An Approximation Algorithm for the Matrix Tree
Multiplication Problem

Mahmoud Abo-Khamis &
Relational AT, Berkeley, CA, USA

Ryan Curtin =
Relational AI, Atlanta, GA, USA

Sungjin Im &
University of California, Merced, CA, USA

Benjamin Moseley &
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

Hung Ngo =
Relational Al, Berkeley, CA, USA

Kirk Pruhs &
Department of Computer Science, University of Pittsburgh, PA, USA

Alireza Samadian &
Department of Computer Science, University of Pittsburgh, PA, USA

—— Abstract

We consider the Matrix Tree Multiplication problem. This problem is a generalization of the

classic Matrix Chain Multiplication problem covered in the dynamic programming chapter of many
introductory algorithms textbooks. An instance of the Matrix Tree Multiplication problem consists
of a rooted tree with a matrix associated with each edge. The output is, for each leaf in the tree, the
product of the matrices on the chain/path from the root to that leaf. Matrix multiplications that
are shared between various chains need only be computed once, potentially being shared between
different root to leaf chains. Algorithms are evaluated by the number of scalar multiplications
performed. Our main result is a linear time algorithm for which the number of scalar multiplications
performed is at most 15 times the optimal number of scalar multiplications.

2012 ACM Subject Classification Theory of computation — Approximation algorithms analysis
Keywords and phrases Matrix Multiplication, Approximation Algorithm
Digital Object Identifier 10.4230/LIPIcs. MFCS.2021.6

Funding Sungjin Im: Supported in part by NSF grants CCF-1617653 and CCF-1844939.
Benjamin Moseley: Supported in part by a Google Research Award, an Infor Research Award, a
Carnegie Bosch Junior Faculty Chair and NSF grants CCF-1824303, CCF-1845146, CCF-1733873
and CMMI-1938909.

Kirk Pruhs: Supported in part by NSF grants CCF-1907673, CCF-2036077 and an IBM Faculty
Award.

Acknowledgements We want to thank David Fernandez-Baca for discussions and pointers related to
Markovian phelogeny trees.

1 Introduction

An instance of the Matrix Tree Multiplication problem consists of an arborescence T' = (V, E).
There is a positive integer dimension d,, associated with each vertex v, and a d,, by d, matrix
M, associated with each directed edge (u, v). Let r be the root of T'and L be the collection
of leaves of T'. The output is, for each leaf ¢ € L, the product of the matrices on the directed
© Mahmoud Abo-Khamis, Ryan Curtin, Sungjin Im, Benjamin Moseley, Hung Ngo, Kirk Pruhs, and
5v Alireza Samadian;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 6; pp. 6:1-6:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:mahmoud.abokhamis@relational.ai
https://orcid.org/0000-0003-3894-6494
mailto:ryan.curtin@relational.ai
https://orcid.org/0000-0002-9903-8214
mailto:sim3@ucmerced.edu
mailto:moseleyb@andrew.cmu.edu
mailto:hung.ngo@relational.ai
mailto:kirk@cs.pitt.edu
https://orcid.org/0000-0001-5680-1753
mailto:samadian@cs.pitt.edu
https://doi.org/10.4230/LIPIcs.MFCS.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Matrix Tree Multiplication

path from the root r to that leaf ¢ (in that order). We restrict our attention to algorithms
that use the standard matrix multiplication algorithm to multiply two matrices, which uses
ijk scalar multiplications to multiply an ¢ by j matrix by a j by k matrix. We evaluate
algorithms based on the aggregate number of scalar multiplications that they use. If the
tree T has a single leaf, then this is the classic Matrix Chain Multiplication problem that is
commonly covered in the dynamic programming chapter of introductory algorithms textbooks
(e.g. [4]). However, it is important to note that a Matrix Tree Multiplication instance is
not equivalent to a disjoint collection of Matrix Chain Multiplication instances, one for each
leaf. This is because multiplications that are shared between various chains need only be
computed once, not once for each chain.

To help the reader appreciate this difference, let us consider two instances of Matrix Tree
Multiplication where T is a balanced binary tree of depth lgn with n leaves. In the first
instance, depicted in Figure la, all dimensions are 1. Then every feasible solution for every
root-to-leaf path/chain uses lgn — 1 scalar multiplications. However, the aggregate number
of scalar multiplications can be quite different for different feasible solutions. To see this, if
u is an ancestor of v in T, let M, ,, denote the product of the matrices between u and v in T'.
We now consider two feasible solutions:

Top-Down: For each root-to-leaf path r = vy, vs, ... v; in T, the i*" matrix multiplica-
Vite T le7vi+1M'Ui+1;'Ui+2 for i € [17 k — 2]'

Bottom-Up: For each root-to-leaf path r = vy, vs, ... v; in T, the " matrix multiplic-
=M M fori e [1,k—2].

Vk—i—1,Vk—i Vk—i,Vk

tion is M,,

ation is My, , | v

For Top-Down the computation of a matrix M,, ,, can be shared by all root-to-leaf paths
with leaves in the subtree T}, of T rooted at vj,. If we charge the computation of M, ,, to the
vertex vy, then each vertex that is neither the root nor a child of the root is charged exactly
once and this charge is one. Thus, the objective value for Top-Down is n — 3. In contrast,
for Bottom-Up none of its matrix multiplications can be shared between different paths.
Thus, the objective value for the Bottom-Up algorithm is ©(nlgn). Thus, conceptually
the advantage of Top-Down is that it minimizes the number of matrix multiplications,
and maximizes the number of root-to-leaf paths that can utilize each particular matrix
multiplication.

We remark that when the dimensions higher in the tree are significantly larger than the
dimensions lower in the tree Bottom-Up can be significantly cheaper than Top-Down. This
is because the individual matrix multiplications can be significantly cheaper. As an example
consider the instance, depicted in Figure 1b. Here the dimension of a vertex at height h
is 22", Therefore, leaves have dimension 1, and the dimensions increase geometrically by a
factor of 4 as one goes up the tree, with the root ultimately having dimension n2. The cost
of Top-Down is clearly Q(n®) as there are individual matrix multiplications high in the tree
that have this cost. On the other hand, the cost Bottom-Up is O(n®) as its cost increases
geometrically up the tree, and the last matrix multiplications cost O(n®).

One motivation for our consideration of the Matrix Tree Multiplication problem comes
from Markovian models of phylogenetic trees (see for example [9, Chapter 7]). In this setting
the leaves are the taxa (for example, the DNA strands for known strains of some virus such
as COVID), and the internal nodes represent conjectured historic ancestors of the leaf taxa.
The phylogenetic tree T is thus a conjectured explanation of the evolutionary history of the
leaf taxa. The matrices represent transition probabilities for mutation of a taxon in particular
state to a taxon in some other state over some period of time. Multiplying the matrices on a
root-to-leaf path results in an aggregate transition probability from an initial taxon state to
a final leaf taxon state. This can then be used in a variety of ways, for example to find the

M. Abo-Khamis, R. Curtin, S. Im, B. Moseley, H. Ngo, K. Pruhs, and A. Samadian

(a) A tree where all nodes have weight one. (b) A tree where the node weight are geometrically
decreasing.

Figure 1 Two example trees.

initial taxon state that most likely resulted in the leaf taxa states, or for determining the
likelihood that T" would result in the known leaf taxa given an initial distribution of states.
Such applications motivate the consideration of the Matrix Tree Multiplication problem.
Additionally, we are primarily interested because we believe that the problem is an interesting
and natural generalization of a known classical algorithmic problem.

Another motivation for the Matrix Tree Multiplication problem comes from automatic
differentiation (AD) [5, 1], which is widely used today in machine learning [1]. In AD, we
are given a differentiable multivariate function f : RP — R? for some p and ¢ and our target
is to compute the derivative of each of the ¢ outputs with respect to each of the p inputs.
Those derivatives can be arranged together in a (¢ x p) Jacobian matrix of f. The function
f is typically represented as a computer program or a computation graph G which is a
DAG where vertices and directed edges represent variables and elementary functions being
applied to those variables. Now consider the special case where GG has a tree structure
T = (V, E) where each vertex v corresponds to a set of d, variables for some number d, and
each directed edge (u,v) corresponds to a multivariate function f,, , : R% — R, Let M, ,
be the transpose of the Jacobian matrix of f, .. Let 7 be the root of the tree and L the set of
leaves. Thanks to the (multivariate) chain rule [5], the problem of computing the derivatives
of the root’s variables with respect to the variables of each leaf reduces to computing the
multiplication of the matrices M, , along each leaf-to-root path, hence to an instance of
Matrix Tree Multiplication.

The standard textbook dynamic programming algorithm for the Matrix Chain Mul-
tiplication problem computes a parenthesization that results in the minimum number of
scalar multiplications in time O(n?). This optimal parenthesization can be computed by a
significantly more complicated algorithm that runs in time O(nlogn) [7, 8]. It seems quite
challenging to extend these approaches to the Matrix Tree Multiplication problem, even on
very simple instances. For example, we do not know how to compute the optimal number of
scalar multiplications in polynomial time even in the case that 7" has only 2 leaves. This is
because it’s not clear if there are subproblems the optimum solutions to which lead to that
to the original problem.

Thus, we consider approximation algorithms. First, let us review what is known in
terms of approximation algorithms for Matrix Chain Multiplication. [3] and [7] cite [2] as
giving a 2-approximation algorithm for the Matrix Chain Multiplication problem. ! A 1.25
approximation algorithm was later given in [3], and finally a 1.15 approximation algorithm
was given in [6]. In each case an optimal parenthesization can be computed in linear or
nearly linear time.

1 12] is an IBM technical report that does not seem to be available on the web, and the IBM library is
closed during the COVID outbreak.

6:3

MFCS 2021

6:4

Matrix Tree Multiplication

Our main result is a linear-time 15-approximation algorithm, that we call the Cut
Contraction algorithm, for the Matrix Tree Multiplication problem.

The rest of the paper is organized as follows. Section 2 gives a technical overview of the
algorithm design and analysis. Section 3 introduces some additional notation and terminology
that we will use. Section 4 describes the multiplications performed Cut Contraction algorithm
(ignoring implementation details). Section 5 analyzes the approximation ratio for the Cut
Contraction algorithm. Section 4.3 briefly discusses how to implement the Cut Contraction
algorithm to get a linear-time algorithm that can output a parenthesization for each root to
leaf path that has approximation ratio at most 15.

2 Technical Overview

To build some intuition, let us begin by giving a greedy 2-approximation algorithm for
Matrix Chain Multiplication (which is presumably the algorithm given in [2]). Assume the
vertices are 1,2...,n. Let m = argmin, d; be the index of the minimum dimension. If you
think of the chain as a path graph, then d,, is the min vertex cut. Intuitively the algorithm
multiplies the min-cut out to the end. So the algorithm first computes the matrix products
M —im = M —im—iv1Mm—iy1,m for i = [27 m — 1]7 Moy mti = Moy mai-1Mppi—1,mai for
i = [2,n—m)], and then finally computes M ,, by multiplying M ,, by M, . This algorithm
uses

m—2 n—1
dydndm + Y didig1dm + Y didiy1dn,
=1 1=m-+1

scalar multiplications. Observe that in any feasible solution it must be the case that for each
i ¢ [m —1,m], the cost of the matrix multiplication that involves M; ;11 is at least d;d;+1dp,.
Thus, a lower bound of the cost of optimal, that we call the edge cut lower bound, is:

dydpdyy + Y02 didiy1di + Z?;JLJrl didiy1dm
2

The factor of two comes from the fact that each matrix multiplication involves two matrices.
Note that the upper bound on the cost of the algorithm is then twice this edge cut lower
bound. Therefore, intuitively the edge cut lower bound assumes every edge/matrix gets
multiplied by its preferred dimension, and this algorithm gives every edge its preference.

As a first step toward generalizing the algorithmic design to trees, we develop three cut
based lower bounds for trees. The first lower bound is what we call the edge cut lower bound.
Roughly speaking, the edge cut lower bound is

Z dydya(u,v)/2

(u,v)EE

where a(u,v) is the minimum aggregate dimension of a cut that separates the edge (u,v)
from either the root or the leaves. This edge cut lower bound assumes every edge/matrix
gets multiplied by its preferred dimensions. The second lower bound is what we call the
root-leaf lower bound. Roughly speaking, the root-leaf lower bound is

> dediB(0)

LeL

where L is the set of leaves and 8({) is the minimum dimension on the path from r to ¢,
excluding the endpoints. The final lower bound is what we call the vertex cut lower bound.

M. Abo-Khamis, R. Curtin, S. Im, B. Moseley, H. Ngo, K. Pruhs, and A. Samadian

Roughly speaking, the vertex cut lower bound is

> dyy(v)

veV

where v(v) is the product of the min-cut separating v from the root and the aggregate
dimensions of the min-cut separating v from the leaves.

With those cut lower bounds in hand, the natural path forward would be to design an
algorithm in such a way that one could analyze its approximation ratio by comparing to
these cut lower bounds. However, there are instances such that no matrix multiplication can
be charged to the cut lower bounds (at least in a natural way). Further, there are instances
where these cut lower bounds are too loose in aggregate and are more than a constant factor
less than optimal. One such example is when T is a a complete balanced binary tree where
the dimension of the root is n, the dimension for vertices of height h € [0, lng] is 2", and the
dimension of the rest of the vertices are y/n. For this instance, all the cut lower bounds are
O(n?), but the optimal solution has cost ©(n°/?).

Our algorithm for Matrix Tree Multiplication first “reduces” the tree by performing all
the matrix multiplications that can naturally be charged to the cut lower bounds. Roughly
speaking the multiplications that can not be charged to these cut lower bounds are those
in which the middle dimension d, corresponds to a vertex v that is itself the min-cut of
T,, the subtree of T rooted at v. Thus, in the resulting reduced tree R, every node is the
min-cut of its own subtree. Further it is relatively straight-forward to also ensure that the
dimensions of the vertices on any root-to-leaf path in the reduced tree R form a geometrically
decreasing sequence. Our algorithm then performs the multiplications on the reduced tree R
in top-down order. We show that the above-mentioned properties of the reduced tree R are
sufficient to allow us to use a charging argument to directly bound the cost of these top-down
multiplications by a constant factor times the cost of any arbitrary feasible solution for T'.
Here we directly charge to the optimal and not the lower bounds.

3 Notation and Terminology

We use r to denote the root, and T, to denote the subtree rooted at vertex v. For any vertex
v and any sets of vertices A, let II,(A) denote the set of vertices in A that are descendant of
v. Given a set A, we denote the collective dimensions of the vertices in A by W (A), that is
W(A) = e da-

We use v < u to denote that v is a strict ancestor of u in T. We write < to denote that
v is an ancestor of u and also u could equal v. Given a vertex v of T', we call a collection
C of vertices is a cut in T, if the removal of the vertices in C' leaves no remaining v to leaf
path in T),, and there are no two vertices © and v in C such that v < u. Given a vertex v
of T, we call a cut C in T, the min-cut of T, if its vertices have the minimum cumulative
dimensions among all cuts; that is C' = argming,ce D, e do-

4 The Cut Contraction Algorithm Description

Our Cut Contraction algorithm first partitions the tree T into various components. This is
described in Subsection 4.1. An algorithm, which we call Reduce, then performs matrix mul-
tiplications that can be charged to the cut lower bounds. This is described in Subsection 4.2.
Finally the Top-Down algorithm, described in the introduction, is applied to the resulting
reduced tree R.

6:5

MFCS 2021

6:6

Matrix Tree Multiplication

4.1 Classifying Vertices in the Tree

We explain how the vertices of T are classified by the algorithm before any matrix multiplic-
ations are performed. The first cut C7 = C(r) is the min cut of T. To compute C;41, the
algorithm iteratively considers the non-leaf vertices u € C;, and then considers all paths P
from u to every leaf ¢ in T,,. Let v be the vertex with the least depth (closest to u) on P
such that d, < d,,/2. We call the vertex v a checkpoint vertex. If v does not exists then the
leaf [is included in C;11. If v exists then min-cut of the subtree T, is added to C; 1. Note
that the min cut of T}, can be v itself.

Let Dy be the vertices between a non-leaf vertex v € C; and the descendants of v in Cj41
including v and the descendants. That is, DY = {u: v < w and 3z € Ci11 u < x}. UY are
the vertices in D} that prefer v over the cut C;41 and S} are the vertices that prefer Cj4;.
Formally, Uy = {u:uw € Dj and dy < >_ cyy, (¢,) dw} and S = D7\ U Finally
D; = Uyec, D} are the level i intermediate vertices, U; = Uyec, U are the level ¢ upper
vertices and S; = Uyec; 57 are the level ¢ lower vertices.

» Observation 1. For all vertices v € C;, the vertices in U} is a connected component of T
that includes v.

4.2 The Reduce Algorithm Description

Initially for every path r = wuj,us,...,u; from r to every vertex up € Cj of length at
least two hops the algorithm computes the matrix products My; v, = Mu; w1 Mu; 1 ue for

jel, k-2

Next the algorithm iteratively performs matrix multiplication on matrices between C;
and Cjy for i = 1,2, To multiply matrices between C; and C;4; the algorithm iteratively
considers vertices v € C;. The algorithm next iteratively considers vertices u € II,,(Cj41).
Let v = uq,us,...,u = ug be the path from v to u. If kK > 3 the algorithm then multiplies
the matrices on this path in manner that we now describe (otherwise the algorithm does
nothing on this path). Let m be minimum such w41 is not in UY. Note that it could be
that all of ug,...,u; are in S} and thus m =1, or all of uy,...,u; are U’ and thus m = k.
If m > 2 the algorithm multiplies the matrices in U} in top-down order. That is, it computes
the matrix products M, ., = My, My, , u, for j € [2,m]. If E —m > 2 the algorithm
multiplies the matrices in S} in bottom-up order. That is, the algorithm computes the matrix
products My, ; w, = Mu,_; up_jor Mup_ 410y for j € [2,k —m]. Finally, if 2 <m <k —1
the algorithm computes the matrix product M, ,, = M, 4,, My, u,.- Let the resulting tree
be R.

4.3 Linear Time Implementation

Here we sketch the key steps to make the algorithm run in linear time. To find the min-cuts
of every subtree, the algorithm can start from the leaves and make them the min-cut of their
subtree. Recursively in a bottom up fashion the algorithm can find the minimum cut of all
the subtrees. For each vertex, the algorithm compares its dimension with the summation of
the min-cuts of its children.

Once this is known, C; can be found in linear time. In order to find the checkpoints and
the next cuts, we only need to perform a depth first search over the tree. Similarly, finding
the sets U? and S} can be done by a depth first search over the vertices of the tree. After
this step, the multiplications are well defined.

M. Abo-Khamis, R. Curtin, S. Im, B. Moseley, H. Ngo, K. Pruhs, and A. Samadian

5 Cut Contraction Approximation Analysis

In subsection 5.1 we state and prove three cut based lower bounds on optimal. In subsection
5.2 we prove some structural properties of the classification of vertices. In subsection 5.3 we
analyze the Reduce algorithm. Finally in subsection 5.4 we analyze the Top-Down algorithm
on the reduced tree R.

5.1 The Cut Lower Bounds

Let C(v) be a min-cut of the subtree Ty, and let C~(v) be the minimum cut of T, subject to
the constraint that the cut does not contain v. Let h(v) be the vertex x with the minimum
dimension subject to the constraint that r < « < v. For an edge (u,v) € F define o(u,v) as
follows:

dhp(u) ifu#randvel
a(u,v) = ¢ W(C (v)) ifu=randv¢L
min (dp,(u), W(C™(v)) otherwise

For a leaf ¢ € L define 3(¢) as follows:

f(f)=min d,

u s.t.r<u</¢

For a vertex v € V' that is neither the root nor a leaf, define v(v) as follows
’V(’U) = dh(v) : W(Ci(v))
» Lemma 2 (Edge Cut Lower Bound).

Z dydyo(u,v) < 2-Opt

(u,w)EE

Proof. Let P, , be the set of all root-to-leaf paths passing an edge (u,v). Let A, .y be the

set of vertices ¢ for which, the optimum algorithm has made a multiplication of cost d,d.d,.

That is, the algorithm has performed either the multiplication M,, ,M, 4 or Mg M, ., and
let O, be the total cost of these multiplications. That is, O, , = quA(u,v) dydydg.

In any feasible solution, for every path p in P, ,, there should be one vertex in p that
is in A,,. That is because, in order for the algorithm to find the final product of the
matrices in p, at some point, it must multiply M, , to some other matrix in p. Therefore,
if no ancestor of « is in A, ,, we know A, , must be a cut (or its superset) in T, that
is not equal to {v}. If there exists a vertex z € A, , such that x < u, then we know
Ounw > dypdydy, > dpyydud,. Otherwise, as A, , is a cut in T;,, we have W (A, ,) > W(C™(v));

thus, Oy, > W(Ay »)dud, > W(C (v))dyd,. Therefore, in either case, O, > dyd,c(u,v).

Summing over all edges (u, v), we get the following value for the total cost of the multiplications
involving the matrix of an edge in 7"

20pt > Z Oyp > Z dydya(u,v)

(u,v)EE (uv)EE

We get the factor of 2 because each matrix multiplication only involves two matrices and
therefore is counted at most twice. <

6:7

MFCS 2021

6:8

Matrix Tree Multiplication

» Lemma 3 (Root-Leaf Cut Lower Bound).

> d.dyB(¢) < Opt

leL

Proof. Since the optimal solution is feasible, it must perform a multiplication of the form
M, M, for each leaf ¢ in order to computed M, o, which must cost at least d,d,3(¢), and
cannot be shared among different leaves. <

» Lemma 4 (Vertex Cut Lower Bound). Let V' be the set of vertices in T that are neither a
root nor a leaf. Then,

> dyy(v) < Opt

veV’

Proof. Fix an edge (u,v) and consider all the root to leaf paths that pass through (u,v).
Any feasible solution needs to compute the final product of the matrices lying on all of these
paths. We first prove the following claim: for any root-to-leaf path P that contains the edge
(u, v) there exists a multiplication of the form M, , M, , that the feasible solution computes
where a and b are two vertices in P and a < u < b.

We can find this multiplication by the following procedure. We first consider the last
multiplication that is performed on the path between r and a leaf node ¢. Let M, ,,M,, ¢,
be that multiplication. If w = u, then we have found the multiplication. If w < u, then we
recurse on the last multiplication that the algorithm has performed to calculate M, ¢ until
we find a multiplication of the form M, , M, ;. Lastly, if v < w, then we recurse on the last
multiplication that the algorithm has performed to compute M, ,,.

Now, for an edge (u,v), let A, .y be the set of all pairs of vertices (a,b) such that the
algorithm has computed M, M, . From the above claim we can conclude that the set
By =1{b : (a,b) € Aquv)} is a cut in the subtree T, because for every root-to-leaf path
that has the edge (u,v), there exists a pair of (a,b) in A, that is on that path and v < b.
Then, since these sets of multiplications are disjoint with respect to different edges (u,v), we
can get the following lower bound:

Opt > Z Z dodpdy, > Z dpy(uydu Z dp > Z dh(uydu W (C()).

(u,v)EE (a,b)EA(u,v) (u,v)EE bEB (4, v) (u,v)EE

Rewriting the last summation, by summing over all vertices u and then all the edges
(u,v) connected to u, and the lemma follows:

Opt > Z dpwyduW(C(v)) > Z dyy(u). <

(u,v)EE ueV

5.2 Structural Properties

Lemma 5 states that vertices between v and the cut C'(v) inherit their min-cut from C(v).
Lemma 6 lower bounds the size of min-cuts C'(u) for vertices u € D;. Lemma 7 observes
that the dimension of every vertex in a set C; must be smaller than the dimension of any
ancestor. Lemma 8 lower bounds the cut size for an edge (u,w) € D;. Lemma 9 observes
that nodes in R are min-cuts of their subtree. Lemma 10 observes that the dimensions are
geometrically decreasing on root to leaf paths in the reduced tree R.

» Lemma 5. Let u be a descendant of v in T such that u also has a descendant in C(v).
Then IL,(C(v)) is a min-cut in T,,.

M. Abo-Khamis, R. Curtin, S. Im, B. Moseley, H. Ngo, K. Pruhs, and A. Samadian

Proof. We prove the claim by contradiction. Let us assume II,(C(v)) is not a min-cut of
T,. Note that there is no vertex x € C(v) such that x < u; because, if that was the case, we
could remove any vertex in C(v) that is descendant of u and obtain a smaller cut. Therefore,
since every v to leaf path including the ones passing through u have a vertex in C(v), we can
conclude that IT,(C(v)) is a cut in T,,, and since we have assumed that it is not a min-cut,
we can conclude W(C(u)) < W(IL,(C(v))).

Now we create a new cut in 7, by removing the vertices in II,(C(v)) from C(v) and adding
C(u). The weight of the new cut is W (C(v)) — W (IL,(C(v))) + W(C(u)) which is smaller than
W(C(v)) and that is a contradiction with the fact that W (C(v)) was the min-cut of T,,. <«

» Lemma 6. For all nonleaf vertices v € C;, and for all vertices w € D} it must be the case
that W (C(u)) > min(d, /2, W(I1,(Ci11))).

Proof. If there is a vertex x in C(u) such that d, > d,/2 then the proof is trivial. Now we
assume that for all vertices « € C(u), we have d, < d,/2.

We divide the proof into two cases. In the first case assume that there is a checkpoint
vertex ¢ such that v < ¢ < w. Then by definition, II;(C;41) is a min-cut of 73. Furthermore,
since ¢ is an ancestor of u, we have IL, (II;(C;41) = IL,(C;+1). Then using Lemma 5, we can
conclude IL,(C;41) is a min-cut of Ty,; therefore, W(C(u)) = W(IL,(Ci+1)).

In the second case, assume that there is no checkpoint between v and u. Then for all
the vertices x € C(u), there exists a checkpoint vertex ¢ such that u < ¢t < x; that is because
d, < d,/2 and there is no checkpoint above v. Let T denote all such checkpoints, then T is a
cut in T, and a cut between u and C(u). Therefore, (J,c; H:(C(u)) = C(u), and based on the
definition of Cj;1 and the fact that 7" is a cut in T),, we have I, (Ci11) = U, 1e(Cig1) =
Urer COO).

For any checkpoint in ¢, using Lemma 5, we know II;(C(u)) is a min-cut of T}, and as
a result W(IL(C(u))) = W(C(t)) = W(II(Ci+1)). Summing over all vertices in T' we get
W(C(u)) = W(ILu(Cit1)). <

» Lemma 7. For any nonleaf vertex v € C; and for all ancestors u of v, it must be the case
that d, < d,,.

Proof. We use induction on i. For the base case of i = 1, we know C; is the min-cut of T,
and if there was a vertex u such that © < v and d, < d,, we could create a smaller cut by
replacing v with u in C.

For i > 1, let ¢ be the ancestor of v in C;_;. We show that d, is smaller than d, for all
vertices u where ¢ < u < v. Then by induction, it will be smaller than all of its ancestors
because ¢ is a non leaf vertex in C;_1. Since v is not a leaf, there exists a checkpoint vertex

t between v and ¢. Then as v is in C(t), for all u where ¢t < u < v, we have d, < d,.

Furthermore, based on the definition of a checkpoint, d; < d,/2 and for all vertices w where
¢ < w < t, we have d,, > dg/2; therefore, d, < d; < d,,. <

» Lemma 8. For all nonleaf vertices v € Cy, and for all vertices edges (u,w) in T, with both
endpoints in DY we have a(u,w) > min(d, /2, W(IL,(C;+1))).

Proof. First, for every edge (u,w) with both ends in DY, we prove

dpuy = min(dy /2, W (Il (Ciy1)))- (1)

6:9

MFCS 2021

6:10

Matrix Tree Multiplication

If there exists a checkpoint ¢ such that v < ¢ < u, then for every vertex ¢ such that ¢t < ¢ < w,
we have d; > W(C(w)). This is because thanks to the definition of C;1+1 and the fact that
g < w we have IT;(Ci4+1) = C(t) and I1,,(Ci41) C II;(Ciy1), and furthermore using Lemma 5,
we know II,(Cit1) is a min-cut of Ty, and II,(C;41) is a min-cut of T,,. Therefore,

dg = W(C(q)) = W(Ily(Ciy1)) = W (Il (Cis1)) = W(C(w)).

Moreover, for every vertex x where v < = < t, we know d, > d;; therefore, we have
dy > W(C(w)). Then, using Lemma 7, we can conclude dj,) > W(C(w)) = W(IL,(Ciy1)).
If there exists no checkpoint ¢ between v and u, then based on the definition of a checkpoint
and Lemma 7, we have dj,(,) > d,/2. Thus, we have shown Eqn. (1).
Now, for every edge (u,w) with both ends in D}, we prove

W(C™ (w)) = min(dy /2, W (1L, (Ci1)))- 2)

First, note that W(C~(w)) > W(C(w)) because C(w) is the minimum over all cuts including
the cut {w} whereas C~(w) # {w}. Furthermore, note that it is either the case that there is
a checkpoint between v and every vertex in C(w) which implies C(w) = I1,,(Ci+1), or C(w)
has a vertex with dimension larger than d, /2. Therefore, we have

W(C™ (w)) =2 W(C(w)) = min(dy /2, W (I (Cit1)))-
Since a(u, w) = min(dy), W(C~(w))), Eqn. (1) and (2) give the lemma. <
» Lemma 9. FEvery vertex v in R that is not r, is the min-cut of both T, and R,.

Proof. The fact that v is a min-cut of T}, follows from the definition of the cuts C; and the
definition of the Reduce algorithm. The fact that v is a min-cut of R, follows from the fact
that min-cuts of R, are feasible cuts for T,. <

» Lemma 10. For every edge (u,v) € R such that uw # r and v is not a leaf, it must be the
case that d,, > 2d,,.

Proof. This is a direct consequence of the definition of the C;’s. |

5.3 Reduce Analysis

» Lemma 11. The cost incurred by the Reduce algorithm is at most 8 - Opt.

Proof. We divide the multiplications into 4 categories and analyse their costs separately.

We will refer to these costs as categories.

1. The multiplications that involve the matrices between the root and the vertices in Cfj.

2. The multiplications of the matrices with both ends in U} for some v € C;.

3. The multiplications involving a matrix M, ., where (u,w) is an edge with w being in
SY UL, (Ciy1) for some v € C;.

4. The multiplications of the form M, ,, M., , where m € U and v € IL,(C;41).

Note that the above categories cover all the multiplications done by the Reduce algorithm.
We use the lower bound in Lemma 2, and show that the cost of each multiplication in the
first three categories is a constant factor of d,d,a(u,v) for some edge (u,v) and no edge is
charged more than once. Then we use the lower bound in Lemma 4 to bound the cost of the
multiplications in the fourth category.

M. Abo-Khamis, R. Curtin, S. Im, B. Moseley, H. Ngo, K. Pruhs, and A. Samadian

Category 1: Every matrix multiplication in this category has the form My, - M., where
v is a vertex in C; and M,,, is the result of the product of the matrices in path between u
and v for some vertex v € C7. Therefore, the cost of all multiplications in this category is

oY dududy,

(u,v)EET €Il (Ch)

where F; is the set of edges between the root and Cy. This is because any matrix M, ,
will be in one multiplication per each vertex of II,(C7). Note that since C; is a min-cut,
for any subset B of C1, the value) 5 d, is smaller than the dimension of any of their
common ancestors (otherwise, we could have got a smaller min-cut by replacing them with
that ancestor). Therefore,

YooY dudede= D dudya(u,v)

(u,v)€E; z€Il, (C1) (u,v)€E;

Category 2: Fix an integer i and a vertex v € C;. For every edge (u,w) with both ends
in U \ {v}, the algorithm performs one multiplication of form M, ,M, , in top-down
multiplication of U/, and the cost for this multiplication is d,d,d,,. Using Lemma & and the
definition of U}, we know o(u, w) > min(d, /2, W(I1,(Ci11))) = dy/2. As a result the total
cost of the multiplications in this category is bounded by

XY dedudw <> Y dudwa(u,w),

it veC; (u,w)eE(UY) i veC; (u,w)€EEs(v)

where Es(v) is the set of edges with both ends in U?.

Category 3: Let u be a vertex in C;41 and v be its ancestor in C;. Then the path between
u and v can be divided into two sections such that the vertices of the upper section are all in
UY U {v} and the vertices of the lower section are in SP U {u}. Then on the path between u
and v, for every edge (w,t) on this path for which ¢ is in S? \ {u}, the algorithm performs
the multiplication of form M,, ;M; .. Then if we sum over different vertices u € IT,(Cjy1),

the total cost of the multiplications in this category that involve M, ; is dy,d,W (I1,(Ci+1)).

Using the Lemma 8 and the definition of S}, we have
2a(w, t) > min(dy, 2W (11 (Cit1))) > W(IL(Cit1))-

Therefore, the total cost of the multiplications in this category can be bounded by

XY dwdWIL(Ci) <> Y Y 2dudia(w,t),

i veC; (w,t)EFE3(v) i veC; (w,t)EE3(v)

where E5(v) is the set of edges (w,t) where ¢ is in S7.

Since the edges that are above C1, the edges that have both ends in J; U, ¢, Uf, and
the edges (u, w) with w being in J; U,e¢, Si are disjoint, we have not double charged any
edge. Therefore, using Lemma 2 we can conclude that the total cost of the multiplications in
categories 1, 2, and 3 is at most 40pt.

Category 4: Let u be a vertex in C;11 and v be its ancestor in C;. Let (¢, w) be an edge
on the path between v and u such that ¢ € U and w € 57. The algorithm may make one
multiplication of the form M, ,M, , for this path. Therefore, summing over all vertices
u € I1,(Cy+1), we can derive the following total cost of all multiplications of this form:

6:11

MFCS 2021

6:12

Matrix Tree Multiplication

Yo Y dudgW(I(Ciia))

i vEC; (q,w)eEa(v)

in which Fy(v) is the set of edges with one end in U} and one end in S}
For any edge (¢, w) € E4(v), using Lemma 6 and the fact that w € S, we have

2W(C(w)) = min(dy, 2W (Il (Cit1))) = W (Il (Cig1))-
Furthermore, we know no checkpoint can be in U, because for any checkpoint ¢ we have
W((Ciy1)) = W(C(F)) < di < dyp/2.

Therefore, using Lemma 7 and the fact that no checkpoint is in U¢, for any edge (q, w) € E4(v)
we have h(q) > d,/2, and we get the following upperbound on the cost of the multiplications
in this category:

SN ddWICh)) <3N S dddi W(Cw)).

i veC (¢,w)EEa(v) i veC; (qw)EE4(v)

Then using Lemma 4, and taking the summation over all the edges that are not connected
to the root we will get:

oY AddnW(C(w) <4 duy(u) < 40pt. <

i veC; (qw)EE4(v) ueV

5.4 Top-Down Analysis

Our analysis of the Top-Down algorithm on the reduced tree R is based on a charging
argument. A few of the Top-Down multiplications will be charged to the root-leaf cut lower
bound. However, most of the Top-Down matrix multiplications will be directly charged
to various matrix multiplications in Opt. There are three different possible ways that the
Top-Down matrix multiplications can be charged: leaf-charge, low-charge, and high-charge.

The charging is done independently for each root-to-leaf path P. Iteratively consider
a fixed root-to-leaf path P in T ending in a leaf ¢ € L. Let M, ,M,, be a Top-Down
matrix multiplication on P that has not yet leaf-charged or low-charged any multiplication
in optimal. If there is no checkpoint between u and v in T', note that we must have v = £
and the root-leaf cut lower bound is charged. We call this a leaf-charge. Otherwise, assume
u € Cy, v € C;41 and note that there must exist a checkpoint ¢ strictly between v and v on
P (and thus ¢ can not be either the root r nor a child of the root r in T'). Let M, oM, be
an arbitrary matrix multiplication in the optimal solution such that r <a <t b < £. We
will show such a matrix multiplication must exist in the optimal solution in Lemma 12. If
b < v then the optimal multiplication M, .M, is charged d,d,d,, the cost of this Top-Down
multiplication. Call this a low-charge. If v < b then the optimal multiplication M, , M, is
charged d,d,dp, which is a fraction of the cost of this Top-Down multiplication. Call this a
high-charge.

» Lemma 12. For each root-to-leaf path P in T and for each vertex t on P that is neither
the root nor a child of the root, at least one multiplication M, M, is in the optimal solution
for T such that r < a <t < b =< { where ¢ is the leaf in P.

M. Abo-Khamis, R. Curtin, S. Im, B. Moseley, H. Ngo, K. Pruhs, and A. Samadian

Proof. Let z1 < ... < x; = £ be all the vertices in P such that the optimal solution contains
a multiplication of the form M, ,, M, »,.,. Note that it must be the case k > 2 since
the optimal solution is feasible and it needs to compute M, ;,. The claim is there exists
j € [1,k —1] such that z; <t < x;11, and one can take a = x; and b = x;41.

To prove this claim, note that ;1 must be a child of root. This is because, otherwise, the
optimal solution needs to perform another multiplication to compute M, ., since it uses it
in My s My, o, Let M, M, ., be that multiplication, then ¢ is on P which contradicts

with the definition of x1,...,x;. Therefore, since t is not the root or its children, we have
x1 < t. Also we know zy, is the leaf and t < x. Therefore, there exists a j € [1,k — 1] such
that z; <t < xj41. <

» Lemma 13. The aggregate amount of root-leaf cut charges is at most twice the root-leaf
cut lower bound, and therefore at most 2 - Opt.

Proof. For each leaf ¢ there can be at most one matrix multiplication, say M, , M, ¢ charged
to it. From Lemma 7 and the fact that there is no check point be between u and ¢ one can
conclude that 5(¢) < 2d,,. <

» Lemma 14. Every Top-Down matriz multiplication M = M, M, . charges at least d,d,d,
to the multiplications in the optimal solution.

Proof. If M was charged via a high charge, this is obvious. Otherwise assume M was only
charged via low charges. Let (a1,b1), ... (ak, br) be the collection of multiplications in optimal
that M was charged to via low charges. By the feasibility of the optimal solution {by,...,bx}
must be a cut of T,,. Thus by Lemma 9 it must be the case that Zle dp, > d,,. Thus the
aggregate amount of low charges is at least d,d,d,. <

» Lemma 15. Every matriz multiplication M, o Mg in optimal is charged at most 2d,d.dp
by low charges.

Proof. Let M, M, , with u € C; and v € C;41 be one of the multiplications of top-down
that low-charges M,. , M, ;. Then we know there exists a checkpoint ¢ in T" such that u <t g v
and @ <t < b < v. Then the claim is that the only multiplications of top-down that may
low-charge the multiplication M, .M, in optimal are the ones of the form M, , M, ., where
w e Hb(ci+1)-

To see the reason for the above claim, consider any multiplication M, ,M, , that can
low-charge M, oM, ;. Based on the definition of low-charge, we have p € C; is an ancestor of
b, and w € Cj41 such that b < w. If j + 1 <4, then no vertex in Cj4; can be an descendent
of u, and therefore, we cannot have b < w because that would imply v < b < w. Furthermore,
we cannot have j > i+ 1 because we already know that v is in C;41 and b < v; therefore, no
vertex in C; can be an ancestor of b, meaning we cannot have p < b; because that would
mean p < u. Thus, the only possibility is j7 = ¢, which means p = u. Then the only vertices
in C;41 that are descendent of b are by definition ITy(Ciy1).

Using this claim, we can conclude the maximum amount low-charged to a multiplication
M, oM,y is drd, W (II(Cit1)). Note that a < ¢, therefore, d, > d,/2; that is because, all
the vertices between ¢ and u have dimensions larger than d, /2, and using Lemma 7, we know
the dimension of all the ancestors of u is at least d,,. Furthermore, note that IT;(C;11) is
the min-cut of T%; therefore, using lemma 5 and the fact that t < b < v, we can conclude
W (IIy(Ci41)) < dp. Therefore, we can get the following upperbound for the total cost
lower-charged to a multiplication M, oM, of optimal: d,d,W (II;(Cit1)) < 2d,dqdp. <

» Lemma 16. Every matriz multiplication M, o Mg in optimal is charged at most 4d,d.dp
by high-charges.

6:13

MFCS 2021

6:14

Matrix Tree Multiplication

Proof. Consider a multiplication M, , M, , in top-down that high-charges the multiplication
M, oM, in optimal. We have a < ¢t < v < b where ¢ is the checkpoint between u and
v, and M, M, , high-charges the cost d,d,dy. Note that both ¢ and v are on the path
between a and b in T. Let (uy,us), (uz,us),..., (ug—1,ur) be the edges in R, for which
Ug, ..., ur are all on the path between a and b in T', and the checkpoint between w;, u;41 for
all 4 is also on this path. Using the definition of high-charge, the only multiplications in
Top-Down that can high charge M, .M, are the multiplications of the form M., My, o, ,
for ¢ € [1, k—1]. Therefore, the total cost high-charged to M, ,M, ; is at most: d,d, Zle dy,
wisy < dy, /2. Furthermore, using the definition of the checkpoint
and Lemma 7, we have d,, < 2d, because a is the ancestor of the checkpoint between w4

Using Lemma 10, we know d

and us in T. Therefore, the total cost can be upper bounded as follows: d,.d Zle dy, <
drdpdy, oo 1/28 < Ad,dpd, <

We now can prove the main theroem.

» Theorem 17. The Cut Contraction Algorithm for the Tree Matrixz Multiplication problem
1s 15 approximate.

Proof. Using Lemma 11, we can conclude the cost of Reduce multiplications is 80pt, and
using Lemmas 13, 14, 15, and 16, we can conclude the cost of the multiplications performed
in TopDown phase is 7Opt which gives us total cost of 150pt. |

6 Conclusions

In this paper we studied a natural extension of the matrix chain problem where multiples
chains are overlaid forming a tree. Currently, we do not know if the problem is NP-hard
although we believe so. The obvious open question is to show that the problem is indeed NP-
hard. Further, we do not know how to obtain a better approximation using any polynomial
time algorithms. Improving the approximation ratio would be another interesting direction.
Finally, it would be very interesting to study the more general setting where the chains form
an arbitrary DAG. The main challenge in such an extension seems to lie in discovering lower
bounds different from what we used in this paper.

—— References

1 Atilim Gilines Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res.,
18(1):5595-5637, 2017.

2 A. K. Chandra. Computing matrix chain products in near optimal time. IBM Research Report,
RC 5625(24393), 1975. IBM T.J. Watson Research Center.

3 Francis Y. L. Chin. An o(n) algorithm for determining a near-optimal computation order of
matrix chain products. Communications of the ACM, 21(7):544-549, 1978.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

5 Andreas Griewank and Andrea Walther. Evaluating Derivatives. Society for Industrial and
Applied Mathematics, second edition, 2008. doi:10.1137/1.9780898717761.

6 T. C. Hu and M. T. Shing. An o(n) algorithm to find a near-optimum partition of a convex
polygon. Journal of Algorithms, 2(2):122-138, 1981.

7 T. C. Hu and M. T. Shing. Computation of matrix chain products. part I. SIAM Journal of
Computing, 11(2):362-373, 1982.

8 T. C. Hu and M. T. Shing. Computation of matrix chain products. part II. SIAM Journal of
Computing, 13(2):228-251, 1984.

9 Mike Steel. Phylogeny: Discrete and Random Processes in Evolution. SIAM-Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2016.

https://doi.org/10.1137/1.9780898717761

	1 Introduction
	2 Technical Overview
	3 Notation and Terminology
	4 The Cut Contraction Algorithm Description
	4.1 Classifying Vertices in the Tree
	4.2 The Reduce Algorithm Description
	4.3 Linear Time Implementation

	5 Cut Contraction Approximation Analysis
	5.1 The Cut Lower Bounds
	5.2 Structural Properties
	5.3 Reduce Analysis
	5.4 Top-Down Analysis

	6 Conclusions

