assisted proof of Arrow’s
theorem4:

▶ Definition 28. Consider an instance with n agents and m objects to rank. There are
(m!)n possible profiles for the complete rankings of the m objects, and m! possible aggregate
orderings of the m objects. Formula Arrowm,n (unsatisfiable for m, n ≥ 3) has (m!)n+1

variables XR,π, one for each possible pair (R, π) consisting of ranking profile R, and an
aggregate ordering π ∈ Sm. The constraints are the following:

For every R ∈ R and π1 ̸= π2 ∈ Sm add clauses
∨

π∈Sm
XR,π (“every profile is aggregated

to some ordering”) and XR,π1 ∨ XR,π2 (“no profile is aggregated to more than one
ordering”)
For i = 1, . . . , n we add to Arrowm,n clauses

∨
R∈R XR,Ri . These forbid aggregations

that always output the ordering given by the i’th agent, i.e. dictatorial rank aggregations.
For every two objects a, b let Sm

a,b be the set of orderings π where for all i = 1, . . . n,
π−1(a) < π−1(b) (i.e. a is preferred to b in ordering π). Let Ra,b be the set of profiles
such that for every i = 1, . . . , n, Ri ∈ Sm

a,b (i.e. all agents prefer a to b). For every
R ∈ Ra,b add to Arrowm,n clauses

∨
π∈Sm

a,b
XR,π. These constraints encode unanimity

(if all agents prefer object a to b then a is preferred to b in the aggregated ranking).

4 For encodings of Arrow’s Theorem in more powerful logical frameworks see [14,23].
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For all profiles R, R′ ∈ R and objects a, b such that all players rank a, b in the same way in
both R, R′ and all pairs π1, π2 ∈ Sm that rank a, b in a different way (i.e. π−1

1 (a) < π−1
1 (b)

but π−1
2 (a) > π−1

2 (b) or viceversa) we add to Arrowm,n clauses XR,π1 ∨ XR′,π2 . These
encode independence of irrelevant alternatives (if R, R′ coincide with respect to the relative
ordering of a, b then their aggregate orderings also rank a, b in the same way).

Results in [38] yield a kernelization for Arrowm,n with a reduction chain of length O(m + n).
We improve them by providing a kernelization with reduction chains whose length only
depends on n, implying the existence of polynomial size Frege proofs for constant values of n:

▶ Theorem 29. Formulas Arrowm,n have a kernelization with data reduction chains of length
≤ C(n + 1), with constant C independent from m, n, whose safety is witnessed by polynomial-
size Frege proofs. Hence (a) formulas Arrowm,n have Frege proofs of size quasipolynomial
in |Arrowm,n|). (b). For every fixed n ≥ 3 there exists a polynomial pn(·) such that for all
m ≥ 3 formulas Arrowm,n have Frege proofs of size at most pn(|Arrowm,n|).

Proof. The kernelization has two data reduction rules, described informally as follows:
(a). If n ≥ 2, m ≥ 6 and W : [Sm]n → [Sm] is a function that is non-dictatorial, IIA and

unanimous then there exists an T ⊆ [m], |T | = m − 5 such that W−T : [S[m]−T
]n →

[S[m]−T
] (see the end of Section 2) has the same properties. In other words, one can

reduce in one step the set of alternatives from [m] (which has m elements) to [m]−T

(which has 5).
(b). See [38]: If n, m ≥ 3 and W : [Sm]n → [Sm] is non-dictatorial, IIA and unanimous then

at least one of the functions W1,2, W1,3, W2,3 : [Sm]n−1 → [Sm] defined as follows:
Wi,j(R1, R2, . . . , R̂i, . . . , Rn) = W (R′

1, . . . , R′
n) is non-dictatorial, IIA and unanimous.

Here R′
i = Rj , R′(k) = Rk, k ̸= i. In other words, one can reduce in one step the number

of agents by one.

▶ Lemma 30. If W is unanimous, IIA and non-dictatorial then for every B ⊆ [m], function
W−B is unanimous and IIA.

Proof. Suppose that a, a′ ∈ [m]−B and a <Ri
a′ for all i ∈ [m]−B. Then a <R+B

i
a′. By

unanimity of W , a <W (R+B
1 ,...,R+B

n ) a′. Since a, a′ were arbitrary, it follows that W−B is
unanimous. As for IIA, let a, a′ ∈ [m]−B and (R1, R2, . . . , Rn) and (R′

1, R′
2, . . . , R′

n) be
preference profiles such that, for every i = 1, . . . , n, Ri and R′

i agree with respect to the
relative ordering of a, a′. Then for every i = 1, . . . , n, R+B

i and R′,+B
i agree with respect

to the relative ordering of a, a′. By the IIA axiom for W , W (R+B
1 , R+B

2 , . . . , R+B
n ) and

W (R′,+B
1 , R′,+B

2 , . . . , R′,+B
n ) agree with respect to the relative ranking of a, a′. Hence so do

WB(R1, R2, . . . , Rn) and WB(R′
1, R′

2, . . . , R′
n). ◀

▶ Lemma 31. Reduction (a). is safe.

Proof. Consider an arbitrary set T ⊆ [m] of cardinality m − 6, e.g. T = {7, . . . , m}. Let
x ̸∈ T , e.g. x = 6 and U = T ∪ {x}. If W−U is non-dictatorial we are done. Otherwise,
assume w.l.o.g. that agent 1 is a dictator for W−U . Since 1 is not a dictator for W , there
must exist indices c ̸= d ∈ [m] and preference profiles <1, . . . , <n on [m] such that c <1 d

but d <W (<1,...,<n) c. Let y, a, b ̸∈ T , different from x, c, d, and let V ⊆ [m], |V | = m − 5,
a, b, c, d, x ̸∈ V , y ∈ V . Such a V exists, since m ≥ 6. Clearly V ̸= U , since y ∈ V \ U . We
claim that function W−V is not dictatorial.

First note that 1 cannot be a dictator for W−V . Indeed, consider <i,−V the restriction
of <i to [m]−V . We have c <1,−V d but d <W−V (<1,−V ,...,<n,−V ) c. The first relation holds
because c <1 d and c, d ̸∈ V . The second relation holds because to compare c, d according to
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W−V (<1,−V , . . . , <n,−V ) we apply function W on (<+V
1,−V , . . . , <+V

n,−V ). But since c, d ̸∈ V ,
<+V

i,−V coincides with <i with respect to the ordering of c, d for i = 1, . . . , n. Invoking the IIA
property of W for tuples (<1, . . . , <n) and (<+V

1,−V , . . . , <+V
n,−V ) justifies the second relation.

Assume now that another agent, say 2, were a dictator for W−V . Let <1, <2 be preference
profiles on [m] s.t. a <1 b but b <2 a, and <3, . . . , <n be arbitrary preference profiles. First,
invoking the first relation, the fact that W−U is computed using W , and that 1 is a dictator for
W−U we get that a <W−U (<1,−U ,<2,−U ,...,<n,−U ) b. Invoking the IIA property of W on tuples
(<1,−U , <2,−U , . . . , <n,−U ) and (<1, <2, . . . , <n) we get that a <W (<1,<2,...,<n) b. Using a
similar reasoning for the function W−V we get that b <W (<1,<2,...,<n) a, a contradiction. ◀

The safety of reduction (b) was (mathematically) proved in [38]. Next we outline how to
simulate these mathematical arguments using polynomial-size Frege proofs. First, note that
formula Arrowm,n has (m!)n+1 variables, all of them appearing explicitly in the formula.
But n = O(log((m!)n+1)), so indeed a reduction chain of length O(n) has length logarithmic
in |Arrowm,n|. Invoking our metatheorem yields a proof of point (a) of Theorem 29. Point
(b) follows by invoking point 2 of the same metatheorem.

First reduction rule: Define, for Q ⊆ [m], |Q| = m − 5, and i = 1, . . . , n formulas

Nondict−Q,i :=
∨

R∈R−Q

XR+Q,R+Q
i

(informally, formula Nondict−Q,i is true iff i is not a dictator for W−Q).

Unanimous−Q :=
∧

a,b∈[m]−Q

∨
R∈Ra,b,−Q

π∈Sm
a,b

XR+Q,π+Q .

IIA−Q :=
∧

(R,R′,π,π′)∈R−Q

(XR+Q,π+Q
1

∨ XR′,+Q,π+Q
2

)

(where, for simplicity, we have ommitted the IIA restrictions on R, R′, π1, π2, see Defini-
tion 28). Note that Arrowm,n = Unanimous−∅ ∧ IIA−∅ ∧

∧n
i=1 Nondict−∅,i.

We will prove that

Arrowm,n ∧
n∧

i=1
Nondict−[6:m],i ⊢ Arrow5,n (5)

and, for i = 1, . . . , n

Arrowm,n ∧
n∨

i=1

∧
R∈R−[6:m]

X
R+[6:m],R

+[6:m]
i

⊢ Arrow5,n (6)

Employing tautology
∧n

i=1 Nondict−[6:m],i) ∨
∨n

i=1(
∧

R∈R−[6:n]
X

R+[6:m],top(R
+[6:m]
i

)) and
substitutions implicit in (5) and (6) we conclude that Arrowm,n ⊢ P1 ∨ P2, where both
P1, P2 are formulas isomorphic to Arrow5,n. Thus we are in the framework of our
metatheorem with R = 2.
We need to specify the substitutions implicit in (5) and (6). First, formalizing the
mathematical argument in Lemma 30 we show that Arrowm,n ⊢ IIA−Q ∧Unanimous−Q.
The propositional content of this implication is trivial: the clauses of Unanimous−Q and
IA−Q are simply subclauses of Arrowm,n.
Because of this, the substitution witnessing implication (5) is quite simple: it replaces a
restricted variable X ′

R,π of Arrow5,n with the variable XR+[6;m],π+[6:m] of Arrowm,n.
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As for (6), define, for all c < d ∈ [5] and i = 1, . . . , n, formulas

Witnessc,d,i :=
∨

R∈R:Ri∈Sm
c,d

π∈Sm
d,c

XR,π (7)

Informally, formula Witnessc,d,i is true when pair (c, d) acts as a witness that agent i is
not a dictator for W , since c <Ri d but d <W (R) c.
A next step is to prove that Arrowm,n ∧

∧
R∈R−[6:m]

X
R+[6:m],R

+[6:m]
i

⊢
∨

c<d∈[5]
Witnessc,d,i.

This is easy: we use literals X
R+[6:m],R

+[6:m]
i

to prove (by resolution)

Arrowm,n ∧
∧

R∈R−[6:m]

X
R+[6:m],R

+[6:m]
i

∧
∧

c<d∈[5]

∧
R∈R:Ri∈Sm

c,d

π∈Sm
d,c

XR,π ⊢ □ (8)

(the last conjunction negates formulas Witnessc,d,i) and then invoke Lemma 2 to get a
proof of the same length of the implication we claimed.
Now we prove, for all j = 1, . . . , n that Arrowm,n ∧Witness(c, d, i) ⊢ Nondict−V,j , where
V is defined as in the proof of Lemma 31.
The proof of the implication for j = i uses unit literal XR,Rj

(negation of one from
Nondict−V,i) and XR,π ∨ XR+V

−V
,π2

(part of the IIA part of Arrowm,n) to derive clauses
XR+V

−V
,π2

for all π2 that rank c, d in a different way than π. Resolving away these literals
from clause

∨
π∈Sm

XR+V
−V

,π (part of Arrowm,n) derives clause Nondict−V,i.

As for the case j ̸= i, we want to show that

Arrowm,n ∧ Witness(c, d, i) ∧
∧

R∈R[5]

X
R+[6:m],R

+[6:m]
j

⊢ □ (9)

By Lemma 2 this will imply Nondict−V,j . Let R = (R1, R2, . . . , Rn) be a profile on [5]
such that a <R1 b but b <R2 a (a, b ∈ [5] are defined as in Lemma 31). Combining the
derivations of Nondict−V,j in (9) with the ones of Unanimous−V and IIA−V (outlined
before), plus a bijective identification of of [m]−V and [5] yields a substitution that proves
Arrow5,n, completing the proof of (6).

Second reduction rule: We refer to Lemma 2 of [38] for (mathematical) details of the
reduction. What is important is that the soundness of the statement that at least one
of W1,2, W2,3, W1,3 is non-dictatorial is established by a case-by-case analysis. It is first
proved that it cannot be that all these functions have the same dictator. Then it is
established that if i is the dictator of W1,2, j the dictator of W1,3, k the dictator of W2,3
then i ∈ {2, 3}, j ∈ {2, 3}, k ∈ {1, 3}. For all eight possible cases for triplets (i, j, k) we
obtain a contradiction: either we explicitly provide a profile R showing that triplet (i, j, k)
cannot represent the set of dictators for the three function, or we employ an argument
similar to the one in the case i = j = k. ◀

As for the Gibbard-Satterthwaite theorem, we use the following formalization:

▶ Definition 32. Consider an instance with n agents and m objects. There are (m!)n possible
profiles for the complete rankings of the m objects, and m possible outcomes. Formula GSm,n

has (m!)n × m variables XR,o, one for each possible pair consisting of a strategy profile R

and a value o ∈ [m], the value of the SCF on profile R. The constraints are the following:
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For R ∈ R add clauses
∨

o∈[m] XR,o (“every joint profile is aggregated to some object”)
and XR,o1 ∨ XR,o2 (“no joint profile is aggregated to more than one object”).
For i = 1, . . . , n we add to GSm,n clauses

∨
R∈R XR,top(Ri). They forbid social choice

functions that always output the top preference of the i’th agent, i.e. dictatorial aggrega-
tions.
For i = 1, . . . , n add

∨
R∈R XR,o. This eliminates social choice functions that are not

onto.
Add, for every pair (R, o), player 1 ≤ i ≤ m and π ∈ Sm, XR,o∨(

∨
o′∈pr(i,o,R) Xs(i,R,π),o′).

These clauses state that the social choice function is strategyproof.

▶ Theorem 33. For every fixed m formulas GSn,m have a kernelization of length O(n)
whose soundness has polynomial time Frege proofs. Hence, formulas GSn,m expressing the
Gibbard-Satterthwaite theorem have (a). Frege proofs of size quasipolynomial in |GSn,m|, (b).
for every fixed n, Frege proofs of size polynomial in |GSn,m|.

Proof. The argument is very similar to that of Arrow’s theorem: We use the following
two data reductions: (a). for n ≥ 2, m ≥ 4, if W : [m]n → [m] is a social choice function
that is onto, non-dictatorial and strategy-proof then there exists T ⊆ [m], |T | = m − 3
such that function W−T : ([m]−T )n → [m]−T is onto, non-dictatorial and strategyproof,
and (b). [37] if W : [m]n → [m] is a social choice function that is onto, non-dictatorial
and strategy-proof then one of functions W1,2, W1,3, W2,3 : [Sm]n−1 → [m] defined by
Wa,b(R1, R2, . . . , R̂a, . . . , Rn) = W (R′

1, . . . , R′
n) is non-dictatorial, onto and strategy-proof.

Here R′
a = Rb, R′(k) = Rk for k ̸= a.

First, it is not obvious that, as formulated in the paragraph, W−B is well-defined. The
reason is that W−B(R) invokes W on profile R+B , and it is not obvious that if R is a profile
on [m]−B the the outcome of W is an element of [m]−B , as needed by the definition.

Suppose that W−B(R) = W (R+B) ∈ B for some profile R on [m]−B. We claim that
W (S) ∈ B for every profile S = (S1, S2, . . . , Sn), contradicting the hypothesis that W is onto.
Indeed, if W−B(R) = W (R+B) ∈ B then W−B(R−1, S1) = W (R+B

−1 , S+B
1 ) ∈ B, otherwise

agent 1 would have an opportunity to manipulate at profile R+B by misrepresenting its
preference as S+B

1 . Applying this argument inductively for agents 2, 3, . . . , n (replacing Ri

by Si) we infer that W (S) ∈ B, which is what we claimed.

▶ Lemma 34. If W : Sn
m → [m] is onto, strategyproof and non-dictatorial then for every

B ⊆ [m], function W−B is onto and strategyproof.

Proof. Suppose there exists some profile R and agent i ∈ [n]−B such that i could manipulate
W−B(R) by misrepresenting its profile as R′

i. This means that i could manipulate W

on profile R+B by misrepresenting its profile as R′,+B
i , contradicting the fact that W is

strategy-proof. Hence W−B is strategy-proof.
Suppose now that a ∈ [m]−B. Since W is onto, there must exist a profile R such that

W (R) = a. Consider the profile R′
i that modifies R by moving a to the top of preference

profile Ri. We claim that W (R′
i) = a. Indeed, if this was not the case then i could manipulate

on profile R′
i by misrepresenting its preferences. Continuing the argument inductively for all

agents we infer that if R is the profile that modifies R by moving a to the top of all profile
preferences then W (R) = a. This means that W is unanimous, hence W−B also is. But then
there is a profile R such that W−B(R) = a: simply make a the top of all profiles. Since a

was arbitrary, it follows that W−B is onto. ◀
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We next prove the safety of reduction rule (a) (for (b) see [37]). We show that there
exists T ⊆ [m], |T | = m − 3 such that W−T is non-dictatorial. Together with Lemma 34 this
establishes the safety of rule a.

Step 1. Given two different sets T1, T2 of size m − 3, |T1 ∩ T2| = m − 4 (in other words,
|T1| = |T2| = 3, |T1 ∩ T2| = 2), we show that functions W−T1 , W−T2 must have the same
dictator, if they have one.

Suppose, indeed, that W−T1 has dictator i, W−T2 has dictator j ̸= i. Let d ∈ T2 \ T1,
c ∈ T1 \ T2, a, b ∈ T1 ∩ T2. Define profiles

Rs = a < b < . . . < sorted(T2) < c, for s ̸= j

Rj = b < a < . . . < sorted(T2) < c.

W (R) = a, since i is a dictator for W−T1 . Now, if we replace Ri by

R′
i = a < b < . . . < c < sorted(T2).

obtaining profile R′, then W (R′) = a, otherwise agent i could manipulate by reporting
profile Ri instead. We continue changing iteratively profiles Rs, s ̸= j to R′

s = a < b < . . . <

c < sorted(T2), one profile at a time, until all profiles Rs except Rj have been replaced
by R′

s. Call this profile R. That is, Rs = a < b < . . . < c < sorted(T2) for s ̸= j, while
Rj = b < a < . . . < sorted(T2) < c.

Since no agent s ≠ j had an opportunity to manipulate, it must be that W (R) = a.
Consider now profile R′

j = b < a < . . . < c < sorted(T2). Since W−T2 has agent j as a
dictator, W (R1, . . . , R′

j , . . . , Rn) = W−T2(R1,−T2
, . . . , R′

j,−T2
, Rn,−T2

) = b. So agent j has
an opportunity to manipulate at profile (R1, . . . , R′

j , . . . , Rn) by reporting instead R′
j .

Step 2. Either there exists a set T of size m − 3 such that W−T is not dictatorial, or
all functions W−T , |T | = m − 3 must have the same dictator. Indeed, we can “interpolate”
between any two sets of cardinality m − 3 by a sequence of sets falling under step 1.

Step 3. We show that it is not possible that all functions W−T , |T | = m − 3 have the
same dictator i. Since W is not dictatorial, there exists a profile R such that b = W (R) is
different from a = top(Ri). Let T ⊆ [m], |T | = m − 3, a, b ̸∈ T and consider a profile R′ that
modifies R by moving b, sorted(T ) to the bottom of all preferences (in this order), that is
R′ = (R+b

−b)+sorted(T )
−sorted(T ).

We have W (R′) = W−T (R′
−T ) = top(R′

i) = a, since W−T has i as dictator and top(R′
i) =

a. Let us create a path between R and R′ by changing one profile Rs at a time to R′
s, the

last move being Ri. The value of W does not change at any step s, since W−T has i as
dictator, and the relative orders of elements in [m]−T does not change at any profile as a
result of a change Rs → R′

s, s ̸= i, or agent s would have an opportunity of manipulation at
one of the two profiles, using Rs, R′

s, whichever yields a result ranked lower in Rs, R′
s. But

this yields a contradiction, since W (R) = b and W (R′) = a ̸= b.

For some details on the propositional simulations we refer to [26]. ◀
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5 Conclusions and open problems

We believe that the most important contribution of our paper is to show that several
techniques for proving kernelization can sometimes be simulated by efficient extended Frege
proofs. The proof techniques in this list includes: crown decomposition, the sunflower lemma,
ad-hoc methods. It is an interesting challenge to enlarge the list of methods and problems
that have such a simulation or, conversely, show limits of some of these methods.

It is rewarding to note that methods from algebraic topology can be used to reframe and
extend results in both Topological Combinatorics and Computational Social Choice: Arrow’s
theorem has topological proofs [4, 12, 13]. On the other hand the original results on Kneser’s
conjecture [32] have been strengthened using more advanced topological methods, e.g. [3]
(see [29] for a book-length treatment). The results in [2,38] can be interpreted as stating that
in both cases one can bypass topological arguments by purely combinatorial arguments (plus
computer-assisted verification of finitely many cases). It is an interesting question whether
this is still true for the results requiring more sophisticated topological methods as well.

In Theorem 26 we have only obtained polynomial size extended Frege proofs. Similarly,
in Theorems 29, 33 we have only obtained polynomial-size Frege proofs when the number of
agents is fixed. We leave open the issue of improving these results. On the other hand, our
results have only touched on the most basic topics on the proof complexity of statements in
computational social choice. There has been significant progress in this area (see e.g. [22])
and we believe that our framework may be applicable to some of this work (e.g. to the
Preservation Theorem of [21]). It would be interesting to see if this is really the case.
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