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Abstract
Homologous recombination between the maternal and paternal copies of a chromosome is a key
mechanism for human inheritance and shapes population genetic properties of our species. However,
a similar mechanism can also act between different copies of the same sequence, then called non-
allelic homologous recombination (NAHR). This process can result in genomic rearrangements –
including deletion, duplication, and inversion – and is underlying many genomic disorders. Despite
its importance for genome evolution and disease, there is a lack of computational models to study
genomic loci prone to NAHR.

In this work, we propose such a computational model, providing a unified framework for both
(allelic) homologous recombination and NAHR. Our model represents a set of genomes as a graph,
where human haplotypes correspond to walks through this graph. We formulate two founder set
problems under our recombination model, provide flow-based algorithms for their solution, and
demonstrate scalability to problem instances arising in practice.
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1 Introduction

Twenty years ago, at this conference, Esko Ukkonen introduced the problem of inferring
founder sets from haplotyped SNP sequences under allelic recombination [30]. Ukkonen’s
work has since inspired a wealth of research addressing various aspects and applications
of founder set reconstruction ranging from the reconstruction of ancestral recombinations
and pangenomics to applications in phage evolution [16, 19, 29]. In its original setting,
the problem sets out from a given set of m sequences of equal length n, where characters
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6:2 Constructing Founder Sets Under AHR and NAHR

across sequences residing at the same index position correspond to a SNP. It then asks
for a smallest set of sequences, called founder set, such that each given sequence can be
constructed through a series of crossovers between sequences of the founder set, where each
segment between two successive recombinations must meet a minimum length threshold.
The Founder Set Reconstruction problem is NP-hard in general [22], but is solvable in linear
time for the special case of founder sets of size two [30, 35]. Since its introduction, various
heuristics and approximations have been proposed [35, 24, 25]. A variant of this problem
restricts crossovers to coincide at certain positions, thereby decomposing the input sequences
into a universally shared succession of blocks. The resulting problem, known as Minimum
Segmentation Problem is polynomial [26]. In his seminal paper, Ukkonen devised a O(n2m)
algorithm for its solution which has been improved by Norri et al. [17] to linear time, i.e.
O(nm), capitalizing on recent breakthroughs in data structures [9].

Just like the Founder Set Problem, the vast majority of population genetic analyses and
genome-wide association studies have been focused on SNPs in the past decades, neglecting
the more complex forms of variation – mostly for technical difficulties in detecting them. In
particular, structural variants (SVs), commonly defined as variants of at least 50bp, have
posed substantial challenges and studies based on short sequencing reads typically detect less
than half of all SVs present in a genome [37]. Recent technological and algorithmic advances
help to overcome these limitations [27]. Long read technologies now enable haplotype-resolved
de novo assembly of human genomes [20], which in turn enables a much more complete
ascertainment of SVs [10]. Earlier this year, the first complete telomere-to-telomere assembly
of a human genome was announced [18], heralding a new era of genomics where high-quality,
haplotype-resolved assemblies of complex repetitive genomic structures become broadly
available. Presently, the Human Pangenome Reference Consortium (HPRC), is applying these
techniques to generate a large panel of haplotype-resolved genome assemblies from samples
of diverse ancestries [33]. These emerging data sets enable studying genetic loci involving
duplicated sequence, called segmental duplications (SDs), which are amenable to NAHR and
are therefore highly mutable and show complicated evolutionary trajectories [13, 31]. The
T2T-CHM13 study alone reports over 40 thousand segmental duplications that amount to
202 Mb (6.6% of the human genome) [18].

Interestingly, at loci with highly similar segments arranged in opposite orientations, such
as Segment 3 in Figure 1, NAHR can lead to inversion, i.e. the reversal of the interior
sequence (Segment 4 in Figure 1). Because of being flanked by a pair of copies of the same
sequence (cf. Segment 3) that often comprises tens of thousands of bases, such events have
been largely undetectable by sequencing technologies with read lengths below the length of
the duplicated sequence; in particular by conventional short read sequencing. Recent studies
applying multiple technologies reveal that inversions affect tens of megabases of sequence in a
typical human genome [7]. Unlike most other classes of genetic variation, inversions are often
recurrent with high mutation rates, that is, the same events have happened multiple times
in human history [21]. Depending on the structures of duplicated sequence at a particular
locus, individual human haplotypes can differ in their potential for NAHR. This can have
important implications for the risk for a range of genetic disorders caused by NAHR-mediated
mutations [21].

In the past two decades, various mathematical models and algorithms to study genome
rearrangements have been proposed. These range from the classic reversal [3, 2] and
transposition [4] model to composed models for two or more balanced rearrangements [32, 8],
to generalized models such as the popular double cut and join (DCJ) model [36, 5]. As the
research in this field continues, advanced models can additionally accommodate one or more
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Figure 1 Illustration of an NAHR-mediated inversion. Haplotype A (black line) represents the

original configuration, while haplotype B (red line) can be derived from A by two recombination
events between inverted repeats of genomic marker 3 as indicated by the red stars.

types of unbalanced rearrangements, i.e., deletion, insertion, and duplication [28, 6]. Yet,
none of these models adequately considers sequence similarity as a prerequisite for NAHR,
which is a key molecular mechanism shaping complex loci in the human genome. In summary,
there are now technological opportunities to study the population history of recalcitrant SD
loci that are prone to genome rearrangements and relevant to disease, but computational
models to facilitate this have so far been lacking.

In this work, we study homologous recombination in a genome model that represents DNA
sequences at a level of abstraction where they are already decomposed into genomic markers
with assigned homologies. Here, our notion of homology is a synonym for high DNA sequence
similarity, as we adopt the terminology underlying the concept of homologous recombination.
Our model permits recombination events to occur between homologous markers independent
of their position within or between haplotypes, as long as the markers’ orientations are
respected. In other words, a marker can only recombine with a homologous marker alongside
the same direction, as illustrated by Figure 1, because a recombination event can only occur
between homologous markers if they are aligned to each other. By virtue of recapitulating
the underlying molecular mechanism (NAHR), it implicitly allows for all the rearrangements
it can give rise to, including deletion, duplication, and inversion.

Marker decomposition and homology assignment can be done in practice with genome
graph builders such as MBG [23], minigraph [12], or pggb2. In fact, our algorithms are
based on variation graph or pangenome graph, where nodes correspond to homologous DNA
segments and edges between segments correspond to observed adjacencies in a given set of
haplotypes.

2 Methods

2.1 Preliminaries
A (genomic) marker m is an element of the finite universe of markers denoted by M, and
is associated with a fragment of a double-stranded DNA molecule. Each marker can be
traversed in forward and reverse direction. A marker in forward orientation (which is the
default orientation) is traversed from left to right. Overline notation m indicates the reversal
of a marker m, which is carried out relative to its orientation, i.e., m = m. Similarly, M
represents the set of all reverse oriented markers. We designate two forward oriented markers
{s, S} ⊆ M as terminal markers. In what follows, we study terminal sequences, that is,

2 https://github.com/pangenome/pggb
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6:4 Constructing Founder Sets Under AHR and NAHR

sequences drawn from the alphabet of oriented markers M∪M that start with s or S, end
in S or s and do not contain any further terminal markers in between. A terminal sequence
can be traversed in forward and reverse direction. A haplotype is a terminal sequence that
starts with s (source) and ends with S (sink).

▶ Example 1. Consider in the following two sequences of genomic markers A and X drawn
from the universe of markersM = {s, 1, 2, 3, 4, S}, where A = s12343S and X = s1234321s.
Sequence A starts and ends with terminal markers s and S, respectively, thus constituting
a haplotype drawn from M. Conversely, X starts with s and ends in s and therefore is a
terminal sequence, but not a haplotype.

Given a sequence A, |A| indicates the length of A which corresponds to the number of
A’s constituting elements. A defines the reverse complementation of sequence A, i.e., the
simultaneous reversal of the sequence and its constituting elements. The element at the ith
position in sequence A is denoted by A[i]. A segment of sequence A starting at position i and
ending at and including position j, is denoted by A[i..j]. In particular, A[..i] := A[1..i] and
A[i..] := A[i..|A|] denote the prefix and suffix of A, respectively. The operator “+” indicates
the concatenation of two sequences.

▶ Example 1 (cont’d). The length of A is |A| = 7; its reverse complement is A = S34321s;
A[4..6] is a segment of A and corresponds to sequence 343; The segments X[..6] = s12343
and A[7..] = S are a prefix and a suffix of X and A, respectively; The concatenation of prefix
X[..6] and suffix A[7..] results in haplotype X[..6] + A[7..] = s12343S.

A recombination is an operation that acts on a shared oriented marker m of any two
terminal sequences A and B: let A[i] = B[j] = m; recombination χ(A, B, i, j) produces
terminal sequence C = A[..i] + B[j + 1..]. For a given set of haplotypes H, span(H) denotes
the span, i.e., the set of all haplotypes generated by applying χ on haplotypes H and the
resulting terminal sequences. More precisely, let T be the universe of terminal sequences,
defined recursively by H ∪ H ⊆ T such that for any A, B ∈ T with some A[i] = B[j]
the recombinant C = A[i] + B[j + 1] and its reverse complement C is also in T . Then
span(H) := {A ∈ T | A is a haplotype}. Accordingly, we also say that “H is a generating set
of span(H)”. Conversely, given any (possibly infinite) set of haplotypes S and some H ⊆ S,
H is a generating set of S iff span(H) = S.

▶ Example 1 (cont’d). Recombination χ(A, A, 4, 2) produces terminal sequence X =
s1234321s. Subsequent recombination χ(X, A, 6, 6), produces haplotype B = s12343S.
If {A} is a given set of haplotypes, then span({A}) = {A, B}.

In this paper, we study the following two problems:

▶ Problem 1 (Founder Set). Given a set of haplotypes H, find a generating set F ⊆ span(H)
such that

∑
A∈F |A| is minimized.

We call a solution to Problem 1 a founder set and its members founder sequences.

▶ Problem 2. Given a set of haplotypes H, find a founder set F that minimizes the number
of recombinations applied to haplotypes H and their intermediate terminal sequences in
constructing F .
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2.2 Constructing Founder Sets
Variation graph construction. We solve Problem 1 by studying the variation graph GH =
(V, E ∪

−→
E ) of the given set of haplotypes H. Graph GH is an undirected edge-colored

multigraph where each edge can have one of two colors corresponding to their membership in
edge sets E and −→E . In constructing GH, each marker m of the universe of forward-oriented
markers M is represented by a tuple of its extremities (mt, mh) also called “tail” and “head”
of m, respectively, and its reverse-oriented counterpart m is represented as (mh, mt)3. Node
set V of graph GH corresponds to the set of all marker extremities, and each marker m ∈M
gives rise to one marker edge {mt, mh} ∈

−→
E . Further, any two (not necessarily distinct)

nodes mb
1, mc

2 ∈ V are connected by one adjacency edge {mb
1, mc

2} ∈ E iff there exists a
sequence A ∈ H ∪ H with A = ..m1m2.. such that m1 = (ma

1 , mb
1), m2 = (mc

2, md
2) and

{a, b} = {c, d} = {t, h}.

▶ Example 2. Let H1 = s12343S, H2 = s1112343S, H3 = s123432343S, and H4 = s12S,
then the variation graph GH of H = {H1, H2, H3, H4} is as follows, with marker edges drawn
in gray and adjacency edges in black:

t h2t hs t h1 t h3 t h4 t hS

▶ Proposition 3. Let GH be the variation graph of haplotypes H, and X the set of all walks
between terminal markers st and Sh in GH with edges alternating between E and −→E , then
span(H) = X .

Proof.
⇒ Observe that no recombination can create a new pair of consecutive markers m1m2 that

is not contained in any sequence A ∈ H∪H. Therefore, each haplotype B ∈ span(H) is a
succession of consecutive markers drawn from sequences in H∪H, i.e., B can be delineated
in GH by following adjacency edges corresponding to its succession of consecutive markers.

⇐ If each alternating walk X = (st, sh, . . . , St, Sh) ∈ X in variation graph GH corresponds to
a haplotype B ∈ span(H), then X must be producible through a series of recombinations
of haplotypes H and their recombinants. We show this by construction:
a. Pick some haplotype A ∈ H and initialize i← 1;
b. Let B ∈ H ∪H be a sequence such that for some position j, B[j..j + 1] = m1m2 with

m1 = X[i..i + 1] and m2 = X[i + 2..i + 3]. Then A← χ(A, B, i/2, j).
c. Increase i by 2 and repeat step b unless i = |X| − 3.
Observe that by construction of the variation graph GH, a suitable sequence B ∈ H ∪H
must exist in each iteration of step b. ◀

Defining flows on variation graphs. We determine a minimum set of founder sequences by
solving a network flow problem in variation graph GH where flow is allowed to travel along
adjacency edges in either direction. In doing so, we find a non-negative flow ϕ : V × V → N
such that the total flow

∑
u,v∈V ϕ(u, v) of graph GH is minimized and satisfies the following

constraints:

3 Our notation is consistent with common practice of illustrating markers as arrows, that, in natural
reading direction, face from left (tail of the arrow) to right (head of the arrow).
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6:6 Constructing Founder Sets Under AHR and NAHR

∀ u, v ∈ V ϕ(u, v) ∈ N (constrain flow to integer)
∀ (u, v) ∈ {(u′, v′) | u′, v′ ∈ V : {u′, v′} ̸∈ E} ϕ(u, v) = 0 (constrain travel of flow)

∀ v ∈ V i(v) :=
∑
u∈V

ϕ(u, v) (incoming flow)

o(v) :=
∑
u∈V

ϕ(v, u) (outgoing flow)

∀ {u, v} ∈ E ϕ(u, v) + ϕ(v, u) ≥ 1 (flow coverage)
o(st) = i(Sh) = 0 (flow direction st → Sh)

∀ m ∈M \ {s, S} i(mt) = o(mh) (flow conservation)
i(mh) = o(mt)

Note that the flow can travel in both directions of an edge {u, v} ∈ E and that ϕ(u, v) =
ϕ(v, u) does not hold true in general. The only node pairs of the graph that are unbalanced,
i.e., do not satisfy flow conservation, are (st, sh) and (St, Sh).

▶ Example 2 (cont’d). The drawing below illustrates a flow solution on variation graph GH,
with the direction and amount of flow along adjacency edges indicated by labeled arrowed
arcs.

1

1

1

1

1
1

2

21

1

2t h2t hs t h1 t h3 t h4 t hS

Deriving haplotypes from flows. By applying the Flow Decomposition Theorem [1, p. 80f],
any flow, i.e., solution to the above-specified constraints, is decomposable into a set of
alternating paths going from source st to sink Sh and a set of alternating cycles. Ahuja et
al. [1] give a simple and efficient algorithm that does so in polynomial time and which we
describe below, adapted to our circumstances. The idea is to perform a random walk in the
graph from source to sink or within a cycle, thereby consuming flow along adjacency edges
until all flow is depleted. The proof of the algorithm remains unchanged to that given by
Ahuja et al., thus is not repeated here.
1. Set u← st.
2. Setting out from current node u, traverse the incident marker edge to some node v, choose

any neighbor w of v for which ϕ(v, w) > 1. Follow the adjacency edge to v and decrease
the flow ϕ(v, w) by 1. Set u← w.

3. As long as u ≠ St do as follows: if u has been visited in the traversal before, then extract
the corresponding alternating cycle from the recorded sequence and report it. Proceed
with the traversal by repeating step 2.

4. However, if u = St, follow the marker edge to Sh and report the recorded sequence as a
path.

5. If sh is incident to edges with positive flow, proceed with step 1. Otherwise, there
still might be strictly positive flow remaining in the graph corresponding to unreported
cycles. In that case, pick any node u ← ma such that for some node w, ϕ(mb, w) > 0,
{a, b} = {t, h} and m ∈M, and proceed with step 2.
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▶ Example 2 (cont’d). The components of the flow solution on variation graph GH comprise
two cycles C1 and C2, and two (st, Sh)-paths P1 and P2, as illustrated below.

C1

P1
P2

C2
t h2t hs t h1 t h3 t h4 t hS

What remains is the integration of cycles into walks that then correspond to the haplotypes
of the founder set. The integration is facilitated by a graph structure, the component graph.
The component graph G′ = (V ′, E′, l) is an edge-labeled, directed multigraph, where, in
its initial construction, each alternating (st, Sh)-path and each cycle reported during flow
decomposition is represented by a distinct node of V ′. In the component graph G′, each
cycle c of the flow decomposition sharing one or more markers with another component c′ is
connected by one or more directed edges (c, c′) to that component, with each edge’s label
l(c, c′) corresponding to one distinct shared marker, oriented according to the their succession
in c (which may not be the same as in c′). The component graph is then successively
deconstructed until empty as follows:

1. Remove and report all (st, Sh)-walks with in-degree 0 from node set V ′4.
2. Pick a cycle c ∈ V ′ with in-degree 0, or, if none such exists, any arbitrary cycle c ∈ V ′.
3. Pick an outgoing edge (c, c′) ∈ E′ such that c′ is a (st, Sh)-walk. If no such c′ exists, c

is only adjacent to cycles, out of which one c′ is picked at will. Let (ma, mb)← l(c, c′),
{a, b} = {t, h}. If marker m is embedded in c′ in same orientation, i.e. c′ = ..mamb..,
then linearize c in m, i.e., c = mbc1..ck−1ma, and integrate it into c′ such that c′ ←
..mambc1..ck−1mamb.. . Otherwise, integrate the reversed linearization of c, i.e, c′ ←
..mbmack−1..c1mbma.. . Remove cycle c and its outgoing edges from component graph G′.

4. Proceed with step 1 until no more components remain and all (st, Sh)-walks are reported.

The search for components with in-degree 0 can be efficiently implemented through
preorder traversal of G′. Note that each cycle must have at least one outgoing edge and
that ultimately all cycles must be integrable into a (st, Sh)-walk, otherwise this would imply
that GH contains a disconnected, circular component that is not reachable by an alternating
path from source st to sink Sh, thus contradicting the correctness of GH’s construction. The
reported (st, Sh)-walks represent the wanted haplotypes of the founder set.

▶ Example 2 (cont’d). The plot below depicts the component graph of components C1, C2,
P1, and P2 (left) and the final two (st, Sh)-walks that collectively represent a founder set of
H (right).

1

1 2

2 33 4

P2

C1 C2

P1

t h2t hs t h1 t h3 t h4 t hS

t h2t hs t h1 t h3 t h4 t hS
C1

P1

P2

C2

4 By construction, (st, Sh)-walks have out-degree 0, i.e., those with in-degree 0 are singleton in G′.
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6:8 Constructing Founder Sets Under AHR and NAHR

▶ Theorem 4. Any flow that minimizes the total flow
∑

u,v∈V ϕ(u, v) of variation graph
GH = (V, E ∪

−→
E ) of a given set of haplotypes H is equivalent to a solution to Problem 1.

Proof. It is sufficient to show that every flow is decomposable into a set of haplotypes (⇒)
and every founder set represents a valid flow (⇐).

⇒ Any flow of variation graph GH is decomposable into a set of haplotypes H′, as demon-
strated above. Observe that the above-listed flow constraints enforce the derived hap-
lotypes H′ to cover the entire graph GH and consequently GH′ = GH. This implies
that span(H′) = span(H), i.e., H′ is a generating set of span(H). Therefore, the sum of
lengths of haplotypes derived from a flow solution is an upper bound of Problem 1.

⇐ Any set of haplotypes H′ ⊆ span(H) that covers each consecutive pair of markers
m1m2 in haplotypes H at least once (either in forward orientation m1m2 or in reverse
orientation m2m1) represents a valid flow of GH. To construct a flow from H′, set
ϕ(mb

1, mc
2) to the number of occurrences of consecutive markers m1m2 in haplotypes of

H′ with m1 = (ma
1 , mb

1) and m2 = (mc
2, md

2), {a, b} = {c, d} = {t, h}. Observe that by
construction, flow is integer, travels from source st to sink Sh and satisfies coverage and
conservation constraints. ◀

2.3 Minimizing Recombinations in Founder Sequences
We now present an algorithm towards solving Problem 2, i.e., the problem of finding a founder
set that minimizes the number of recombinations needed for its construction from a given set
of haplotypes H. Our approach is exact under the assumption that the overall multiplicity
of each pair of consecutive markers in the founder set of a solution to Problem 2 is known,
yet the pair’s particular orientation in a founder sequence may be unresolved. To this end,
we presume a given function ϕ̂(m1, m2) acting as oracle for the overall multiplicity of any
given pair of consecutive oriented markers m1, m2 ∈M∪M5. More specifically, ϕ̂(m1, m2)
reports the total number of occurrences of m1m2 and m2m1 in a solution to Problem 2. In
addition, we make use of function µ(m) :=

∑
m′∈M∪M ϕ̂(m, m′) to retrieve the multiplicity

of any marker m ∈ M ∪M6. Our solution makes use of the flow graph that is defined
in the subsequent paragraph. We calculate a matching in the flow graph that describes a
set of founder sequences, each corresponding to a succession of segments of haplotypes H.
The objective of the matching is to minimize the total number of these segments across all
founder sequences which is equivalent to minimizing the number of recombinations for their
construction from haplotype set H.

Flow graph construction. The flow graph GH,ϕ̂ = (Vϕ̂, Eϕ̂ ∪
−→
Eϕ̂) is a directed edge-colored

multigraph with adjacency edges Eϕ̂ and marker edges −→Eϕ̂, where each marker extremity
ma, m ∈ M and a ∈ {t, h}, gives rise to 2 · µ(m) elements in node set Vϕ̂, representing
µ(m) many “in” (i) and µ(m) many “out” (o) nodes. That is, Vϕ̂ = {ix

ma | m ∈ M, a ∈
{t, h}, x ∈ 1..µ(m)} ∪ {ox

ma | m ∈ M, a ∈ {t, h}, x ∈ 1..µ(m)}. Each out node u ∈
Vϕ̂ \ ({ox

Sh | 1..µ(S)}∪{ox
st | 1..µ(s)}) is incident to one and only one directed adjacency edge

5 Our experiments directly use the results of Problem 1 as input for Problem 2. In other words, the
multiplicities reported by ϕ̂(m1, m2) are the number of occurrences of (m1, m2) in a solution to Problem
1. This makes our experimental solutions to Problem 2 heuristic.

6 ϕ̂ and µ are symmetric w.r.t. the relative orientation of markers, ϕ̂(m1, m2) = ϕ̂(m2, m1) and µ(m) =
µ(m)
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(u, v) connecting u to some in node v thereby realizing one occurrence of its representing
pair of consecutive oriented markers in a founder sequence. Conversely, each forward-
oriented marker m ∈M contributes µ(m)2 many directed marker edges that connect in/tail
nodes with out/head nodes, i.e., {(ix

mt , oy
mh) | x, y ∈ 1..µ(m)}. Analogously, each reverse-

oriented marker m ∈M contributes µ(m)2 many in/head-to-out/tail-directed marker edges
{(ix

mh , oy
mt) | x, y ∈ 1..µ(m)}.

▶ Example 2 (cont’d). The flow graph GH,ϕ̂ for the given set of haplotypes H = {s12343S,
s1112343S, s123432343S, s12S} and a given ϕ̂ is as follows:

t h2t hs t h1 t h3 t h4 t hS

In nodes and out nodes are highlighted in red and blue, respectively. For clarity, the direction
of marker edges (gray edges; directed from in to out node) is omitted in the illustration.

Graph decomposition. A perfect matching of marker edges in flow graph GH,ϕ̂ produces a
set of alternating walks and alternating cycles through GH,ϕ̂, yet only half of the graph is
eligible to form a solution to Problem 2. More precisely, for each marker m ∈ M, exactly
half of the number of its associated nodes in Vϕ̂ must be saturated in the matching that we
seek, the other half as well as their incident edges must remain unsaturated. Further, we aim
to admit only matchings that consist entirely of alternating (ix

st , oy
Sh)-walks, because only

those correspond to valid haplotypes of span(H).
At last, we aim to assign to each saturated node v ∈ Vϕ̂ a position in some haplotype A

of given haplotype set H. That way, we are able to determine whether the incident adjacency
edge serves as continuation of the associated segment in A, or whether the incident saturated
marker edge implies a recombination between two distinct segments.

The integer linear program (ILP) shown in Algorithm 1 implements the above-stated
constraints.

Matching constraints. Each edge and node of flow graph GH,ϕ̂ is associated with binary
variables of x and y, respectively, that determine their saturation in a solution (cf. domains D.1
and D.2). Constraint C.01 ensures that each saturated marker edge is incident to saturated
nodes. Perfect matching constraints, i.e., constraints that impose each saturated node being
incident to exactly one marker edge, are implemented by constraint C.02. Similarly, constraint
C.03 ensures that an adjacency edge is saturated iff its incident nodes are saturated. In
other words, constraints C.01-C.03 together ensure that each component of the saturated
graph corresponds to an alternating path or cycle component (the latter being prohibited by
further constraints). The following two constraints C.04 and C.05 control the overall size of
the saturated graph. In doing so, they ensure that, in a solution to Problem 2, the number
of saturated nodes and adjacency edges matches the postulated multiplicity of markers µ(m),
m ∈M∪M, and pairs of consecutive markers ϕ̂(m1, m2), m1, m2 ∈M∪M, respectively.
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Algorithm 1 An ILP solution to Problem 2.

Objective:
Maximize∑

(ix
ma ,ox′

mb )∈
−→
Eϕ̂,

A[j]=(ma,mb)

tA[j]
ix

ma ox′
mb

Constraints:

(C.01) yu + yv ≥ 2 xuv ∀ (u, v) ∈
−→
Eϕ̂

(C.02)
∑

(u,v)∈
−→
E

ϕ̂

xuv = yu ∀ in nodes u ∈ Vϕ̂∑
(u,v)∈

−→
E

ϕ̂

xuv = yv ∀ out nodes v ∈ Vϕ̂

(C.03) xuv = yu ∀ (u, v) ∈ Eϕ̂

xuv = yv

(C.04)
µ(m)∑
x=1

yix
ma

+ yox
ma

= µ(m) ∀ m ∈ M, a ∈ {t, h}

(C.05)
∑

x,x′ s.t.
(ox

mb
1

,ix′
mc

2
)∈E

ϕ̂

x
ox

mb
1

ix′
mc

2

= ϕ̂(m1, m2) ∀ (mb
1, mc

2) s.t. ϕ̂(m1, m2) > 0,
m1 = (ma

1 , mb
1), m2 = (mc

2, md
2),

{a, b} = {c, d} = {t, h}

(C.06) fu = fv ∀ (u, v) ∈ Eϕ̂

(C.07) fv − fu + T xuv ≤ T + 1 ∀ (u, v) ∈
−→
Eϕ̂

(C.08) fv = 0 ∀v ∈ {ox
st | x ∈ 1..µ(s)} ∪ {ix

Sh | x ∈
1..µ(S)}

(C.09)
∑

A∈H
A[j]=m

cA[j]
v = 1 ∀ v ∈ Vϕ̂, v associated with

extremities of marker m

(C.10) cA[j]
ox

mb
1

= cA[j+1]
ix′
mc

2

∀ (ox
mb , ix′

ma ) ∈ Eϕ̂, A ∈ H ∪ H,

i ∈ 1..|A| − 1, s.t. A[j..j + 1] =
(ma

1 , mb
1)(mc

2, md
2)

(C.11) x
ix
ma ox′

mb
+ cA[j]

ix
ma

+ cA[j]
ox′

mb

≥ 3 tA[j]
ix
ma ox′

mb

∀ (ix
ma , ox′

mb ) ∈
−→
Eϕ̂, A ∈ H ∪ H,

i ∈ 1..|A|, s.t. A[j] = (ma, mb)

Domains:

(D.01) xuv ∈ {0, 1} ∀ (u, v) ∈ Eϕ̂ ∪
−→
Eϕ̂

(D.02) yv ∈ {0, 1} ∀ v ∈ Vϕ̂

(D.03) 1≤ fv ≤ T ∀ v ∈ Vϕ̂

(D.04) cA[j]
ix
ma

, cA[j]
ox

ma
, cA[j]

ix

mb
, cA[j]

ix

mb
∈ {0, 1} ∀ A ∈ H ∪ H, j ∈ 1..|A|, A[j] =

(ma, mb),
x ∈ 1..µ(m)

(D.05) tA[j]
ix
ma ox′

mb

∈ {0, 1} ∀ A ∈ H ∪ H, j ∈ 1..|A|, A[j] =
(ma, mb),
x ∈ 1..µ(m)
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Path constraints. Constraints C.05-C.08 force each component of the saturated graph to
start and end in nodes associated with source st and sink Sh, respectively, thereby ruling
out any cycles. To this end, they make use of a set of integer variables f (cf. Domain D.03)
that define an increasing flow within each saturated component that is bounded by constant
T corresponding to the total flow of the graph, i.e., T :=

∑
m∈M µ(m). In each saturated

marker edge, the flow is increased by 1 while along each adjacency edge, flow is kept constant.
This prevents the formation of saturated cycles, because their flow would be infinite. Lastly,
constraint C.08 preclude paths from starting in Sh or ending in st, leaving only one option
for any saturated component open, that is, the formation of a (st, Sh)-path.

Haplotype assignment. Each node in a solution to the ILP is associated with exactly one
position in a haplotype in H, recorded by binary variables c. Moreover, any marker edge
whose incident pair of nodes is associated with the same position of the same haplotype
corresponds to a conserved segment, i.e, no recombination within this marker has taken
place. Each marker edge corresponding to a conserved segment contributes a score unit to
the objective function. These score units are encoded by binary variables t (cf. domain
D.05). Constraint C.09 ensures that each marker is associated with exactly one position
j in a haplotype A of set H ∪H, while C.10 confines incident nodes of adjacency edges to
represent a consecutive marker pair A[j..j + 1]. At last, constraint C.11 allows t variables of
marker edges to take on value 1 only if that marker edge is saturated and its incident nodes
are associated with the same haplotype position.

By maximizing the sum over t variables, the objective minimizes the total number
of segments needed to decompose the calculated founder sequences into segments from
haplotypes H ∪H that are delimited by recombination events.

▶ Example 2 (cont’d). The following plot illustrates a matching that is solution to Algorithm 1
for GH,ϕ̂. The founder sequences are spelled out on the bottom, colored by haplotype (red,
blue and green for haplotypes 2, 3 and 4 respectively). Unsaturated nodes and edges are
grayed out, haplotype assignments implied by colored paths. The solution features two
recombinations, marked by “⋆” along their associated marker edges.

t h2t hs t h1 t h3 t h4 t hS

3 Results

We implemented our methods in the programming language Rust [14] and used Gurobi [11]
as the solver. Our software is open source and publicly available on https://github.com/
marschall-lab/hrfs. To run Algorithm 1 on a given set of haplotypes H, we estimated
the overall multiplicity ϕ̂(m1, m2) of pairs of consecutive markers m1m2 from a network flow
solution to Problem 1 on H. Note that this dispenses Algorithm 1 from being exact in our
applications.
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All experiments were run on a de.NBI cloud computing machine. For benchmarking
purposes, we ran Gurobi single-threaded and recorded wall clock time (in seconds) and
proportional set size (PSS, in Mb) for memory usage. Optimization time was capped at 30
minutes, beyond which the solver must capitulate and return its best-effort solution found
thus far. The threshold for execution time is based upon available compute resources.

3.1 Experimental Data
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Figure 2 Mean number of recombinations by the size of the graph. Experiments were ran with
values ranging from 10 to 200 in for the number of markers, in increments of 10. The ratio of
duplications and of inversions was fixed to 10%, and number of haplotypes to 10. Each colored
dot represents the mean number of recombinations over 50 replicates for one parameter set, after
random assignment trials (blue) and after optimization (red).

We benchmarked the performance of our algorithms by conducting experiments on both
simulated data and a real-world data set. The former presumed a simulator, capable of
generating haplotypes with duplicated and inverted markers that can produce intricate
homologous recombinations while providing control over the degree of complexity. To this
end, we implemented our own simulation tool, that constructs a single haplotype sequence
sampled at random to serve as seed. This seed sequence is adjustable by the following
parameters: (i) number of distinct markers, i.e., the size of its variation graph, (ii) ratio
of duplications, i.e., the number of additional edges inducing duplications in a walk of
the graph, (iii) ratio of inversions, i.e., the proportion of inverted orientations within the
set of duplications, and lastly (iv) the number of haplotypes that are input to subsequent
founder set reconstruction. The latter are generated by performing random walks in the seed
sequence’s variation graph and retaining only those leading from source to sink. In doing
so, our simulator does not report nor have knowledge of a true founder set. Our simulator,
discussed in more detail in Appendix A.1, enables us to explore various parameterizations
that match different situations in biological data.

One important point concerns co-optimality. Problems 1 and 2 do not guarantee a unique
solution. In fact, the pool of co-optimal solutions is often large for both problems. One
contributing factor to co-optimality are cycles that are shared across multiple haplotypes,
because they can be integrated in different orders. Further, the solution does not provide any
information that could enable one to generate all co-optimal solutions nor discern between
them, making a measure of accuracy challenging, since there is no guarantee that the “correct”
founder sequence(s) will be seen in any number of trials.

In addition to simulated data, we applied our methods on a biological data set from the
human 1p36.13 locus described by Porubsky et al. [21] to demonstrate their computational
capabilities in realistic instances.
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3.2 Simulation Experiments
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Figure 3 Problem 1, flow computational performance benchmarks. Runtime in seconds (upper
panels) and peak PSS in Megabytes (lower panels), as a function of the number of markers (left)
and of the ratio of duplications (right). For each experiment, the remaining parameters are fixed as
indicated above. The abbreviations read as follows: Nm, number of markers; Rd, ratio of duplications;
and Ri, ratio of inverted duplications.

To assess the impact of parameter configurations on the results, we ran a number of
different experiments wherein all but one parameters are fixed. A reasonable choice of
constants seemed to be 100 distinct markers, 10% of duplications, 10% of inversions and 10
haplotypes, motivated by our data on the 1p36.13 locus (8 markers, 68 haplotypes, 57% of
duplications) and statistics compiled by Porubsky et al. [21] (6-7% duplications in the whole
genome, <1% inversions).

Reduction in number of recombinations. To evaluate the efficacy of our solution to
Problem 2, we compared the number of recombinations returned by Algorithm 1 to that in
a solution obtained by our network flow algorithm for Problem 1. While the former is the
immediate output of Algorithm 1, additional efforts needed to be made in order to retain the
latter. In doing so, we estimate the number of recombinations in the flow solution by random
assignment of corresponding segments in the original haplotype set and taking the one with
the lowest number in 100k trials. Figure 2 summarizes the outcome of this experiment. Over
all, Algorithm 1 found a solution with fewer recombinations in all instances but a few where
Gurobi returned barely best-effort solutions after reaching the time limit of 30 minutes, all of
which exhibited a gap of at least 100%. The parameter settings in those cases were extremal.

Across all experiments and with a fixed ratio of duplications, inversions and number of
haplotypes, the mean estimated number of recombinations both in the initial founder set
and after minimization increases linearly with the number of markers, by approximately 4.2
and 2.0 per 100 markers respectively, reaching circa 10 and 3.8 for 200 markers. Results for
experiments with other variable parameters are shown in Suppl. Figure S1.
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Figure 4 Problem 2, recombinations minimization performance benchmarks. Plots analogous
to Figure 3. Runtime in seconds (upper panels) and peak PSS in Megabytes (lower panels), as a
function of the number of markers (left) and of the ratio of duplications (right). For each experiment,
the remaining parameters are fixed as indicated above. The abbreviations read as follows: Nh,
number of haplotypes; Nm, number of markers; Rd, ratio of duplications; and Ri, ratio of inverted
duplications.

Flow solution benchmark. Computing solutions with our network flow algorithm proved
to be in almost all of our experiments near-instantaneous. By varying the number of distinct
markers, the algorithm’s performance begins to deteriorate only with very large instances
beyond 100k distinct markers and becomes excruciating for instances above 1M markers.
When varying other parameters, we fixed the number of distinct markers to 100k rather
than 100. Under 100k markers, execution completes after a mean wall clock time of 3.4± 2.0
seconds. In 95% of all experiments, the solver’s runtime was too short to make sufficient
measurements for benchmarking memory usage; the maximum PSS for the remaining ones
measured at 78MB. Over the 100k mark, both the graph size and duplication ratio begin
to reduce performance, with an average runtime of 19.7± 8.7s. The ration of inversions on
the other hand does not affect performance (Suppl. Figure S3). We measured peak memory
consumption at 758MB across all conditions, which also occurred only at the very extremes
of 100k distinct markers and a 100% ratio of duplications (Figure 3).

Recombination minimization benchmark. As shown previously, Algorithm 1 successfully
reduces the number of recombinations in solutions to Problem 1. However, its runtime
increases dramatically with only moderate increments of any but one parameter of our
simulator, the ratio of inversions; it does not play any role in performance (Suppl. Figure S2).
For the remaining three, going beyond instances of 200 distinct markers, 20% of duplications,
or 40 haplotypes typically does not allow for the optimization to finish in a reasonable amount
of time (Figure 4, Suppl. Figure S2). A similar but much less pronounced trend is seen with
memory usage, which still remains relatively low. Peak memory usage was again observed at
extreme parameter values with a PSS of 1072MB with 50 haplotypes.
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3.3 Application: Locus 1p36.13

Source

Sink

Source

Sink

Figure 5 Graphical representation of the variation graph for the 1p36.13 locus data. On the left,
a 2D plot rendered by Bandage [34]. Markers are represented as numbered colored rectangles, and
the undirected edges connecting them as black curves. Markers 1 and 8 correspond respectively to
the source and the sink of the graph. The right plot shows the walk through the graph corresponding
to the sequence of haplotype AFR-NA19036-h1, a sample of African origin from our experimental
data. The sample’s sequence in the previously established notation is: 123456543273243278.

We obtained data from 68 human haplotypes (two per 34 individuals) at the 1p36.13
locus from Porubsky et al. [21] and the T2T-CHM13 human reference sequence [18]. The
sequences comprise only eight distinct markers, terminal markers included. The sequences
are attributed to five super populations, out of which 18 are of African origin (AFR), 16 of
Eastern Asian (EAS), 12 of Admixed American (AMR), 12 of European (EUR), and 10 are
South Asian (SAS). Their variation graph is densely connected with 26 edges (Figure 5). The
68 haplotypes display a high degree of genetic diversity, with haplotype sequences differing
in order, orientation, and copy number of the marker (Suppl. Table T1). Haplotype lengths
in terms of the number of markers vary from 15 to 26, with a median of 19.

Our network flow algorithm determined that the data set can be generated from a single
founder sequence. Our randomized algorithm for calculation of the minimum number of
recombinations in a solution to Problem 1 asserted 15 recombinations after 1M trials, while
Algorithm 1 obtained an optimal solution that revealed only 9 recombinations. Minimization
completed in 60.3 seconds with a peak PSS of 225MB. Note that there exists multiple other
co-optimal solutions; Suppl. Figure S4 is an illustration of one.

4 Conclusion

The advent of sequencing technology and genome assembly methodology to reconstruct
full human genomes enables research into previously inaccessible segmental duplication
loci. This exciting opportunity entails a demand for explanatory models that can infer
evolutionary relationships and histories of complex repetitive genomic regions. In this work,
we propose a model capable of explaining a broad range of balanced and unbalanced genome
rearrangements. Our experiments on simulated data and on the 1p36.13 locus demonstrate
that our algorithmic solutions to the founder set problem and the problem of minimizing
recombinations in founder sets are capable of processing realistic instances.

Importantly, the model we are proposing is based on a molecular mechanism with a
well-established role in shaping segmental duplication architecture. In our view, many past
models of genome rearrangements have not sufficiently captured biological reality and there
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is an important need for further research aiming to incorporate knowledge of molecular
mechanisms into such models. For instance, we envision future models that additionally
include mechanisms like non-homologous end joining (NHEJ) and mobile element insertions.
Furthermore, actual rates at which NAHR occurs depend on factors like the length of the
duplicated sequence, the sequence similarity, as well as the presence of specific sequence
motifs. “Hidden” in our current approach in the construction of the variation graph, we aim
to address and model these factors explicitly in future work.
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A Appendix

A.1 Methods for the Simulation Experiments
The simulation experiments were carried out with the help of a new tool developed specifically
for it. It generates a single seed haplotype, which then serves to construct a variation graph,
on which random walks from source to sink are made to generate new haplotypes. The seed
haplotype is initially a sequence of unique markers. A rate of duplications determines the
number of duplications to add. For each duplication, the marker to duplicate and the position
of insertion are sampled at random. The orientation of the duplicates is sampled according
to a ratio of inversions. Next, the seed’s variation graph is built based on its sequence,
represented as a walk through the graph. Finally, a given number of unique haplotypes is
generated by performing random walks from source to sink in the graph. Essentially, the
simulator starts from seed sequence, then generates an observable set of haplotypes and their
graph. Because the walks are random, edges not covered by any of the new haplotypes must
be pruned in order to respect the properties of a variation graph. The number of markers and
haplotypes, and the ratios of duplication and inversion are the simulation parameters. The
ratio of duplications (resp. of inversions) is defined as the ratio of the number of duplications
to the number of nodes (resp. number of inversions to the number of duplications). All
simulation experiments were carried out by running 50 simulations per parameter set, then
applying the solutions of Problems 1 and 2 over the generated graph and haplotype set. The
simulation experiments are implemented as Snakemake [15] workflows which also provide
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the benchmarking results then used for evaluation. The data and workflows for the 1p36.13
locus, as well as all simulation experiments are available in the github repository7 under the
examples directory.

A.2 Supplementary Figures and Tables
In the following figures, for each of the simulation experiments, performance is measured
with regards to a range of values of a single parameter. All others are fixed to a constant
value indicated above the given plot. They are labeled as follows: Nm, number of markers;
Nh, number of haplotypes; Rd, ratio of duplications; and Ri, ratio of inverted duplications.
Runtime is measured in seconds of wall clock time, and peak memory usage as the peak
proportional set size (PSS) in Megabytes.
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Figure S1 Reduction in the number of recombinations following minimization. The plots show the
total number of recombinations before (blue dots) and after (red dots) minimization, as a function
of each simulation parameter.

7 https://github.com/marschall-lab/hrfs
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Table T1 Haplotype marker sequences used in the 1p36.13 locus analysis, sorted alphabetically.
The haplotype labeled CHM13 is the provided reference. The sequences are in GFA Path format,
where > corresponds to traversal in forward direction, and < in reverse direction.

Haplotype Oriented marker sequence
CHM13 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
AFR-HG02011-h1 >1>2>3>4>2>3>4<6<5<4<3<2<4<3<2>7>8
AFR-HG02011-h2 >1>2>3<7<6>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-HG02587-h1 >1>2>3>4>2>3>4<6<4<3<2>6<5<4<3<2<4<3<2>7>8
AFR-HG02587-h2 >1>2>3>4>2>3<7<6>2>3>4>5<6<5<4<3<2>7>8
AFR-HG03065-h1 >1>2>3>4>5<6>3>4>5>6<4<3<2<4<3>6<4<3<2>7>8
AFR-HG03065-h2 >1>2>3>4>2>3<7>3>4>6<4<3<2<4<3>6<4<3<2>7>8
AFR-HG03371-h1 >1>2>3>4>2>3>4<6>3>4>5<6<4<3<2>6<4<3<2<4<3<2>7>8
AFR-HG03371-h2 >1>2>3>4>2>3<7>3>4>5>6<5<4<3<4<3<2>7>8
AFR-NA19036-h1 >1>2>3<4>5>6<5<4<3<2>7<3<2<4<3<2>7>8
AFR-NA19036-h2 >1>2>3<7>3>4>5>6<4<3<2<4<3>6<4<3<2>7>8
AFR-NA19238-h1 >1>2>3>4>2>3>4<6<4<3<2>6<5<4<3<2<4<3<2>7>8
AFR-NA19238-h2 >1>2>3>4>5<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19239-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AFR-NA19239-h2 >1>2>3>4>2>3>4>2>3<7<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19240-h1 >1>2>3>4>5<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19240-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AFR-NA19983-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7<3<2>7>8
AFR-NA19983-h2 >1>2>3>4>2>3>4<6>2>3>4>5<6>2>3>4>6<5<4<3<2<4<3<2>7>8
AMR-GM19650-h1 >1>2>3>4>5<6<5<4<3<2<4<3<2>7<3<2<4<3<2>7>8
AMR-GM19650-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>7<3<2<4<3<2>7>8
AMR-HG00731-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AMR-HG00731-h2 >1>2>3<7>2>3>4>5<6<5<4<3<2>6<4<3<2>7>8
AMR-HG00732-h1 >1>2>3>4>5>6<4<3<2>6<5<4<3<2>7>8
AMR-HG00732-h2 >1>2>3>4>2>3>4>2>3>4>5>6<5<4<3<2<4<3<2>7>8
AMR-HG00733-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AMR-HG00733-h2 >1>2>3>4>5>6<4<3<2>6<5<4<3<2>7>8
AMR-HG01114-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
AMR-HG01114-h2 >1>2>3>4>2>3>4>5<6<5<4<3<2>6<5<4<3<2>7>8
AMR-HG01573-h1 >1>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
AMR-HG01573-h2 >1>2>3<7>2>3>4>5<4<3<2<5<4<3<2>7>8
EAS-GM00864-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-GM00864-h2 >1>2>3>4>2>3>4>5>6<5<5<5<4<3<2>7>8
EAS-GM18939-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-GM18939-h2 >1>2>3<7>2>3>4>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00512-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00512-h2 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
EAS-HG00513-h1 >1>2>3<7>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00513-h2 >1>2>3<7>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00514-h1 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
EAS-HG00514-h2 >1>2>3<7>2>3>4>5>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG01596-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
EAS-HG01596-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG02018-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG02018-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-NA18534-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-NA18534-h2 >1>2>3>4>5>2>3>4>5<6<5<4<3<2>6<5<4<3<2>7>8
EUR-GM12329-h1 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-GM12329-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
EUR-GM20509-h1 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-GM20509-h2 >1>2>3<7<6>2>3>4>5>6<5<4<3<2>6>7<3<2<4<3<2>7>8
EUR-HG00096-h1 >1>2>3<7>2>3>4>5<6<5<4<3<2>6<4<3<2>7>8
EUR-HG00096-h2 >1>2>3>4>5>2>3>4<6<5<4<3<2>7>8
EUR-HG00171-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-HG00171-h2 >1>2>3<7>5>2>3>4>5>2>3>4>6<5<4<3<2>7>8
EUR-HG01505-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-HG01505-h2 >1>2>3>4>2>3>4>5>2>3>4>5<6<5<4<3<2>7>8
EUR-NA12878-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
EUR-NA12878-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2>7>8
SAS-GM20847-h1 >1>2>3>4>5<6<5<4<3<2>6<5<4<3<2>6<5<4<3<2>7>8
SAS-GM20847-h2 >1>2>3>4>2>3>4>5>6<5<5<4<3<2>6<4<3<2>7>8
SAS-HG02492-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
SAS-HG02492-h2 >1>2>3>4>2>3>4>2>3>4>5>6<4<3<2>6<5<4<3<2<4<3<2>7>8
SAS-HG03009-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
SAS-HG03009-h2 >1>2>3>4>5>2>3>4>5<6<5<4<3<2>7>8
SAS-HG03683-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
SAS-HG03683-h2 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
SAS-HG03732-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
SAS-HG03732-h2 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
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Figure S2 Number of recombinations minimization benchmarks. Runtime (upper panels) and
peak PSS (lower panels) as a function of the number of haplotypes (left) and the ratio of inverted
duplications (right).
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1 2 3 4 5 6 7 8

Figure S4 Visualization of a solution to the minimization problem on the 1p36.13 lo-
cus. The gray bars correspond to the graph’s nodes, labeled 1 to 8. The founder sequence
(>1>2>3<7>5>2>3<4>5>5<6<4<3>7<3<2<4>5>6<5>4<5<4<3<2>7<3>6>7<3<4<3<2>6<4>3>2>7>8) is
traced from top to bottom. A slanted line indicates the underlying node being traversed; if
slanted rightwards, traversal is in forward direction, and if slanted leftwards, traversal is in reverse
direction. Colors correspond to different haplotypes. The haplotype sequence is: EUR-HG00171-h2,
AFR-NA19036-h1, SAS-GM20847-h2, AFR-HG03065-h2, AFR-NA19036-h1, AFR-NA19036-h1,
AMR-HG01573-h2, AFR-HG02011-h2, AFR-HG03371-h2, SAS-HG03683-h2. Recombinations are
marked with a star.
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