
An Optimal Algorithm for Product Structure
in Planar Graphs
Prosenjit Bose !

School of Computer Science, Carleton University, Ottawa, Canada

Pat Morin !

School of Computer Science, Carleton University, Ottawa, Canada

Saeed Odak !

Department of Computer Science and Electrical Engineering, University of Ottawa, Canada

Abstract
The Product Structure Theorem for planar graphs (Dujmović et al. JACM, 67(4):22) states that any
planar graph is contained in the strong product of a planar 3-tree, a path, and a 3-cycle. We give a
simple linear-time algorithm for finding this decomposition as well as several related decompositions.
This improves on the previous O(n logn) time algorithm (Morin. Algorithmica, 85(5):1544–1558).

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Graph algorithms

Keywords and phrases Planar graphs, product structure

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.19

Related Version Full Version: https://arxiv.org/abs/2202.08870

Funding This research was partly funded by NSERC.

Acknowledgements This research was initiated at the BIRS 21w5235 Workshop on Graph Product
Structure Theory, held November 21–26, 2021 at the Banff International Research Station. The
authors are grateful to the workshop organizers and participants for providing a stimulating research
environment. We are especially grateful to Vida Dujmović for sharing Theorem 1.b with us.

1 Introduction

For two graphs G and X, the notation G ⊆ X denotes that G is isomorphic to some
subgraph of X. The following planar product structure theorems have recently been used as
a key tool in resolving a number of longstanding open problems on planar graphs, including
queue number [8], nonrepetitive chromatic number [11], adjacency labelling [10], universal
graphs [12], p-centered colouring [6], and vertex ranking [5].12

▶ Theorem 1 (Dujmović et al. [8], Ueckerdt et al. [18]). For any planar graph G, there exists:
(a) a planar graph H of treewidth at most 3 and a path P such that G ⊆ H ⊠ P ⊠K3 [8];
(b) a planar graph H of treewidth at most 4 and a path P such that G ⊆ H ⊠ P ⊠K2; and
(c) a planar graph H of treewidth at most 6 and a path P such that G ⊆ H ⊠ P [18].

1 For graphs G and X, an X-decomposition of G is a collection X := (Bx : x ∈ V (X)) of subsets of V (G)
called bags indexed by the vertices of X and such that (i) for each v ∈ V (G), X[{x ∈ V (X) : v ∈ Bx}]
is connected; and (ii) for each vw ∈ E(G), there exists some x ∈ V (X) such that {v, w} ⊆ Bx. The
width of X is max{|Bx| : x ∈ V (X)} − 1. In the special case where X is a tree, X is called a tree
decomposition of G. The treewidth tw(G) of G is the minimum width of any tree decomposition of G.

2 For two graphs G1 and G2, the strong graph product of G1 and G2, denoted G1 ⊠ G2, is a graph
whose vertex set is V (G1 ⊠G2) := V (G1) × V (G2) and that contains an edge between distinct vertices
v = (v1, v2) and w = (w1, w2) if and only if (i) v1 = w1 and v2w2 ∈ E(G2); (ii) v2 = w2 and
v1w1 ∈ E(G1); or (iii) v1w1 ∈ E(G1) and v2w2 ∈ E(G2).

© Prosenjit Bose, Pat Morin, and Saeed Odak;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jit@scs.carleton.ca
https://orcid.org/0000-0002-8906-0573
mailto:morin@scs.carleton.ca
https://orcid.org/0000-0003-0471-4118
mailto:saeed.odak@gmail.com
https://doi.org/10.4230/LIPIcs.SWAT.2022.19
https://arxiv.org/abs/2202.08870
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 An Optimal Algorithm for Product Structure

In each of the applications of Theorem 1, the proofs are constructive and lead to algorithms
whose running-time is dominated by the time required to compute the relevant decomposition.
The proofs of each part of Theorem 1 are constructive and lead to O(n2) time algorithms
as observed already by Dujmović et al. [8]. Morin [16] later showed that there exists an
O(n logn) time algorithm to find the decomposition in Theorem 1.a. In the current note, we
show that there exists a linear time algorithm for finding each of the three decompositions
guaranteed by Theorem 1. This immediately gives an O(n)-time algorithm for each of the
following problems on any n-vertex planar graph G:

computing an O(1)-queue layout of G [8];
nonrepetitively vertex-colouring G with O(1) colours [11];
assigning (1 + o(1)) logn-bit labels to the vertices of G so that one can determine from
the labels of vertices v and w whether or not v and w are adjacent in G [10];
mapping the vertices of G into a universal graph Un that has n1+o(1) vertices and edges
so that any pair of vertices that are adjacent in G maps to a pair of vertices that are
adjacent in Un [12];
colouring the vertices of G with O(p3 log p) colours so that each connected subgraph H

of G contains a vertex whose colour is unique in H or contains vertices of at least p+ 1
different colours [6]; and
colouring the vertices of G with O(logn/ log log logn) integers so that the maximum
colour that appears on any path P of length at most ℓ appears at exactly one vertex of
P (for any fixed ℓ ≥ 2) [5].

In addition to planar graphs, product structure theorems similar to Theorem 1 exist for
k-planar graphs, h-framed graphs, bounded-genus graphs, and graphs from apex-minor-free
families [8, 9, 2]. The existence of each of these decompositions relies at some point on
Theorem 1. Thus, the algorithm presented here can also serve as an optimal subroutine in
the computation of product structure decompositions of graphs from these classes. However,
these larger graph classes also require additional machinery that (at the time of writing)
makes finding these decompositions largely impractical.3

The remainder of this paper is organized as follows: Section 2 presents some necessary
background and notation. Section 3 reviews the proof of Theorem 1.a. Section 4 presents
the linear time algorithm for finding the decomposition in Theorem 1.a. Section 5 describes
the algorithms for finding the decompositions in Theorem 1.b and Theorem 1.c.

2 Preliminaries

Throughout this paper we use standard graph theory terminology as used in the textbook
by Diestel [7]. All graphs discussed here are simple and finite. For a graph G, V (G) and
E(G) denote the vertex and edge sets of G, respectively. We use the terms vertex and node
interchangeably, though we typically refer to the vertices of some primary graph G of interest
and refer to the nodes of some auxilliary graph (such as a spanning tree) related to G. We
say that a subgraph G′ of a graph G spans a set S ⊆ V (G) if S ⊆ V (G′).

Quotient Graphs

Given a graph G and a partition P of V (G), the quotient graph G/P is the graph with vertex
set V (G/P) := P and in which two nodes X,Y ∈ V (G/P) are adjacent if G contains at least
one edge xy with x ∈ X and y ∈ Y .

3 Possible exceptions here are cases in which a bounded-genus graph, k-planar graph, or h-framed graph
is given along with its embedding.

P. Bose, P. Morin, and S. Odak 19:3

Embeddings, Planar Graphs, and (Near-)Triangulations

An embedding ψ of a graph G associates each vertex v of G with a point ψ(v) ∈ R2

and each edge vw of G with a simple open curve ψ(vw) : (0, 1) → R2 whose endpoints4

are ψ(v) and ψ(w). We do not distinguish between such a curve ψ(vw) and the point set
{ψ(vw)(t) : 0 < t < 1}. We let ψ(V (G)) := {ψ(v) : v ∈ V (G)}, ψ(E(G)) :=

⋃
vw∈E(G) ψ(vw),

and ψ(G) := ψ(V (G)) ∪ ψ(E(G)). An embedding ψ of G is plane if ψ(vw) ∩ ψ(V (G)) = ∅
and ψ(vw) ∩ ψ(xy) = ∅ for each distinct pair of edges vw, xy ∈ E(G). A graph G is planar
if it has a plane embedding. A triangulation is an edge-maximal planar graph.

If ψ is a plane embedding of a planar graph G, then we call the pair (G,ψ) an embedded
graph and we will not distinguish between a vertex v of G and the point ψ(v) or between an
edge vw of G and the curve ψ(vw). Similarly, we will not distinguish between G and the
point set ψ(G). Any cycle in an embedded graph defines a Jordan curve. For such a cycle C,
R2 \ C has two components, one bounded and the other unbounded. We will refer to the
bounded component as the interior of C and the unbounded component as the exterior of
C. If G is an embedded triangulation, then the subgraph of G consisting of all edges and
vertices of G contained in the closure of the interior of C is called a near-triangulation.

Each component of R2 \G is a face of G and we let F (G) denote the set of faces of G. If
G is 2-connected then, for any face f ∈ F (G), the set of vertices and edges of G contained in
the boundary of f forms a cycle. We may therefore treat a face f of a 2-connected graph G
as a component of R2 \G or as the cycle of G on the boundary of f , relying on context to
distinguish between the two usages. Note that every embedded graph contains exactly one
face – the outer face – that is unbounded.

Duals and Cotrees

The dual G⋆ of an embedded graph G is the graph with vertex set V (G⋆) := F (G) and
edge set E(G⋆) := {fg ∈

(
F (G)

2
)

: E(f) ∩ E(g) ̸= ∅}.5 If T is a spanning tree of G
then the cotree T of (G,T) is the graph with vertex set V (T) := V (G⋆) and edge set
E(T) := {ab ∈ E(G⋆) : E(a) ∩ E(b)\E(T) ̸= ∅}. It is well known that, if G is connected and
T is a spanning tree of G then T is a spanning tree of G⋆ [7, Chapter 4, Exercise 42].

For our purposes, a binary tree is a rooted tree of maximum degree 3 whose root has
degree at most 2 and in which each child v of a node u is either the unique left child or
the unique right child of u. If G is a triangulation and we root T at any face f0 ∈ F (G)
that contains an edge of T , then T is a binary tree, with the classification of left and right
children determined by the embedding of G.6

Paths and Distances

A path in G is a (possibly empty) sequence of distinct vertices v0, . . . , vr with the property
that vi−1vi ∈ E(G), for each i ∈ {1, . . . , r}. The endpoints of a path v0, . . . , vr are the
vertices v0 and vr. The length of a non-empty path v0, . . . , vr is the number, r, of edges in
the path.

4 The endpoints of an open curve ψ : (0, 1) → R2 are the two points limϵ↓0 ψ(ϵ) and limϵ↓0 ψ(1 − ϵ).
5 For a set S,

(
S
2

)
denotes the

(|S|
2

)
-element set

(
S
2

)
:= {{x, y} : x, y ∈ S, x ̸= y}.

6 There is a small ambiguity here when T contains two edges of f0, in which case the unique child of f0
in T can be treated as the left or right child of f0.

SWAT 2022

19:4 An Optimal Algorithm for Product Structure

Figure 1 A binary tree T with set S ⊆ V (T) depicted in red and the model of T with respect to S.

Trees, Depth, Ancestors, and Descendants

Let T be a tree rooted at a vertex v0 ∈ V (T). For any vertex w ∈ V (T), PT (w) denotes the
path in T from w to v0. For any w0 ∈ V (T), any prefix w0, . . . , wr of PT (w0) is called an
upward path in T ; w0 is the lower endpoint of this path and wr is the upper endpoint. The
T -depth of a node w ∈ V (T) is the length of the path PT (w). The second node in PT (v) (if
any) is the T -parent of v. A vertex a ∈ V (T) is a T -ancestor of w ∈ V (T) if a ∈ V (PT (w)).
If a is a T -ancestor of w then w is a T -descendant of a.

Lowest Common Ancestors

For any two vertices v, w ∈ V (T), the lowest common ancestor lcaT (v, w) of v and w is the
node a in PT (v) ∩ PT (w) having maximum T -depth. The lowest commmon ancestor problem
is a well-studied data structuring problem that asks to preprocess a given n-vertex rooted
tree so that one can quickly return lcaT (v, w) for any two nodes v, w ∈ V (T). A number
of optimal solutions to this problem exist that, after O(n) time preprocessing using O(n)
space, can answer queries in O(1) time [4, 17, 15, 1, 3, 13]. The most recent work in this area
includes simple and practical data structures that achieve this optimal performance [1, 3, 13].

Reconstructing Binary Tree Models

Let T be a binary tree and S ⊆ V (T). An upward path v0, . . . , vr in a binary tree T is
S-non-branching if vi has degree 2 and vi /∈ S for each i ∈ {1, . . . , r − 1}. For any binary
tree T and set S ⊆ V (T), the model T ′ of T with respect to S is the binary tree obtained by
replacing each maximal S-non-branching path v0, . . . , vr with the edge v0vr; if vr−1 is the
left (respectively, right) child of vr then v0 becomes the left (respectively, right) child of vr.
See Figure 1.

▶ Lemma 2. Let T be a binary tree, let S = {x1, . . . , xd} ⊆ V (T), and let T0 be the minimal
subtree of T that spans S. Then there exists an algorithm that, given an O(1)-query time
lowest common ancestor data structure for T , computes the model T ′

0 of T0 with respect to S
in O(d2) time.

Proof. The proof is by induction on |S|. The base case |S| = 1 is trivial, since then T ′
0 = T0

is the tree with one node, which is the unique element in S.
If |S| ≥ 2, then the first step is to determine the root r of T0, which must also be the root

of T ′
0. This is easily done by first setting r := x1 and then repeatedly setting r := lcaT (r, xi)

for each i ∈ {2, . . . , d}. This step takes O(d) time.

P. Bose, P. Morin, and S. Odak 19:5

Figure 2 A (G,T)-tripod decomposition of a triangulation G (and the underlying spanning
tree T).

If r has no left child in T , then we can immediately apply induction on S \ {r} and make
the right child of r in T ′

0 the root of the model obtained by induction. The case in which r

has no right child can be handled similarly. If r has both a left child r1 and a right child r2,
then the next step is to partition S \ {r} into a set S1 of descendants of r1 and a set S2 of
descendants of r2. For each x ∈ S \ {r} there are only two possibilities for lcaT (r1, x)
1. If lcaT (r1, x) = r1 then x ∈ S1.
2. If lcaT (r1, x) = r then x ∈ S2.
Therefore, using O(d) lowest common ancestor queries, we can determine the root r of T ′

and partition S \ {r} into sets S1 and S2 that define the left and right subtrees of r. We
can now recurse on S1 to obtain a tree with root r′

1 and recurse on S2 to obtain a tree with
root r′

2. We make r′
1 the left child of r and r′

2 the right child of r to obtain the model T ′
0 of

T0. The running-time of this algorithm obeys the recurrence T (d) ≤ O(d) + T (d1) + T (d2),
where d1 + d2 ≤ d and d1, d2 ≤ d− 1. This recurrence resolves to T (d) ∈ O(d2). ◀

3 Tripod Decompositions

Refer to Figure 2. Let G be an n-vertex triangulation and let T be a spanning tree of G.
For a face uvw of G, a (G,T)-tripod Y with crotch uvw is the vertex set of three disjoint
(and each possibly empty) upward paths in T (the legs of Y) whose lower endpoints are u, v,
and w. A (G,T)-tripod decomposition is a partition of V (G) into (G,T)-tripods. Dujmović
et al. [8] proved the following result:

▶ Theorem 3. Let G be a triangulation and T be a spanning tree of G. Then there exists a
(G,T)-tripod decomposition Y such that G/Y has treewidth at most 3.

It is straightforward to verify that Theorem 3 implies Theorem 1.a by first triangulating
the given graph and then taking T to be a breadth-first spanning tree of the resulting
triangulated graph [8, Observation 35].

3.1 Tripod Decompositions from Face Orderings
We now describe how a (G,T)-tripod decompositions can be obtained from a sequence of
distinct faces of G. Throughout this section (and for the remainder of the paper):

G is an embedded triangulation with outer face f0 and
T is a spanning-tree of G rooted at a vertex v0 ∈ V (f0).

SWAT 2022

19:6 An Optimal Algorithm for Product Structure

For any subgraph f of G, we define YT (f) := f ∪
⋃

v∈V (f) PT (v).7 In words, YT (f) is the
subgraph of G that includes all the vertices and edges of f and all the vertices and edges of
each path from each vertex of f to the root of T .

Let F := f0, . . . , fr be a sequence of distinct faces of G whose first element is the outer
face f0. Let G−1 denote the graph with no vertices and, for each i ∈ {0, . . . , r}, define the
graph Gi :=

⋃i
j=0 YT (fj) and let Yi := V (Gi) \ V (Gi−1). Let GF := G0, . . . , Gr and let

YF := Y0, . . . , Yr.
Informally, we require that each of the legs of each tripod Yi have a foot on a different

vertex of Gi−1 and that the tripods Y1, . . . , Yr cover all the vertices and edges of G. Formally,
we say that the sequence F is proper if, for each i ∈ {1, . . . , r}, and each distinct v, w ∈ V (fi),
V (YT (v) ∩Gi−1) ̸= V (YT (w) ∩Gi−1). The sequence F is complete for G if Gr = G. Note
that, if F is complete, then {Y0, . . . , Yr} is a tripod decomposition of G.

From the preceding definitions it follows that, if F is proper, then Gi is 2-connected for
each i ∈ {0, . . . , r}. For any i ∈ {0, . . . , r}, consider any face f of Gi, that we now treat as a
cycle in G. An easy proof by induction shows that, for any j ∈ {0, . . . , i}, the induced graph
f [Yj] is connected. We are interested in keeping the number of tripods in Y0, . . . , Yi that
contribute to V (f) as small as possible, which motivates our next definition.

The sequence F is good if the resulting sequence of graphs GF := G0, . . . , Gr and tripods
YF := Y0, . . . , Yr satisfy the following condition: For each i ∈ {0, . . . , r} and each face f
of Gi,

|{ℓ ∈ {0, . . . , i} : V (f) ∩ Yℓ ̸= ∅}| ≤ 3 .

In words, each face of each graph Gi has vertices from at most three tripods of Y0, . . . , Yi on
its boundary. Even more, the vertices of f can be partitioned into at most three paths where
the vertices of each path belong to a single tripod. Dujmović et al. [8] prove Theorem 3 by
proving the next lemma.

▶ Lemma 4. Let G be a triangulation with a vertex v0 on its outer face f0 and let T be a
spanning tree of G rooted at v0. Then there exists a sequence F := f0, . . . , fr of distinct faces
of G that is proper, good, and complete.

▶ Remark 5. Lemma 4 is stated in terms of sequences only for convenience and could be
rephrased in terms of partial orders. Indeed, consider the partial order ≺ defined as follows:
For each i ∈ {1, . . . , r} let f ′

i be the face of Gi−1 that contains fi; then fℓ ≺ fi for each
ℓ ∈ {0, . . . , i−1} such that V (f ′

i)∩Yℓ ̸= ∅. It is straightforward to check that any linearization
of this partial order will result in the same tripod decomposition YF := {Y0, . . . , Yr}.

Dujmović et al. [8] prove Lemma 4 by giving a recursive algorithm that constructs the
face sequence F . For a face f of Gi, define the set If := {ℓ ∈ {0, . . . , i} : V (f) ∩ Yℓ ̸= ∅}.
They begin with the outer face f0 of G. To find the face fi, i > 0, they consider some face
f ̸∈ {f0, . . . , fi−1} of Gi−1 and use Sperner’s Lemma to show that there is an appropriate
face fi of G (called a Sperner triangle) that is contained in f . In particular, fi is chosen
so that the three upward paths in YF (fi) lead back to each of the (at most 3) tripods in
{Yj : j ∈ If }. See Figure 3.

This proof leads to a divide-and-conquer algorithm: After finding fi, the algorithm
recursively decomposes each of the near-triangulations that are bounded by the at most
three new faces in Si := F (Gi) \ F (Gi−1) \ {fi}. The Sperner triangle fi can easily be found

7 In all of our examples, the subgraph f will always be a single edge or single face of G.

P. Bose, P. Morin, and S. Odak 19:7

f

Ya Yb

Yc

Ya Yb

Yc

Yi

Ya Yb

Yc

Yi
fi

(a) (b) (c)

Figure 3 Each face f in Gi−1 is bounded by at most three tripods Yaf , Ybf , and Ycf and the
tripod Yi is chosen so that it connects each of these.

in time proportional to the number of faces of G in the interior of f . However, because
the resulting recursion is not necessarily balanced, a straightforward implementation of this
yields an algorithm with Θ(n2) worst-case running time.

Morin [16] later showed that, using an appropriate data structure for T , this approach
can be implemented in such a way that the resulting algorithm runs in O(n logn) time.
Essentially, Morin’s algorithm works by finding the Sperner triangle fi in time proportional
to the minimum number of faces of G contained in any of the faces in Si. In the next section,
we will show that, by using a lowest common ancestor data structure for the cotree T along
with Lemma 2, the Sperner triangle fi can be found in constant time, yielding an O(n) time
algorithm.

By now, our presentation of this material differs somewhat from that in [8, 18]. Therefore,
we now pause to explain how Lemma 4 implies Theorem 3. Let G be a triangulation, let
T be spanning tree of G, let F := f0, . . . , fr be the proper good face sequence guaranteed
by Lemma 4, and let YF := {Y0, . . . , Yr} be the resulting tripod decomposition. We now
show that there exists a chordal graph H whose largest clique has size at most 4 and that
contains G/YF . We construct the graph H so that for each i ∈ {0, . . . , r} and each face f of
Gi, H contains a clique on {Yj : j ∈ If }. To accomplish this, for each i ∈ {1, . . . , r} let f be
the face of Gi−1 that contains fi and form a clique on {Yi} ∪ {Yj : j ∈ If }. Inductively, the
elements of {Yj : j ∈ If } already form a clique, so this operation is equivalent to attaching Yi

to all the vertices of an existing clique of size at most 3. Therefore, this results in a chordal
graph H whose largest clique has size at most 4 and therefore H has treewidth at most 3 [14].

4 An O(n)-Time Algorithm

Refer to Figure 4 for an illustration of the following (probably well-known) simple lemma,
which is closely related to Sperner’s Lemma:

▶ Lemma 6. Let N be a near-triangulation with outer face v0, . . . , vr and colour each vertex
of N red or blue in such a way that v0, . . . , vℓ are coloured red for some ℓ ∈ {0, . . . , r − 1}
and vℓ+1, . . . , vr are coloured blue. Then there exists a path w0, . . . , wk in N⋆ such that
1. w0 is the inner face of N with v0vr on its boundary;
2. wk is the inner face of N with vℓvℓ+1 on its boundary; and
3. for each i ∈ {1, . . . , k}, the single edge in E(wi−1)∩E(wi) has an endpoint of each colour.

SWAT 2022

19:8 An Optimal Algorithm for Product Structure

v0

vr

v`

v`+1

f0

C

w0

wk

Figure 4 Lemma 6.

Proof. If w0 = wk, the lemma is immediately true, so assume w0 ̸= wk. Say that an edge of
N is bichromatic if one of its endpoints is red and the other is blue. Any edge that is not
bichromatic is monochromatic. The outer face f0 of N has exactly two bichromatic edges
v0vr and vℓvℓ+1 and any inner face of N has either zero or two bichromatic edges. Consider
the subgraph H of N⋆ obtained removing each edge fg ∈ E(N⋆) such that the edge in
E(f) ∩ E(g) is monochromatic. Every vertex in H has degree 0 or 2, so each connected
component of H is either an isolated vertex or a cycle. The face f0 has degree 2 so it is
contained in a cycle C of H. The two neighbours of f0 in H are w0 and wk. Therefore C
contains a path w0, . . . , wk that satisfies the conditions of the lemma. ◀

The next lemma, which is the main new insight in this paper, allows us to use Lemma 2
to find Sperner triangles in constant time.

▶ Lemma 7. Let G be a triangulation with a vertex v0 on its outer face f0; let T be a
spanning tree of G rooted at v0; let T be the cotree of (G,T) rooted at f0; let f0, . . . , fi−1 be
a good proper sequence of faces of G that yields a sequence GF := G0, . . . , Gi−1 of graphs
and a sequence YF := Y0, . . . , Yi−1 of tripods; let f ̸∈ {f0, . . . , fi−1} be a face of Gi−1, and
let S ⊆ F (G) contain exactly the (at most three) faces g ∈ F (G) such that

(i) g is contained in the interior of f ;
(ii) g contains an edge vw ∈ E(f) with v ∈ Ya and w ∈ Yb for some distinct a, b ∈ If .

Let T 0 be the minimal subtree of T that spans S. Then, if S is non-empty and fi ∈ V (T 0) is
such that each component of T 0 − fi contains at most one element of S, Then f0, . . . , fi is
good.

Proof. Let N be the near-triangulation consisting of all vertices and edges of G contained
in the closure of the interior of f . Recall that If := {j ∈ {0, . . . , i − 1} : Yj ∩ V (f) ̸= ∅}.
Since f0, . . . , fi−1 is good, |If | ≤ 3. Since S is non-empty |If | ≥ 2. For each j ∈ If , colour
each vertex v of N with the colour j if the first vertex of PT (v) in V (f) is contained in Yj .
Say that an edge or face of N is monochromatic, bichromatic, or trichromatic if it contains
vertices of one, two, or three colours, respectively.

E(f) contains exactly |If | bichromatic edges. Since each element of S is an inner face
of N that contains a bichromatic edge of f , |S| ≤ |If | ≤ 3. Let X be the subgraph of N⋆

that contains an edge fg ∈ E(N⋆) if and only if f and g are inner faces of N and the edge

P. Bose, P. Morin, and S. Odak 19:9

fi

(a) (b) (c)

Figure 5 The proof of Lemma 7.

in E(f) ∩E(g) is bichromatic. We claim that X is a subgraph of T . In order to show this,
we need only argue that each edge uv of T in the interior of f is monochromatic. Consider
any uv ∈ E(N) \ E(f) where u is the T -parent of v. If v ̸∈ V (f) then, by definition, v has
the same colour as u, so uv is monochromatic. The case where v ∈ V (f) and u ̸∈ V (f) can
not occur since v ∈ V (f) implies that PT (v) ⊆ Gi−1, but u ̸∈ V (Gi−1). Similarly, the case
in which u ∈ V (f) and v ∈ V (f) can not occur since this implies that PT (v) ⊆ Gi−1, but
uv ̸∈ E(Gi−1).

Next we claim that all the elements of S are in a single connected component of X. If
|If | = 2, then this follows immediately from Lemma 6. If |If | = 3, then let {a, b, c} := If

and consider a pair g1, g2 ∈ S where (without loss of generality) g1 contains a bichromatic
edge of f with colours a and b and g2 contains a bichromatic edge of f with colours b and c.
By treating a and c as a single colour we may again apply Lemma 6 to conclude that g1 and
g2 are in the same component of X.

Refer to Figure 5(a). Therefore X is a subgraph of T that has a component containing
all the elements of S. Therefore X contains T 0. By choice, T 0 contains a path from fi to
each g ∈ S and each of these paths is disjoint except for their shared starting location fi.

Refer to Figure 5(b). Now, consider the embedded graph X0 obtained as follows: For
each g ∈ V (T 0), place a vertex on the center of each bichromatic edge of g and, if g is
trichromatic, then place a vertex in the center of g. Next,
1. add an edge joining the center of each trichromatic triangle to each of the centers of its

bichromatic edges; and
2. add an edge (embedded as a straight line segment) joining the centers of each pair of

bichromatic edges that are on a common bichromatic face g ∈ V (T 0).
The graph X0 is a tree of maximum-degree 3 that has |If | leaves. (Each leaf in X0 is the
center of a bichromatic edge in E(f)). With the exception of these three leaves, every point
in the embedding of X0 is contained in the interior of f .

Refer to Figure 5(c). Now treat X0 as a point set and consider the point set f ′ obtained
by removing X0 from the closure of f . Now f ′ has |If | connected components and each
vertex of fi is in a different component. Each of the components of f ′ contains vertices of Yj

for exactly one j ∈ If ; call this the colour of the component. Since no edge of T crosses X0,
the colour of each vertex in fi is equal to the colour the component of f ′ that contains it.

Finally, to see that f0, . . . , fi is good first observe that we need only be concerned with
the at most three faces in F (Gi) \ F (Gi−1) \ {fi} and each of these shares a bichromatic
edge with fi. If g is a face in F (Gi) \ F (Gi−1) \ {fi} with E(g) ∩ E(fi) = {uv} and uv is
coloured with a and b, then V (g) ∩ Yj = ∅ for any j ∈ {0, . . . , i} \ {a, b, i}. This completes
the proof. ◀

SWAT 2022

19:10 An Optimal Algorithm for Product Structure

▶ Theorem 8. There exists an O(n) time algorithm that, given any n-vertex triangulation
G and any rooted spanning tree T of G, produces a (G,T)-tripod decomposition Y such that
tw(G/Y) ≤ 3.

Proof. Let v0 be the root of T and let f0 be a face of G incident to v0 that contains an
edge of T incident to v0. In a preprocessing step, we compute the cotree T of (G,T) and
construct a lowest common ancestor data structure for T in O(n) time that allows us to
compute lcaT (f, g) for any two faces f, g ∈ F (G) in O(1) time.

After this preprocessing, we construct the good sequence f0, . . . , fr recursively. Concep-
tually, during any recursive invocation, the input is a near-triangulation N bounded by a
cycle C in G whose vertices belong to at most three tripods computed in previous steps.
Each vertex of G starts initially unmarked and we mark a vertex once we have placed it in a
tripod. The precise input to a recursive invocation is defined as follows:
1. If C intersects three tripods then the input consists of the three inner faces g1, g2, and g3

of N that contain bichromatic edges of C. Lemma 7 characterizes the face fi in terms
of the minimum subtree T 0 of T that contains g1, g2, and g3. Indeed, fi is either the
unique degree-3 node of T 0 (if g1, g2, and g3 are all leaves of T 0) or fi is the unique node
among g1 g2, or g3 that has degree 2. By Lemma 2 we can construct the model T ′

0 of T 0
in constant time and find the node fi.

2. If C intersects two tripods, then the input consists of two inner faces g1, g2, of N with
bichromatic edges of C on their boundary. In this case, we let fi := g1 or fi = g2, either
choice satisfies our requirements.

3. If C intersects only one tripod, then the input consists of any inner face g1 of N that
contains an edge in E(f). In this case fi := g1 satisfies our requirements.

Once we have found the Sperner triangle fi, we can compute the tripod Yi and mark its
vertices by following the path in T from each vertex of fi to its nearest marked ancestor
in T . This takes O(1 + |Yi|) time. Once we have done this, we have also found the at
most three bichromatic edges of Gi that are needed to perform the at most three recursive
invocations on the near triangulations whose outer faces coincide with each of the new faces
in F (Gi) \ F (Gi−1) \ {fi}.

After setting f0, the initial recursive call falls into the third case above, so its input is
any of the three inner faces that shares an edge with the outer face, f0. Each recursive
invocation adds a new face fi to the good face sequence f0, . . . , fr and takes O(1 + |Yi|)
time. Since Y0, . . . , Yr is a partition of V (G), the running time of this algorithm is therefore∑r

i=0 O(1 + |Yi|) = O(n). ◀

5 Variations

In this section we show that there are O(n) time algorithms for computing the decompositions
in Theorem 1.b and Theorem 1.c. In the same way that Theorem 1.a follows from the tripod
decomposition of Theorem 3, Theorem 1.b follows from a bipod decomposition given by
Theorem 10 and Theorem 1.c follows from a monopod decomposition given by Theorem 11.

5.1 Bipod Decompositions
We begin with the decomposition in Theorem 1.b, which was communicated to us by
Vida Dujmović, and has not appeared before. This decomposition is obtained by selecting
a proper sequence E := e0, . . . , ek of distinct edges of G, which define a sequence of graphs
GE := G0, . . . , Gk where Gi :=

⋃i
j=0 PT (ej) and a sequence of bipods IE := Λ0, . . . ,Λk where

Λi = V (Gi) \ V (Gi−1). We call E good if, for each i ∈ {0, . . . , k} and each face f ∈ F (Gi),
V (f) has a non-empty intersection with at most 4 bipods in Λ0, . . . ,Λi.

P. Bose, P. Morin, and S. Odak 19:11

Exactly the same argument used in Section 3.1 to show that G/YF is contained in
a chordal graph of maximum clique size 4 also shows that if E is a good edge sequence
that produces a bipod partition IE of V (G), then G/IE is contained in a chordal graph of
maximum clique size 5, so G/IE has treewidth at most 4.

We now explain why a good edge sequence e0, . . . , er exists.8 As before, we set f0 to be
any face of G such that E(f0) contains an edge of T incident to the root v0 of T . The edge
e0 is any edge of E(f0) \E(T). Next we take special care to ensure that Gi is biconnected
for i ≥ 1. In particular, if G0 contains only two edges of f0, then we take e1 to be the edge
of f0 that does not appear in G0. Otherwise, we choose e1 using the general strategy for
choosing ei, described next.

Refer to Figure 6. Now we may assume that Gi−1 is biconnected. To choose the edge ei,
we consider any face f ∈ F (Gi−1) \ F (G). Inductively, V (f) contains vertices from at most
four bipods in Λ0, . . . ,Λi−1. Let If := {j ∈ {0, . . . , i− 1} : Λj ∩ V (f) ̸= ∅}. If |If | < 4 then
we can select ei to be any edge in the interior f . Therefore, we focus on the case |If | = 4.
As before we colour vertices in the near triangulation N using colours in the set If ; we let S
be the set of inner faces in N that contain a bichromatic edge in E(f); and let T 0 be the
minimal subtree of T that spans S. The same argument in the proof of Lemma 7 shows that
every node of T 0 is contained in f .

Claim 9, below, shows that T 0 contains an edge xy such that each component of T 0 − xy

contains at most two elements of S. It is straightforward to verify that, if we choose ei to the
be the edge in E(x) ∩ E(y) then we obtain a graph Gi in which each of the two new faces
containing vertices from Λi contains vertices from at most three bipods in {Λj : j ∈ If }, as
required.

x
yα βx1

Figure 6 Choosing the next ei in a good edge sequence.

▷ Claim 9. T 0 contains an edge xy such that each component of T 0 − xy contains at most
two nodes of S.

Proof. Direct each edge xy of T 0 in the direction −→xy if the component of T 0 − xy that
contains y contains three or more nodes of S. It is sufficient to show that this process leaves
some edge xy of T 0 undirected. Assume for the sake of contradiction that every edge of T 0
is directed. Then some node x of T 0 has only incoming edges. Certainly x does not have
degree 1 in T 0.

If x has degree 2 in T 0 then T 0 contains two subtrees T1 and T2 that have only the
node x in common and such that |V (T1) ∩ S| ≥ 3 and |V (T2) ∩ S| ≥ 3, which implies that
|S| ≥ 3 + 3 − 1 > 4, a contradiction.

8 The existence of this edge sequence is more easily proven using Sperner’s Lemma, but we want a proof
that lends itself to a linear time algorithm.

SWAT 2022

19:12 An Optimal Algorithm for Product Structure

Suppose therefore that x has degree 3 in T 0. Each face in S contains an edge in E(f), so
each face in S has degree at most 2 in T 0. Therefore x ̸∈ S. Therefore T 0 − x contains three
components T1, T2, T3 such that each pair of components contains at least 3 elements of S.
But this implies that |S| ≥ (3 × 3)/2 > 4, a contradiction. ◁

Algorithmically, using Lemma 2, we can construct the model T ′
0 of T 0 in constant time

given the set S. The model T ′
0 will also contain an edge αβ such that each component of

T
′
0 − αβ contains at most two nodes in S. We claim that E(α) contains an edge that makes

a suitable choice for ei, and this edge can be found in constant time. Indeed, the edge αβ in
T

′
0 corresponds to a path α, x1, . . . , xk, β in T 0 and the unique edge in E(α) ∩ E(x1) is a

suitable choice for ei.
The rest of the details of the algorithm are similar to those given in the proof of Theorem

8: Each subproblem is a near-triangulation N bounded by a cycle C and the input that
defines the subproblem consists of the (at most four) faces S ⊆ F (N) incident to bichromatic
edges of C.9

▶ Theorem 10. There exists an O(n) time algorithm that, given any n-vertex triangulation
G and any rooted spanning tree T of G, produces a (G,T)-bipod decomposition I such that
tw(G/I) ≤ 4.

5.2 Monopod Decompositions
Finally we consider the decomposition described in Theorem 1.c. This decomposition is
obtained from a tripod decomposition Y := Y0, . . . , Yr, obtained by a sequence F := f0, . . . , fr

of faces of G in the same manner described in Section 3.1. However in this setting, the
sequence f0, . . . , fr is good if, for each i ∈ {0, . . . , r} and each face f of Gi :=

⋃i
j=0 YT (fj),

V (f) contains vertices from at most 5 legs of tripods in Y0, . . . , Yi. Under these conditions,
Ueckerdt et al. [18] are able to show that the monopod decomposition I obtained by splitting
each tripod Yi into three upward paths yields a quotient graph G/I of treewidth at most 6.

As before we focus on the extreme case when V (f) contains vertices from exactly 5
legs of tripods. Refer to Figure 7. Following the same strategy used for the previous two
decompositions, the set S in this case has size at most 5 and the face fi corresponds to a
node of T 0 such that each component of T 0 − fi contains at most 2 nodes in S. (This is
always possible because ⌊5/2⌋ = 2.) Again, a suitable choice for fi can be found in the model
T

′
0 of T0 in constant time.

▶ Theorem 11. There exists an O(n) time algorithm that, given any n-vertex triangulation
G and any rooted spanning tree T of G, produces a (G,T)-monopod decomposition I such
that tw(G/I) ≤ 6.

References
1 Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common ancestors:

A survey and a new algorithm for a distributed environment. Theory Comput. Syst., 37(3):441–
456, 2004. doi:10.1007/s00224-004-1155-5.

2 Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, and Michael Kaufmann. Graph product
structure for h-framed graphs. CoRR, abs/2204.11495, 2019. arXiv:2204.11495.

9 In the degenerate case where C has no bichromatic edges, the input is any face of N incident to an
edge of C.

https://doi.org/10.1007/s00224-004-1155-5
http://arxiv.org/abs/2204.11495

P. Bose, P. Morin, and S. Odak 19:13

fi

Figure 7 The selection of a tripod by Ueckerdt et al. [18].

3 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

4 Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993. doi:10.1137/0222017.

5 Prosenjit Bose, Vida Dujmović, Mehrnoosh Javarsineh, and Pat Morin. Asymptotically optimal
vertex ranking of planar graphs. CoRR, abs/2007.06455, 2020. arXiv:2007.06455.

6 Michal Debski, Stefan Felsner, Piotr Micek, and Felix Schröder. Improved bounds for centered
colorings. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2212–
2226. SIAM, 2020. doi:10.1137/1.9781611975994.136.

7 Reinhard Diestel. Graph Theory, Fifth Edition, volume 173 of Graduate texts in mathematics.
Springer, 2017. doi:10.1007/978-3-662-53622-3.

8 Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R.
Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020. URL:
https://dl.acm.org/doi/10.1145/3385731.

9 Vida Dujmovic, Pat Morin, and David R. Wood. Graph product structure for non-minor-closed
classes. CoRR, abs/1907.05168, 2019. arXiv:1907.05168.

10 Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat Morin.
Adjacency labelling for planar graphs (and beyond). J. ACM, 68(6):42:1–42:33, 2021. doi:
10.1145/3477542.

11 Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R. Wood. Planar
graphs have bounded nonrepetitive chromatic number. CoRR, abs/1904.05269, 2019. arXiv:
1904.05269.

12 Louis Esperet, Gwenaël Joret, and Pat Morin. Sparse universal graphs for planarity. CoRR,
abs/2010.05779, 2020. arXiv:2010.05779.

13 Johannes Fischer and Volker Heun. Theoretical and practical improvements on the rmq-
problem, with applications to LCA and LCE. In Moshe Lewenstein and Gabriel Valiente,
editors, Combinatorial Pattern Matching, 17th Annual Symposium, CPM 2006, Barcelona,
Spain, July 5-7, 2006, Proceedings, volume 4009 of Lecture Notes in Computer Science, pages
36–48. Springer, 2006. doi:10.1007/11780441_5.

14 Fănică Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16:47–56, 1974. doi:doi:10.1016/0095-8956(74)
90094-X.

15 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

SWAT 2022

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1137/0222017
http://arxiv.org/abs/2007.06455
https://doi.org/10.1137/1.9781611975994.136
https://doi.org/10.1007/978-3-662-53622-3
https://dl.acm.org/doi/10.1145/3385731
http://arxiv.org/abs/1907.05168
https://doi.org/10.1145/3477542
https://doi.org/10.1145/3477542
http://arxiv.org/abs/1904.05269
http://arxiv.org/abs/1904.05269
http://arxiv.org/abs/2010.05779
https://doi.org/10.1007/11780441_5
https://doi.org/doi:10.1016/0095-8956(74)90094-X
https://doi.org/doi:10.1016/0095-8956(74)90094-X
https://doi.org/10.1137/0213024

19:14 An Optimal Algorithm for Product Structure

16 Pat Morin. A fast algorithm for the product structure of planar graphs. Algorithmica,
83(5):1544–1558, 2021. doi:10.1007/s00453-020-00793-5.

17 Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput., 17(6):1253–1262, 1988. doi:10.1137/0217079.

18 Torsten Ueckerdt, David R. Wood, and Wendy Yi. An improved planar graph product
structure theorem. CoRR, abs/2108.00198, 2021. arXiv:2108.00198.

https://doi.org/10.1007/s00453-020-00793-5
https://doi.org/10.1137/0217079
http://arxiv.org/abs/2108.00198

