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—— Abstract
We study zombies and survivor, a variant of the game of cops and robber on graphs. In this variant,
the single survivor plays the role of the robber and attempts to escape from the zombies that play
the role of the cops. The zombies are restricted, on their turn, to always follow an edge of a shortest
path towards the survivor. Let z(G) be the smallest number of zombies required to catch the
survivor on a graph G with n vertices. We show that there exist outerplanar graphs and visibility
graphs of simple polygons such that z(G) = ©(n). We also show that there exist maximum-degree-3
outerplanar graphs such that z(G) = Q (n/log(n)).

Let zr(G) be the smallest number of lazy zombies (zombies that can stay still on their turn)
required to catch the survivor on a graph G. We show that lazy zombies are more powerful than
normal zombies but less powerful than cops. We prove that zr(G) < 2 for connected outerplanar
graphs and this bound is tight in the worst case. We show that z1(G) < k for connected graphs
with treedepth k. This result implies that zz(G) is at most (k + 1) logn for connected graphs with
treewidth k, O(y/n) for connected planar graphs, O(,/gn) for connected graphs with genus g and
O(h\/ﬁ) for connected graphs with any excluded h-vertex minor. Our results on lazy zombies still
hold when an adversary chooses the initial positions of the zombies.
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1 Introduction

The game of cops and robber was first introduced by Quillot in his doctoral thesis [21] and
then independently by Nowakowski and Winkler [20]. In this pursuit-evasion game, a set of
cops move along the edges of a connected and undirected graph G to catch a robber that
is also moving along the edges of G. At the beginning, each cop chooses a starting vertex
(multiple cops can occupy the same vertex). Then the robber chooses a starting vertex. From
there, when it is the cops’ turn to play, each cop decides either to stay still or to move to
an adjacent vertex. When it is the robber’s turn to play, the robber decides either to stay
still or to move to an adjacent vertex. (In the classical version of the game, the cops and
the robber are aware of each others’ locations at all times.) If at least one cop shares a
vertex with the robber, then the cops win. However, if the robber indefinitely avoids capture,
then the robber wins. The cop number of a graph G, denoted as ¢(G), is the minimum
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number of cops required to catch the robber on GG. Cops and robber has been studied on
several classes of graphs and many variants have been studied where cops are given different
restrictions or abilities (see [6] for an overview of the area). Meyniel conjectured that in
general, ¢(G) = O(y/n).

Zombies and Survivor is a variant of the game of Cops and Robber. The deterministic
version of Zombies and Survivor was first introduced by Fitzpatrick et al. [13]. In this
game, each cop (thought of as a zombie) is restricted to move along an edge incident to its
current position and belonging to a shortest path to the robber (thought of as the survivor).
Moreover, the zombie is active, in the sense that it must move on its turn. If there is more
than one shortest path between a given zombie and the survivor, the zombie can choose which
path to follow. Since the zombies are active, the starting configuration of the zombies actually
plays a role in determining whether a survivor is caught. For example, if several zombies are
placed on the same vertex in a cycle with more than 4 vertices, then they will never catch a
survivor. However, 2 zombies can be strategically placed in order to always catch a survivor
on such a cycle. As such, we define two types of zombie number, one where the zombies are
strategically placed and the other where an adversary determines the initial position of the
zombies. The zombie number z(G) of a graph G is then defined as the minimum number
of zombies required to catch the survivor on G, and the universal zombie number u(G) is
defined as the minimum number of zombies required to catch the survivor when the starting
configuration of the zombies is determined by an adversary. The above example shows that
z(G) = 2 and u(G) = oo when G is a cycle on more than 4 vertices. Since a cop has more
power than a zombie, we have ¢(G) < 2(G) < u(G). From this observation, we get that
zombie-win graphs are also cop-win graphs.

In their paper, Fitzpatrick et al. [13] provide an example showing that if a graph is
cop-win, then it is not necessarily zombie-win. They provide a sufficient condition for a
graph to be zombie-win. They also establish several results about the zombie number of the
Cartesian product of graphs.

The main aspect that makes different variants of these pursuit-evasion problems quite
challenging is the fact that the cop number and zombie number is not a monotonic property
with respect to subgraphs. For example, both the cop number and zombie number of a clique
is 1 but the cop number and zombie number of a cycle on more than 3 vertices is 2.

1.1 Contributions

In this paper, we first consider the deterministic version of Zombies and Survivor. We then
turn our attention to a deterministic variant which we call Lazy Zombies and Survivor. In this
variant, a zombie does not need to move on its turn. The lazy zombie number z1,(G) of a graph
G is therefore defined as the minimum number of lazy zombies required to catch the survivor
on G. The universal lazy zombie number of a graph G, denoted u,(G), denotes the minimum
number of lazy zombies required to catch the survivor on GG, when the starting positions of
the lazy zombies are chosen by an adversary. Observe that ¢(G) < z(G) < ur(G).

We show that there exist outerplanar graphs and 2-connected outerplanar graphs G with
n vertices such that z(G)/c(G) = Q(n). This improves upon a result of Bartier et al. [4] who
showed that this ratio is z2(G)/c(G) = Q(logn) for outerplanar graphs. We also show that
there exist maximum-degree-3 outerplanar graphs G such that z(G)/c(G) = Q (n/log(n))
and there exist simple polygons whose visibility graph G is such that z(G)/c(G) = Q(n).

Then, we show that lazy zombies are more powerful than plain zombies and less powerful
than cops. Indeed, we prove that 2 lazy zombies always win (in less than 2n rounds) on
outerplanar graphs. However, we show that there exist graphs of treewidth 2 that require
3 lazy zombies, whereas 2 cops are sufficient. We then show that k lazy zombies win after
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Table 1 Summary of zombie, (universal) lazy zombie, and cop numbers. The column “zombies”

shows lower bounds on the zombie number. The other two columns show upper bounds. The upper
bound on the cop number for h-vertex excluded minors is for connected excluded minors.

H zombies ‘ (universal) lazy zombies ‘ cops ‘
outerplanar || ©(n) (Thm. 1) 2 (Thm. 6) 2 ([9])
planar || ©(n) (Thm. 1) O(y/n) (Cor. 14) 3 ([1])
genus g || ©(n) (Thm. 1) O(y/gn) (Cor. 14) + 2] ([23
treedepth k || ©(n) (Thm. 1) k (Cor. 10, Thm. 11) (k/?) +1 (1 ])
treewidth &k || ©(n) (Thm. 1) | (k+ 1)logn (Cor. 10, Lem. 12) (k/2) +1 ([16])
fovertex |l o) (Thm. 1) O(hv/hn) (Cor. 14) Lh—1)(h—2) ([3])

excl. minor

O(n?*) rounds on graphs with treedepth k. Finally, we highlight a few implications stemming
from this upper bound such as (k 4+ 1) logn lazy zombies win on graphs with treewidth &,
O(y/n) lazy zombies are always sufficient to win on planar graphs, O(,/gn) lazy zombies
win on graphs with genus g and O(hv/hn) lazy zombies win on all connected graphs G with
any excluded h-vertex minor H. Our upper bounds on lazy zombie numbers still hold for
universal lazy zombies. These results are summarized in Table 1. Further details together
with missing proofs can be found in the full version of the paper [7].

2 Preliminaries and Notation

Let G be a simple and undirected graph with vertex set V(G) and edge set E(G). Throughout
this paper n will be used for |V (G)|. Given a subset S C V(G), we denote the graph induced
by S as G[S]. Given two vertices u and v in V(G), we denote the shortest path from u
to v as mg(u,v) and its length! as dg(u,v). If there is no path from u to v, then the
length of the path is infinite. The diameter of a connected graph G, denoted as diam(G), is
max{dg(u,v) : u,v € V(G)}.

Recall that ¢(G) is the cop number of G, z(G) (resp. u(G)) is the zombie number of
G (resp. universal zombie number) and z1,(G) (resp. ur(G)) is the lazy zombie number of
G (resp. universal lazy zombie number). If G is disconnected, then the cop (resp. zombie,
lazy zombie) number of G is simply equal to the sum of the cop (resp. zombie, lazy zombie)
numbers of its connected components. Therefore, in this paper, we assume that G is
connected.

In their paper, Fitzpatrick et al. [13, Figure 5] provide an example of a graph with zombie
number 1, where the zombie has to start on a specific vertex to win, which is an example where
z(G) =1 and u(G) = co. As alluded to in the introduction, lazy zombies are more powerful
than normal zombies and less so than cops. Thus, we observe that ¢(G) < z1(G) < z(G).

All the pursuit-evasion games we describe in this paper consist of a sequence of rounds,
each of which consists of two turns. For each round ¢ > 0, the zombies play first (zombies’
turn) and then the survivor plays (survivor’s turn). In round 0, during the zombies’ turn,
the zombies choose their starting position (or an adversary assigns one to them), and then,
during the survivor’s turn, the survivor chooses its starting position. Then the zombies move
(or wait if the version of the game allows them to) and the survivor moves (or waits if they
decide to) in the subsequent rounds.

1 The length of the shortest path is the number of edges on the path.
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When stating results about (universal) (lazy) zombie numbers, we sometimes use asymp-
totic notation. In this notation, lower-bound asymptotics (2 or ©) will be a lower bound
on the maximum-valued graph of the given class. For instance, “for outerplanar graphs
G, z(G) € ©(n)” means not only is the zombie number at most some constant times n for
every outerplanar graph, but also the zombie number is at least some constant times n for
some family of outerplanar graphs. Throughout the paper, unless specified, the base of the
logarithmic function log(-) is 2.

3 Linear bound on zombie number

In their paper, Fitzpatrick et al. ask how large the ratio z2(G)/c(G) can be [13, Question 19];
they note that they have not observed any graph with a ratio that exceeds 2. Here we show
that this ratio can be infinite and of size {2(n), and we show this even for outerplanar graphs
of fixed radius. In independent work, Bartier et al. showed that this ratio can be infinite and
of size Q(logn), for outerplanar graphs [4].

» Theorem 1. Let k > 2 be an integer. Then there is a connected outerplanar graph Gy,
with 23k + 1 vertices that requires at least k zombies.

Proof. Let H be the 23-vertex graph shown in Figure la. H has two distinguished vertices
s and t. To form the graph G, first take k disjoint copies Hq, Hs, ..., Hy of H, with H;
having distinguished vertices s; and t;; to this add a vertex c that is connected to each s;
and each t; (see Figure 1b).

(a) (b) (©)

Figure 1 Construction of an outerplanar graph requiring a linear number of zombies. (a) The
component graph H. (b) Connecting components into the graph G. (¢) Each vertex of some H;
labelled with its distance to c.

By construction, G has 23k + 1 vertices. Suppose that k — 1 or fewer zombies play on
G}. This mean that in round 0 there is some copy H; of H that contains no zombie; the
survivor chooses the vertex adjacent to s; in H; as its starting position, and will stay in H;
forever.
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Each zombie will therefore first take a shortest path to ¢ from wherever it starts, as this
is the only way to get to H;. Consider the time unit on which a zombie reaches ¢; this can be
anywhere from 0 to 9, as the zombie could start on ¢, and 9 is the radius of Gy, (and ¢ is the
center). See Figure lc. At one time unit later, the zombie will move to s; or ¢;, whichever is
closer to the survivor. We call this time the arrival time of the zombie; arrival times are all
between 1 and 10, inclusive.

The survivor’s strategy is to walk in H; away from s; until it reaches a vertex of degree
three. At this point they walk along the 13-cycle in H;, starting in the direction of the vertex
of degree two. They continue walking this cycle forever.

The zombies will arrive on s; if their arrival time is at most five, as this is the closest
vertex to the survivor at this time. These zombies will follow the survivor’s path. If a zombie
has arrival time six or more, it arrives on ¢;. These zombies will pursue the survivor by first
walking to the 13-cycle and then following the survivor around it.

Therefore, since k — 1 zombies are insufficient to capture the survivor on Gy, at least k
are required and the lemma is proved. <

Note that a linear number of zombies always suffices for a graph, as we could use n zombies
and initially place one on each vertex (or perhaps leave one free for the survivor). Thus we
have shown that for general or for outerplanar graphs, z(G) € ©(n). Since the cop number
for outerplanar graphs is at most two 2, the ratio z(Gy)/c(Gy) is k/2 = (n — 1)/46 € O(n).

Modifications of the construction in the proof of Theorem 1 work for other graph classes,
as illustrated by the following theorems.

» Theorem 2. Let k > 2 be an integer. There is a 2-connected outerplanar graph Gy with
30k + 1 wvertices that requires at least k zombies.

» Theorem 3. Let k > 2 be an integer. There is a connected graph Gy, with 15k vertices
that requires at least k zombies.

» Theorem 4. Let k > 2 be an integer. There is a mazximum-degree-3 connected outerplanar
graph Gy, with at most 25k + 16k[log k| — 1 vertices that requires at least k zombies.

Theorem 4 gives us n € O(klogk), or n < cklogk for some constant c¢. Hence, we have
e < Toag S ¢k, or k> ——. Since k zombies are required, this gives us a lower bound of
ogn ogk clogn )

Q(logn) on the zombie number of bounded-degree graphs.

3.1 Polygon visibility graphs

A polygonal chain is a finite sequence V of points v, vs, ..., v, in R? (called wertices) along
with the line segments vive, vovs, ..., v,—10, (called edges). A polygonal chain is called
closed if v1 = v,, and simple if no two edges intersect except consecutive edges intersecting at
their common vertex. A closed simple polygonal chain divides the plane into a finite interior
and infinite exterior. A simple polygon, or simply polygon, is a closed simple polygonal chain
along with its interior.

The wisibility graph of a simple polygon P [10, 18] is a graph G where V(G) is the set of
vertices of the polygon, and

E(GQ) = {(vi, vj) | the segment v;v; does not intersect the exterior of P}.

In particular, this means that every edge of the polygon is an edge of the visibility graph,
but the visibility graph has other edges corresponding to segments that traverse the interior
and possibly boundary of P. Visibility graphs are of interest in discrete geometry and have
applications, for instance, in motion planning and shape analysis [8, 10].
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(a) A graph fragment for proving (b) An embedding of the graph fragment in the visibility graph of
lower bounds. a polygon fragment.

Figure 2 Creation of a polygon fragment to prove a lower bound.
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Figure 3 The polygon fragment Q. Note that at this scale, the dots for the vertex-pair (4,43)
merge into what can appear to be a single dot. This also happens for (k, k3) and (m, m3).

Here we show that there is a linear bound on the zombie number of visibility graphs.
The proof is messy in that it involves a large polygonal chain with relatively precise vertex
locations in order to get a visibility graph with the desired properties. However, it is inspired
by the proof of Theorem 1. Consider the graph fragment in Figure 2a. One way to embed
this graph inside a polygon visibility graph is sketched in Figure 2b. Complicating matters
is that we cannot get the required non-edges without placing vertices inbetween those shown
in Figure 2b. Once those non-visibilities are worked out, we get the polygon fragment @
shown in Figure 3. For reproducibility, the exact vertex locations of @) are given in the full
version of the paper [7].

To form a polygon whose visibility graph requires at least k zombies, we will connect
k copies of ), denoted Q)1,Q2,...,Qk, placed in a geometric configuration where the only
vertices of Q; visible to Q; are s; (the copy of s in @;) and ¢; (similar). Thus S, the collection
of all s;’s and t;’s, will form a clique in the visibility graph. This is done by taking a small
sliver of a circular arc and placing the 2k vertices of S evenly along it. If the sliver is small
enough, any vertices inside @; \ S will see only the relative interior of the polygon edge
trs1. (Another method of ensuring this is to scale each @Q; up in its z-coordinate, effectively
pushing interior vertices away from s;¢;. Such a scaling operation does not affect the visibility
graph of Q;.)

The proof that this polygon has zombie number £ now roughly follows that of Theorem 1.
Suppose that less than k suffices. Then, in the zombies’ initial placement, there will be one
copy of @, say @, that has no zombies in it. Start with the survivor on vertex a of @; (refer
to Figure 2a for the labelling of the vertices).
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@ is constructed so that it takes at most 6 turns for a zombie to leave the fragment (or 5
turns at most to get to s or t). This means that if the survivor stays in @; for 6 turns (it
will), all zombies will have arrived in @;. The survivor’s strategy will be to walk from a to b,
toc,tod, e, g, h, i, 7, k, I, m, and f. Unlike in Theorem 1, the survivor cannot now loop
back to e (they might be caught by a zombie) but must instead move to ¢ = ¢;. Once at t;,
the survivor chooses some s; where ¢ # j, and moves there. Next they can move to a; and
start the same walk in @); as it did in @;. It may continue in this way ad infinitum.

Since @ has 69 vertices, we have shown the following.

» Theorem 5. Let k > 2 be an integer. Then there is a polygon Py with 69k vertices whose
visibility graph requires at least k zombies.

A linear number of zombies will always work (e.g. n/3 of them starting on every third
vertex), so the maximum zombie number of the visibility graph of a polygon with n vertices
is ©(n).

There is a related problem that asks for the zombie number of a point-visibility graph of a
polygon, which is the infinite graph G where V(G) is taken to be the points of the polygon,
not simply the vertices. Edges are then defined as in the visibility graph. This problem
involves more geometry than the other problems we have studied. Here it is not clear that
there are polygons with a point-visibility graph zombie number higher than one.

4 The Lazy Zombie Number of Outerplanar Graphs is 2

In the previous section, we showed that Q(n) zombies are sometimes necessary to catch a
survivor on an outerplanar graph. In this section, we show that 2 lazy zombies are always
sufficient to catch the survivor on outerplanar graphs. Observe that two lazy zombies are
sometimes necessary to catch a survivor on an outerplanar graph since a single lazy zombie
cannot win on a 4-cycle.

» Theorem 6. Let G be a connected outerplanar graph. Then z1,(G) < 2 and 2 lazy zombies
can catch the survivor in less than 2n rounds. This bound is tight in the worst case.

Proof. We only present a proof sketch.

We first modify G by replicating cut vertices and cut edges, and adding chords, so as to
make it 2-connected. We start one lazy zombie, the stationary lazy zombie, on the end b; of
a chord b;b;. This lazy zombie will capture the survivor if the survivor moves to b; or b; but
otherwise will not move. We refer to the vertices of G where the survivor is known to be
restricted as the survivor territory. The other lazy zombie (denoted z3), the advancing lazy
zombie, also starts at b;.

Basically, on each turn, the advancing lazy zombie moves along the outerface towards the
survivor. Suppose that at some turn, this lazy zombie is at the boundary of survivor territory
at a vertex b; which is on a chord b;b;. Assume by symmetry that b; is counterclockwise
of b; and clockwise of b; (See Figure 4a). Then, if the survivor is counterclockwise from b;
to by (in S\ S’ in the figure), we switch the roles of the lazy zombies, with a lazy zombie
stationary on b;bg, and we have reduced the survivor territory. On the other hand, if the
survivor is counterclockwise from by to b; (in S in the figure), the advancing lazy zombie
moves to b, reducing the survivor territory (to S’). At no point will there be a chord from
the survivor territory to the chain from b; counterclockwise to b;.

Since each step of the advancing lazy zombie into the survivor territory reduces the
survivor territory, and no lazy zombie repeats a move to a vertex, the survivor will be
captured in at most 2n rounds. <
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(a) The advancing lazy zombie is on a vertex by with (b) An example of a treewidth-2 graph G with
a chord (or null chord) whose other end is in S. zp(G) > 2.

Figure 4

» Corollary 7. Let G be a connected outerplanar graph. Then ur(G) < 2. This bound is
tight in the worst case.

Outerplanar graphs are a subset of the treewidth-2 graphs, but Theorem 6 cannot be
generalized to treewidth-2. Figure 4b shows a graph with treewidth two that requires three
lazy zombies. This example shows a distinction between the lazy zombie number and the
cop number of a graph since 2 cops are sufficient for a graph of treewidth 2 [16]. We will
study general treewidth-k graphs in Section 5.

5 Cut-decomposable Graphs and Lazy Zombies

In this section, we explore the relationship between lazy zombie numbers and various graph
parameters. We first define some of these graph parameters and some notation most of which
appears in Diestel [11]. We then present the general approach, and finally, we outline some
of the consequences of our approach.

Let T be a tree rooted at a vertex r. For a vertex v € V(T'), we denote the unique path
from v to r as wr(v). The depth of v, dr(v) := dr(v,r), is the length of the path from
v to r. If a vertex u € V(T) is in mr(v) then u is an ancestor of v and v is a descendant
of u. Note that v is an ancestor and descendant of itself. The height of T is defined as
Hyp := max{dr(v) : v € V(T)}. The subtree of T rooted at v is denoted as Ar(v). The
height of Ar(v) is defined as Hr(v) := max{dr(z) — dr(v) : * € Ar(v)}. The closure of T,
denoted as clos(T'), is T'U {uv : u is an ancestor of v in T'}. The treedepth of a connected
graph G, which we denote as td(G), is 1 plus the minimum height Hr over all trees T' defined
on V(G) such that G C clos(T).

A tree decomposition of a graph G is a pair (T,B) where T is a tree and B = {B, C
V(G):x € V(T)}, where each B, is a subset of V(G) indexed by the nodes of T. The set
B, is sometimes referred to as a bag. The following properties must be satisfied:

For every v € V(G), {x € V(T) : v € B, } induces a non-empty subtree of T

For every uv € E(G), 3z € V(T) such that « and v are both in B,.

The width of a tree decomposition is 1 less than the cardinality of the largest bag. The
treewidth of a graph G, which we denote as tw(G), is the minimum width over all tree
decompositions of G.

A cut decomposition of a graph G is a pair (X,C) where X is a rooted tree and C =
{C; CV(G) : z € V(X)}, where each C, is a subset of V(G) indexed by the nodes of X.
The following properties must be satisfied:
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For every v € V(G), there is a unique x € V(X) such that v € C,.

For every wv € E(G), Jz,y € V(X) such that v € Cy, v € Cy and z is an ancestor of y

in X.

For each non-leaf node y € X, Cy is a cut-set of G[Y] where Y =, (y) Ca-
We will refer to the set C, as the container of x to avoid confusion with a bag of a tree
decomposition. We will refer to the size of the largest container as the width of the cut
decomposition tree, denoted as cdw(X).

Throughout this section, we will assume that (X,C) is a cut decomposition of a graph
G where |V(G)| = n. We will refer to X as a cut decomposition tree. We will refer to the
vertices of G as vertices and the vertices of X as nodes, in an attempt to make the distinction
clear. We will use u, v to refer to vertices of G and z,y to refer to nodes in X (or nodes in
a tree decomposition). For a node y € X, we define the component of y to be G[Y] where

Y = U,eay(y) Co- We slightly abuse notation and refer to the component of y as G[Ax (y)]-

Intuitively, a cut decomposition tree is a decomposition of a graph by cuts where an internal
node z of the tree X represents a cut set of the graph G[Ax(z)]. The container of the root
of the tree contains either the entire vertex set of G, or the vertices of a cut set of G. If it
contains a cut, then the children of the root recursively correspond to the different connected
components of the graph that result when the cut is removed. Cut decompositions are related
to both tree decompositions and treedepth (see Lemma 12).

We define the load of a node z in X as:

|Cyl if x is a leaf,
»| + max, load(y) otherwise, where y is a child of z.
C , load herwise, where y is a child of

load(z) = {

The load of a cut decomposition is defined as the load of the root of the cut decomposition
tree. We define the load of a graph G, denoted as load(G), to be the minimum load among
all cut decompositions of G. We will show that load(G) is a sufficient number of lazy zombies
to catch a survivor in G. We define time(x), where 2 € X, to help us bound the number of
rounds it takes for the lazy zombies to capture the survivor.

time(z) = |Ca|(diam(G) = 1) +1 if x is a leaf,
| max, time(y)(|C,|(diam(G) — 1) +1) otherwise, where y is a child of x.

The time of the root is an upper bound on the number of rounds it takes the lazy zombies to
capture the survivor.

In the following, each lazy zombie z; may be assigned to a vertex v of G. The strategy of
the lazy zombie will be the following. If the lazy zombie is not assigned to any vertex, then
on its turn to move, it remains at its current location. A lazy zombie assigned to a vertex v
has the following behavior: on its turn, it moves off its current vertex u to an adjacent vertex
w only if there exists a w that is closer to both v and the survivor. This is precisely where
we use the power of a lazy zombie to stand still where regular zombies cannot. Because a
shortest path from z;’s location to v has at most diam(G) edges, the survivor can encounter
vertex v at most diam(G) — 1 times (at or after the time z; was assigned to v) without being
immediately caught. Lazy zombies can and will be reassigned to different vertices during the
game.

We proceed by induction. The following lemma establishes the basis.

» Lemma 8. Let G be a connected graph with cut decomposition (X,C). Suppose that the
survivor is restricted to the vertices of G[Cy| for some leaf x in X. Then, load(x) lazy
zombies, starting from anywhere in G, can capture the survivor in at most time(x) rounds.
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» Theorem 9. Let G be a connected graph with cut decomposition (X,C). Suppose that x is
a node of X and the survivor is restricted to the vertices in G[Ax(x)]. Then, load(z) lazy
zombies, starting from anywhere in G, can capture the survivor in at most time(x) rounds.

Proof. We prove the theorem by induction on Hx (z), the height of Ax(z). The basis for
the induction, Hx (z) = 0, i.e. when z is a leaf, follows from Lemma 8.

We assume that load(x) lazy zombies are sufficient to catch the survivor in time(z) rounds
when the survivor is restricted to G[Ax (z)], where Hx(z) < k for k > 0. We now proceed
with the case when Hx(xz) = k 4+ 1. Let ¢ be the maximum load of a child of z, and d be
the maximum time for a child of . We allocate lazy zombies 21, z2, . .., 2z, to the children of
x. These lazy zombies are initially unassigned to any specific vertex but will be assigned to
specific vertices depending on the survivor’s moves. Note that it is not necessarily the case
that we need to use this many lazy zombies, but this number is always sufficient. We assign
lazy zombies zcy1,2c12,- -, 2c4|c,|, €ach to a different vertex of C,, respectively. Since
load(z) = |Cy| + ¢, we have a sufficient number of lazy zombies.

The survivor may now encounter each vertex of C, at most (diam(G) — 1) times without
immediately being caught in the next round, which again follows from the upper bound of
diam(G) edges on any shortest path between two vertices in G. Before the survivor’s first
encounter with a vertex of C, or between successive visits of vertices in C,, or after the
last visit, the survivor is restricted to the vertices of the component of the subtree rooted at
exactly one child y of . This follows from the fact that C, is a cut set for G[Ax(x)]. We
apply the inductive hypothesis on G[Ax(y)], since Hx(y) < k. By the inductive hypothesis,
we know that the survivor is caught after time(y) rounds if the survivor remains in G[Ax (y)].
Therefore, the survivor must leave G[Ax (y)] after time(y) — 1 < d — 1 steps, otherwise it is
caught.

Each time it enters one of these subtrees, we assign the lazy zombies 21,25, ...,z to
(specific) vertices in that subtree’s component. Since ¢ is the maximum load of any child of
x, we have a sufficient number of lazy zombies. By the inductive hypothesis, this number of
lazy zombies suffices to either catch the survivor if the survivor remains in the component
for d steps or force the survivor out of the component of a child of z and back into C,, in at
most d — 1 steps.

The survivor’s walk length is therefore at most (|Cy|(diam(G) — 1) + 1) + (d — 1)x
(|ICx|(diam(G) — 1) + 1). The first term is the number of rounds the survivor can spend in
C, until it is caught. For the second term, we note that the survivor can enter G[Ax (y)]
where y is a child of z at most (|C,|(diam(G) — 1) + 1) times. Each time it enters G[Ax (y)]
it must return to a vertex in C, in d — 1 rounds, otherwise the survivor is caught on the dth
round. Therefore, we have that the survivor is caught after (|C,|(diam(G) — 1) + 1) + (d —
1)(|Ce|(diam(G) — 1) + 1) < d((|C;|(diam(G) — 1)) + 1) = time(z). <

Among all cut decomposition trees realizing the load of G, we denote the value of the
minimum height of such a tree by c¢dh(G). Among all cut decomposition trees whose load is
load(G) and whose height is ¢dh(G), we denote the value of the minimum width among all
such trees by cdw(G).

» Corollary 10. Given a connected graph G, ur(G) < load(G) and load(G) lazy zombies can
catch the survivor in at most (cdw(G)(diam(G) — 1) 4 1)°d(E+1 roynds.

Proof. We only present a proof sketch.

Let X be a cut decomposition tree with root r, with load Ioad(G), with height cdh(G)
and with width ¢dw(G). Theorem 9 implies that uy (G) < load(G). Using Theorem 9 and the
recursive definition of time, we show by induction that time(r) is at most (cdw(G)(diam(G) —
1) + l)cdh(G)nLl' <
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Recall that td(G) denotes the treedepth of G.
» Theorem 11. For any connected graph G, load(G) = td(G)

For 0 < a<1,acutset SCV(G) of G is an a-separator if every connected component
of G[V(G) — S] contains at most an vertices. The size of the a-separator is the cardinality
of S. We highlight the relationship between the sizes of separators, treedepth, and treewidth.

» Lemma 12. Let G be a graph. Let sg : {1,...,n} — N be a function defined as

N . . . 1
sq(i) = AQV{IGI?:X‘A‘Simln{|S| : S is a 3-separator of G[A]}.

Then sg(n) < load(G) = td(G) < Y218 sa(n/2%) < (tw(G) + 1) log n.

Proof. The inequality sq(n) < td(G) < 18" s¢(n/2%) is proven in Lemma 6.6 in [19)].
Since it was shown by Robertson and Seymour [22] that sg (i) < tw(G) + 1 for all ¢ € [1,n],
we have that 321%" s¢(n/2%) < (tw(G) + 1) log n. The equality load(G) = td(G) is proven in
Theorem 11. <

sg(n) is sometimes called the separation number of G. The bound in Lemma 12 is
tight in certain cases. For example, the treewidth of a path on n vertices is 1 whereas the
treedepth is ©(logn). However, for certain classes of graphs, we can remove the logn term
on the upper bound in Lemma 12. Essentially, if s¢(n/2%) < csg(n)/2¢ for some constant c,
then 318%™ s¢(n/2%) < csq(n) 128" 1/2 < 2esa(n) < 2¢(tw(G) + 1). Thus, we have that
td(G) is O(tw(G)) in this case. Informally, this happens when the size of a separator for any
subgraph of size i is at most ¢, for 0 < € < 1. This is summarized by the following:

» Corollary 13 (Corollary 6.2 in [19]). Let 0 < oo < 1, let ¢ > 0 be a constant and let G be a
hereditary class of graphs such that every G € G with n vertices has tw(G) < en®, then every
G € G has td(G) <

C «
ool -

Treewidth, treedepth and separators are well-studied graph parameters. We highlight
a few of the implications of our bound that ur(G) < td(G). The interested reader should
consult the following comprehensive surveys on this topic [5, 19, 15, 12]. Using Corollary 13
with separator theorems on various classes of graphs [17, 14, 2], we get the following results.

» Corollary 14. For connected planar graphs G, ur(G) is O(y/n). For connected genus-g
graphs G, ur,(GQ) is O(y/gn). For connected graphs G with any excluded h-vertex minor H,
ur(G) is O(hv/hn). In all these cases, the lazy zombies can catch the survivor in at most
nOogn) rounds.

Although load(G) is an upper bound on uy,(G), it is by no means tight. If G is a clique,
then load(G) = n, but only 1 lazy zombie suffices to catch a survivor. We try to leverage
this idea to get a slightly tighter bound.

By assigning one lazy zombie to each clique in a container of the cut decomposition rather
than one lazy zombie to each vertex in the container, we can improve the upper bound. This
idea leads to an alternative definition of load for a cut decomposition which we call load®. In
this definition, for S C V(G), 6(S) is the clique cover number of the induced graph of G on
the vertices of S.

Joad® (v) = 0(Cy) if v is a leaf,
| 9(Cy) + max,, load*(w) otherwise, where w is a child of v.
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If C, is an independent set then 6(C,) = |C,|. Thus, without knowing more about the
cuts, load" is no more useful than load. However, load™ is a substantial improvement for some
graphs. For example, if G is a clique then load"(G) = 1 which is optimal. The corresponding
notion of time is

0(Cy)diam(G) + 1 if v is a leaf,
(0(Cy)diam(G) 4+ 1) max,, time*(w) otherwise, where w is a child of v.

time* (v) = {

» Theorem 15. Let G be a connected graph with cut decomposition (X,C). Suppose that v
is a vertex of X and the survivor is restricted to the component of v. Then, load*(v) lazy
zombies can capture the survivor in at most time*(v) rounds.

» Corollary 16. Given a connected graph G, ur(G) < load"(G) < load(G) and load"(G)
lazy zombies can catch the survivor in at most (§(G)(diam(G) + 1))+ rounds.
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