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—— Abstract

We investigate the interplay between the degree spectrum of a computable relation R on the
computable structure (w, <), i.e., natural numbers with the standard order, and the computability of
the successor, relativized to that relation, in all computable copies of the structure — the property we
dub successor’s recoverability. In computable structure theory, this property is used to show that of
all possible Turing degrees that could belong to the spectrum of R (namely, of all A degrees), in fact
only the computably enumerable degrees are contained in the spectrum. Interestingly, successor’s
recoverability (in the unrelativized form) appears also in philosophy of computing where it is used
to distinguish between acceptable and deviant encodings (notations) of natural numbers. Since
Shapiro’s notations are rarely seen through the lens of computable structure theory, we first lay
the elementary conceptual groundwork to understand notations in terms of computable structures
and show how results pertinent to the former can fundamentally inform our understanding of the
latter. Secondly, we prove a new result which shows that for a large class of computable relations
(satisfying a certain effectiveness condition), having all c.e. degrees as a spectrum implies that the
successor is recoverable from the relation. The recoverability of successor may be otherwise seen as
relativized acceptability of every notation for the structure. We end with remarks about connections
of our result to relative computable categoricity and to a similar direction pursued by Matthew
Harrison-Trainor in [18], and with an open question.
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1 Introduction

Shapiro made a point that computations are performed on syntactic objects, such as strings
of symbols, rather than on numbers themselves [34]. Some models of computation are directly
based on this premise [38, 25] but some are not [36, 6]. When showing equivalence between
these models, one uses some form of notation for natural numbers, e.g., the unary notation.
However, as Shapiro observed, not every notation is appropriate for showing the desired
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equivalence. Therefore, he asked when a notation is appropriate in the above sense, or, in
his words, when it should be deemed acceptable. He showed that a notation is acceptable if
and only if the successor function is computable in it.

Shapiro’s notations became influential in philosophy of computing (see, e.g., [30, 8, 29,
40, 35]). Meanwhile, we have seen rapid development of a separate, though similar in spirit,
research program known as computable structure theory which explores the relationship
between computability and algebraic structures [1, 26]. Interestingly, Shapiro’s framework
can be fully rephrased in terms of computable structures under the following slogan: a
notation for a given computable structure corresponds to a computable (isomorphic) copy
of the structure. To our best knowledge, this simple fact, and its consequences, has been
consistently overlooked (though, see [20]). Bringing to light the connection between Shapiro’s
notations and computable structure theory is the first, methodological, contribution of the
paper, contained in Section 2.

We start Section 2 by providing an appropriate translation between Shapiro’s notations
and computable structures. Our exposition, although restricted to the structure (w, <), i.e.,
natural numbers with the standard order, generalizes to other computable structures. As a
proof of concept, we recast some of the notions, such as notation’s acceptability, and results
of Shapiro (later, in Section 2.1), using tools developed in computable structure theory. After
that, we recall an important notion of degree spectrum. The notion of degree spectrum is a
classical one [31, 32, 17]. The degree spectrum of a computable relation R on (w, <) is the
set of all Turing degrees of the images of R in all computable isomorphic copies of (w, <).
We demonstrate the applicability of this notion to notations by rejecting a certain claim,
stemming from a philosophical paper by Benacerraf, according to which, in every notation
for (w, <), the successor is computable [3]. This claim is equivalent to saying that the degree
spectrum of the successor on (w, <) is trivial, i.e., consists of only the computable degree.
The claim is rejected based on a known result according to which this degree spectrum is
actually equal to the set of all (and only) computably enumerable degrees [5]. We then set
the ground for Section 3, containing the main technical result. Section 2 could appeal to
logically inclined philosophers, interested in connections with the advanced framework of
computable structure theory, but also to computable structure theorists who could find an
independent source of motivation for their own research (otherwise, they could safely skim
through Section 2).

The second and main contribution of the paper is a new result, contained in Section 3.
The result explores the logical relationship between the following two statements about a
computable relation R: (I) R’s degree spectrum on (w, <) is equal to the set of all (and only)
computably enumerable (c.e.) degrees, and (II) (the image Succ4 of) the successor function
Suce is computable relative to (the image R4 of) R, in every computable copy A = (w, <4)
of (w,<). If R satisfies (II), we say that the successor is recoverable from R on (w, <).

The recoverability of the successor appears naturally in the investigation of degree spectra
on (w, <). Every degree spectrum of a computable relation on (w, <) is contained in the set
of all Ay degrees (recall that a Ay degree is characterized by containing a subset of w that can
be recursively approximated; such sets are also called algorithmically learnable or limiting
recursive [28, 15]). It is known that the recoverability of the successor from R on (w, <) fixes
R’s spectrum to that of all c.e. degrees (see, e.g., [18, 2]) which form a proper subset of all Ay
degrees [7]. This means that the implication (IT) = (I) holds in general. On the other hand,
recoverability of the successor plays an important role in isolating the class of acceptable
notations [34]: plain acceptability of a computable copy A of (w, <) means that Succ4 is
computable. After relativization, we obtain a more general notion: a computable copy A
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of (w, <) is acceptable relative to R if Succy4 is computable in R4. Now, recoverability of
the successor from R on (w, <) means that every computable copy A of (w, <) is acceptable
relative to R.

The question tackled in Section 3 deals with the implication (I) = (II). For any known
example of a computable relation R, the implication holds. We ask whether it holds in
general, namely whether for any computable relation R, if R’s degree spectrum on (w, <) is
equal to all c.e. degrees, then the successor is recoverable from R on (w, <). Following [2], we
attack this problem for a restricted but nevertheless inclusive class of computable relations,
namely the graphs of unary total computable functions. We expand on techniques developed
in [2], in particular by reusing the concept of block functions. Our result — which answers
the aforementioned question in the affirmative — is proved for computable block functions
that satisfy certain intuitive effectiveness condition (Theorem 21).

In Section 4 we remark about related work in computable structure theory. In particular,
we comment on key differences between our theorem and a theorem by Matthew Harrison-
Trainor, where the technique of recovering the successor is used [18]. We also outline
a connection between successor’s recoverability and the concept of relative computable
categoricity.

The last section concludes the paper. We ask whether the effectiveness condition that we
use in proving Theorem 21 can be dropped.

2 Notations and Computable Structures

Originally, Shapiro considered notations for natural numbers (henceforth, w) with no addi-
tional structure. A notation for w is any bijection o: S — w, where S is a fixed countably
infinite set of strings over a finite alphabet.! The idea is that o € S is a numeral denoting
o(a) and we think of computations as being performed only on numerals. Computability of
an n-ary relation R on natural numbers in o is equated, by definition, with the computability
of the o-preimage of R, {(c7(a1),0 (a2),...,07 (ay,)) : (a1,az,...,a,) € R}, which is a
relation on numerals.

» Example 1. Let T be the set of all nonempty words over the alphabet {a} and let
7(a™) = n, where a” is the word consisting of n consecutive occurrences of a. Clearly, T
is a notation for w. The 7-preimage of < is equal to {(z,y) € T? : 7(x) < 7(y)}. This
set is computable because comparing word lengths is computable, and for every z,y € T,
7(x) < 7(y) & |z| < |y|. Therefore, the relation < (on natural numbers) is computable in 7.

» Example 2. Let T be as in Example 1 and let X C w be non-computable. Consider the
sequence a, aa, aaa, ... and obtain a new one in the following way: for each k > 0, swap the
positions of a?**1 and a?**2 if k € X. For example, if 0,2 € X and 1 ¢ X, the new sequence
starts with aa, a, aaa, acaa, aaaaaa, aaaaa, . . .. Let p be the inverse of the sequence obtained
in this way. p is a notation for w. < is not computable in p because if it were computable
then X would be, as k € X iff (a?**2,a2**+1) belongs to the p-preimage of <.

Without loss of generality, we may assume that a notation for w is any bijection from
w to w. This follows from a simple but important fact that for every infinite computable
set S of words over a finite alphabet there exists a computable enumeration of S without

! Shapiro’s notation should not be confused with Kleene’s notation for ordinals. Note, however, that an
acceptable notation (to be defined) can indeed be viewed as a notation for the ordinal w.
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repetitions, i.e., a total computable injection s: w — S such that s(w) = S. In other words,
s gives us a computable nonrepetitive sequence sq, 1, $2, . .. which consists of all (and only)
elements of S. s may be seen as an encoding of S by w. We take such identification for
granted.

Shapiro considered only notations for plain w, i.e., for the set of natural numbers without
any additional structure (in Section 2.1, we reproduce some of his results in the setting of
computable structure theory). However, one can easily extend his notion to cover additional
structure. We shall focus on the additional structure in the form of the simplest ordering
possible — the standard order on natural numbers, which we denote by <. Hence, the
structure under investigation is (w, <). By a notation for (w, <) we shall mean any notation
o for w in which < is computable.

Now, let us turn our attention to computable structures. A structure (A4, Ry,..., R,) is
said to be computable if its universe A and each relation R; is computable. Without loss of
generality, we can assume that A = w, the reason being similar to the one already discussed
for S. Clearly, (w, <) is a computable structure.

To pinpoint the connection between notations and computable structures, consider the
following definition.

» Definition 3. (w, <) is a computable copy of (w,<) if < is a computable ordering on w
and structures (w, <) and (w, <) are isomorphic.

Now, we can make the following observations. Let o: w — w be a notation for (w, <)
and let < be the o-preimage of <, i.e., < := {(¢7(z),07 (y)) : < y}. By the definition
of notation, < is computable. Moreover, by the definition of <, the structures (w, <) and
(w, <) are isomorphic. Therefore, by Definition 3, (w, <) is a computable copy of (w, <).

The next observation goes in the other direction. Let (w, <) be a computable copy
of (w,<). Let h: (w, <) = (w, <) be an isomorphism between the two structures and let
o = h~!. Obviously, o is a notation for w. Also, the o-preimage of < is equal to < and, by
Definition 3, < is computable. Therefore, o is a notation for (w, <).

Based on the above two observations, we can posit that a notation for (w, <) is any
isomorphism that maps a computable structure (w, <) to (w,<). Therefore, instead of
notations for (w, <) we may equivalently speak about computable copies of (w,<). This
generalizes straightforwardly to arbitrary computable structures.

Let us recall one of the concepts introduced by Shapiro, namely acceptability of notation,
and see what does it mean in terms of computable structures. A notation for w is said to
be acceptable if the successor function (henceforth, Succ) is computable in it (this implies
that all recursive functions are); otherwise the notation is called deviant. Acceptability of
notation for plain w can be extended, in an obvious way, to notations for w with additional
structure, in particular to the structure (w, <).

What does the desideratum of notation’s acceptability mean from the perspective of
computable structures? Before we answer this, consider the following convention which is
commonplace when referring to isomorphic copies of a given structure.

» Definition 4. Let R be a relation on (w, <), i.e., R Cw¥, for some k € w, and let A be a
computable copy of (w,<). If ¢ is an isomorphism from (w,<) to A, we write R4 for the
image of R under ¢.

Now, in terms of computable structures, the desideratum of acceptability of a computable
copy A = (w, <4) — which uniquely identifies a notation for (w, <) — says that Succ4 should
be computable.
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Shapiro showed, among others, that not every notation for w is acceptable. The following
question arises immediately: is Succ4 computable, if A is any computable copy A of (w, <)?
In other words, is every computable copy of (w, <) acceptable? In an influential philosophical
paper, Benacerraf hinted in passing at the affirmative (cf. p. 276 in [3] and, also, [4]).
Essentially, his claim was that, in any given notation, the computability of the successor is
equivalent to the computability of the ordering (we take the liberty to identify Benacerraf’s
intuitive concept of notation with the formal one).

As we will see, Benacerraf’s claim is false in view of Proposition 6 below. The proposition
uses an important notion of degree spectrum, originating from Richter [31, 32] and Hariz-
anov [17] (see, also, [19, 14]). The notion of degree spectrum — here defined for (w, <) but, in
general, applicable to any computable structure — is based on the concept of Turing degrees.
As a brief reminder, Turing degrees are equivalence classes of the relation =7 on subsets of
w, defined by A =r B < (A <p BAB <p A), where X <r Y means that the characteristic
function of X can be computed by a program which can ask questions of the form “n € Y'7”
for different n’s and use the answers to make decisions while the program is running. For
more information, see, e.g., [9, 33, 37].

» Definition 5 (degree spectrum of a relation). The degree spectrum of a computable relation
R on (w, <), in symbols DgSp(,, <)(R), is the set of Turing degrees of R4 over all computable
copies A of (w, <).

We write DgSp(R) as we do not consider degree spectra on structures other than (w, <).

As we can see, the notion of degree spectrum encompasses all possible complexities of a
relation (formalized as Turing degrees) across all notations for the underlying structure.

Before formulating Proposition 6, let us remind that a Turing degree is computably
enumerable (c.e.) if it contains a computably enumerable set, i.e., a set which, if nonempty,
can be enumerated by an algorithm. Since there exist noncomputable c.e. sets (e.g., the
halting problem), there are c.e. degrees which are different than 0 (the degree of computable
sets).

» Proposition 6 (see, e.g., Example 1.3 in [5]). The degree spectrum of the successor on
(w, <) consist of all (and only) c.e. Turing degrees.

Clearly, Benacerraf’s claim must be false, for otherwise every computable copy of (w, <)
would be acceptable (i.e., the successor would be computable in it) and we would have
DgSp(Suce) = {0} which contradicts Proposition 6.

The degree spectrum of the successor on (w, <), i.e., the set consisting of all c.e. degrees,
is just one example of degree spectrum on (w, <), but other examples exist and it is still not
known what are all possibilities. One kind of degree spectrum is the trivial one, i.e., {0}.
Relations having this spectrum are called intrinsically computable and were characterized
by Moses [27]. There are also other kinds of spectra, including the set of all Ay degrees
[10, 39, 18] and other spectra, discovered quite recently [2].

Anyway, the degree spectrum of the successor is, in a sense, special. Essentially,
DgSp(Suce) C DgSp(R) for every computable R which is not intrinsically computable
(see, Theorem 4.7 in [39]). To show that DgSp(R) = DgSp(Succ), one typically uses a
technique known as recovering the successor [2]. The idea is to prove that R4 >1 Succa
holds for every computable copy A of (w, <); this is sufficient because Succq >1 R4 always,
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i.e., for every computable copy A of (w, <).? In a sense, such a proof shows how the successor
(inside \A) can be recovered from the relation R (again, inside .A). If this can be done, we
say that the successor is recoverable from R on (w, <).

In the second part of the paper, we are interested whether one can go in the other
direction. Specifically, we ask whether DgSp(R) = DgSp(Succ) implies that the successor is
recoverable from R on (w, <). In other words, given the following properties of a computable
relation R:

the degree spectrum of R on (w, <) is equal to all c.e. degrees, and Q)

for every computable copy A of (w, <), R4 >1 Succa, (I1)

we ask whether (I) implies (II) (the other direction follows from one of the paragraphs above).
Note that (II) can be seen as a relativized variant of acceptability of notation. We may posit
that a computable copy (notation) A = (w, <4) is acceptable relative to R if R4 computes
Suce . Thus, the property in question encompasses computable relations such that every
computable copy (w, <_4) is acceptable relative to them.

Although we are not able to prove this implication in full generality, we show that it
holds for a wide subclass of all total computable functions (seen as computable binary
relations). For certain types of functions, the implication already follows from earlier results
which will be discussed at the beginning of Section 3. Our extension concerns the class of
block functions, isolated in this context by Bazhenov et al. [2], and satisfying an additional
effectiveness condition.

2.1 Shapiro’s Theorems Re-proved

In this subsection, some of the results on Shapiro’s notations, here Theorems 11 and 12, are
re-proved using tools from computable structure theory. This provides concrete evidence of
the intrinsic connection between the two frameworks. The proofs are based on early results
from computable structure theory, some of which even predate Shapiro’s paper.

For Theorem 11, we need a classical notion of the degree spectrum of a structure. It is
different from the notion of the degree spectrum of a relation (Definition 5) in that it focuses
on the complexity of the copies of the structure itself. Let L be a computable language, i.e.,
L consists of a computable set of constants, function and relation symbols, and the map
assigning arity to each symbol is also computable.

» Definition 7 (degree spectrum of a structure). For a countably infinite L-structure A, its
degree spectrum is the set of all Turing degrees d such that there is an L-structure B with
the following properties:
(i) B is isomorphic to A,
(ii) the domain of B equals w,
(iii) the Turing degree of D(B) — the atomic diagram of B — is equal to d (here a formula ¢
from the atomic diagram is identified with its Gédel number "¢7).

» Definition 8. A structure A is called automorphically trivial if there is a finite set
X C dom(.A) such that every permutation of dom(A) that fizes X is an automorphism of A.

2 To compute in Succ4 whether (ai,...an) € R4, use Succa and one parameter, e.g. the < 4-minimal
element, to identify the positions i1,...,in of a1,...,a, in the ordering < 4, and return R(i1,...,in).
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» Example 9. Let E be an equivalence relation on w with finitely many finite equivalence
classes and just one infinite equivalence class. The structure (w, F) is automorphically trivial,
because every permutation of w that fixes X = {z € w : the E-equivalence class of x is finite}
is an automorphism of (w, E). Moreover, the degree spectrum of (w, E) is {0}. For let
B = (w, Eg) be isomorphic to (w, E) via h. "Ta =b" € D(B) iff a =b. "E(a,b)” € D(B) iff
a,b¢ h=Y(X) or a,b € h=*(X) A E(h(a),h(b)). The latter is computable by the finiteness of
h=1(X). Hence, D(B) is computable, given that the underlying Gédel numbering of formulas
is effective.

» Theorem 10 (Theorem 4 of [21]). If a countably infinite structure A is not automorphically
trivial, then its degree spectrum is closed upwards in Turing degrees.

» Theorem 11 (T1 and Cl1 in [34]). A function f:w — w is computable in every notation
for w if and only if either f is almost constant (i.e., there is ¢ such that f(x) = ¢ holds for
all but finitely many x), or f is almost identity (i.e., f(x) = x for all but finitely many x).
A relation R C w is computable in every notation for w if and only if either R is finite, or R
s cofinite.

Proof. We only consider the nontrivial direction (=-). Suppose that f is computable in every
notation for w. Fix some standard notation oy — e.g., the one induced by decimal numerals.
Our function f must be computable in o¢. Consider the language L = {F'}, where F is a
unary function symbol. We define an L-structure Sy as follows: the domain of Sy equals w,
and the function symbol F' is interpreted as our function f. Since f(x) is computable in oy,
it is easy to show that the structure Sy is computable.

Now, if f(z) is neither almost constant nor almost identity, then one can show that the
corresponding structure Sy is not automorphically trivial. Thus, by Theorem 10, one can
obtain an isomorphic copy A of Sy such that the atomic diagram D(A) of the structure A is
Turing equivalent to, say, the halting problem. Now we define a notation o: S — w:

(i) S equals (the decimal representation of) w, and

(ii) o is an arbitrary isomorphism from A onto Sy.
Since D(A) is not computable, one can show that the function f(z) is not computable
mno. <

Finally, let us consider the following result by Shapiro, in which notation’s acceptability (a)
gets an intuitive equivalent (b).

» Theorem 12 ([34]). For any notation o for w, the following are equivalent:

(a) For any function f, f is computable in o if and only if f is computable in the standard
notation (e.g., the stroke notation).

(b) The successor function is computable in o.

To establish the above result, we need the notion of computable categoricity which goes
back to the papers by Mal’tsev [23, 24].

» Definition 13. A computable L-structure A is computably categorical if for every comput-
able L-structure B, which is isomorphic to A, there is a computable isomorphism g from B
onto A (i.e., g is an isomorphism which is also a computable function).

No matter which computable copy of a computably categorical structure we take, it will have
the same computability-theoretic properties. A simple example of a computably categorical
structure will be considered in the proof of Theorem 12.

11:7
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» Example 14. (w, <) is not computably categorical. By Proposition 6, there exists a
computable structure (w, <4) isomorphic to (w, <) such that Succ is noncomputable. If
(w, <) were computably categorical, we would have a computable isomorphism g from (w, <_4)

to (w, <). But then Succ4 would be computable because Succq = g~* o Succo g.

Recall that a structure A is finitely generated if there exists a finite set G C dom(.A) such
that the set generated by G in A — i.e., the least set including G together with all the
distinguished elements of A, and closed under the operations of A — is equal to dom(A).

» Theorem 15 (Theorem 4.1.2 in [23]). Ewvery finitely generated, computable algebraic
structure is computably categorical.

Proof of Theorem 12. We sketch the proof for the direction (b)=-(a). Since the computable
structure (w, Succ) is one-generated, (w, Succ) is computably categorical by Theorem 15.
Now consider a notation ¢: S — w such that the successor function is computable in ¢. Let
Succ® be the image of the successor under o~!. We define a computable L-structure Tg , as
follows.

The domain of Tg , equals w.

Fix a computable bijection ¥ from w onto S. The unary function symbol F' is interpreted

as follows: for k € w,

F(k) = ¢~ (Succ” ($(k))).

It is not hard to show that the structure 7Tg, is a computable isomorphic copy of (w, Succ).
Then the computable categoricity of (w, Succ) allows to choose (the unique) computable
isomorphism ¢ from 7g, onto (w, Succ).

After that, one can use the computability of g to easily show that the notation o satisfies
the conditions from the item (a). <

3 Spectrum of C.E. Degrees and Recovering the Successor

Following Bazhenov et al. [2], we restrict our attention to computable binary relations R
of general interest — graphs of unary total computable functions. The results of Moses [27]
imply that the degree spectrum of such an f is trivial if and only if f is almost constant or
almost identity (see, also, the associated version of [2]). Clearly, the equivalence (I) < (II)
holds for such functions as they do not satisfy neither (I) nor (II). Bazhenov et al. [2]
isolated the class of quasi-block functions (which include almost constant and almost identity
functions) and showed that all computable functions f outside this class satisfy (I) and (II)
(Theorem 18 in [2]). We recall that f is a quasi-block function if there are arbitrarily long
initial segments of (w, <) which are closed under f. Further information about quasi-block
functions, pertinent also to the problem at hand, can be found in [2].

Among quasi-block functions there is a narrower class of block functions which we define
below. Given a linear ordering £ = (L, <), by an interval in £ we mean any set [ C L
such that for every z,y,z € L,if x,z € T and z <y < z € I, then y € I. For a,b € L,
[a;0) = {x € L : a X 2 <X b}, where = is the non-strict ordering corresponding to <.

» Definition 16. Let f: w — w be a total function. An interval I in (w, <) is f-closed if for
allz €I, f(z) € I and f~1({z}) C I. For a finite non-empty interval I C w, the structure
(I,<, f 1) is an f-block if it has the following properties:
(i) I is an f-closed interval and it cannot be written as a disjoint union of at least two
f-closed intervals;
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Figure 1 Structures J, = ([1;6 + 2n], <, f), for n = 0,1, 2, where f is the involution such that
f(k)y=kif k=2o0r k=6+2n—1, and f(k) = k + 3 for odd numbers < 6 + 2n — 3.

(ii) {x ew: 2z <min(l)} is f-closed.
The function f is a block function if for every a € w, there is an f-block containing a. If
(I,<,f 1) is an f-block, we refer to its isomorphism type as an f-type (or a type).

A block function on (w, <) can be visualized as a sequence of blocks, arranged one after
another according to <. We develop this intution in the examples below.

» Example 17 (borrowed from [2]). Consider finite structures 7,, from Figure 1. Let g be the
involution such that (w,<,g) =2 Jo+ J1 + J2 + ... Clearly, g is a block function. Condition
(ii) in Definition 16 ensures that every element is contained in a unique g-block. Without
(ii), each loop, i.e., a substructure of the form ({z}, <[ {z},g | {z}) with g(x) = =, would
be a g-block itself.

» Example 18. Let f be a function such that each of its blocks is isomorphic to a structure
Cr = ([0; k], <, fx), for some k € w, where < orders [0; k] in the standard way, fi(z) =z + 1,
for 0 <z < k, and fr(k) = 0. It is natural to view Cj, as a cycle. This illustrative example is
worth remembering because we will use it in the proof of the main result, Theorem 21.

In this paper, we consider functions f that satisfy the effectiveness condition (%) defined
below. The problem whether () can be dropped without affecting Theorem 21 is left open
(see, Section 5).

For a set X, by card(X) we denote the cardinality of X.

» Definition 19. Let f: w — w. We define cpy: w — wU {oo} as follows:

epy(z) = card(f~1({x})), for all x € w.

Observe that for the involution g from Example 17 we have cpy = 1. The same holds for
functions considered in Example 18.
The effectiveness condition is the following statement about f:

cpy is computable. (*)

Clearly, functions from Examples 17 and 18 satisfy (x). More generally, any injective
computable block function satisfies it because such a function must be composed of finite cycles
and thus the preimage of each single element has cardinality 1. Another less trivial example
could be a computable block function having only finitely many pairwise nonembeddable
types. In general, however, the behavior of cardinalities of the preimages can be quite
complicated. For example, it is not hard to produce an example of a computable block
function f such that cpy is noncomputable (see, also, Theorem 27).

Let f be a block function and let (w, <, f) = F1 + F2 + ..., where each F,, is an f-block.

By an initial segment of (w, <, f) we mean any structure X5_, 7, for k € w. We say that
(Bj)jew is a sequence of growing initial segments of (w, <, f) if each B, is an initial segment
of (w, <, f) and for all j we have dom(B;) C dom(B;4+1). Given structures A and B over the
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same relational signature (treat each function as a relation), we say that A embeds precisely
once in B if there is exactly one embedding from A to B. Recall that h: dom(A) — dom(B)
is an embedding from A to B if h is an injection and for every relational symbol R from the
signature, for every tuple @ € dom(.A) of length equal to the arity of R, A = R(a) if and
only if B = R(h(a)).

» Lemma 20. Let f be a unary total computable block function. If there exists an infinite
computable sequence (Bj)jew. of growing initial segments of (w, <, f) such that each B; embeds
in (w, <, f) precisely once, then the successor is recoverable from f on (w, <).

Proof. To compute Succ4(z) for a given computable copy A = (w, <4) of (w, <), look for
bigger and bigger substructures A; of (w, <4, fa) that look precisely as B;. We do this by
enumerating w one by one, arranging enumerated elements according to <4 and asking f4
for the values of the enumerated elements. Once A; isomorphic to B; is discovered, we are
sure that A; is an initial segment of (w, <4, f4). We continue in this manner and wait for
and at least one y >4 « to enter some A;. At this point we know the position of z in <4
and Succ(x) can be read out from A,;. <

We prove (I)=(II) by contrapositive. Notice that we can additionally assume that we
work with computable block functions which are not almost identities because, as discussed
earlier, such functions have the trivial degree spectrum.

» Theorem 21. Let f be a computable block function such that it is not almost identity and
it satisfies the effectiveness condition (x). Assume that the successor is not recoverable from
f on (w,<). Then the degree spectrum of f on (w,<) contains a non-c.e. degree.

» Corollary 22. Suppose f is a computable block function satisfying the effectiveness condi-
tion (x). Then (I) implies (II), i.e., if the degree spectrum of f on (w, <) is equal to all c.e.
degrees, then the successor is recoverable from [ on (w, <).

Before we start the proof, let us remind a few conventions regarding Turing functionals. A
Turing functional, also called a Turing operator or a computable operator, is a program that
is allowed to query an oracle. We can enumerate them in an effective way 0, 01,.... We
write ©X (n) for the output of the eth Turing functional on input n when it uses X C w as
oracle. O, corresponds to a fixed program that can be used with different oracles. We assume
in s steps it is possible to read at most the first s entries of the oracle. For a finite string
o € 2<% ©9(n) means the same as ©7 |,(n). Sometimes we explicitly write the number of
steps t after the code of the program, O ;.

Proof of Theorem 21. Fix an effective enumeration (®;, ¥;, W;);e,, containing all triples
such that ®; and ¥; are Turing functionals, and W; is a c.e. set. For brevity, the graph of
the function f4 (i.e., the isomorphic image of our function f inside .A) is denoted by T' 4.
We build a computable isomorphic copy A = (w,<4) of the ordering (w, <). Along the
construction, we satisfy the following requirements:

Ifw, = <I>£A and 'y = \I/:/V, then there is a computable sequence (B;);c., of growing

initial segments of (w, <, f) such that each B; embeds in (w, <, f) precisely once. (P;)

Satisfying each P; is sufficient by Lemma 20. Indeed, since the successor is not recoverable
from f, Lemma 20 guarantees that the degree I'4 is not c.e. Our strategy for satisfying
P; incorporates the classical construction of a properly d.c.e. Turing degree by Cooper [7]
adapted to the setting of block functions [2]. Recall that a Turing degree is properly d.c.e. if
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it contains a subset X of natural numbers such that X is equal to the difference of two c.e.

sets and X is not Turing equivalent to any c.e. set. The eventual success of our strategy is
secured by a series of threats which attempt to build (B,,). This will be a degenerate infinite

injury construction, described using the framework of trees of strategies (see, e.g., [22]).

Degeneracy here means that infinitary outcomes (to be defined) never turn up as the true
outcomes of the construction.

For the sake of simplicity, first we give a construction for the case when each block is
isomorphic to a cycle, as in Example 18. The modifications needed for the general case of
the theorem will be discussed at the end of the proof.

Strategy for P;. The strategy attempts to build a computable sequence of initial segments
(Bim)mew- Suppose that our strategy starts working at a stage sg. Then the strategy proceeds
as follows.

(1) Set m =0.

(2) Choose two adjacent blocks C,, < D, in (w, <, f) such that we have not copied them
into the structure Ay, yet (where s, is the current stage), and D,,, contains at least two
elements. Such a choice is possible, since the function f is not almost identity (hence, it
has infinitely many cycles of size > 2).

We extend A, to a finite structure AL, by copying all missing elements up to the end
of the block D,,, (these elements are appended to the end of A, ). Then the structure
AL can be decomposed as follows:

A}n — A}ﬁzn” + Con + Do,

where C,,, = C,, and Dy, = D,,.

Let x,, be the rightmost element of C,,, and let y,, be the leftmost element of D,,. It
is clear that at the moment, (X, ym) & Ta. As usual, we restrict “(z,,, ym) € Ta” by
forbidding lower priority actions to add new elements between the elements of A} .

(3) Wait for a stage s’ > s, witnessing the following computations: for some ¢’ < s', we
have (at the stage s)

Wi 1 =4 ¥, and 0 =T a((@m, ym)) = O (20, ym)-
Note that the current structure Ay can be decomposed as follows:
Ay = AL 4 AZSIn = pLinit LoD ARSI

where A2/ contains the elements added after the end of Step (2).

(4) We define B,, := Ay. We extend Ay by adding precisely one fresh element between the
rightmost element of AL and the leftmost element of C,,.
Inside the resulting structure Af’n, the number x,, becomes the leftmost element of a copy
of the cycle D,,. This implies that at the moment, we have (x,,, ym) € ['4. Similarly to
Step (2), we restrict “(T,, Ym) € Ta”

(5) We wait for a stage s” > s’ witnessing the following condition: for some t” < s, we
have t' <t and

Wi [t =05 1¢, and 1 =T 4((m, ym)) = UV (@, ym).

When the stage s” is found, we go back to Step (2) with m + 1 (in place of m), while
simultaneously waiting at Step (6) with m.
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(6)

(7

We wait for a stage s’/ > s” witnessing the following condition: one can embed the

elements of Ay into (w, <, f) [ (2 card(dom(Ay)) + 1) in the following special “semi-
isomorphic” way. There exists a 1-1 function £: dom(Ag) — [0,2 - card(dom(Ag))]
such that:
€ respects the ordering, i.e., for all elements x,y € Ay, x <a_,, y < &(x) <&(y);
if z (originally) was an element of some block I inside Ay = B,,, then the whole block
I should go into some copy of I inside (w, <, f); in other words, the restriction of £
to the domain of Ay is an isomorphic embedding from (dom(Ay ), <4, fa,) into
(w, < f).
Note the following: if such a “semi-isomorphic” embedding £ exists, then one may assume
that this £ satisfies an additional condition:

If I is a block inside A,,"*, then I is mapped to its counterpart inside (w, <, f) ()
(i.e., if x € I and z is the i-th element from the left inside A/, then £(z) equals i).

Indeed, since the structure A2, from Step (4) is obtained by adding only one element
just before C,,, the embedding ¢ must move the contents of C,, to the right of the
(w, <, f)-counterpart of AL, This allows us not to move AL and just map it to
its (w, <, f)-counterpart.

Extend Ay~ to a finite structure by using the “semi-isomorphic” embedding & described
above. More formally, we take the least unused numbers y ¢ dom(Ag») to extend
Ay to a finite structure A2 such that there exist a number N and an isomorphism
h: A = (w,<, f) | N with the property & C h. Stop the strategy, including the actions
for all m’ # m.

Outcomes of P;.
Wy, : Waiting at Step (3) forever for this m. Then either W; # ®1 4 or T4 # W)V,
w! : Waiting at Step (5) forever for this m. Then, again, W; # ® * or T'y # W}

S

oo

“Stop”, i.e., some m reached Step (7). Then we have:

Wi o1t
0=Ta({Zm,ym)) = Tasm1({Tm, ym)) = “IIZ"S/ (Zms Ym))-

Wzﬂ,sl rt/(<xm’ym>) =0 at Step (3) Notice that

7,8’
rtll

Let u be the use for the computation ¥

u < t'. Since at Step (5) we see \I/ZV;,‘,S” ({xm, Ym)) = 1, this implies that there exists

an element a < u such that a € W; ov \ W, 4.
Since a &€ W, ¢, at Step (3) we have 0 = oA
;4 (a) = 0.
The embedding { from Step (6) guarantees that T'y [ v =T4 ¢ | v. Hence, W;(a) =
Wisr(a) =1+#0=3;4(a).

Therefore, the requirement P; is satisfied.

(a). Let v be the use for the computation

i,8’

Eventually waiting at Step (6) for each m € w. Then for each m, every A~ lacks
an appropriate “semi-isomorphic” embedding &. This means that each B,, can be
isomorphically embedded only once into (w, <, f). As discussed above, this contradicts
Lemma 20.

The current outcome of a strategy is equal to:

s, if the strategy is already stopped.

Otherwise, let m be the current (maximal) value of our strategy parameter m. If for this
m, we wait at Step (3), then the outcome is w,,. If we wait at Step (5), then the outcome
is wl,.
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Construction. We use the following ordering of the finitary outcomes: s < -+ < wh <
wy < Wi < wy < wj < wo. The tree of strategies includes only the finitary outcomes. More
formally, we set A = {s} U {wy, w,,, : m € w}, and the tree T is equal to A<¥. The i-th level
of the tree contains strategies a € T devoted to the requirement P;.

If o and 7 are two finite strings from 7', then by ¢"7 we denote the concatenation of o
and 7. As usual, we say that o is to the left of 7 if there exist some p € T and 01,02 € A
such that 0y < 02, 0 D g o1, and 7 D p 0s.

As usual, at a stage s of the construction we visit the strategies ag, a1, ..., as, where
ap = @, and for each i < s we have a;11 = a; 0, where o is the current outcome of the
strategy «;. By gs we denote the current finite path, i.e., the sequence (g, aq, ..., as).

Verification. It is clear that the constructed A is a computable linear order on w: indeed,
if z < y inside Ay for some s € w, then z <4, y for all ¢ > s.

Let g be the true path of the construction, i.e., the limit lim, gs. More formally, for k € w
and « € T, here we have

g(k)=a & Ft(Vs > 1)(gs(k) = ).
Note that in general, g could be a finite sequence.

» Lemma 23. The path g is infinite, and every requirement P; is satisfied.

Proof. Suppose that a strategy « belongs to the true path g, and its associated requirement
is P;. Consider the following three cases.

Case 1. There is a number m such that starting from some stage s, the outcome of « is
always the same o € {w,,,w!, }. Then it is clear that "o belongs to g. In addition, for the
number m, the strategy is forever stuck either at Step (3) or at Step (5). This means that
W; # ®54 or Ty £ WV

Case 2. At some step a has outcome s. Then «’s lies on the path g. In addition,
W; # <I>£A as discussed in the description of the outcome s.

Case 3. Otherwise, for each m € w, a eventually goes through the outcomes w,, and w/,.

Since we never reach Step (7), this means that each finite structure B,, can be isomorphically
embedded into (w, <, f) only once: indeed, if some B, could be embedded twice, then we
could eventually use the second such embedding to recover the “semi-isomorphic” map £ and
to reach Step (7) for this m. Then, as discussed in the beginning of the proof of the theorem,
Lemma 20 guarantees that Case 3 is impossible.

We conclude that the path g is infinite, and each P; is satisfied. <

In order to finish the proof of Theorem 21, now it is sufficient to show that the order
A = (w, <4) is isomorphic to (w, <).

Recall that at Step (6), we always choose a map ¢ satisfying Condition (x*). Consider a
P;-strategy a. Condition (*x) implies that for every m € w and every z € AL™* o never
adds new elements which are <4-below x.

Suppose that an element x is added to A by some strategy o.

Consider an arbitrary strategy «. If « is to the right of o, then a never works after the
starting stage of 0. If & D o or « is to the left of o, then z always belongs to AL of this
particular «. Hence, a never adds elements < 4-below x.

We deduce that new elements which are <4-below z could be added only by a C o.
The proof of Lemma 23 implies that each such « adds only finitely many elements to A.

Therefore, for an arbitrary element x, A contains only finitely many elements < 4-less than
2. This implies that (w, <4) is isomorphic to (w, <). This concludes the proof for the case
when each f-block is a cycle.
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The general case. Now we discuss the general case of the theorem. The proof essentially
follows the outline provided above, but we have to address two important details of how to
implement the strategy for P;.

The first detail concerns Step (2), where one needs to choose two adjacent blocks C,,, and
D,,,. The question is how to algorithmically choose them?

Here the computability of the function cps(x) is important — this fact guarantees that for
a given = € w, one can effectively recover the f-block I containing x. This effective recovery
allows us to computably find the needed blocks C,, and D,,.

The recovery of the block I can be arranged as follows. Without loss of generality, we
may assume that x is the leftmost element of I. Since we know the value cps(z), we can
find all elements from the preimage f~!({z}). By using the function cps several times, we
eventually find the finite set

Py(x) = J(FH)9 ({z}).

JEW

If Py(z) already forms an f-block, then we stop the algorithm. Otherwise, there is (the
least) yo & Pr(x) such that z < yo < max Py(x). We find the finite set Py(yo). If the
set Py(z) U Ps(yo) forms an f-block, then we stop. Otherwise, again, we find the least
y1 & Pr(x)UPs(yo) such that yo < y1 < max(Py(z)UPr(yo)). We consider Py(x)U Py (yo)U
Pyr(y1), etc. Since every f-block is finite, eventually we will find the desired f-block I.

The second detail concerns Step (2) and its interaction with Step (4). Since the block
function f is not almost identity, f satisfies at least one of the following two conditions:
(a) There are infinitely many elements u such that u is the leftmost element of its block and

fu) > wu.

(b) There are infinitely many pairs (u,v) such that u and v belong to the same block, u is

the leftmost element of the block, u < v, and f(v) = .

Assume that f satisfies (b) (the case of (a) could be treated in a similar way). Then in
Step (2) of the strategy, we can always choose Cyn, Dy, with the following property: the block
D,,, contains a pair (i, ?) satisfying the condition described in item (b).

After building AL, (as described in Step (2)), we will choose @, and ¥,,, as follows. The
element y,, is the rightmost element of C,,, and the element x,, is the copy (inside D,,) of
the element @ € D,y,.

The intention behind this particular choice of z,,,y,, is the following. At the end of
Step (2), we have (@, ym) € Ta. In addition, if we add precisely one element at Step (4),
then we will immediately obtain that the condition (2, ym) € T'a becomes satisfied (since
@ = f(©) is the leftmost element of D,y,).

Taking the discussed details into account, one can arrange the proof of the general case
in a straightforward manner. Theorem 21 is proved. <

4  Further Observations

In this section, we discuss some additional observations that could be interesting for a reader
familiar with computable structure theory. First, we observe a connection with the paper [18]
(more specifically, its Proposition 4.13), where a technique of recovering the successor is used.
The main takeaway of the first observation is that our Theorem 21 cannot be deduced from
this result.

Let n > 1, and let & = [n/2]. A set A C w™ is n-c.e. if there exist c.e. sets
Ul,Vl,UQ,VQ,...,Uk,Vk such that A = (Ul \ Vl) U (U2 \ ‘/2) U---u (Uk \ Vk) and if n
is odd, then Vi, = 0. This notion was introduced by Putnam in [28] where he proved
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that a set A is n-c.e. if and only if there exists a recursive approximation of A (i.e., a
recursive family of computable sets (As) satisfying lim A; = A) such that A9 = () and
card({t : Ay(z) # Air1(x)}) < n, for all z € w. An m-ary relation R on (w, <) is intrinsically
n-c.e. if for every computable copy B of (w, <), the set Rg is n-c.e.

The notion of an intrinsically n-c.e. relation could be extended to the transfinite levels of
the Ershov hierarchy [11, 12, 13]: for a computable non-zero ordinal «, one can introduce
the definition of an intrinsically a-c.e. relation. In addition, one can talk about being
intrinsically a-c.e. on a cone (see Chapter 1 in [18]). Nevertheless, here we can omit the
formal technical details: Harrison-Trainor (Proposition 4.12 in [18]) proved that if a relation
R on (w, <) is intrinsically a-c.e. on a cone, then R is intrinsically n-c.e. for some n. In the
same paper, Harrison-Trainor (Proposition 4.13 in [18]) proved that every intrinsically n-c.e.
relation R (on the structure (w, <)) satisfies (II). If every function f satisfying the premise
of our Theorem 21 were intrinsically n-c.e. on (w, <), then our result would follow from the
aforementioned Proposition 4.13 in [18]. However, according to the following proposition,
this is not the case.

» Proposition 24. There exists a function f which is not intrinsically n-c.e., for any n, with
the following properties: [ is a computable block function, f is not almost identity, and f
satisfies the effectiveness condition (x).>

Proof. Let f be any computable block function such that for every x € w, the f-block
containing z is a cycle (the notion of cycle is defined in Example 18). It suffices to show that
for each m > 0, there exists a computable copy A = (w, <) of (w, <) such that the graph of
fa is not n-c.e.

Fix a standard effective listing (X;);e,, of all n-c.e. sets. We fix n > 0 and construct a
desired computable copy A by finite injury priority argument. At each stage s, the current
approximation (As, <a.; fa.) of (w,<a; fa) is isomorphic to the initial segment of (w, <; f).
Here is the requirement that we need to satisfy, for each natural number i:

The graph of f4 is not equal to X;. (R:)

Strategy in isolation. When R; enters the construction, say at stage s, we use fresh numbers
to append to the current A a copy of the cycle that is immediately to the right of A in the
standard copy. We thus obtain A;;1. Let u,v be the new cycle’s endpoints (in A1) such
that f4_.,(u) =v. From now on, we will follow the computable approximation X; ;({u,v))
of our n-c.e. set. When we see that X; ;((u,v)) = 1, then (if needed) we push things to the
right (in an appropriate way) so that, after pushing, we have f4,,,(u) # v. When we see
that X; ;({u,v)) = 0, then we push to the right to obtain fa,.,(u) = v.

Observe that we can always do the “pushing”. If f has only finitely many types of blocks,
then we can arrange the construction in a way that each R, is attached to a cycle that
appears infinitely often. To obtain f4(u) # v, it suffices to insert one fresh number just
before the cycle containing u,v. To obtain f4(u) = v again, it suffices to search for the next
occurrence of the cycle on which R; was initialized and insert, right before v, sufficiently
many fresh numbers so that v lands again on the first position of such a cycle (and u on the
last).

3 Notice that these properties correspond to the premise of Theorem 21.
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If f has infinitely many types, then f has cycles of arbitrary length. In that case, obtaining
fa(u) # v is as above. To obtain f4(u) = v it suffices to find a long enough cycle (appearing
to the right of the current position of u), push to the right (by inserting fresh numbers just
before v) and put the right amount of fresh numbers just after v so that v and v become
endpoints again. >

» Remark 25. Observe that there are functions that satisfy the premise of Theorem 21 and
have all c.e. degrees as a spectrum. For example, this will be true for any function of the
following form: f is as in the proof of Proposition 24, and there exists an infinite c.e. set
L C w such that if [ € L, then there is precisely one f-block of cardinality I.

Our second observation looks at our property (II) from the point of view of computable
categoricity. A computable structure M is relatively computably categorical if for any
countable structure N such that dom(N) = w, there is an isomorphism f: M = N such
that f is computable in the atomic diagram D(N).

Goncharov [16] proved that a computable structure M is relatively computably categorical
if and only if there exists a c.e. family © of (finitary) existential formulas (with a fixed tuple
of parameters ¢ from M) with the following properties:

every tuple a from M satisfies some formula 6 € ©;

if @ and b are tuples from M satisfying the same formula 6 € ©, then (M, a) = (M, b).
Such a family © is usually called a formally c.e. Scott family for the structure M.

» Proposition 26. Let R be a computable relation on (w,<). If the structure (w, <, R) is
relatively computably categorical, then the relation R satisfies (I1), i.e., for every computable
copy A of (w, <), we have R4 >1 Succy.

Proof. Using a formally c.e. Scott family © for the structure (w, <, R), we can obtain
a finite tuple ¢ and a computable sequence (¢;(x,¢));c,, of existential formulas (in the
language {<, R}) such that for each k € w, the number k is the unique element z such that
(wv < R) ': ¢k($v E)'

Now let A be an arbitrary computable copy of (w, <). Let ¢4 be the isomorphic image
(inside A) of the tuple ¢. Then we have:

y = Succ(z) if and only if

(A Ba) =\ i, 20) & Yia v, 2a))
y # Succa(z) if and only if
(Av R.A) ': (y <4 I) \ \/ [1/%(937 EA) &wk(yv EA)}'

i€w, k>i+2

This implies that the graph of Succ4 is both c.e. and co-c.e. with respect to R4. Thus, we
have R4 >71 Succy. ]

5 Conclusions

The philosophical framework of Shapiro [34] is based on the observation that, strictly speaking,
computations are performed on syntactic objects, such as strings of symbols, rather than on
natural numbers themselves. This leads to the formal notion of a notation. In this paper,
we re-cast this framework within the setting of computable structure theory. It turns out
that there is a straightforward translation between the two approaches: a notation for a
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given computable structure corresponds to a computable (isomorphic) copy of the structure.
Surprisingly, this fact has been consistently overlooked in the literature (though, see [20]).
The first contribution of this paper amounts to bringing this connection to the light, and
showing, on the example of the structure (w, <), how the two perspectives can inform each
other.

In the context of the structure (w, <), notations and computable structures find their
common point in the property of computing the successor. The successor function was used
by Shapiro to isolate the class of acceptable notations — those notations have particularly nice
computational properties as functions computable in them are exactly the same as standard
computable functions. The successor function has also useful applications in the investigation
of degree spectra of computable relations on (w, <); a particularly handy property is the
recoverability of the successor from R on (w, <) (which means that, in all computable copies
of (w, <), the image of the successor is computable relative to the image of R). This naturally
leads us to the notion of relatively acceptable notation, i.e., a notation in which the successor
is computable relative to a given additional relation.

The second, and main, contribution of the paper amounts to exploring the relationship
between two properties of a computable relation R: (I) the degree spectrum of R on (w, <)
contains precisely the c.e. degrees, and (II) the successor is recoverable from R on (w, <)
(equivalently, every notation for (w, <) is acceptable relative to R). It is a known fact in
computable structure theory that (IT) implies (I). Our main result (Theorem 21) concerns
the reverse implication with regard to relations R that are graphs of unary total computable
functions (actually, a particular subclass of so-called block functions, first considered in [2]).
Theorem 21 proves that for a large class K of functions f, the two conditions given above
are equivalent. Informally speaking, our proof uses the fact that the functions from the class
K have pretty tame combinatorial properties.

As a concluding remark, we note that in general, Theorem 21 does not cover the class of
all computable functions — even for the case of block functions. The proof of the following
theorem is sketched in Appendix A.

» Theorem 27. There exists a computable block function f such that:
1. the corresponding function cpy(x) is not computable;

2. each f-block occurs infinitely often in (w, <, f);

3. the degree spectrum of f on (w,<) contains all Ay degrees.

Nevertheless, we conjecture that the equivalence of (I) and (II) could be established for
the class encompassing all unary total computable functions.
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A  Proof of Theorem 27

» Theorem 27. There exists a computable block function f such that:
1. the corresponding function cpy(x) is not computable;

2. each f-block occurs infinitely often in (w, <, f);

3. the degree spectrum of f on (w,<) contains all Ay degrees.

Proof Sketch. As usual, for ¢ € w, ¢; denotes the unary partial computable function which
has Godel number 1.
We build a computable block function f satisfying the following series of requirements:

The function cpy is not equal to ;. (Ps)
Each f-block occurs infinitely often inside (w, <, f). (R)

At a stage s, we define the finite function f [ Ng (where Ny € w and Ng < Ngy1) in such
a way that ({0,1,...,Ns — 1}, <, f [ N;) consists of blocks.

Beforehand, we put f(0) =0, f(1) =2, and f(2) = 1.

The R-strategy is a global one. The R-requirement is satisfied in a simple way, as follows.
At the end of each construction stage s, let By be the current set of all (isomorphism types
of) blocks. Then (before starting the stage s 4+ 1) we use fresh numbers z (i.e., the least
numbers such that f(z) is not defined yet) to extend f in the following way: for each block
I from By, we add precisely two adjacent copies of 1.
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Note that in addition to the R-requirement, this procedure will guarantee that in the
final structure (w, <, f), there will be infinitely many pairs (z, 2z + 1) such that f(z) = x and
f(x+1) =z + 1. This preliminary observation will help us in the verification.

Strategy for P;. Suppose that the strategy starts working at a stage sg + 1.

(1) Choose a large fresh size I; such that the cycle of size l; cannot be isomorphically
embedded into the current structure ({0,1,...,Ng, — 1}, <, f | Ng,). (See Example 18
for the definition of a cycle).

Extend f by adding a copy of the cycle of size I;. Let w; be the leftmost element of this
copy.

(2) Wait for a stage s’ > so + 1 such that ¢; & (w;) ] = 1.

(3) Extend f by taking the least number x such that f(x) is still undefined, and setting
f(z) == w;.

This concludes the description of the strategy. It is clear that it satisfies the requirement
R;. Indeed, assume that the function ¢; is total. If p;(w;) # 1, then the element w; is a
part of a cycle, and cpy(w;) =1 # @;(w;). If @;(w;) = 1, then we have cpy(w;) = 2.

Construction. The construction is arranged as a standard finite injury argument. The
requirements are ordered: Py < P; < Py < .... When a higher priority strategy P; acts (i.e.,
it extends f in its Step (3)), it initializes all lower priority strategies P;, j > i.

Verification. The non-computability of the function ¢py(z) can be proved by a standard
argument for finite injury constructions.

A more hard part is how to show that every As degree belongs to the degree spectrum of
the constructed f. This can be achieved by arranging an argument similar to the argument
of Case (a) of Theorem 14 in [2]. Roughly speaking, given an arbitrary As set X, we should
encode it via a computable copy A = (w, <4) as follows. For each e € w, the numbers 4e
and 4e 4 2 will be < 4-adjacent, and more importantly:

if e € X, then f4(4e) = 4de+ 2 and f4(4e + 2) = 4e;

ifedg X, then f4(4e) = 4e and fa(de +2) =4e + 2.

Our preliminary observation helps us to arrange this encoding. This concludes the proof
sketch of Theorem 27. |
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