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Abstract
Tverberg’s theorem states that a set of n points in Rd can be partitioned into ⌈n/(d + 1)⌉ sets
whose convex hulls all intersect. A point in the intersection (aka Tverberg point) is a centerpoint,
or high-dimensional median, of the input point set. While randomized algorithms exist to find
centerpoints with some failure probability, a partition for a Tverberg point provides a certificate of
its correctness.

Unfortunately, known algorithms for computing exact Tverberg points take nO(d2) time. We
provide several new approximation algorithms for this problem, which improve running time or
approximation quality over previous work. In particular, we provide the first strongly polynomial
(in both n and d) approximation algorithm for finding a Tverberg point.
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1 Introduction

Given a set P of n points in the plane and a query point q, classification problems ask
whether q belongs to the same class as P . Some algorithms use the convex hull CH(P ) as
a decision boundary for classifying q. However, in realistic datasets, P may be noisy and
contain outliers, and even one faraway point can dramatically enlarge the hull of P . Thus,
we would like to measure how deeply q lies within P in way that is more robust against noise.

In this paper, we investigate the notion of Tverberg depth. However, there are many
related measures of depth in the literature, including:
1. Tukey depth. The Tukey depth of q is the minimum number of points that must be

removed before q becomes a vertex of the convex hull. Computing the depth is equivalent
to computing the closed halfspace that contains q and the smallest number of points of
P , and this takes O(n log n) time in the plane [7].

2. Centerpoint. In Rd, a point with Tukey depth nα is an α-centerpoint. There is always a
1/(d + 1)-centerpoint, known simply as the centerpoint, which can be computed exactly in
O(nd−1) time [19, 7]. It can be approximated using the centerpoint of a sample [11], but
getting a polynomial-time (in both n and d) approximation algorithm proved challenging.
Clarkson et al. [11] provided an algorithm that computes a 1/4d2-centerpoint in roughly
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O(d9) time. Miller and Sheehy [23] derandomized it to find a (roughly) 1/2d2-centerpoint
in nO(log d) time. More recently, Har-Peled and Mitchell [16] improved the running time
to compute a (roughly) 1/d2-centerpoint in (roughly) O(d7) time.

3. Onion depth. Imagine peeling away the vertices of the current convex hull and removing
them from P . The onion depth is the number of layers which must be removed before the
point q is exposed. The convex layers of points in the plane can be computed in O(n log n)
time by an algorithm of Chazelle [8]. The structure of convex layers is well-understood
for random points [12] and grid points [13].

4. Uncertainty. Another model considers uncertainty about the locations of the points.
Suppose that each point of P has a certain probability of existing, or alternatively, its
location is given via a distribution. The depth of query point q is the probability that q is
in the convex hull once P has been sampled. Under certain assumptions, this probability
can be computed exactly in O(n log n) time [2]. Unfortunately, the computed value might
be very close to zero or one, and therefore tricky to interpret.

5. Simplicial depth. The simplicial depth of q is the number of simplices induced by P

containing it. This number can be approximated quickly after some preprocessing [1].
However, it can be quite large for a point which is intuitively shallow.

Tverberg depth

Given a set P of n points in Rd, a Tverberg partition is a partition of P into k disjoint
sets P1, . . . , Pk such that

⋂
i CH(Pi) is not empty. A point in this intersection is a Tverberg

point. Tverberg’s theorem states that P has a Tverberg partition into ⌈n/(d + 1)⌉ sets. In
particular, the Tverberg depth (T-depth) of a point q is the maximum size k of a Tverberg
partition such that q ∈

⋂k
i=1 CH(Pi).

By definition, points of T-depth n/(d + 1) are centerpoints for P . In the plane, Reay [25]
showed that if a point has Tukey depth k ≤ |P | /3, then the T-depth of q is k. This property
is already false in three dimensions [4]. The two-dimensional case was handled by Birch [5],
who proved that any set of n points in the plane can be partitioned into n/3 triples whose
induced triangles have a common intersection point.

Computing a Tverberg point

For work on computing approximate Tverberg points, see [23, 24, 26, 9] and the references
therein. Currently, no polynomial-time (in both n and d) approximation algorithm is known
for computing Tverberg points. This search problem is believed to be quite hard, see [22].

Algorithms for computing an exact Tverberg point of T-depth n/(d+1) implement the con-
struction implied by the original proof. The runtime of such an algorithm is dO(d2)nd(d+1)+1,

see the full version [17]. As previously mentioned, the exception is in two dimensions, where
the algorithm of Birch [5] runs in O(n log n) time. But even in three dimensions, we are
unaware of an algorithm faster than O(n13).

Convex combinations and Carathéodory’s theorem

The challenge in finding a Tverberg point is that we have few subroutines at our disposal with
runtimes polynomial in d. Consider the most basic task – given a set P of n points and a
query point q, decide if q lies inside CH(P ), and if so, compute the convex combination of q in
term of the points of P . This problem can be reduced to linear programming. Currently, the
fastest strongly polynomial LP algorithms run in super-polynomial time 2O(

√
d log d) + O(d2n)
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[10, 21], where d is the number of variables and n is the number of constraints. However,
any given convex combination of P representing q can be sparsified in polynomial time into
a convex combination using only d + 1 points of P . Lemma 22 describes this algorithmic
version of Carathéodory’s theorem.

Radon partitions in polynomial time

Finding points of T-depth 2 is relatively easy. Any set of d+2 points in Rd can be partitioned
into two disjoint sets whose convex hulls intersect, and a point in the intersection is a Radon
point. Radon points can be computed in O(d3) time by solving a linear system with d + 2
variables. Almost all the algorithms for finding Tverberg points mentioned above amplify
the algorithm for finding Radon points.

Our results

The known and new results are summarized in Table 1.1. In Section 2, we review preliminary
information and known results, which include the following.
1. An exact algorithm. The proof of Tverberg’s theorem is constructive and leads to

an algorithm with running time O(nd(d+1)). It seems that the algorithm has not been
described and analyzed explicitly in the literature. For the sake of completeness, we
provide this analysis in the full version [17].

2. In two dimensions. Given a set P of n points in the plane and a query point q of Tukey
depth k, Birch’s theorem [5] implies that q can be covered by min(k, ⌊n/3⌋) vertex-disjoint
triangles of P . One can compute k and this triangle cover in O(n + k log k) time, and
use them to compute a Tverberg point of depth ⌊n/3⌋ in O(n log n) time.

In Section 3, we provide improved algorithms for computing Tverberg points and partitions.

1. Projections in low dimensions. We use projections to find improved approximation
algorithms in dimensions 3 to 7, see Table 1.2. For example, in three dimensions, one can
compute a point with T-depth n/6 in O(n log n) time.

2. An improved quasi-polynomial algorithm. We modify the algorithm of Miller and
Sheehy to use a buffer of free points. Coupled with the algorithm of Mulzer and Werner
[24], this idea yields an algorithm that computes a point of T-depth ≥ (1 − δ)n/2(d + 1)2

in dO(log(d/δ))n time. This improves the approximation quality of the algorithm of [24]
by a factor of 2(d + 1), while keeping (essentially) the same running time.

3. A strongly polynomial algorithm. In Section 3.3, we present the first strongly
polynomial approximation algorithm for Tverberg points, with the following caveats:

a. the algorithm is randomized, and might fail,

b. one version returns a Tverberg partition, but not a point that lies in its intersection,

c. the other (inferior) version returns a Tverberg point and a partition realizing it, but
not the convex combination of the Tverberg point for each set in the partition.

Specifically, one can compute a partition of P into n/O(d2 log d) sets, such that the
intersection of their convex hulls is nonempty (with probability close to one), but without
finding a point in the intersection. Alternatively, one can also compute a Tverberg point,
but the number of sets in the partition decreases to n/O(d3 log d).

ESA 2021



51:4 Improved Approximation Algorithms for Tverberg Partitions

Table 1.1 The known and improved results for Tverberg partition. The notation Ow hides terms
with polylogarithmic dependency on size of the numbers, see Remark 21. The parameter δ can be
freely chosen.

Depth Running time Ref / Comment
n/(d + 1) dO(d2)nd(d+1)+1 Tverberg theorem

d = 2 : n/3 O(n log n) [5]: Theorem 8
n

2(d + 1)2 nO(log d) Miller and Sheehy [23]

n

4(d + 1)3 dO(log d)n Mulzer and Werner [24]

n

2d(d + 1)2 Ow(n4) Rolnick and Soberón [26]

(1 − δ)n
d(d + 1) (d/δ)O(d) + Ow(n4) Rolnick and Soberón [26]

New results
(1 − δ)n
2(d + 1)2 dO(log(d/δ))n Theorem 18

n

O(d2 log d)
O(dn) Lemma 19: Only partition

n

O(d3 log d) O(dn + d7 log6 d) Lemma 20: Partition + point, but no con-
vex combination

n

O(d2 log d) Ow(n5/2 + nd3) Lemma 24: Weakly polynomial

(1 − δ)n
2(d + 1)2 dO(log log(d/δ))Ow(n5/2) Theorem 25: Weakly quasi polynomial

(1 − δ)n
d(d + 1)

O(c + c′n + d2n log2 n)
c = dO(d)/δ2(d−1)

c′ = 2O(
√

d log d)
Lemma 26: Useful for low dimensions

Table 1.2 The best approximation ratios for Tverberg depth in low dimensions, with nearly
linear-time algorithms, as implied by Lemma 16. Note that the new algorithm is no longer an
improvement in dimension 8. We are unaware of any better approximation algorithms (except for
running the exact algorithm for Tverberg’s point, which requires nO(d2) time).

Dim T. Depth New depth Known Ref Comment
3 n/4 n/6 n/8
4 n/5 n/9 n/16 [24]
5 n/6 n/18 n/32

6 n/7 n/27 (1 − δ)n/42 Original paper describes a weakly
7 n/8 n/54 (1 − δ)n/56 [26] polynomial algorithm. The improved
8 n/9 n/81 (1 − δ)n/72 algorithm is described in Lemma 26.
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4. A weakly polynomial algorithm. Revisiting an idea of Rolnick and Soberón [26],
we use algorithms for solving LPs. The resulting running time is either weakly polyno-
mial (depending logarithmically on the relative sizes of the numbers in the input) or
super-polynomial, depending on the LP solver. In particular, the randomized, strongly
polynomial algorithms described above can be converted into constructive algorithms
that compute the convex combination of the Tverberg point over each set in its partition.
Having computed approximate Tverberg points of T-depth ≥ n/O(d2 log d), we can feed
them into the buffered version of Miller and Sheehy’s algorithm to compute Tverberg
points of depth ≥ (1 − δ)n/2(d + 1)2. This takes dO(log log(d/δ))Ow(n5/2) time, where Ow

hides polylogarithmic terms in the size of the numbers involved, see Remark 21.
5. Faster approximation in low dimensions. One can compute (or approximate) a

centerpoint, then repeatedly extract simplices covering it until the centerpoint is exposed.
This leads to an Od(n2) approximation algorithm [26]. Since Od hides constants that
depend badly on d, this method is most useful in low dimensions. By random sampling,
we can speed up this algorithm to Od(n log2 n) time.

2 Background, preliminaries and known results

▶ Definition 1. A Tverberg partition (or a log) of a set P ⊆ Rd, for a point q, is a set
ℓ = {P1, . . . , Pk} of vertex-disjoint subsets of P , each containing at most d + 1 points, such
that q ∈ CH(Pi), for all i. The rank of ℓ is k = |ℓ|. The maximum rank of any log of q is its
Tverberg depth (T-depth).

A set Pj in a log is a batch. For every batch Pj = {p1, . . . , pd+1} in the log, we store the
convex coefficients α1, . . . , αd+1 ≥ 0 such that

∑
i αipi = q and

∑
i αi = 1. A pair (q, ℓ) of a

point and its log is a site.

Tverberg’s theorem states that, for any set of n points in Rd, there is a point in Rd with
Tverberg depth ⌈n/(d + 1)⌉. For simplicity, we assume the input is in general position.

2.1 An exact algorithm
The constructive proof of Tverberg and Vrećica [28] implies an algorithm for computing exact
Tverberg points – see [17] for details.

▶ Lemma 2. Let P be a set of n points in Rd. In dO(d2)nd(d+1)+1 time, one can compute
a point q and a partition of P into disjoint sets P1, . . . , Pr such that q ∈

⋂
i CH(Pi), where

r = ⌈n/(d + 1)⌉.

2.2 In two dimensions
We first review Tukey depth, which is closely related to Tverberg depth in two dimensions.

▶ Definition 3. The Tukey depth of a point q in a set P ⊆ Rd, denoted by dTK(q), is the
minimum number of points contained in any closed halfspace containing q.

The following result is implicit in the proof of Theorem 5.2 in [6]. Chan solves the decision
version of the Tukey depth problem, while we need to compute it explicitly, resulting in a
more involved algorithm. For the sake of completeness, we provide the details in Appendix A.

▶ Lemma 4 (Proof in Appendix A). Given a set P of n points in the plane and a query
point q, such that P ∪ {q} is in general position, one can compute, in O(n + k log k) time,
the Tukey depth k of q in P . The algorithm also computes the halfplane realizing this depth.

ESA 2021



51:6 Improved Approximation Algorithms for Tverberg Partitions

For shallow points in the plane, the Tukey and Tverberg depths are equivalent, and we
can compute the associated Tverberg partition.

▶ Lemma 5 (Proof in Appendix B). Let P be a set of n points in the plane, let q be a query
point such that P ∪ {q} is in general position, and suppose that k = dTK(q) ≤ n/3. Then one
can compute a log for q of rank k in O(n + k log k) time.

The Tukey depth of a point can be as large as ⌊n/2⌋. Indeed, consider the vertices of a
regular n-gon (for odd n), the polygon center has depth ⌊n/2⌋.

▶ Lemma 6. Let P be a set of n points in the plane, and let q be a query point such that
P ∪{q} is in general position, and q has Tukey depth larger than n/3. Then, one can compute
a log for q of this rank in O(n log n) time.

Proof. Let N = ⌊n/3⌋. Assume q that is the origin, and sort the points of P in counter-
clockwise order, where pi is the ith point in this order, for i = 1, . . . , n. For i = 1, . . . , N ,
let △i = △pipN+ip2N+i. We claim that ∠piqpN+i ≤ π. Otherwise, there is a halfspace
containing fewer than N points induced by the line passing through pi and q. Similarly,
∠pN+iqp2N+i ≤ π and ∠p2N+iqpi ≤ π, so that q lies inside △i, as desired. ◀

▶ Theorem 7. Let P be a set of n points in the plane, let q be a query point such that
P ∪ {q} is in general position, and suppose that k = dTK(q) is the Tukey depth of q in P .
Then one can compute the Tukey depth k of q, along with a log of rank τ = min(⌊n/3⌋ , k),
in O(n + k log k) time.

Proof. Compute the Tukey depth of q in O(n+k log k) time, using the algorithm of Lemma 4.
If k ≤ n/3, then compute the log using the algorithm of Lemma 5, and otherwise using the
algorithm of Lemma 6. ◀

The above implies the following theorem of Birch, which predates Tverberg’s theorem.

▶ Theorem 8 ([5]). Let P be a set of n = 3k points in the plane. Then there exists a
partition of P into k vertex-disjoint triangles, such that their intersection is not empty. The
partition can be computed in O(n log n) time.

Proof. A centerpoint of P can be computed in O(n log n) time [7]. Such a centerpoint has
Tukey depth at least k, so the algorithm of Lemma 6 partitions P into k triangles. ◀

▶ Remark 9. (A) Note that Tverberg’s theorem in the plane is slightly stronger – it states
that any point set with 3k − 2 points has Tverberg depth k. In such a decomposition, some
of the sets may be pairs of points or singletons.

(B) In the colored version of Tverberg’s theorem in the plane, one is given 3n points
partitioned into three classes of equal size. Agarwal et al. [3] showed how to compute a
decomposition into n triangles covering a query point, where every triangle contains a vertex
of each color (if such a decomposition exists). This problem is significantly more difficult,
and their running time is a prohibitive O(n11).

2.3 Miller and Sheehy’s algorithm
Here, we review Miller and Sheehy’s [23] approximation algorithm for computing a Tverberg
point before describing our improvement.
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Radon partitions

Radon’s theorem states that a set P of d + 2 points in Rd can be partitioned into two disjoint
subsets P1, P2 such that CH(P1) ∩ CH(P2) ̸= ∅. This partition can be computed via solving
a linear system in d + 2 variables in O(d3) time. A point in this intersection (which is an
immediate byproduct of computing the partition) is a Radon point.

Let p be a point in Rd. It is a convex combination of points {p1, . . . , pm} if there are
α1, . . . , αm ∈ [0, 1] such that p =

∑m
i=1 αipi and

∑
i αi = 1.

▶ Lemma 10 ([23, 17]: Sparsifying conv. combination). Let p be a point in Rd, and let
P = {p1, . . . , pm} ⊆ Rd be a point set. Furthermore, assume that we are given p as a convex
combination of points of P . Then, one can compute a convex combination representation of
p that uses at most d + 1 points of P . This takes O(md3) time.

▶ Lemma 11 ([23, 17]). Given d + 2 sites (p1, ℓ1), . . . , (pd+2, ℓd+2) of rank r in Rd, where
the logs ℓi are disjoint, one can compute a site (p, ℓ) of rank 2r in O(rd5) time.

A recycling algorithm for computing a Tverberg point

The algorithm of Miller and Sheehy maintains a collection of sites. Initially, it converts
each input point p ∈ P into a site (p, {p}) of rank one. The algorithm then merges d + 2
sites of rank r into a site of rank 2r, using Lemma 11. Before the merge, the input logs use
r(d + 2)(d + 1) points in total. After the merge, the new log uses only 2(d + 1)r points. The
algorithm recycles the remaining (d + 2)(d + 1)r − 2(d + 1)r = d(d + 1)r points by reinserting
them into the collection as singleton sites of rank one. When no merges are available, the
algorithm outputs the maximum-rank site as the approximate Tverberg point.

Analysis

For our purposes, we need a slightly different way of analyzing the above algorithm of Miller
and Sheehy [23], so we provide the analysis in detail.

Let 2h be the rank of the output site. The number of points in all the logs is n. Since a
site of rank 2i has at most (d + 1)2i points of P in its log, and there are at most d + 1 sites
of each rank, n is at most

∑h
i=0(d + 1)22i. As such,

n ≤
h∑

i=0
(d+1)22i = (d+1)2(2h+1 −1) ⇐⇒ n

(d + 1)2 +1 ≤ 2h+1 =⇒ 2h ≥
⌈

n

2(d + 1)2

⌉
.

(2.1)

Every site in the collection is associated with a history tree that describes how it was
computed. Thus, the algorithm execution generates (conceptually) a forest of such history
trees, which is the history of the computation.

▶ Lemma 12. Let 2h be the maximum rank of a site computed by the algorithm. The total
number of sites in the history that are of rank (exactly) 2h−i is at most (d + 2)i+1 − 1.

Proof. There are at most T (0) = d + 1 nodes of rank 2h−0 in the history, and each has d + 2
children of rank 2h−1. In addition, there might be d + 1 trees in the history whose roots have
rank 2h−1. Thus, T (1) = d + 1 + (d + 2)T (0). By induction, there are at most

T (i) = d + 1 + (d + 2)T (i − 1) = (d + 2)i+1 − 1

nodes in the history of rank 2h−i. ◀

ESA 2021
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▶ Lemma 13. Let 2h be the maximum rank of a site computed by the algorithm. The total
amount of work spent (directly) by the algorithm (throughout its execution) at nodes of rank
≥ 2h−i is O(d4+in). In particular, the overall running time of the algorithm is O(d4n1+log2 d).

Proof. There are at most (d + 2)i+1 nodes of rank 2h−i in the history. The rank of such
a node is ri = O( n

2i+1(d+1)2 ), and the amount of work spent in computing the node is
O(rid

6) = O
(
d4n/2i

)
. As such, the total work in the top i ranks of the history is proportional

to Li =
∑i

j=0(d + 2)j · d4n/2j = O(d4+in).
Since h ≤ log2 n, the overall running time is O(Lh) = O(d4+log2 nn) = O(d4n1+log2 d). ◀

3 Improved Tverberg approximation algorithms

3.1 Projections in low dimensions
▶ Lemma 14. Let P be a set of n points in three dimensions. One can compute a Tverberg
point of P of depth n/6 (and the log realizing it) in O(n log n) time.

Proof. Project the points of P to two dimensions, and compute a Tverberg point p and a
partition for it of size n/3. Lifting from the plane back to the original space, the point p lifts
to a vertical line ℓ, and every triangle lifts to a triangle which intersects ℓ. Pick a point q

on this line which is the median of the intersections. Now, pair every triangle intersecting ℓ

above q with a triangle intersecting ℓ below it. This partitions P into n/6 sets, each of size 6,
such that the convex hull of each sets contains q. Within each set, compute at most 4 points
whose convex hull contains q. These points yield the desired log for q of rank n/6. ◀

▶ Remark 15. Lemma 14 seems innocent enough, but to the best of our knowledge, it is the
best one can do in near-linear time in 3D. The only better approximation algorithm we are
aware of is the one suggested by Tverberg’s theorem. It yields a point of Tverberg depth
n/4, but its running time is probably at least O(n13) (see Lemma 2).

As observed by Mulzer and Werner [24], one can repeat this projection mechanism. Since
Mulzer and Werner [24] bottom their recursion at dimension 1, their algorithm computes a
point of Tverberg depth n/2d (in three dimensions, depth n/8). Applying this projection idea
but bottoming at two dimensions, as above, yields a point of Tverberg depth n/(3 · 2d−2).

▶ Lemma 16. Let P be a set of n points in four dimensions. One can compute a Tverberg
point of P of depth n/9 (and the log realizing it) in O(n log n) time.

More generally, for d even, and a set P of n points in Rd, one can compute a point of
depth n/3d/2 in dO(1)n log n time. For d odd, we get a point of depth n/(2 · 3(d−1)/2).

Proof. As mentioned above, the basic idea is due to Mulzer and Werner. Project the four-
dimensional point set onto the plane spanned by the first two coordinates (i.e. “eliminate”
the last two coordinates), and compute a n/3 centerpoint using Theorem 8. Translate the
space so that this centerpoint lies at the origin. Now, consider each triangle in the original
four-dimensional space. Each triangle intersects the two-dimensional subspace formed by
the first two coordinates. Pick an intersection point from each lifted triangle. On this set of
n/3 points, living in this two dimensional subspace, apply again the algorithm of Theorem 8
to compute a Tverberg point of depth (n/3)/3 = n/9. The resulting centerpoint p is now
contained in n/9 triangles, where every vertex is contained in an original triangle of points.
That is, p has depth n/9, where each group consists of 9 points in four dimensions. Now,
sparsify each group into 5 points whose convex hull contains p.

The second part of the claim follows from applying the above argument repeatedly. ◀
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3.2 An improved quasi-polynomial algorithm
The algorithm of Miller and Sheehy is expensive at the bottom of the recursion tree, so we
replace the bottom with a faster algorithm. We use a result of Mulzer and Werner [24]:

▶ Theorem 17 ([24]). Given a set P of n points in Rd, one can compute a site of rank
≥ n/4(d + 1)3 (together with its log) in dO(log d)n time.

Let δ ∈ (0, 1) be a small constant. We modify the algorithm of Miller and Sheehy by
keeping all the singleton sites of rank one in a buffer of free points. Initially, all points are
in the buffer. Whenever the buffer contains at least δn points, we use the algorithm of
Theorem 17 to compute a site of rank ρ ≥ δn/8(d + 1)3, where ρ is a power of two. (If the
computed rank is too large, we throw away entries from the log until the rank reaches a
power of two.) We insert this site into the collection of sites maintained by the algorithm.
As in Miller and Sheehy’s algorithm, we repeatedly merge d + 2 sites of the same rank to get
a site of double the rank. In the process, the points thrown out from the log are recycled
into the buffer. Whenever the buffer size exceeds δn, we compute a new site of rank ρ. This
process stops when no sites can be merged and the number of free points is less than δn.

▶ Theorem 18. Given a set P of n points in Rd, and a parameter δ ∈ (0, 1), one can
compute a site of rank at least (1−δ)n

2(d+1)2 (together with its log) in dO(log(d/δ))n time.

Proof. When the algorithm above stops, there are at least (1−δ)n points in its logs. Arguing
as in Eq. (2.1), the output site has rank

2h ≥ (1 − δ)n
2(d + 1)2 .

We now consider runtime. The algorithm maintains only nodes of rank ρ ≥ 2h−H , where

H =
⌈

log2
2h

ρ

⌉
≤

⌈
log2

n/2(d + 1)2

δn/8(d + 1)3

⌉
= 1 + log2

4(d + 1)
δ

= O(log(d/δ)).

The total work spent on merging nodes with these ranks is equivalent to the work in Miller
and Sheehy’s algorithm for such nodes. By Lemma 13, the total work performed is O(d4+Hn).

As for the work associated with the buffer, observe that Theorem 17 is invoked (d + 2)H+1

times (this is the number of nodes in the history of rank 2h−H). Each invocation takes
dO(log d)n time, so the total running time of the algorithm is

dO(H)n + (d + 1)H+1dO(log d)n = dO(log(d/δ))n. ◀

3.3 A strongly polynomial algorithm
▶ Lemma 19. Let P be a set of n points in Rd. For N = Θ(d2 log d), consider a random
coloring of P by k = ⌊n/N⌋ colors, and let {P1, . . . , Pk} be the resulting partition of P . With
probability ≥ 1 − k/dO(d), this partition is a Tverberg partition of P .

Proof. Let ε = 1/(d + 1). The VC dimension of halfspaces in Rd is d + 1 by Radon’s theorem.
By the ε-net theorem [18, 15], a sample from P of size

N =
⌈

8(d + 1)
ε

log(16(d + 1))
⌉

= Θ(d2 log d)

is an ε-net with probability ≥ 1 − 4
(
16(d + 1)

)−2(d+1). Then P1, . . . , Pk are all ε-nets with
the probability stated in the lemma.
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Now, consider the centerpoint q of P . We claim that q ∈ CH(Pi), for all i. Indeed,
assume otherwise, so that there is a separating hyperplane between q and some Pi. Then the
halfspace induced by this hyperplane that contains q also contains at least εn points of P ,
because q is a centerpoint of P . But this contradicts that Pi is an ε-net for halfspaces. ◀

▶ Lemma 20. Let P be a set of n points in Rd. For N = O(d3 log d), consider a random
coloring of P by k = ⌊n/N⌋ = Ω( n

d3 log d ) colors, and let {P1, . . . , Pk} be the resulting partition
of P . One can compute, in O(d7 log6 d) time, a Tverberg point that lies in

⋂
i CH(Pi). This

algorithm succeeds with probability ≥ 1 − k/dO(d).

Proof. Compute a 1/(2d2)-centerpoint q for P using the algorithm of Har-Peled and Jones
[16], and repeat the argument of Lemma 19 with ε = 1/(2d2). With the desired probability,
q ∈ CH(Pi) for all i. ◀

3.4 A weakly polynomial algorithm
Let TLP(n, m) be the time to solve an LP with n variables and m constraints. Using interior
point methods, one can solve such LPs in weakly polynomial time. The fastest known method
runs in Ow(mn + n3) [29] or Ow(mn3/2) [20], where Ow hides polylogarithmic terms that
depends on n, m, and the width of the input numbers.

▶ Remark 21. The error of the LP solver, see [29], for a prescribed parameter ε, is the
distance of the computed solution from an optimal one. Specifically, let R be the maximum
absolute value of any number in the given instance. In O((nm + n3) logO(1) n log(n/ε)) time,
the LP solver can find an assignment to the variables which is E close to complying with
the LP constraints, where E ≤ εnmR [29]. That is, the LP solver can get arbitrarily close
to a true solution. This is sufficient to compute an exact solution in polynomial time if the
input is made out of integer numbers with polynomially bounded values, as the running time
then depends on the number of bits used to encode the input. We use Ow(·) to denote such
weakly polynomial running time.

▶ Lemma 22 (Carathéodory via LP). Given a set P of n points in Rd and query point q, one
can decide if q ∈ CH(P ), and if so, output a convex combination of d + 1 points of P that is
equal to q. The running time of this algorithm is O(TLP(n, n + d) + nd3) = Ow(nd + nd3).

Alternatively, one can compute such a point in 2O(
√

d log d) + O(d2n) time.

Proof. We write the natural LP for representing q as a point in the interior of CH(P ). This
LP has n variables (one for each point), and n + 2d + 2 constraints (all variables are positive,
the points sum to q, and the coefficients sum to 1), where an equality constraint counts as
two constraints. If the LP computes a solution, then we can sparsify it using Lemma 10.

The alternative algorithm writes an LP to find a hyperplane separating q from P . First,
it tries to find a hyperplane which is vertically below P and above q. This LP has d variables,
and it can be solved in O(2

√
d log d + d2n) time [27, 10, 21]. If there is no such separating

hyperplane, then the algorithm provides d points whose convex hull lies below q and tries
again. This time, it computes a separating hyperplane below q and above P . Again, if no
such separating hyperplane exists, then the algorithm returns d points whose convex hull
lies above q. The union of the computed point sets above and below q contains at most 2d

points. Now, write the natural LP with 2d variables as above, and solve it using linear-time
LP solvers in low dimensions. This gives the desired representation. ◀
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▶ Remark 23. Rolnick and Soberón [26] achieved a result similar to that of Lemma 22, but
they used binary search to find the d + 1 coefficients in the minimal representation. Thus
their running time is O(TLP(n, n + d)d log n).

Using Lemma 19, we get the following.

▶ Lemma 24. Let P be a set of n points in Rd. For N = O(d2 log d), one can compute a site
q of rank k = n/O(d2 log d) in Ow(n5/2 + nd3) time. The algorithm succeeds with probability
≥ 1 − k/dO(d).

Proof. We compute a Tverberg partition using Lemma 19. Next we write an LP for computing
an intersection point q that lies in the interior of the k = n/O(d2 log d) sets. This LP has
O(n + d) constraints and n variables, and it can be solved in Ow(n5/2) time [20]. We then
sparsify the representations over each of the k sets. This requires O(d2 log d · d3) time per
set and hence O(nd3) time overall. The result is a site q with a log of rank k, as desired. ◀

▶ Theorem 25. Given a set P of n points in Rd, and a parameter δ ∈ (0, 1), one can
compute a site of rank at least (1−δ)n

2(d+1)2 (together with its log) in dO(log log(d/δ))Ow(n5/2) time.

Proof. We modify the algorithm of Theorem 18 to use Lemma 24 to compute a Tverberg
point on the points in the buffer. Since the gap between the top rank of the recursion tree
and rank computed by Lemma 24 is O(log(d/δ)), it follows that the algorithm uses only the
top O(log log(d/δ)) levels of the recursion tree, and the result follows. ◀

3.5 Faster approximation in low dimensions
▶ Lemma 26. Let P be a set of n points in Rd, and let δ ∈ (0, 1) be some parameter.
One can compute a Tverberg point of depth ≥ (1 − δ)n/d(d + 1), together with its log, in
O(dO(d)/δ2(d−1) + 2O(

√
d log d)n + d2n log2 n) time. The algorithm succeeds with probability

close to one.

Proof. Let ε = 1/2(d + 1), and let R be a random sample from P of size

m = O(dε−1δ−2 log ε−1) = O(d2δ−2 log d).

This sample is a (ε, δ)-relative approximation for P with probability close to one [14].
Compute a centerpoint c for the sample using “brute force” in O(md−1) time [7]. Now,
repeatedly use the algorithmic version of Carathéodory’s theorem (Lemma 22) to extract a
simplex that contains c. One can repeat this process ⌊n/d(d + 1)⌋ times before getting stuck,
since every simplex contains at most d points in any halfspace passing through c. Naively,
the running time of this algorithm is 2O(

√
d log d)n2.

However, one can do better. The number of simplices extracted by the above algorithm
is L = ⌊n/d(d + 1)⌋. For i = 1, . . . L, let bi = ⌊n/(d + 1)⌋ − d(i − 1) be a lower bound on
the Tukey depth of c at the beginning of the ith iteration of the above extraction algorithm.
At this moment, the point set has ni = n − (d + 1)(i − 1) ≥ n/2 points. Hence the relative
Tukey depth of c is εL−i = bL−i/nL−i. In particular, an εi-net Ri for halfspaces has size
ri = O( d

εi
log 1

εi
). If ri is larger than the number of remaining points, then the sample consists

of the remaining points of P . The convex hull of such a sample contains c with probability
close to one, so one can apply Lemma 22 to Ri to get a simplex that contains P (if the
sample fails, then the algorithm resamples). The algorithm adds the simplex to the output
log, removes its vertices from P , and repeats.
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Since the algorithm invokes Lemma 22 O(n/d2) times, the running time is bounded by
2O(

√
d log d)n/d2 + O(d2 ∑

i ri). Since nL−i ≥ n/2 and bL−i ≥ i · d, we have that εL−i ≥
(id/(n/2) = 2id/n. Therefore,

∑
i

ri = O(n) +
L−1∑
i=1

rL−i = O(n) +
L−1∑
i=1

O

(
dn

2id
log n

id

)
= O(n log2 n). ◀
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A Tukey depth in two dimensions

Restatement of Lemma 4. Given a set P of n points in the plane and a query point q, such
that P ∪ {q} is in general position, one can compute, in O(n + k log k) time, the Tukey depth
k of q in P . The algorithm also computes the halfplane realizing this depth.

Proof. In the dual, q⋆ is a line, and the task is to find a point on this line which minimizes
the number of lines of P ⋆ (i.e., set of lines dual to the points of P ) strictly below it. More
precisely, one has to also solve the upward version, and return the minimum of the two
solutions. Handling the downward version first, every point p ∈ P has a dual line p⋆. The
portion of q⋆ that lies above p⋆ is a closed ray on q⋆. As such, we have a set of rays on
the line (which can be interpreted as the x-axis), and the task is to find a point on the
line contained in the minimum number of rays. (This is known as linear programming with
violations in one dimension.)

Let R Z⇒ (resp. L⇐\) be the set of points that corresponds to heads of rays pointing to the
right (resp. to the left) by P ⋆ on q⋆. Let Ri be the set of

⌊
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rightmost points of RZ⇒, for

i = 0, . . . , h = ⌊log2 n⌋. Using median selection, each set Ri can be computed from Ri−1 in
|Ri−1| time. As such, all these sets can be computed in

∑
i O(n/2i) = O(n) time. The sets

L0, L1, . . . , Lh are computed in a similar fashion. For all i, we also compute the rightmost
point ri−1 of Ri−1 \ Ri (which is the rightmost point in R \ Ri). Similarly, li is the leftmost
point of Li−1 \ Li, for i = 1, . . . , h. Let r0 (resp. l0) be the rightmost (resp. leftmost) point
of R0 (resp. L0).
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Now, compute the maximum j such that rj is to the left of lj . Observe that (R \ Rj) ∪
(L \ Lj) form a set of rays that their intersection is non-empty (i.e., feasible). Similarly, the
set of rays (R \ Rj+1) ∪ (L \ Lj+1) is not feasible, and any set of feasible rays must be created
by removing at least |Rj+1| = |Lj+1| =

⌊
n/2j+1⌋

rays from R Z⇒ ∪ L⇐\. Hence, in linear time,
we have computed a 4-approximation to the minimum number of rays that must be removed
for feasibility. In particular, if S is a set of rays such that (RZ⇒ ∪ L⇐\) \ S is feasible, then
(Rj−1 ∪ Lj−1) \ S is also feasible. Namely, if the minimum size of such a removeable set S is
k, then we have computed a set of O(k) rays, such that it suffices to solve the problem on
this smaller set.

In the second stage, we solve the problem on Rj−1 ∪ Lj−1. We first sort the points, and
then for each point in this set, we compute how many rays must be removed before it lies in
the intersection of the remaining rays. Given a location p on the line, we need to remove all
the rays of Rj−1 (resp. Lj−1) whose heads lie to the right (resp. left) of p. This can be done
in O(k log k) time by sweeping from left to right and keeping track of the rays that need to
be removed.

As such, we can solve the LP with violations on the line in O(n + k log k) time, where k

is the minimum number of violated constraints. A 4-approximation to k can be computed in
O(n) time.

Now we return to the Tukey depth problem. First we compute a 4-approximation, denoted
by k̃↓, for the minimum number of lines crossed by a vertical ray shot down from a point on
q⋆. Similarly, we compute k̃↑. If 4k̃↓ < k̃↑, then we compute k↓ exactly and return the point
on q⋆ that realizes it. (In the primal, this corresponds to a closed halfspace containing q

along with exactly k↓ points of P .) Similarly, if k̃↓ > 4k̃↑, then we compute k↑ exactly, and
return it as the desired solution. In the remaining case, we compute both quantities and
return the minimum of the two. ◀

B Tverberg partitions in two dimensions

Restatement of Lemma 5. Let P be a set of n points in the plane, let q be a query point
such that P ∪ {q} is in general position, and suppose that k = dTK(q) ≤ n/3. Then one can
compute a log for q of rank k in O(n + k log k) time.

Proof. Using the algorithm of Lemma 4, compute the Tukey depth of q and the closed
halfplane h+ realizing it, where q lies on the line h bounding h+. This takes O(n + k log k)
time. By translation and rotation, we can assume that q is the origin and h is the x-axis.
Let P + = P ∩ h+ be the k points realizing the Tukey depth of q, and let P − = P \ P + be
the set of points below the x-axis, so that |P −| = n − k ≥ 2k.

Consider the counterclockwise order of the points of P − starting from the negative side
of the x-axis. Let T be the set containing the first and last k points in this order, computed
in O(n) time by performing median selection twice. Let T = {t1, . . . , t2k} be the points of T

sorted in counterclockwise order. Similarly, let P + = {p1, . . . , pk} be the points of P + sorted
in counterclockwise order starting from the positive side of the x-axis, see Figure B.1.

Let △i = △pititk+i, for i = 1, . . . , k. We claim that q ∈ △i for all i. To this end, let ℓi

be the line passing through the origin and pi, and let ℓ+
i denote the halfspace it induces to

the left of the vector −→qpi. Then ℓ+
i must contain ti, as otherwise,

∣∣P ∩ ℓ+
i

∣∣ < k, contradicting
the Tukey depth of q. Namely, the segment piti intersects the negative side of the x-axis. A
symmetric argument, applied to the complement halfplane, implies that the segment tk+ipi

intersects the positive side of the x-axis. Then the origin q is contained in △i, as claimed.
Computing these triangles, we have found a log for q of rank k in O(n + k log k) time. ◀
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Figure B.1 Illustration of the proof of Lemma 5.
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