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—— Abstract

We present two methods for defining corecursive functions that go beyond what is accepted by the

builtin corecursion mechanisms of the Coq proof assistant. This gain in expressiveness is obtained
by using a combination of axioms from Coq’s standard library that, to our best knowledge, do
not introduce inconsistencies but enable reasoning in standard mathematics. Both methods view
corecursive functions as limits of sequences of approximations, and both are based on a property of
productiveness that, intuitively, requires that for each input, an arbitrarily close approximation of
the corresponding output is eventually obtained. The first method uses Coq’s builtin corecursive
mechanisms in a non-standard way, while the second method uses none of the mechanisms but
redefines them. Both methods are implemented in Coq and are illustrated with examples.
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1 Introduction

Coq [1] is a proof assistant based on the Calculus of Inductive Constructions. Coinductive
constructions (coinductive types, relations, and proofs, and corecursive functions) have
been included in Coq’s underlying theory [11]. However, these constructions are limited.
Corecursive functions must conform to a syntactical guardedness criterion requiring that, up
to standard reductions, calls to the function under definition occur directly under constructors
of the coinductive representing the codomain of the function of interest. Such functions are
total and by consequence are accepted by Coq.

The guardedness criterion is best illustrated by an example. Consider the set of streams S
over a set A, which, intuitively, are infinite sequences of elements of A separated by the
constructor __ - _. The head (resp. the tail) of a stream s is the first element of s (resp. the
stream obtained from s by removing its first element). Consider also a predicate p on A, and
the following function filter, which takes a stream s € S as input and aims at producing
as output a stream that contains the elements of s that satisfy p. Since its output is an
(infinite) stream the function does not terminate.

filter s := if p(head s) then (head s) - (filter (tail s)) else filter (tail s)

The first self-call to filter in the function’s body falls directly under a call to the constructor
_ - _ . It is therefore syntactically guarded by the constructor. In the second self-call, the
constructor is not present; the second call is not syntactically guarded. Overall, the above
function definition fails to satisfy the syntactical “guarded-by-constructors” criterion because
of the second self-call.
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To see why the syntactical guardedness criterion is important, consider a stream in s € S
such that none of its elements satisfy p. Then, filter s is not a stream — none of the elements
in the input are kept in the output. The unguarded call is responsible for this. Hence, filter
is not a total function from S to S, and Coq’s guardedness criteria rightfully reject it because
Coq only accepts total functions.

However, by restricting its domain to the set S’ of streams s’ such that infinitely many
elements of s' satisfy p, the filter function becomes a total function from S’ to S. Intuitively,
the guarded call, which copies an element in the input into the output, is called infinitely
many times and thus produces an (infinite) stream. Such a function could, in principle, be
accepted by Coq; however, Coq does not have automatic mechanisms to realize this. Its
builtin syntactical criteria are automatic, sound (i.e. all functions that fulfill them are total),
but restricted since they reject some total functions.

Let us take a closer look at the argument for the totality of filter restricted to S’. Consider
an arbitrary stream s’ € S’. At the beginning, i.e., before filter s’ starts computing, obviously,
nothing is known about the value of output. This continues to be the case while the function
processes successive elements of s’ that do not satisfy p, because such elements are not
kept in the output. However, eventually, an element of s’, say, a, which does satisfy p, is
encountered. It is kept in the output, which becomes a- ( filter (tail ...)), i.e., a stream about
which something is known: its first element. Thus, one starts with a situation for which
nothing is known about the output, and, eventually, the first element of the output becomes
known. By repeating these observations one can see that, eventually, any finite prefix of
the output becomes known. By viewing a finite prefix of a stream as an approximation of
the stream in question, and by interpreting a longer prefix as a closer approximation of a
stream than a shorter prefix, we can rephrase the argument for the totality of our function as:
for each input, an arbitrarily close approximation of the corresponding output is eventually
produced. This condition is called productiveness, and it is the condition that our function
(and, in general, corecursive functions) needs to fulfill in order to be total. We note that in
the literature about corecursive functions this condition (under various formulations) is well
known, to the point that it has become folklore; but, to our best knowledge, it has not yet
been formalized.

What is, then, the relation between guardedness and productiveness? To see this, consider
the function filter’ s := if p(head s) then (head s) - (filter' (tail s)) else dummy - filter’ (tail s),
in which the second self-call is now also guarded by the constructor _ - by having elements
of the input that do not satisfy the predicate replaced by some dummy value in the output.
The effect of this guarded definition is that for each input, the next call produces a closer
approximation of the output. Since “next” is a particular case of “eventually”, the overall
effect of guardedness is to ensure productiveness and therefore totality, in a syntactical (thus,
automatically checkable) and conservative way.

Contributions

In this paper we propose a formal definition of productiveness that captures the corresponding
intuitive notion, and two methods for defining corecursive functions in which productiveness
is a key ingredient. Essentially, productiveness restricts the manner in which a sequence of
approximating functions converges to the function under definition, and the two methods
offer two different ways for building the sequence of approximating functions. Both methods
enable the definition of corecursive functions beyond what Coq accepts by default. Both
methods have been implemented in Coq and are illustrated by examples. Their additional
expressiveness is obtained thanks to axioms from Coq’s standard library, which, to our best
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knowledge, do not introduce inconsistencies. The difference between the methods lies in
the amount of Coq builtin coinductive features they reuse: the first method reuses them
extensively, while the second method uses none but redefines them.The Coq development is
available at https://project.inria.fr/ecoop2022/.

The rest of the paper is organized as follows. A theoretical part (Sections 2-4) presents
a formal notion of productiveness and our two corecursive function-definition methods
in a language-agnostic manner. We emphasize that knowing Coq is not necessary for
understanding the theory. Section 5 gives details of the Coq implementation that are not
visible in the theory but are essential in the implementation, such as the combination of

axioms imported from the standard library that enable reasoning in standard mathematics.

Section 6 concludes and discusses related and future work.

2 A formal notion of productiveness

We start with some basic definitions used in the rest of the paper. Consider a set C' and a
partial order < on C. We denote by < the relation defined by ¢ < ' iff t < and ¢ # t'.

» Definition 1. A sequence (s;)ien of elements of C is
increasing whenever for all i € N, s; = s;41;
strictly increasing, whenever for all i € N, s; < s;41;
stabilizing to ¢ € C' whenever there exist m € N such that for all i > m, s; = ¢, and
stabilizing whenever it is stabilizing to some ¢ € C;
ascending whenever it is increasing and non-stabilizing.

» Remark. A sequence is ascending iff it is increasing and has a strictly increasing subsequence.

The following is one of the several existing definitions of a complete partial order (CPO) :

» Definition 2. A CPO consists of a set C, a partial order =< on C, and an element 1 € C
satisfying Vt € T, L <t, such that that any increasing sequence of elements of T has a least
upper bound.

We call the least upper bound of an increasing sequence (s, )nen the limit of the sequence,
hereafter denoted by lim[(s,)nen].

» Example 3. Any set A can be organized as a CPO (AU {L 4}, <4, La) by choosing some
value 1 4 ¢ A and by defining <4 as the smallest relation on AU {L 4} satisfying 1 4 <4 a
for all a € A and o/ <4 o for all @’ € AU{Ls}. The properties of orders (reflexivity,
anti-symmetry, transitivity) hold trivially. Any increasing sequence (a,)nen stabilizes to
some a € AU{L 4}, and the limit of the sequence is the value to which the sequence stabilizes.
This CPO is called the flat CPO of A.

In the rest of the paper the maximal elements of a CPO with respect to its order shall play
an important role: that of “well-defined corecursive values”. This view is consistently held
ahead in the paper.

The following definition is our formal notion of productiveness. It restricts the manner in
which a sequence of functions “converges” to a given function.

» Definition 4. Given a sequence of functions (fn)nen having the same domain D and
codomain C, such that the codomain is organized as a CPO (C, =<, L), we say that the sequence
(fn)nen productively converges whenever for all x € D, the sequence (fy, x)nen 48 increasing
and its limit lim[(fn ©)nen] is mazimal w.r.t. the order <. The limit of the sequence (frn)nen
is by definition the function f: D — C such that for all x € D, fx = lim[(f, 2)nen]. We
call (fn)nen the sequence of approximating functions for the limit function f.

12:3
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» Remark. The image of the domain D by functions f constructed as in Definition 4 is
included in the set of maximal elements of C, which, as said earlier, play the role of well-
defined corecursive values. This justifies us calling “corecursive” the limits of productively
converging sequences (f)nen-

» Remark. We now justify why Definition 4 captures the informal definition of productiveness.
For each = € D, the increasing sequence (f, z)nen is either stabilizing or non-stabilizing.
The values © € D for which (f, z),en stabilizes are inputs on which f terminates. The
values « € D for which (f, 2)nen does not stabilize are such that the increasing sequence
(fn @)nen is ascending: it has a strictly increasing subsequence (f,,, x);en such that for all
i €N, fo,x < fn,., 2, ie, fn,x and f,,, = both are approximations of the sequence’s
limit fx, but f,,,, = is a strictly closer approximation of fx than f,, . Thus, (f, )nen
produces, as n grows, arbitrarily close approximations of the output f z. This captures the
intuition of productiveness: the ability to eventually produce, for each input, arbitrarily close
(and, in case of termination, exact) approximations of the corresponding output.

The next two sections present two methods for obtaining CPOs and corecursive functions as
limits of sequences of approximating functions. The first method reuses as much as possible
Coq’s builtin mechanisms for corecursion. The second one replaces these mechanisms by
other constructions.

3 First method

In this approach the carrier set of the CPO being defined is the set of terms of a type
coinductively defined by Coq and the limits of increasing sequences in the CPO are Coq
builtin corecursive functions. The approximating sequences for the corecursive functions
under definition use a functional for the function in question. We illustrate the approach by
defining the filter function on streams.

3.1 CPOs as coinductive types

» Example 5. The set S of streams (a.k.a infinite lists) over a base set AU {L4} can
be organized as a CPO as follows. First, the flat CPO (AU {La},<4,L4) is built as in
Example 3. Then, the set S is defined to be the set of terms of a certain coinductive type,
which, conceptually, are built by applying the following rule a countably infinite number
of times : a-s € S whenever a € (AU{L4}) and s € S. This simultaneously defines the
constructor function - : (AU{L4}) xS — S.

Then, we define the constant stream | € S as the stream satisfying the equation
1 =_14-1. This is an example of a corecursive definition, which is accepted by Coq, since
the occurrence of L in the right-hand side is guarded by (a direct call to) the constructor

__+__. On the set S we define the functions head and tail by head(a-s) = a and tail(a-s) = s.

We also define the nth element of a stream by induction: nth0s = head s and nth(n+1)s =
nthn (tail s). Regarding the order relation < it is the relation on S defined “pointwise”, by
s1 X sg iff for all n € N, nthn sy <4 nthn ss.

Then, we define the limit lim[(sy)nen] of an increasing sequence of streams (s, )nen
by lim[(sn)nen] = (lima[(head $p)nen]) - (lim[(tail $,)nen]). That is, the head of the limit
of a sequence of streams is the limit (in A U {L4}) of the heads of the streams in the
sequence, and the tail of the limit is the limit (in S) of the tails of the streams in the
sequence. This is another example of a corecursive function, and one that can be defined
in Coq using the tool’s builtin constructions for corecursion, because in the right-hand side
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of lim[(sn)nen] = (lima[(head $p)nen]) - (lim[(tail s,)nen]) the call to lim is guarded by the
constructor _ - _ . In order to prove that the defined limit is indeed the least upper bound
one can, e.g., reduce that property to a “pointwise” one, i.e., first proving that for all m € N
, nthm (lim[(sp)nen)] = (limal(nthm $,)nen]) and then using the fact that lim4 computes
least upper bounds in the flat CPO of A. Finally, we note that the limits of ascending
sequences of streams over AU {L 4} are streams over A (i.e., they do not contain any 1 4),
and are maximal with respect to <.

» Remark. As illustrated by the above example, the maximal elements in CPOs play the
role of “well defined” corecursive values, since they do not contain 1 subterms, themselves
interpreted as “undefined”. The ascending sequences “push away” 1 subterms, to the effect
that, in their limit, all such subterms have been eliminated. Since L is interpreted as
“undefined”, terms containing L are “partially defined”, and “pushing 1 away” amounts to
producing “better defined” values.

» Remark. The ability to define a CPO using Coq’s builtin mechanisms relies on the ability of
those mechanisms to accept the definitions of limits as corecursive functions. This works for
many interesting coinductive datatypes (streams, colists, possibly infinite binary trees, ...)
but not in general. For coinductive datatypes that are mutually dependent with inductive
datatypes, the limits may require corecursive functions that contain self-calls guarded not
by constructors of the coinductive datatype, but by recursive functions on the inductive
datatype. Such “improperly guarded” functions are rejected by Coq. A second method
presented ahead in the paper deals with such difficult cases.

» Remark. The construction in Example 5 is not the only way to organize streams over a set
A into a CPO. Another possibility is to define the set of streams S as the set obtained by
applying the rules 1 € Sand a-s € Sif a € A and s € S for a finite or a countably infinite
number of times. In this definition L is a constructor (unlike L in Example 5 where it was

a defined function). The order relation and the notion of limit are also slightly different.

We chose the construction in Example 5 because it has fewer technical complications: for
example, the head function is total in Example 5, but partial in the alternative construction,
which makes it more complicated to define.

3.2 Approximating sequences using functionals

This method assumes a functional F : (D — C') — D — C for the function of interest. The
functional may be obtained, e.g., from an attempt to define the function f : D — C of
interest directly in Coq, via a statement of the form f := F f. It is, of course, assumed that
the attempt failed — i.e., it failed the guardedness criteria — otherwise one would just define
f directly in Coq.

» Example 6. Consider the set S of streams over AU {1 4} as in Example 5 and assume
a predicate p: AU{La} — {true, false} such that p L 4 = false. Let D be the subset of S
consisting of streams s over A, such that p (nthn s) = true for infinitely many n € N. The
following pseudocode statement is an attempt to define the filter function over D, which
computes the substream of values satisfying p:

filter s := if p(head s) then (head s) - (filter (tail s)) else filter (tail s)

Equivalently, the function could be defined by filter := F' filter where F is the pseudocode for
the functional below, which takes a function as input and produces an (anonymous) function
as output:

F f := Xs. if p(head s) then (head s) - (f (tail s)) else f (tail s)

12:5
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These definitions, when translated to Coq syntax, are rejected by the tool, because they
fail the guardedness criterion: the call to filter in the “else” case is not guarded by the
constructor -

We show below an alternative way in which a functional F' can be used for uniquely defining
the function, say, f, of interest, while ensuring that the fixpoint equation f = F f holds.
Assume a CPO (C, =, L). We extend the order < from C to functions D — C by f; <X fo iff
fix X foxforall x € D.

» Definition 7. A functional F : (D — C) — D — C is increasing if for all f1, fo : D — C,
J1 = fo implies F'fy 2 F fa.

» Example 8. The functional F' from the previous example is increasing. Indeed, consider
two functions fi1,fo : D — S, with D, S as in the example in question (in particular,
S is organized as a CPO as in Example 5) and assume f; < fo. We have to show that
Ffis X Ffysforall s € D. If p(heads) = true then F f; s = (heads) - f1 (tail s) and
F fys = (head s) - f2 (tails); and F fis < F fos because f; =< fy implies in particular
f1 (tail s) = fa (tail s), and then (head s) - fi (tail s) = (head s) - fa (tail s) holds thanks to
the definition of <. If p (head s) = false then F f1s = fi (tails), F fas = fo (tail s), and
F fis X F fasisjust fi (tail s) = f2 (tail s), established above.

Assume again a CPO (C, <, 1) and a functional F': (D — C) - D — C. Let 1L.: D — C be
the constant function such that 1L x = 1, for all z € D, and let F": (D - C) - D — C
be the functional inductively defined by FOf = f and, for all n € N, F*T1f = F(F"f).

» Definition 9. A functional F : (D — C) — D — C is productive whenever it is increasing
and the sequence of functions (F™ 1l ),en productively converges (cf. Definition 4).

Calling productive a functional satisfying the above definition is justified by the fact that it
generates a sequence of functions that productively converges. Its limit is characterized by
the following theorem.

» Theorem 10. If a functional F' is productive then lim[(F™ 1L),en] s the unique fixpoint
of F.

Proof. Let the type of the functional be (D — C) — D — C. By Definition 4, for all x € D,
the sequence (F™ 1L z),¢n is increasing and its limit is maximal w.r.t. <. Hence, for all
x € D, lim[(F™ 1L z),en] exists, and let f: D — C be defined by fz = lim[(F" 1L )nen]
for all x € D.

We first show that f is a fixpoint of F, i.e., f = Ff, which amounts to proving that
forall x € D, fo = F fx. We fix an arbitrary x € D. By definition of f, fz is maximal,
hence, in order to prove fx = F f z it is enough to prove fx =< F fx. Moreover f z is the
least upper bound of (F™ 1L x),en, hence, in order to show that fa < F fx it is enough
to prove that F fx is an upper bound of the sequence (F™ 1L z),en. This is proved by
case analysis: Forn =0, FO Il =1 < F fz, and, for n > 0, we have that for all y € D,
F"=1 1l y =< fy because fy is an upper bound for the sequence (F* I y)xen, which, since
F is increasing, implies that for all y € D, F(F"~! 1)y =F" 1l y <X F fy. Setting y := x
in the previous relation proves that F' f z is an upper bound of the sequence (F™ 1L z),en
also in the case n > 0, and the proof of the fact that f is a fixpoint of F' is completed.

Next, we show that f is the only fixpoint of F. Assume a solution f’ of the fixpoint
equation; we show f = f’. Note that it is enough to show f <X f’, ie., fz = f' x for all
x € D, because from the latter by the maximality of fz we obtain fz = f'x for all z € D,
i.e., the desired f = f.
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Moreover, in order to prove that fx < f’x for all x € D, it is enough to prove that f’ x is
an upper bound for the sequence (F™ 1L x),cn, because by definition f x is the least upper
bound of the sequence. Hence, what we have to prove is that for all n € N, (for all z € D,
F" 10 z < f'x), which is done by induction on n. The base case n = 0 is trivial, as it
amounts to showing that for all z € D, 1. < f’z. In the inductive step, we have the inductive
hypothesis that for all z € D, F™ 1l x < f’z. By using the fact that F is increasing we
obtain that for all z € D , F**! 1l o = F(F" 1)z < F f'x = f'x, which proves the
inductive step. That was what remained to prove; the proof of the theorem is complete. <«

The productiveness condition is more convenient to establish via the following sufficient
conditions.

» Definition 11. A CPO (C, =, 1) is a CPO+ if each ascending sequence has a mazximal
limit.

» Example 12. Per the observation at the end of Example 5, the CPO of streams is a CPO+.

» Lemma 13. Assume a CPO+ (C, =, L) having the set of mazimal elements K C C, and
a functional F': (D — C) — D — C. Then, F is productive whenever it is increasing and,
forallx € D:

either there exists n € N such that F" 1l x € K;

or, for allm € N, there exists m € N with n < m such that F™ 1L x < F™ 1l .

Proof. By Definitions 4 and 9, we have to show that for all z € D, the sequence (F"™ 1L z),en
has a limit in K. We first prove that the sequence is increasing, i.e., for all n € N, by induction
on n. In the base case n = 0, we have, foreachz € D, F' Il x =1l z =1 < F! 1l =z,
which settles this case. For the inductive step, we assume that for each x € D, F™ L
L z < F**! 11 x and prove that, again for each x € D, F**! 1l z < F"*2 1l z. We
have F"*1 1l 2 = F(F™ 1) and since F is increasing, using the induction hypothesis
F(F" 1)z < F(F"! 1)z = F"*2 1 x holds for each € D, which proves the induction
step and the fact that the sequence is increasing.
Hence, the sequence (F™ 1L x),en has a limit; we just have to show the limit is in K.
if there exists n € N such that F™ 1l x € K, then, since the sequence is increasing and
by definition of maximality, for all m > n, F™ 1. = F™ 1l x € K; and the limit is
F™ 1l z € K as required.
if, for all n € N, there exists m € N with n < m such that F™ 1l x < F™ 1l x: we
first note that each F™ 1 2 must be in C'\ K (otherwise the hypothesis for this case is
contradicted). Hence, the sequence has a strictly increasing subsequence, or, equivalently,
the sequence is ascending. Since we have assumed that (C, <, 1) is a CPO+ the limit of
the sequence of interest is, again, in K. |

» Example 14. We prove using Lemma 13 that the functional F': (D — S) — D — S for the
filter function from Example 6 is productive. We have already established that it is increasing
and that the CPO (S, =, 1) is a CPO+4. We prove the condition at the second item the
statement of Lemma 13, i.e., for all x € D and n € N, there exists m € N with n < m such
that F™ 1l x < F™ 1l z, which amounts to finding a strictly increasing sequence of natural
numbers (n;);en such that F™ 1l a < F™+t 1l g for all ¢ € N. This is where we use the
fact that D is the set of streams x for which, given a predicate p : (AU{La}) — {true, false}
on the base type of S with p L 4 = false, it holds that p (nthn x) = true for infinitely many
n € N. We first prove by induction on n that F™ Il = ffilter n where ffilter = An.\x.(if n =
0 then L else (if p(head z) then (head x)-(ffilter (n—1) (tail x)) else ffilter (n—1) (tail x))) is a
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recursive, “finite approximation” of the corecursive filter function that we are trying to define.
Then, we notice that if p(head x) = true then ffilter (n + 1)z = (head x) - (ffilter n (tail ),
and if p(head x) = false then ffilter (n + 1) x = ffilter n (tail z). That is, for the positions
in the sequence x where p holds, the output of ffilter “grows”, and for the positions where
p does not hold, the output of ffilter stays the same. Finally, for all i € N, let n; be i-th
position where p holds in z; this gives us the strictly increasing sequence (n;);en such that
Fvo 1L x = ffilter n; x < ffilter njy; ¢ = F™+1 1 x for all i € N. Hence, using Lemma 13
we have established that the functional F' = X f.As. if p(head s) then (head s) - (f (tail s))
else f (tail s) is productive. Using Theorem 10 we obtain that F' has a unique fixpoint; we
call filter the fixpoint in question. The fixpoint equation states that filter s = if p(head s)
then (head s) - (filter (tail s)) else filter (tail s) for all x € D. We note that D being the set of
streams having infinitely many positions satisfying the filtering predicate is essential: outside
this domain the functional F' is not productive and one cannot use Theorem 10 as above to
define the filter function.

Summarizing, what we have obtained in the present section is a method by which
corecursive functions can be defined in Coq — details about the Coq implementation are
given in Section 5 — even when the functions are not directly accepted by Coq because they
do not satisfy Coq’s builtin criteria for corecursive definitions. A function defined using our
approach is abstract (it involves limits of ascending sequences in a certain CPO), but is the
unique one satisfying the equation induced by its functional. We use the term “validation”
for the process by which one can gain confidence that a given definition is the adequate one;
one can reasonably claim that uniquely satisfying its fixpoint equation is the best validation
possible for a corecursive function.

Finally, we note that from the user’s point of view, by using our approach one gets
the same result that one would have gotten if Coq had directly accepted the corecursive
definition. Our definitions are not executable because they use axioms — i.e., the term
filter s is not automatically reduced to the term if p(head s) then (head s) - (filter (tail s))
else filter (tail s) by Coq — but, in order to avoid nontermination, such reductions are not
performed in Cog-builtin corecursive definitions either: one still has to prove a fixpoint
equation and manually perform, e.g., rewriting with it in order to reduce it.

4 Second method

When the technique presented for in the previous section fails, we need to replace Coq’s
builtin mechanisms for coinduction, which no longer fulfill their role, by other constructions.

4.1 CPOs built by completion

The main idea is to start from the “finite subset” of the intended CPO and from an order
relation on the given subset, and to “complete” them with values that are the equivalence
classes of ascending sequences, according to a certain equivalence relation. We illustrate the
notions introduced in this section by giving an alternative construction of a CPO of streams,
different from the construction based on Coq’s builtin mechanisms seen in the previous
section. We also show an example where the present construction of a CPO is essential
because Coq’s builtin mechanisms for coinduction fail.

» Definition 15. Given a set C° and an order <° on it, a measure on (C°,=°) is a function
w: C° — N such that for all x,y € C°, x <°y implies px < py.
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That is, that the measure is compatible with the relation <°. It is then easy to prove that a
measure is also compatible with <°: z <° y implies pz < py.

» Example 16. Consider the set L of finite lists over a base set A, inductively defined by
the rules nil € L and a -1 € L whenever a € A and [ € L. Define an order on L by [y <L,
iff [; is a prefix of l5. Then, the function length mapping each list to its length is a measure
on (L, =%).

» Remark. For ascending sequences (s, )nen, the sequence (4 8, )nen is a sequence of natural
numbers that tends to infinity. This is the main reason why we chose natural numbers as
measure values.

» Definition 17. Two sequences (Sp)nen and (s}, )nen of elements of C° are in the ~ relation
whenever for all N € N there exist n € N and x € C° such that x <° s,, v <X° s}, and
px>N.

A common predecessor of two elements is, in our approach, an “under-approximation” of the
two elements. Thus, two sequences are in the ~ relation whenever there there is a sequence
of pointwise “under-approximations” of two sequences, whose measures tend to infinity. In
some sense, the pointwise “difference” between the sequences intuitively tends to “nothing”!.
In order to show that ~ restricted to ascending sequences is an equivalence, the following

property of an order is required:

» Definition 18. An order C on a set A is weakly total whenever for all a € A, the restriction
of C to the set {a' € Ala' T a} is total.

» Example 19. The prefix order <% on lists over a set A is weakly total: when I, and I are
both prefixes of a given list [ then, if lengthl, < lengthls, I1 =% Iy holds, otherwise, Io < I
holds. If A contains two elements a; # az, the order is not total, as [a1;as] and [ag; a;] are
incomparable.

» Lemma 20. Assuming a set C° and a weakly total order <° on C°, the restriction of the
relation ~ from Definition 17 to ascending sequences of elements of C° is an equivalence
relation.

Proof. For reflexivity, we use the fact that the sequence (i s, )nen of measures of an ascending
sequence (sp)nen tends to infinity, hence, for each N there is n € N such that ps, > N,
and we take x := s, in Definition 17 to show (s,)nen ~ (Sn)nen. For symmetry, it is
enough to note that Definition 17 is a symmetrical statement in (s, )nen, (8),)nen . For
transitivity assume (sp,)nen ~ (8),)nen and (s))nen ~ (80 )nen. Fix an arbitrary N € N. By
Definition 17, there exist m,m’ € N and y,y" € C° such that y <° s,,, y <° s, ¥/ =<° s/,
y =<°s”, and py, py > N. Since the sequences are increasing, we have y,y" <°

SI
m’s (mazmm’)

and since =<° is weakly total, y <° 3 or ¢/ <° y. Assume y <° y'. Then, for the arbitrarily
chosen N, we set n := (mazmm') and z := y in Definition 17 and, since the sequences are

increasing, we obtain (s, )nen ~ (81 )nen- The other case (y' <° y) is similar. <

The next lemma gives a useful sufficient condition for the equivalence of ascending sequences.

L This intuition can be formalized using a notion of distance, thus turning C° into a metric space. We
have tried but discarded that approach because is complicates matters (one now has an order, a distance,
and a measure, which have to satisfy certain properties) without any other benefit that perhaps a better
intuition for the notion of equivalence.
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» Lemma 21. Given two ascending sequences (Sp)nen and (s,)nen, if for all k € N there
exists m € N such that sy, < s, then (sp)nen ~ (), )nen-

Proof. Fix an arbitrary N € N. Since (s, )nen is ascending, there exists k € N such that
sk > N. From the hypothesis we obtain m € N such that s, <° s/,,. Let n := (mazkm)
and x := sy. Since the sequences are increasing, x =< s,, ¢ <° s, and from ps; > N we
obtain px > N. Hence, for all N € N there are n € N, x € C° such that z <° s,,, © <° s/,

px > N. By Def. 17, (sp)nen ~ (8),)nen- <

» Remark. The reverse implication in Lemma 21 does not hold in general: there exists
sequences (8, )neny and (8], )nen such that for all n,m € N, s,, and s}, are incomparable, yet
(8n)nen ~ (8),)nen because the sequences have in common another sequence that pointwise
under-approximates them and whose measure tends to infinity, i.e., they obey Definition 17.
The latter is the proper definition of equivalence: if instead we had taken for all k € N there
exists m € N such that s, < s, as in Lemma 21 we would be distinguishing certain sequences
— namely, those that have a common sequence of under-approximations whose sizes tend to
infinity, yet are pointwise incomparable — that should not be distinguished, because pointwise
the difference between them becomes “negligible”.

» Definition 22. Assuming a set C° and a weakly total order relation <° on C°, the
completion of the set and its order to a set C' and an order = on C are defined as follows:
C = C° UK, where K is the set of equivalence classes modulo ~ of ascending sequences
of elements in C°:
=< is the smallest relation on C satisfying
forallz,ye C°, z <y ifx X°y;
forallz,ye K, x Ly ifx =y;
forallz € C° andy € K, x <y if for all (sp)nen € y, there exists m € N such that
T =<° S
This definition deserves a few comments. First, K is defined as equivalence classes of
ascending sequences because, on the one hand, the sequences have to be increasing because
they need to have limits — as we shall see, the set K will be a set of limits — and, on the
other hand, they are non-stabilizing because if one sequence were stabilizing to a value, e.g.,
v € C° then the limit (also v) of the sequence being also in K would imply a nonempty
intersection of C° and K, which we wish to avoid. Second, the relation < is an order relation
(this is established by Lemma 23 below). It is a conservative extension of <°, and elements
in K are in the order iff they are equal. Combined with the fact that there is no situation in
which z <y for x € K and y € C°, we obtain that the elements in K are maximal w.r.t. <.
Like in the case of the CPO of streams in an earlier example, the maximal elements play
the role of “well-defined corecursive values”. Finally, the third case defining the relation <
requires an explanation. An element = (in C°) is in the order with an equivalence class y
of ascending sequences (in K) whenever each sequence in the class “overtakes” x at some
position m € N according to the base relation <°. Combined with the fact that (s,)nen is
increasing, this implies that the sequence overtakes x for all positions n > m. Several results
hereafter (Lemma 24, Theorem 26, Theorem 32) critically depend on the proposed definition
of the < relation.

» Lemma 23. Assume a measure p on (C°,=°) like in Definition 15, with <° a weakly
total order. Then, with C' and =< being the completions of C° and =° respectively, given in
Definition 22, the relation =< on C is an order.
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Proof. Reflexivity is trivial since < amounts to <° on C° and to equality on K, both of
which are reflexive. For anti-symmetry, we note that it reduces to the anti-symmetry of <°,
because the nontrivial remaining case has the form “x <y and y < x for x € C° and y € K
implies = y”, which holds because its premise y < x is impossible. Let us now consider
transitivity, thus, * < y and y < z. There are only four possibilities when those relations can
hold:

1. x,y,z € C°, in which case the transitivity of < reduces to that of <°;

2. z,y € C° and z € K, which implies x <° y and, given the definition of y < z for = an
element and z a equivalence class of ascending sequences, from the fact that any sequence
in z overtakes y at some position, we obtain thanks to x =<° y that the sequence also
overtakes x at the same position, which implies z < z and settles this case;

3. € C°and y,z € K: then, y < z implies y = z, and transitivity follows easily;

4. x,y,z € K, in which case the transitivity of < follows from that of equality. <

The following lemma gives a useful alternative definition for the order < in a particular case.

» Lemma 24. For all x € C° and ascending sequences (sp)nen of elements of C°, x =
[(8n)nen]~ iff there exists m € N such that © < sy,.

Proof. By Definition 22, x < [(sn)nen]~ means: for all (s),)nen € [(Sn)nen]~, there exists
m € N such that x <° s/,. The “only if” direction is trivial since obviously (s,)nen €

[($n)nen]~. We thus focus on the “if” direction. By hypothesis, there exists m € N such
that  <° s,,. Choose an arbitrary (s)nen € [(Sn)nen]~, 1-€., (8h)nen ~ (Sn)nen. By

Definition 17, there exists 2’ € C° and m’ € N such that 2’ =° sy, 2’ =° s/, and pz’ > px.

Since the sequences are increasing, we obtain z, z’ <° S(mazm,m’)- From the latter and the
weak totality of <° we obtain z <° 2’ or 2’ <° x. But 2’ <° z contradicts the established

wz' > px. Hence, z <° 2/ and then x <° s/, follows from 2’ <° s/, by transitivity.

Summarizing, for the arbitrarily chosen sequence (s),)nen € [(Sn)nen]~ we found m’ € N
such that x <° s/ ,f. But this is # < [(sn)nen]~ by definition; which proves the lemma. <

» Definition 25. Given a set C° and weakly total order <° on C°, consider the completion
of C° to C and of =° to < as in Definition 22. For an increasing sequence (Sp)nen Of
elements of C, we define lim[(sy)nen] as follows:
if the sequence stabilizes at a value, say, v € C, then lim[(sp)nen] = v;
otherwise, the sequence does not stabilize, which implies that for alln € N, s, € C°, and
we define lim[(sn)nen] = [(Sn)nen]~, i.e., the equivalence class of the sequence w.r.t. the
relation ~.
Note that in the second case of the above definition it is essential that the ascending sequence

($n)nen be composed of elements of C° because ~ is only an equivalence for such sequences.

» Theorem 26. Assume a measure on (C°,=<°) like in Definition 15, with <° a weakly
total order. Then, with C and =< being the completions of C° and =<° respectively, given in
Definition 22, and with the limits of increasing sequences introduced in Definition 25, the
triple (C,=,1) is a CPO.

Proof. In order to prove the theorem we have to prove that the limits of increasing sequences
proposed in Definition 25 are least upper bounds. Consider an increasing sequence (sy)nen
of elements of C.
if the sequence stabilizes to some value v € C then the proposed limit v is an upper bound
for the (increasing) sequence. To show that it is the least such bound, assume another
upper bound w; then, in particular, v < w because v is an element of the sequence.
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if the sequence does not stabilize then it is ascending, and as already observed before,

sp € C° for all n € N, and the proposed limit is the equivalence class [(sy,)nen]~-
We first show that [(s,)nen]~ is an upper bound for (sp)nen: Sk =< [(Sn)nen]~ for all
k € N. We apply Lemma 24 with z := s;: there exists m := k such s; <X s,,, which
implies s =< [($n)nen]~-
Then, we show that [(sy,)nen]~ is the least upper bound for (s, )nen. Assume any upper
bound w € C, thus, s < w for all £k € N. Suppose first that w € C°. Since (sp)nen is
ascending, it has a strictly increasing subsequence (s, );en. Now, w is also an upper
bound for the subsequence, hence, s,, < w for all ¢ € N, and due to the properties of
the measure, ps,, < pw for all ¢ € N. But this is impossible, since the sequence of
measures of a strictly increasing sequence is a strictly increasing sequence of natural
numbers, which tends to infinity. Hence, w € C° is impossible. It follows that w € K,
i.e., w = [(8},)nen]~ for some ascending sequence (s/,)nen. From our hypothesis s, < w
for all k € N, we obtain that for all k& € N there exists m € N such that s; <° s/,. Using
Lemma 21, ($p)nen ~ (S))nen, 1., [(8n)neN]~ = [($),)nen]~ = w and in particular
[($n)nen]~ = w. Since the upper bound w was chosen arbitrarily, we have proved
that [(s,)nen]~ is the least upper bound for (s;,)nen. The proof of the theorem is
complete. |

» Example 27. Going back to the example of finite lists, their prefix order, and the measure
defined by lengths of lists, the constructions in this section enable us to build a CPO of lists
and streams. The streams are not defined by Coq corecursive functions (as in the earlier
construction in Section 3) but by equivalence classes of ascending sequences of lists. One
important difference in practice is that, unlike the approach in Section 3, the constructor

__-__is not directly available for streams, and the functions head and tail do not have simple

definitions. All three functions can be defined, and the standard relations between them
can be proved, with some effort; but having them readily available as in the approach from
Section 3 is preferable. We now give an example where that approach fails.

» Example 28. The set T of Rose trees over a set A is coinductively definable in Coq by
the rules L € T and treeal € T whenever a € A and [ is a list over T'. Note the mixture of
coinduction and induction: the trees are defined coinductively, but their definition relies on
inductively defined lists.

When t = treeal we define labelt = a and forestt = l; when t = 1 we define
labelt = L4 (the least element in the flat CPO of A) and let forestt be the singleton
[L4]. Assuming an order <7 on T, the limit of an increasing sequence (t,)nen of Rose
trees would naturally be defined as lim[(ty)nen] = L if t, = L for all n € N and
lim[(tn)nen] = tree (lima[(label t,,)nen]) (map lim (forest t,,)nen) otherwise. This corecursive
definition of limits is not guarded by constructors, since the corecursive call to lim occurs
under the map function, which is not a constructor but a defined function. Hence, the
definition of limits of increasing sequences of Rose trees is rejected by Coq, and without
limits there is no CPO.

» Example 29. One can define and organize the set T = F U R, with F' the set of finite
trees and R that of Rose trees, in a CPO using the approach described in this section.
We first define the finite trees F' over A inductively, by the rules 1. € F and treeal € F
whenever a € A and [ is a list over F. The measure function is the tree’s height, recursively
defined by height L = 0 and height (treeal) = 1 + max (map heightl) where max computes
the maximum value in a list of natural numbers. The order relation is based on the
following recursive function, whose effect is to “cut” a given finite tree t at given depth n:
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cut = An.At.if n = 0 or t = L then L else tree (labelt) (map (cut (n — 1)) (forestt)); we then
define the order relation <% by t; <¥ t, whenever t; = cut(height t1) t. The set R of Rose
trees consists of equivalence classes of ascending sequences of finite trees. We have proved
in Coq that all the requirements presented earlier in this section for obtaining a CPO for
T = F U R hold.

By contrast, a perhaps more natural definition of the “prefix order” <'F by t; <'F t,
whenever t1 = 1L orty = treealy, to = treeals, lengthly = lengthls and for alln < lengthly,
nthnly =<' nthnly fails to meet the critical weak totality requirement (Definition 18). Indeed,
e.g., for t' . t" # L, t = treea[t',t"], t; = treea[t’, L] and ty = treea [ L,t"] satisfy t; <'¥' ¢
and to =<'F ¢, yet t; and ¢, are incomparable. Without weak totality there is no sequence
equivalence and ultimately no CPO?.

4.2 Approximating sequences without functionals

In Section 3.2 the approximating sequence ( f,)nen for defining a function was defined using a
functional, which used functions over streams (such as the constructor _ - ) that were readily
available in Coq, due to the fact that the CPO for streams had been defined as a builtin
Coq coinductive type. However, in the case of CPOs built by completion, such constructors
are no longer available. One can try to replace them by defined functions, but this may
turn out to be excessively difficult. For instance, in the CPO of Example 29, extending the
constructor tree from finite trees F' to a fully defined function tree : A — listT — T, with
T = F'UR, is difficult: each of the trees in its second argument of type list’T may be a finite
tree in F' or a Rose tree in R — an equivalence class of ascending sequences of elements in
F. Even when all elements in the list are equivalence classes, it is not clear how the result —
again, an equivalence class of ascending sequence of elements in F' — can be built.

Hence, we have to make do without constructors or defined functions replacing them. This
severely limits the functionals that one may write, making the functional-based definition of
corecursive functions from Section 3.2 essentially useless. Example 31 below illustrates this
issue. In this section we present an approach that does not require a functional, but does
require a “finite version” f° of the corecursive function f under definition, which moreover
has to satisfy a productiveness requirement.

» Definition 30. Assume two CPOs (D,=p, Lp) and (C <¢, Lc) defined as in Theorem 26,
thus, their base sets are decomposed as C = C° U K¢ and D = D° U Kp. Then, a function
f°: D° — C° is productive whenever, for all increasing sequences (x,)nen of elements in
D? that have a limit in Kp, the sequence (f°xy)nen of elements in C° is also increasing
and has a limit in K¢.

» Remark. Definition 30 of a productive function implies the function is also increasing. It
also implies that the function maps ascending sequences to ascending sequences. Calling
such a function productive is justified by the fact that it generates a sequence of functions
that productively converges according to Definition 4. This sequence is built as follows: for
all z € Kp, choose an arbitrary ascending sequence (,)nen € x; and set (f, z) = (f°x,) for
all n € N. Then, (f,)nen productively converges according to Definition 4: for all z € Kp,
(fn ©)nen is increasing and its limit is in K.

2 Qur earlier attempt with metric spaces also required a weakly total order for obtaining a proper notion
of distance.
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» Example 31. In the CPO of finite and Rose trees from Example 29, the sets C° and D°
from the above definition are both the set F' of finite trees. Consider the following recursive
endofunction of F: mirror® =M\t.if t =L then L else tree (label t)(map mirror® (rev (forestt))),
where rev is the function that computes the reverse of a list. As its name indicates, the
function computes the “mirror image” of finite trees. We have defined this function in Coq
and have proved that it is productive according to Definition 30, using the fact that the
mirror® function preserves the height of its argument.

Note how the functional for mirror®: A¢t.ift = L then L else tree (labelt)(map ¢ (rev (forestt)))
uses the constructor tree. Writing the corresponding functional for a full mirror function
for both finite and Rose trees would require a corresponding defined function tree : A —
listT — T. As stated above, such a function is hard to define. Hence our alternative solution
avoiding these issues.

The following theorem states that productive functions map equivalent ascending sequences
in their domain to equivalent ascending sequences in their codomain.

» Theorem 32. In the context of Definition 30, let ~p denote the equivalence relation on
ascending sequences in the CPO (D, =p, Lp) (cf. Definition 17, Lemma 20). Let ~¢c denote
the corresponding equivalence in (C' <¢, L¢). Then, for any pair of equivalent ascending
sequences (Sp)nen ~p (8,)nen and any productive function f° : D° — C°, we have the

equivalence (f°sp)nen ~c (f°8))nen-

Proof. By Definition 22 and Theorem 26 the equivalence class [($y)nen]~p is the least upper
bound of (s, )nen and the equivalence class [(s),)nen]~p 18 the least upper bound of (s!,)nen.
Since the two sequences are equivalent, we have the equality [(sn)nen]~p = [(8))nen]~p. In
particular, it follows that [(s),)nen]~, is an upper bound for (s,)nen , thus for all n € N,
$n =D [(s))nen]~p, and by Lemma 24, (i): for all n € N, there exists m € N such that
Sn <% sh,. Since f° is productive, it is also increasing, and thus from (i) we obtain (ii):
for all n € N | there exists m € N such that f°s, =g f°s,,. Using Lemma 21 we obtain
(f°8m)men ~c (f°8),)men, which proves the lemma. <

The above result enables us to define functions f : Kp — C' as limits of approximating
sequences (f, : Kp — C)pen. The definition of each of the functions f,, below depends on an
arbitrary choice for a representative in its argument (which is an equivalence class), however,
thanks to the above theorem, the limit (i.e. the defined function f) does not depend on that
choice. The functions are built as in the Remark following Definition 30: for all z € Kp,
choose an arbitrary ascending sequence (zy,)nen € x; and set (f, z) = (f°x,) for all n € N.
We have observed that (f,)nen productively converges according to Definition 4; its limit is
[(f°zn)en]~e € K¢, which, by above theorem, is independent of the choice for (z,)nen € .
Hence, the limit f := Ax.lim[(f, )nen] is also independent on the initial choice.

Of course, the natural question that arises regards validation: do the functions thus
defined match the intention of the user? Unlike the case of functional-based corecursive
functions in an earlier section, we do not have a functional and a fixpoint equation as
validation mechanisms. A certain degree of confidence in the definition of f is already
obtained from the (assumed) confidence in f° — as we have f([(zn)nen]~p) = [(f°%n)nen]~e
— and from the independence of choice of representative from Theorem 32. The confidence
can be improved by proving properties of f that the user expects.

» Example 33. By applying the above process to the mirror® function from Example 31,
and noting that in this case Kp = K¢ = R (the set of Rose trees), we obtain a well-defined
function mirror : R — R. To increase confidence in this function we prove that the mirror
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function “reverses” positions in Rose trees. A position p is a finite sequence of natural
numbers, and in a given tree ¢ it indicates the label (in the set AU L 4, if we consider trees
over A) obtained by navigating in the tree, starting from the root and choosing children
indexed by the successive numbers in p. Let pospt be the label in question (or L 4, since the
position may “overflow”). A function pos_ rev is also defined, which like pos takes a position
p and a tree t and navigates the tree from root to children, but unlike pos, the children are
chosen “backwards” (counting back starting from the last child) instead of forwards. We have
then proved that for all positions p and trees ¢ (finite or Rose), posp (mirrort) = pos_revpt,
meaning that, intuitively, mirror “reverses” all positions in the tree. The proofs were
performed by first defining finite versions pos® and pos_ rev® for the new functions involved,
then proving pos®p (mirror® f) = pos_rev°p f for finite trees f, and finally proving that the
corresponding property on Rose trees reduces to that on finite trees whose height is large
enough (here, larger the length of the list p). The Coq proofs are available in the companion
Coq development.

5 Implementation

The corecursive function-definition methods presented in Sections 2-4 have been implemented
in the Coq proof assistant. The implementation has two motivations. The first one is ensuring
that the results are sound, i.e., no case has been forgotten in a proof, and no assumption
was left implicit. This is a standard motivation for using a proof assistant. The second
motivation aims at providing Coq itself with stronger mechanisms for corecursive definitions
than the builtin ones available in the tool. This is achieved at the cost of assuming several
axioms from Coq’s standard library; we state which axioms were used, where, and for what
purpose. To our best knowledge the combination of axioms we imported from the standard
library does not introduce inconsistencies (cf. [8, Chapter 12]).

Understanding the rest of this section requires knowledge about Coq’s inductive and
coinductive types, recursive and corecursive definitions, and its module system.

5.1 Sequences

Some notions are used by both methods. The main concept is that of sequences over a given
type, encoded as functions from the natural numbers to the type in question. The fact that
an element belongs to a sequence (parameterized by a given type) is also defined using an
existential quantifier.

Definition Seq {A:Typel}:Type := nat -> A
Definition sin{A:Type}(a:A)(q: Seq(A:=A)):Prop := exists i, a = q 1i.

Then, given a relation R (i.e., a binary predicate, of type A->A->Prop), the various kinds
of sequences from Definition 1 (increasing, strictly increasing, stabilizing, ascending) are
defined. Next, the fact that a value lub_val is the least upper bound (w.r.t. a relation R) of
a sequence q is defined as

Definition lub{A:Type} (R:A-> A-> Prop) (lub_val: A) (q:Seq(A:=4)) :=

(forall a, sin a q -> R a lub_val) /\
(forall lub_val’,(forall a,sin a g-> R a lub_val’)-> R lub_val lub_val’).

The definition of 1lub is only relevant for order relations R, and will only be used for such
relations. For the first method these definitions are enough. The second method requires the
property noted in the Remark following Definition 1: if R is an order, then a sequence is
ascending if and only if it is increasing and has a strictly increasing sequence. This one-line
property required quite a few intermediary lemmas in order to be formally proved, using
classical logic and the following axiom:
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Axiom constructive_indefinite_description: forall (A:Type) (P:A->Prop),
(exists x, P x) -> {x:A | P x}.

This axiom, from Coq’s standard library, enables one to “choose” an element P satisfying
a predicate P just based on the knowledge that P is satisfiable. In informal mathematical
reasoning this is often implicitly assumed. In a Coq formal development, however, it has to
be explicitly assumed. Here we use it in order to turn a total relation into a function having
the relation in question as its graph:

Lemma functional_choice: forall (A B:Type) (R:A->B->Prop),
(forall x:A,exists y:B, R x y)->(exists f:A->B,forall x:A, R x (f x)).

The constructive_indefinite_description axiom occurs several times in the Coq de-
velopment.

» Remark. We have not formalized Definition 4 of productive convergence of sequences of
functions. That definition is useful in the paper for a unified presentation of the two methods
and for giving the intuitive notion of productiveness a mathematical meaning. In Coq these
motivations do not apply.

5.2 First method

This method reuses Coq’s builtin coinduction mechanisms for organizing coinductive types
as CPOs.

5.2.1 Stream CPO

The Coq definition for the stream CPO closely follows the approach outlined in Example 5.
First, the flat CPO over a given type A (cf. Example 3) is encoded using Coq’s option type.
A relation leo on this type is also defined, which we prove to be an order relation, having
None as the bottom element:
Inductive option(A:Type): Type := None: option A | Some: A -> option A.
Inductive leo{A:Typel} : option A -> option A -> Prop :=

|leo_none: forall a, leo None a
|leo_some: forall a, leo (Some a) (Some a)

In Example 3, None was denoted by L 4 and leo was denoted by the infix symbol _ <4 _ .
Then, a lemma states that for each increasing sequence in the leo order, there exists a least
upper bound:

Lemma leo_lub{A:Type}
forall (q:Seq (A:=option A)),increasing leo q-> exists b,lub leo b q.

The least upper bound of a sequence is obtained using constructive_indefinite_description:

Definition 1imF{A:Typel}(q:Seq(A:=option A))(H:increasing leo q):=
constructive_indefinite_description _ (leo_lub q H).

Next, a stream over a type T is obtained by applying the constructor scons to an element in
T and another stream over T. The stream bot, which is an infinite repetition of None, is also
defined.

CoInductive Stream{T:Type} := scons : T -> Stream -> Stream.
CoFixpoint bot{T:Type}: Stream(T:=T) := scons None bot.
In Example 5 the constructor scons is denoted by an infix operation _ - and bot is denoted

by L. The head (hd) and tail (t1) of a stream are also defined, in the expected manner.
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Next comes the order relation on streams. In Example 5 the order _ < _ was defined
pointwise. We here give an alternative, coinductive definition, and prove that the two
definitions are equivalent.

CoInductive les{T:Type} :Stream(T:=T)-> Stream (T:=T)-> Prop :=
les_def:forall a b s s’, leo a b-> les s s’-> les(scons a s)(scons b s’).

Next, the limit of an increasing sequence of streams over the flat CPO of a given set is
defined by:

CoFixpoint lim{A:Typel}(q:Seq(A:=Stream(T:=option A))) (H:increasing les q)
.= scons

(projl_sig(limF(fun n => hd(q n)) (increasing_smap_hd q H)))
(lim(fun n => tl(q n))(increasing_smap_tl q H)).

The function is parameterized by base type A of the underlying flat CPO. The type of the
argument q is a sequence of streams over the flat order of A. The function takes a second
argument: a proof that the sequence is increasing w.r.t. the order les of streams. The
function returns a stream, built with scons, whose head is the limit (1imF, in the flat CPO)
of a stream that consists in mapping the head of streams to the sequence g, and whose tail
is the (corecursively called) limit of the sequence of streams obtained by mapping the tail of
streams to the sequence q. There are also some proof terms being used for ensuring that the
various sequences whose limits are being invoked are increasing. Finally, we prove that the
proposed limit is the actual least upper bound of an increasing sequence:

Lemma lim_lub{A:Typel}(q:Seq(A:=Stream(T:=option A)))(H:increasing les q):
lub les (lim q H) gq.

We also formalize the main artifact in the first method for corecursive function definition —
Theorem 10, which says that a productive functional has a unique fixpoint. For productiveness
we use the more convenient sufficient conditions given by Lemma 13. These conditions are
placed in a Coq module type, which can be seen as an interface that other modules need to
implement in order to benefit from the results implied by the conditions (here, the function
definition method embodied in Theorem 10).

5.2.2 The filter function on streams

The proposed functional for the filter function for streams over a type A is written as follows:

Definition Filter(f:S->Stream(T:=option A))(s: S): Stream(T:=option A):=
if P (head s) then

scons (head s) (f (tail s))

else f (tail s).

where S:= {s:Stream(T:=option A)|forall n,exists m,n<=m A P(nth m gq)=true} is
the subtype of streams that have an infinite number of elements satisfying the filtering
predicate P: option A-> bool, and head, tail are the restrictions of the hd, resp. tl
functions on streams to the subtype S. We prove the conditions in Lemma 13, which enables
us to use the Coq formalization of Theorem 10 and to define a function filter satisfying
the two following theorems:

Theorem filter_fix: forall s, bisim (filter s)(Filter (filter s))

Theorem filter_fix_unique: forall f,(forall s,bisim (f s) (Filter f s))->
forall s,bisim (filter s)(f s).

The theorems state the existence and uniqueness of filter as the unique fixpoint of Filter...
except for the fact that instead of the expected equality we get bisimulation, coinductively
defined as follows:
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CoInductive bisim{T: Typel}:Stream(T:=T) -> Stream(T:=T) -> Prop :=
|bisim_def: forall a sl s2, bisim s1 s2 -> bisim(scons a s1)(scons a s2).

In the presentation of the first function-definition method from Section 3 we allowed ourselves,
for simplicity of notation, to use equality instead of bisimulation. When translating informal
mathematical reasoning to Coq such notation abuses and other similar approximations are
revealed. Bisimulation is the natural equality between streams; by contrast, the standard
equality of Coq is too strong. We note that, after having proved that bisimulation is a
congruence relation, by importing a certain library (Setoid) one can perform rewriting with
the fixpoint “equation” filter_fix in Coq.

Other examples

The companion Coq development also contains a definition of the stream of Fibonacci numbers,
which, like the filter function is not accepted by Coq’s builtin coinduction mechanisms. There
is also a construction for a CPO of colists, which can be seen as the union of finite lists and
streams. Accordingly, colists have a constructor nil for the empty colist, in addition to bot
and scons like in the above definition of streams. The filter function on colists, defined as
the unique fixpoint of a certain functional, turns out to be quite different from the filter
function of streams: it is total on the subtype of “well-formed” colists (those that do not
contain bot) and uses a non-executable “oracle” to determine whether its current argument
is such that none of its elements satisfy the filtering predicate. If this is the case, the function
returns nil, otherwise, it behaves like the filter function for streams.

5.3 Second method

Unlike the first method, in which each individual coinductive type has to be organized as
a CPO, the second method provides a generic construction of CPOs, if some assumptions
are met. Particular CPOs can be defined as instances of the generic notions, by providing
definitions and lemmas that instantiate the assumptions. Corecursive functions between
CPOs can then be defined.

5.3.1 Generic CPO

The generic construction of CPOs requires a set Cc (C°, in Section 4.1), a least element, and
an order relation ordc (for <°), which must be weakly total. There is also a measure mu (for
1) compatible with the strict order. These requirements are gathered in a Coq module type:

Parameter Cc: Type.

Parameter bot: Cc.

Parameter ordc: Cc-> Cc-> Prop.

Parameter bot_is_least: forall x,ordc bot x.

Parameter ordc_refl: forall x,ordc x x.

Parameter ordc_trans: forall x y z,ordc x y->ordc y z->ordc x z.
Parameter ordc_antisym: forall x y,ordc x y->ordc y x->x=y.

Parameter ordc_wtot: forall x y z,ordc x z->ordc y z->ordc x y\/ordc y x.
Parameter mu: Cc -> nat.

Parameter mu_sordc: forall x y,ordc x y-> x<>y-> mu x<mu y.

The type Cc is “extended” to a type C by adding equivalence classes of ascending sequences
of elements in Cc, and the order ordc is extended to a relation ord, which is then proved to
be an order:
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Inductive C:Type :=

|elt:forall (e:Cc),C

|cls:forall (ec:EqClass),C.

Inductive ord : C-> C-> Prop :=

lelt_elt: forall el e2,ordc el e2 -> ord (elt el)(elt e2)

|lelt_cls: forall e ec,
(forall t, in t ec-> exists n, ordc e (nth t n) )->
ord (elt e)(cls ec)

|cls_cls: forall ec,ord (cls ec)(cls ec).

More information about our encoding of equivalence classes is given at the end of this section.
The type C is obtained by “wrapping” elements in Cc into a constructor elt and equivalence
classes into a constructor cls. The relation ord has three cases, corresponding the three cases
by which =<° is extended to < in Definition 22. Then, the limit of an increasing sequence of
elements in C is defined:
Definition lim (s:Seq(T:=C))(H:increasing ord s):C :=
match (excluded_middle_informative (stabilizing s)) with
| left stab =>
let (c, _) := constructive_indefinite_description _ stab in c
|right nostab =>
(cls (class_of (exist _ (fun n => extract_elt (s n))

(conj (extract_elt_incr _ Hinc nostab)
(incr_nostab_nostab _ Hinc nostab)))))end.

Like in Definition 25, the code for 1im needs to decide whether its argument s is stabilizing or
not. This is not decidable, because a decision procedure would have to examine a whole infinite
sequence. We make it decidable by proving a theorem called excluded_middle_informative
stating that every proposition is decidable: forall P,{P}+{~P} — a consequence of classical
logic and constructive_indefinite_description. Applying that theorem to (stabilizings)
leads to two cases: if the sequence is stabilizing (with stab being a proof of stabilization) then
the value to which it stabilizes is “fetched” by constructive_indefinite_description.
If the sequence is not stabilizing (with nostab being a proof of non-stabilization) then,
intuitively the equivalence class of s should be returned — except for the fact that s is
a sequence over C and we only have equivalence classes of ascending sequences over Cc.
Various wrappers, conversion operations, and proof terms are used to produce the adequate
equivalence class. Of course, none of these details were visible in the mathematical definition
of the limit (Definition 25), but in Coq all the details are exposed. The proof of the fact that
lim actually computes the least upper bound of its argument amounts to a similar exposure
and management of many details, none of which is visible in the mathematical statements —
Theorem 26 and its proof.

On equivalence classes

There is no universally accepted way for expressing equivalence classes modulo a given
equivalence relation in Coq. One option, supported by the tool’s standard library, is to
use setoids, which are a triple consisting of a type, a binary relation on the type, and
a proof that the relation is an equivalence. This approach is mainly used to obtain a
generalized rewriting, using the setoid’s equivalence relation (which moreover needs to be
proved to be a congruence for the contexts under which rewriting is desired) instead of
equality. For example, rewriting using bisimulation of streams falls in this category. However,
in the present context, we just need equivalence classes for their own sake. Rewriting is
not an issue, and using the powerful but complicated machinery of setoids did not seem
cost-effective. We therefore opted for a more direct approach that uses axioms from the

12:19

ECOOP 2022



12:20

Defining Corecursive Functions in Coq Using Approximations

standard library: constructive_indefinite_description for obtaining a representative
of a class; functional extensionality (two functions are equal iff they are pointwise equal) and
propositional extensionality (propositional equality coincides with equivalence) for proving
that if two elements are in the equivalence relation they are in the same equivalence class. In
standard mathematics these properties are implicitly assumed, but in Coq they have to be
explicitly assumed since they are not provable otherwise.

5.3.2 The CPO of finite and Rose trees

In order to obtain this CPO the parameters of the generic CPO (the type Cc, the relation
ordc, the function mu, and the various constraints relating them) have to be instantiated
with actual definitions and lemmas. This essentially amounts to encoding the content of
Example 29 in Coq. The hardest part was establishing that the relation ordc is transitive;
several nontrivial lemmas about cutting trees at given heights had to be proved. Perhaps the
most difficult part of all the development effort was to convince ourselves that weak totality
of the order is a crucial requirement, and therefore to abandon the apparently natural “prefix
order”, also defined in Example 29, which does not have this property.

5.3.3 The mirror function

Defining a function using the second method is composed of a generic part, which assumes two
generic CPOs and a function between their “finite parts” that has to satisfy a productiveness
constraint (Definition 30). Accordingly, in Coq we write a module type where such a function
and its productiveness requirement are assumed. Any module that implements that module
type gains access to the corecursive function definition method described at the end of
Section 4.2. A recursive fmirror function between finite trees is written in such a module,
and by the generic mechanism described above, this function is transformed into a corecursive
function mirror between Rose trees.

Finally, to gain confidence in the obtained definition we define functions fpos and
fpos_rev (cf. Example 33) that compute labels at given positions in finite trees; transform
these functions into pos and pos_rev that do the corresponding operations on Rose trees;
and prove the following lemma:

Lemma mirror_pos: forall p t, pos p (mirror t) = pos_rev p t.

6 Conclusion, related work, and future work

This paper presents two methods for defining corecursive functions that go beyond the
guarded-by-constructor setting available in the Coq proof assistant. The first method
reuses the dedicated coinduction mechanisms available in Coq, which works as long as the
underlying coinductive datatypes are not mutually dependent with inductive types. The
second method is not subject to this restriction, as it does not rely on Coq’s coinduction
mechanisms but redefines them, at the cost of some additional work. Both methods have in
common the interpretation of maximal values in CPOs as well-defined corecursive values, and
they both rely on a mathematical notion of productiveness that captures the corresponding
intuitive notion of productiveness (the ability of a function to eventually generate, for each
input, an arbitrarily close approximation of the corresponding output). Both methods are
implemented in Coq and are illustrated by defining corecursive functions that Coq’s dedicated
mechanisms reject. This gain in expressiveness is obtained at the cost of using axioms from
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the standard library of Coq, which are known not to introduce inconsistencies: using them

amounts to losing constructiveness, but gaining access to standard mathematical reasoning.

Both methods were presented independently of Coq; especially the second one, which is
independent from Coq’s builtin mechanisms for corecursion, could be implemented in other
proof assistants. An interesting target is Lean [14], a dependently-typed language and proof
assistant that includes the additional feature of quotient types that would naturally encode
equivalence classes in the second method.

The methods we propose transform a problem currently without solution (defining
corecursive functions that do not satisfy the guardedness condition) into a problem that
is solvable: defining and reasoning about functions that approximate the function under
definition. In practice the approximating functions are recursive, as can be seen from the
examples in the paper (Examples 14 and 31) and from the additional ones in the companion
Coq development. Now, if for a given corecursive function the corresponding approximating

recursive functions are difficult to reason about, then applying our methods may be difficult.

However, most of the difficulty does not arise from the methods, but from the intrinsic
complexity of the corecursive function being defined.

Comparison with related work

We start with classical results and with their applications for the purpose of defining functions.

Kleene’s fixpoint theorem [19, Chapter 5] can be used to define functions as least fixpoints of
continuous functionals over CPOs. A functional is continuous if it commutes with least upper
bounds. The least fixpoint is the least upper bound of an increasing sequence of functions,
obtained by iterating the functional starting from the constant “bottom” function. This has
been formalized and used for defining recursive functions in Coq [5]. Unsurprisingly, they
use the same kinds of axioms as we do.

In our first method we use the same iteration as in Kleene’s fixpoint theorem to obtain a
fixpoint, but require productiveness instead of continuity; and we obtain a unique fixpoint,
not just a least fixpoint. The stronger fixpoint result, and the fact that productiveness is a
natural requirement for corecursive functions, suggest that our method is well-adapted for
the purpose of defining such functions.

Our second method has similarities with the classical construction of the real numbers

based on equivalence classes of Cauchy sequences of rational numbers [10, Appendix A].

However, Cauchy sequences over a base set require the base set to be organized as a metric
space, with a distance function satisfying certain properties. An approach for defining
corecursive functions based on Cauchy sequences is mentioned in [13]. They use another
classical result (Banach’s fixpoint theorem [2]) to define corecursive functions as unique
fixpoints of eventually contracting functionals. By contrast, we organize the base set as a
CPO, use ascending sequences instead of Cauchy sequences, and (in the second method) do
not use functionals, but a “finite version” of the corecursive function under definition, which
has to satisfy a certain productiveness requirement to ensure a proper definition.

We now present related work about corecursion in proof assistants and similar formalisms.
In Coq, corecursive function definitions have to satisfy a guardedness-by-constructors criterion.

This criterion ensures a strong version of productiveness, namely, that each evaluation step
produces a strictly closer approximation of the final result than the previous steps. By
contrast, productiveness only requires that eventually a strictly closer approximation is
obtained. In some cases, a function that is productive but unguarded can be transformed
into an equivalent, guarded function. This has been done for the filter function on streams
in [3] and generalized in [4] to other unguarded functions. Their idea is to use an ad-hoc
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predicate stating that the definition under study is, in some sense, productive. However,
their approach does not use a general, formal notion of productiveness, nor does it handle
the case where corecursive calls are guarded by some non-constructor function, like the
mirror function for Rose trees presented in this paper. Our approach is not subject to these
limitations. In other related work, a constructive version of the CPO of streams in Coq is
mentioned in [16] in the context of a coinductive formalization of Kahn networks. However,
the author does not use her formalization of CPO to extend the class of corecursive stream
functions admissible by Coq.

We note that coinductive proofs in Coq, which by default are subject to the same syntactical
requirements as corecursive functions, can be performed using more relaxed, semantical
requirements by using parameterized coinduction implemented in the Paco extension of
Coq [12]. We have tried to adapt parameterized coinduction to corecursive function definition,
but have given up because we found that it is not adaptable. Parameterized coinduction
works for coinductive proofs, because, there, witness terms do not matter — any term of the
right type will do. By contrast, in corecursive functions, witness terms do matter, since they
expresses what the function is supposed to compute.

Agda [20] is also a dependently-typed programming language and proof assistant that
offers support for corecursive function definition. In the core tool there is a guardedness
checker similar to that of Coq, but more liberal as it allows, e.g., the definition of two
mutually dependent functions, one of which is recursive and the other one, corecursive. This
enables it to accept the definition of the mirror function on Rose trees, which Coq does not
accept. Extensions to Agda with sized types [18] provide users with a uniform, automatic
way of handling termination and productiveness, based on type annotations written by the
user. The current implementation of sized types in Agda is unsound (cf. [20, chapter Safe
Agda] and https://github.com/agda/agda/issues/2820).

Isabelle/HOL [21] is another major proof assistant which supports corecursive function
definition. A guardedness criterion (there called primitive corecursion) similar to that of Coq
and Agda is implemented [6], based on bounded natural functors, a conservative extension of
Higher Order Logic. The framework has further been extended to accept function definitions
that go beyond primitive corecursion [7]. Isabelle/HOL now accepts function definitions
where corecursive calls can be guarded by functions other than constructors, provided the
functions are proved to be friendly (essentially, a friendly function needs to destruct at most
one constructor of input to produce one constructor of output). Unguarded corecursive calls,
such as those in the filter function on streams, are also accepted, provided they are proved to
eventually produce a constructor of output. Like in our approach, all proof obligations are
the responsibility of the user. They have the additional advantage of using no supplementary
axioms, as those of Higher Order Logic are expressive enough.

Beyond generic proof assistants, support for corecursion also exists in tools targeting
particular languages. For example, Dafny is a specification and verification language dedicated
to the C# language, which has support for corecursive function definition [15], based on a
guardedness criterion similar to those existing in the already mentioned tools. Coinductive
proofs are also supported.

Finally, beyond the area of formal verification, it is very worth mentioning the Haskell
functional language, which offers support for corecursive function definition by means of lazy
evaluation.


https://github.com/agda/agda/issues/2820
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Future work

We have encountered corecursive functions that are productive yet do not obey the guarded-
by-constructors criterion in our planned future work. The Prelude dataflow synchronous
programming language [9] has a flow sampling construction whose semantics is best described
using a filter function on colists (which we have defined in the companion Coq development as
an instance of our first method). This opens the way to a mechanized semantics of Prelude in
Coq, which would then enable program verification and semantically correct code generation
for the language. While formalizing in Coq the paper [17] about the semantics of dataflow
languages we have encountered unguarded corecursive functions on streams that can also
be defined using our first method. More speculative future work includes a comparison and
possible cross-fertilization of our approach with the sized-type approach of Agda and the
bounded-natural-functor approach of Isabelle/HOL.
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