
The Expressive Power of CSP-Quantifiers
Lauri Hella !

Faculty of Information Technology and Communication Sciences, Tampere University, Finland

Abstract
A generalized quantifier QK is called a CSP-quantifier if its defining class K consists of all structures
that can be homomorphically mapped to a fixed finite template structure. For all positive integers
n ≥ 2 and k, we define a pebble game that characterizes equivalence of structures with respect to
the logic Lk

∞ω(CSP+
n), where CSP+

n is the union of the class Q1 of all unary quantifiers and the
class CSPn of all CSP-quantifiers with template structures that have at most n elements. Using
these games we prove that for every n ≥ 2 there exists a CSP-quantifier with template of size n + 1
which is not definable in Lω

∞ω(CSP+
n). The proof of this result is based on a new variation of the

well-known Cai-Fürer-Immerman construction.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases generalized quantifiers, constraint satisfaction problems, pebble games, finite
variable logics, descriptive complexity theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.25

1 Introduction

The present paper continues the research line in descriptive complexity theory that was
originated in the seminal paper [3] of Cai, Fürer and Immerman. Using a pebble game
characterization, introduced in [11], for the infinitary k-variable logic with counting, Ck

∞ω,
they proved that there are PTIME-computable properties that are not definable in Cω

∞ω =⋃
k∈ω C

k
∞ω. Since fixed point logic with counting, IFPC, is contained in Cω

∞ω, they obtained
as a corollary that IFPC does not capture PTIME on finite unordered structures. However,
perhaps the most important contribution in [3] is the clever technique for constructing pairs
(Ak,Bk) of non-isomorphic structures such that Duplicator has a winning strategy in the
pebble game with k pebbles. This Cai-Fürer-Immerman (CFI) construction has been later
adapted for several different pebble games that characterize various extensions of Cω

∞ω.
The counting logic Ck

∞ω is obtained by adding the counting quantifiers ∃≥mx (“there
are at least m elements x such that”) to the corresponding infinitary k-variable logic Lk

∞ω.
The counting quantifiers are examples of unary generalized quantifiers as they bind a single
variable in the formula that follows. Generalized quantifiers can also bind variables in several
formulas simultaneously, as well as several variables in each of the formulas. An example of
the former is the Härtig quantifier I x, y (φ(x), ψ(y)) stating that “the number of x satisfying
φ is the same as the number of y satisfying ψ”. As an example of the latter, if C is the class
of connected graphs, then QC is a generalized quantifier binding two variables in a formula,
and QCxy φ(x, y) has the meaning “the binary relation defined by the formula φ(x, y) is
the edge relation of a connected graph”. More generally, any isomorphism closed class K of
structures in a finite relational vocabulary can be used as an interpretation of a generalized
quantifier QK. The quantifier QK is r-ary, if it binds at most r variables in each formula.

Since Cω
∞ω turned out to be too weak to define all PTIME computable properties of finite

structures, it was natural to study the expressive power of extensions of Lω
∞ω with quantifiers

of arity more than 1. For this purpose we introduced in [10] the r-bijective k-pebble game
that characterizes equivalence with respect to the logic Lk

∞ω(Qr), the extension of Lk
∞ω

by the class Qr of all generalized quantifiers of arity at most r. Furthermore, we proved
that, for any positive integer r, there is a PTIME-computable generalized quantifier of arity

© Lauri Hella;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lauri.hella@tuni.fi
https://orcid.org/0000-0002-9117-8124
https://doi.org/10.4230/LIPIcs.CSL.2023.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 CSP Quantifiers

r + 1 which is not definable in Lω
∞ω(Qr). As a corollary, we got the result that there is no

set Q of generalized quantifiers of bounded arity such that IFP(Q) captures PTIME. The
proof of these results is based on the n-bijective k-pebble game and a variation of the CFI
construction, where the binary edge relation in the so-called “gadget graphs” is replaced by
an r + 1-ary relation. Since Cω

∞ω has the same expressive power as Lω
∞ω(Q1), the results

in [10] are a natural extension of those in [3].
More than a decade after the publication of [10], research on extensions of Cω

∞ω, pebble
games and CFI constructions became active again, when Dawar, Grohe, Holm and Laubner [5]
introduced the extension IFPR of IFP by rank operators. A rank operator rkp binds two
tuples x⃗ and y⃗ of variables in a formula φ, and outputs the rank of the matrix defined
by φ over the field Fp, where values of x⃗ are thought as columns and values of y⃗ as rows.
Dawar and Holm [6] defined a pebble game that characterizes equivalence with respect to
the extension of Lk

∞ω with the rank operators, and also the so-called invertible map game,
which corresponds to a stronger equivalence. The invertible map game was later shown
in [4] to characterize equivalence with respect to the extension of Lk

∞ω by all linear algebraic
operators, i.e., operators that are invariant under similarity mappings (with respect to the
field Fp considered).

The rank logic IFPR was shown to fall short of capturing PTIME by Grädel and Pakusa [9];
their proof is based on a variation of the CFI construction. They also suggested a stronger
version IFPR∗ of rank logic that allows the parameter p in the operator rkp to be given
by a term. The question whether IFPR∗ captures PTIME was open for a few years, but it
was recently settled in the negative by Lichter ([14]), who used the invertible map game
mentioned above to show that a generalized CFI construction produces non-isomorphic
structures that cannot be separated in the extension of Lk

∞ω with the stronger rank operator
of [9].

Another application of the CFI construction was given by Atserias, Bulatov and Dawar [1],
who observed that the CFI structures Ak and Bk of [3] can be separated by PTIME-computable
constraint satisfaction problems that arise from affine systems of equations. The same is
true for the CFI construction in [10]: for each r there is a constraint satisfaction problem
r-CFI that separates the Lk

∞ω(Qr)-equivalent structures obtained by the construction. The
problem r-CFI is an instance of solving systems of equations over F2, and hence it is PTIME-
computable.

A constraint satisfaction problem CSP(C) with a finite template structure C is the class
of all finite structures in the same vocabulary as C that can be homomorphically mapped to
C. By a CSP-quantifier we mean a generalized quantifier QK such that its defining class K
is of the form CSP(C). In this paper we use two numerical parameters for classifying CSP-
quantifiers: the arity of QCSP(C) is the maximum arity of relations in C, and the size of QCSP(C)
is the number of elements in the universe of C. Thus, the observation above concerning the
CFI structures in [10] can be formulated as an arity hierarchy for CSP-quantifiers: for any
positive integer r, there exists a PTIME-computable CSP-quantifier QCSP(C) of arity r + 1
and size 2 which is not definable in Lω

∞ω(Qr), and a fortiori, not definable in the extension
of Lω

∞ω by all CSP-quantifiers of arity at most r.
In this paper, we turn attention to the size of CSP-quantifers. Given an integer n ≥ 2,

we define CSPn to be the class of all CSP-quantifiers of size at most n. We introduce a
pebble game CSPG[A,B, n, k], and prove that it characterizes equivalence of the structures
A and B with respect to Lk

∞ω(CSP+
n), where CSP+

n is the union of CSPn and the class of
all unary quantifiers Q1. We also define another pebble game that we call bijective colouring
game, BCG[A,B, n, k]. The game BCG has simpler rules than CSPG, but it can still be
used for proving undefinability results for Lω

∞ω(CSP+
n): we prove that if Duplicator has a

winning strategy in BCG[A,B, n, k], then she has one also in CSPG[A,B, n, k].

L. Hella 25:3

As our main result in the paper, we prove a size hierarchy theorem for CSP-quantifiers:
for any n ≥ 2 there exists a CSP-quantifier QCSP(Cn) of size n+ 1 which is not definable in
Lω

∞ω(CSP+
n). The proof of this result is based on a new variation of the CFI construction

that produces for each input graph G two structures Aev
n (G) and Aod

n (G) such that Duplicator
has a winning strategy in the bijective colouring game BCG[Aev

n (G),Aod
n (G), n, k], assuming

that G is large enough. On the other hand, Aev
n (G) ∈ CSP(Cn) and Aod

n (G) /∈ CSP(Cn) for
all graphs G.

The size hierarchy result differs from the arity hierarchy result in two important aspects.
First, the membership problem of CSP(Cn) is NP-complete. It is an open problem whether
CSP(Cn) can be replaced in the size hierarchy result by some PTIME-computable CSP(Dn).
Second, the arity of CSP(Cn) depends on n; in fact, Cn has a single relation which is 3n-ary.
We do not know if the size hierarchy result holds for CSP-quantifiers of arity r for some fixed
r. It should also be mentioned here that we do not include vectorization in the definition of
logics with generalized quantifiers, unlike is done in many recent papers on the topic. The
pebble game CSPG could be adapted for vectorized quantifiers, but using such games would
probably be too difficult to handle, as they involve existential second order quantification of
ℓ-ary relations for ℓ ≥ 2. Furthermore, it seems quite possible that equivalence with respect
to Lk

∞ω with the second vectorization of CSP-quantifiers is just isomorphism.

The structure of the paper is the following. We explain the necessary background
on logics, constraint satisfaction problems and generalized quantifiers in Sections 2 and 3.
Section 4 is devoted to the definitions of the pebble games CSPG and BCG, and the
corresponding characterizations of equivalence with respect to the logic Lk

∞ω(CSP+
n). In

Section 5, we describe our generalized CFI construction, and in Section 6, we introduce the
CSP-quantifer that separates the constructed structures Aev

n (G) and Aod
n (G). The proof

that Duplicator has a winning strategy in the game BCG[Aev
n (G),Aod

n (G), n, k] is given in
Section 7. Finally, in Section 8, we give a brief overview of our contributions in the paper,
and list some open problems.

2 Preliminaries

In this section we go briefly through definitions of basic notions concerning logics and
constraint satisfaction problems. For a more comprehensive exposition on first-order logic
and finite variable logic, we refer to the excellent textbooks [7] and [13]. Fo more information
on constraint satisfaction problems from a logical point of view we refer to [12]. We start by
giving some notational and other conventions.

2.1 Notation and conventions

For a positive integer n, we denote the set {1, . . . , n} by [n]. The cardinality of a (finite) set
A is denoted by |A|. If f : A → B is a function, and a⃗ = (a1, . . . , ar) ∈ Ar, then we use the
shorthand notation f (⃗a) := (f(a1), . . . , f(ar)).

All vocabularies considered in this paper are finite and relational, i.e., they are of the
form τ = {R1, . . . , Rn}, where each Ri is a relation symbol. The arity of Ri is denoted by
ar(Ri). A τ -structure is then a tuple A = (A,RA

1 , . . . , R
A
n), where RA

i ⊆ Aar(Ri) for each
i ∈ [n]. All our results are in the context of finite model theory; thus, we will assume without
further notice that the universe A of any structure A we consider is a finite set.

CSL 2023

25:4 CSP Quantifiers

Given a τ -structure A, an assignment on A is a function α : X → A, where dom(α) = X

is some finite set of variables. If y is a variable and a ∈ A, then α[a/y] denotes the modified
assignment on A with dom(α[a/y]) = X ∪ {y} such that α[a/y](x) = α(x) for all x ∈ X \ {y},
and α[a/y](y) = a.

Let A and B be τ -structures. A partial isomorphism from A to B is a bijection p : C → D

such that C ⊆ A, D ⊆ B, and for all R ∈ τ and all a⃗ ∈ Car(R), a⃗ ∈ RA ⇐⇒ p(⃗a) ∈ RB. We
denote the set of all partial isomorphisms from A to B by PI(A,B). If α is an assignment
on A and β is an assignment on B such that dom(α) = dom(β), then we denote the relation
{(α(x), β(x)) | x ∈ dom(α)} ⊆ A×B by α 7→ β. Thus, α 7→ β ∈ PI(A,B) if this relation is
a bijection that preserves the relations in τ .

An n-colouring of a set T is a function g : T → [n]. If A is a τ -structure and g is an
n-colouring of its universe A, we define Ag to be the τ ∪ {S1, . . . , Sn}-structure with the
same universe such that RAg := RA for all R ∈ τ , and SAg

i := {a ∈ A | g(a) = i} for each
i ∈ [n]. Note that if Bh is another τ -structure with an n-colouring h, and p ∈ PI(A,B), then
p ∈ PI(Ag,Bh) if and only if p preserves colouring: g(a) = h(p(a)) for all a ∈ dom(p).

We define graphs as ordered pairs G = (V,E), where V is a nonempty set of vertices,
and E is a set of unordered pairs of vertices, called edges; i.e., E ⊆ {{u, v} | u, v ∈ V, u ̸= v}.
Thus, a graph G is not a relational structure, but it can be represented as one by setting
AG := (V,RE), where RE := {(u, v) | {u, v} ∈ E}.

2.2 Logics
First-order logic, FO, is defined as usually (see, e.g., [13]). The infinitary logic L∞ω is the
extension of FO that allows disjunctions

∨
Ψ and conjunctions

∧
Ψ of arbitrary sets Ψ

of formulas. Since we assume that all structures are finite, it suffices to consider infinite
disjunctions and conjunctions only over countable sets Ψ.

For each positive integer k, the infinitary k-variable logic Lk
∞ω is the fragment of L∞ω

consisting of formulas that contain at most k different variables; we assume throughout that
the variables allowed in the formulas of Lk

∞ω come from a fixed set Xk := {x1, . . . , xk}. The
k-variable first-order logic, FOk, is defined analogously. The finite variable logic Lω

∞ω is the
union of Lk

∞ω over positive integers k.
All logics L we consider are extensions of FO, Lω

∞ω, or their k-variable fragments with
generalized quantifiers. Given a τ -structure A, an assignment α : X → A on A, and a
τ -formula φ ∈ L with free variables in X, we write (A, α) |= φ, if φ is true in A under the
interpretation α. If φ is a sentence and α is the empty assignment ∅, we write A |= φ instead
of (A, ∅) |= φ.

2.3 Constraint satisfaction problems
Let τ be a vocabulary, and let A and B be τ -structures. A function h : A → B is a
homomorphism A → B, if the implication

a⃗ ∈ RA =⇒ h(⃗a) ∈ RB

holds for every relation symbol R ∈ τ and every tuple a⃗ ∈ Aar(R). The uniform Constraint
Satisfaction Problem (CSP) on τ -structures asks whether there exists a homomorphism
h : A → B for a pair (A,B) of input structures of vocabulary τ . It is well known that
this problem is NP-complete, assuming that τ contains at least one relation symbol R with
ar(R) ≥ 2.

L. Hella 25:5

We consider in this paper the non-uniform version of CSP, in which the second structure,
called the template of the problem, is fixed, and only the first structure is given as input. For
each template structure C of vocabulary τ , the class of positive instances of the corresponding
non-uniform CSP is denoted by CSP(C). Thus, CSP(C) consists of all τ -structures A such
that there exists a homomorphism h : A → C.

We classify template structures C by two numerical parameters:
The arity of C is ar(C) := max{ar(R) | R ∈ τ}, where τ is the vocabulary of C.
The size of C is sz(C) := |C|.

We will henceforth assume without loss of generality that the universe of any template C

with sz(C) = n ≥ 3 is [n]; in case sz(C) = 2, we may also use the Boolean universe {0, 1}.
As an example, consider the n-colourability problem n-COL of graphs. Clearly a graph G

is n-colourable if and only if there is a homomorphism from AG to the structure Cn-COL :=
([n], {(i, j) ∈ [n]2 | i ≠ j}). Thus, we can identify n-COL with CSP(Cn-COL). The arity
and size of Cn-COL are 2 and n, respectively. It is well known that for n ≥ 3, n-COL is
NP-complete, while for n = 2 it is in LOGSPACE.

Another, highly relevant example is related to the generalization of the CFI construction
given in [10]: a close inspection of the structures A(G) and B(G) constructed in Section 8
of that paper reveals that they can be separated by a CSP. More precisely, A(G) ∈
CSP(Cn-CFI) and B(G) /∈ CSP(Cn-CFI), where Cn-CFI = ({0, 1}, Rev, {(0, 0), (1, 1)}) for Rev :=
{(b1, . . . , bn+1) | b1 + · · · + bn+1 = 0 mod 2}.1 The arity and size of Cn-CFI are n + 1 and
2, respectively. The problem n-CFI := CSP(Cn-CFI) can be solved by Gaussian elimination,
whence it is PTIME-computable.

The complexity of non-uniform CSP has been studied intensively for more than three
decades. This is because a large variety of real-world problems can be formulated as CSPs,
and hence it is important to understand the borderline between feasible and unfeasible cases.
Research on the topic culminated recently in the proof by Bulatov [2] and Zhuk [16] of the
Dichotomy Conjecture formulated by Feder and Vardi in [8]: for any template C, CSP(C) is
either in PTIME, or NP-complete.

3 Generalized quantifiers

The notion of generalized quantifier was originally defined by Lindström [15] in 1966. Thus,
generalized quantifiers are often called Lindström quantifiers. We go here quickly through the
definitions and notations concerning generalized quantifiers, and then introduce the special
case of CSP-quantifiers. For more detailed treatment of quantifiers we refer to [7] and [10].

Let τ = {R1, . . . , Rm} be a relational vocabulary, and let ar(Ri) = ri for each i ∈ [m].
To any class K of τ -structures that is closed under isomorphisms, we assign a generalized
quantifier (or a Lindström quantifier) QK. The extension L(QK) of a logic L by QK is
obtained by adding the following rules in the syntax and semantics of L:

If ψ1, . . . , ψm are formulas and y⃗1, . . . , y⃗m are tuples of variables with |y⃗i| = ri for i ∈ [m],
then φ = QKy⃗1, . . . , y⃗m (ψ1, . . . , ψm) is a formula. A variable is free in φ if, for some
i ∈ [m], it is free in ψi but does not occur in y⃗i.
(A, α) |= QKy⃗1, . . . , y⃗m (ψ1, . . . , ψm) if and only if (A,ψA,α,y⃗1

1 , . . . , ψA,α,y⃗m
m) ∈ K, where

θA,α,y⃗ := {a⃗ ∈ Ar | (A, α[⃗a/y⃗]) |= θ} for a formula θ and an r-tuple y⃗ of variables.
The extension L(Q) of L by a class Q of generalized quantifiers is defined by adding the
rules above to L for each QK ∈ Q.

1 This was observed in hindsight after the paper [1]. At the time we wrote [10] we were not familiar with
the literature on CSP.

CSL 2023

25:6 CSP Quantifiers

Let QK and QK′ be generalized quantifiers. We say that QK is definable in L(QK′) if
the defining class K is definable in L(QK′), i.e., there is a sentence φ of L(QK′) such that
K = {A | A |= φ}.

The type of the quantifier QK is (r1, . . . , rm), and the arity of QK is max{r1, . . . , rm}.
For the sake of simplicity, we assume from now onwards that the type of QK is uniform,
i.e., ri = rj for all i, j ∈ [m]. This is no loss of generality, since for any quantifier QK there
is another quantifier QK′ of uniform type with the same arity such that QK is definable in
FO(QK′) and QK′ is definable in FO(QK).

Furthermore, we restrict the syntactic rule of QK by requiring that y⃗i = y⃗j for all
i, j ∈ [m]. Then we can denote the formula obtained by applying the rule simply by
φ = QKy⃗ (ψ1, . . . , ψm). Note however, that this convention disallows formulas of the type
θ = Qx, y (R(x, y), R(y, x)) in which both x and y remain free even though x is bound in
R(x, y) and y is bound in R(y, x), and hence weakens the expressive power of FOk(QK)
and Lk

∞ω(QK). Fortunately the loss can be compensated by using more variables (e.g., θ
is equivalent with Qz (R(z, y), R(z, x)). Hence the restriction does not affect the expressive
power of FO(QK) and Lω

∞ω(QK).

▶ Definition 1. Let r and n ≥ 2 be positive integers.
(a) We denote the class of all generalized quantifiers QK of arity at most r by Qr.
(b) A generalized quantifier QK is a CSP-quantifier if its defining class K is CSP(C) for

some template structure C. We will denote QCSP(C) simply by QC.
(c) We denote the class of all CSP-quantifiers QC such that sz(C) ≤ n by CSPn.
(d) We write CSP+

n := Q1 ∪ CSPn.

For example Qn-COL ∈ Q2 ∩ CSPn for each n ≥ 2, and Qr-CFI ∈ Qr+1 ∩ CSP2 for each
r. As mentioned in the previous section, r-CFI is PTIME-computable, and it separates the
structures used in the proof of the main result in [10] (Theorem 8.6). Thus, the corresponding
CSP-quantifiers form a strong hierarchy: Qr-CFI is not definable in Lω

∞ω(Qr) for any r ≥ 2.
In the present paper we will prove a similar hierarchy result for CSP-quantifiers in terms

of the size parameter: for every n ≥ 2 we define a template structure Cn with sz(Cn) = n+ 1
such that QCn

is not definable in Lω
∞ω(CSP+

n). It is well known that inflationary fixed
point logic IFP is contained in Lω

∞ω, and this remains valid in the presence of any additional
quantifiers. Moreover, inflationary fixed point logic with counting IFPC is contained in
Lω

∞ω(Q1). Thus, as a corollary, we obtain that QCn
is not definable in IFPC(CSPn).

This corollary is the main reason for considering CSP+
n instead of just CSPn. Without the

class Q1 of all unary quantifiers we would only get the undefinability of QCn in IFP(CSPn),
and IFP(CSPn) is strictly less expressive than IFPC(CSPn). For example, using a straight-
forward quantifier elimination argument we can show that no sets A and B with at least kn
elements can be separated by a sentence of Lω

∞ω(CSPn); thus, e.g. even cardinality can not
be defined in IFP(CSPn).

Given two structures A and B of the same vocabulary, and assignments α and β on
A and B, respectively, such that dom(α) = dom(β), we write (A, α) ≡k

∞ω,n (B, β) if the
equivalence

(A, α) |= φ ⇐⇒ (B, β) |= φ

holds for all formulas φ ∈ Lk
∞ω(CSP+

n) with free variables in dom(α). Similarly we write
(A, α) ≡k

n (B, β) if the equivalence above holds for all FOk(CSP+
n)-formulas φ. If α = β = ∅,

we write simply A ≡k
∞ω,n B instead of (A, ∅) ≡k

∞ω,n (B, ∅), and similarly for ≡k
n.

L. Hella 25:7

4 Pebble games

In order to prove undefinability results for the logic Lk
∞ω(CSP+

n), we introduce in this section
two pebble games. The first game gives an exact characterization for the equivalence ≡k

∞ω,n.
The second game corresponds to an at least as strong equivalence, but has simpler rules.
Hence we use the second game in the proof of the main result in Section 7.

4.1 Game for CSP-quantifiers
Assume that A and B are τ -structures for a relational vocabulary τ . Furthermore, assume
that α and β are assignments on A and B, respectively, such that dom(α) = dom(β) ⊆ Xk

(recall that Xk = {x1, . . . , xk}). The CSP game for (A, α) and (B, β) is played between
Spoiler and Duplicator, and it has two integer parameters: n ≥ 1 for the size of templates
and k ≥ 1 for the number of pebbles. The parameters n and k are kept fixed in each play
of the game. As the structures A and B are also fixed in plays, but the assignments α and
β are changed, we denote the game by CSPG[A,B, n, k](α, β), and we use the shorthand
notation CSPG(α, β) whenever A, B, n and k are clear from the context.

▶ Definition 2. The rules of the game CSPG[A,B, n, k](α, β) are the following:
(1) If α 7→ β /∈ PI(A,B), then the game ends, and Spoiler wins.
(2) If (1) does not hold, there are three types of moves that Spoiler can choose to play:

Bijection move: Spoiler starts by choosing a variable y ∈ Xk.
Assuming that |A| = |B|, Duplicator answers by choosing a bijection f : A → B.
Spoiler completes the round by choosing an element a ∈ A. The players continue by
playing CSPG(α[a/y], β[f(a)/y]).
On the other hand, if |A| ≠ |B|, then the game ends, and Spoiler wins.
Left CSP-quantifier move: Spoiler starts by choosing r ∈ [k] and an r-tuple y⃗ ∈ Xr

k

of distinct variables and a colouring g : A → [n]. Duplicator chooses next a colouring
h : B → [n] such that rng(h) ⊆ rng(g). Spoiler answers by choosing an r-tuple b⃗ ∈ Br.
Duplicator completes the round by choosing an r-tuple a⃗ ∈ Ar such that g(aj) = h(bj)
for all j ∈ [r].2 The players continue by playing CSPG(α[⃗a/y⃗], β [⃗b/y⃗]).
Right CSP-quantifier move: Spoiler starts by choosing r ∈ [k] and an r-tuple
y⃗ ∈ Xr

k of distinct variables and a colouring h : B → [n]. Duplicator chooses next a
colouring g : A → [n] such that rng(g) ⊆ rng(h). Spoiler answers by choosing an r-
tuple a⃗ ∈ Ar. Duplicator completes the round by choosing an r-tuple b⃗ ∈ Br such that
g(aj) = h(bj) for all j ∈ [r]. The players continue by playing CSPG(α[⃗a/y⃗], β [⃗b/y⃗]).

(3) Duplicator wins the game if Spoiler does not win it in a finite number of rounds.

We prove now that the CSP game characterizes equivalence with respect to both of the
logics FOk(CSP+

n) and Lk
∞ω(CSP+

n).

▶ Theorem 3. The following conditions are equivalent:
(1) Duplicator has a winning strategy in the game CSPG[A,B, n, k](α, β),
(2) (A, α) ≡k

∞ω,n (B, β),
(3) (A, α) ≡k

n (B, β).

Proof. (1) ⇒ (2): We prove by induction on φ ∈ Lk
∞ω(CSP+

n) that (for any assignments α
and β) if Duplicator has a winning strategy in CSPG(α, β), then (A, α) |= φ ⇐⇒ (B, β) |= φ.

2 Note that since rng(h) ⊆ rng(g), such a tuple a⃗ always exists.

CSL 2023

25:8 CSP Quantifiers

If φ is an atomic formula, the claim follows from the fact that Spoiler always wins the
game CSPG(α, β) immediately if α 7→ β /∈ PI(A,B).
The cases φ = ¬ψ, φ =

∨
Ψ and φ =

∧
Ψ are straightforward.

Assume next that φ = Qy (ψ1, . . . , ψℓ) for some unary generalized quantifer Q. Let Spoiler
start the game CSPG(α, β) by a bijection move with variable y. By our assumption
Duplicator can answer by a bijection f : A → B such that for any a ∈ A, she has a winning
strategy in the continuation CSPG(α[a/y], β[f(a)/y]) of the game. By the induction
hypothesis we have

(A, α[a/y]) |= ψi ⇐⇒ (B, β[f(a)/y]) |= ψi.

This means that f is an isomorphism between the structures (A,ψA,α,y
1 , . . . , ψA,α,y

ℓ) and
(B,ψB,β,y

1 , . . . , ψB,β,y
ℓ), whence it follows that (A, α) |= φ ⇐⇒ (B, β) |= φ.

Consider finally the case φ = QCy⃗ (ψ1, . . . , ψℓ) for some r-ary CSP-quantifier QC with
template C = ([n], RC

1 , . . . , R
C
ℓ). We start by assuming that (A, α) |= φ. Thus, there is a

homomorphism g from the structure (A,ψA,α,y⃗
1 , . . . , ψA,α,y⃗

ℓ) to C. Let Spoiler play in the
game CSPG(α, β) a left CSP-quantifier move with r, the tuple y⃗ ∈ Xr

k and the function g,
and let h : B → [n] be the answer of Duplicator given by her winning strategy. We claim
that h is a homomorphism (B,ψB,β,y⃗

1 , . . . , ψB,β,y⃗
ℓ) to C, and consequently (B, β) |= φ.

Assume that this is not the case. Then there is i ∈ [ℓ] and a tuple b⃗ ∈ Br such that
b⃗ ∈ ψB,β,y⃗

i (i.e., (B, β [⃗b/y⃗]) |= ψi), but h(⃗b) /∈ RC
i . Let Spoiler play the tuple b⃗ after

Duplicator has played h, and let a⃗ ∈ Ar be the answer to this move given by the winning
strategy of Duplicator. Then g(⃗a) = h(⃗b), and Duplicator has a winning strategy in
the continuation CSPG(α[⃗a/y⃗], β [⃗b/y⃗]) of the game, whence by the induction hypothesis
(A, α[⃗a/y⃗]) |= ψi, or equivalently, a⃗ ∈ ψA,α,y⃗

i . This is in contradiction with the fact that g
is a homomorphism, since g(⃗a) = h(⃗b) /∈ RC

i . Thus, h is a homomorphism, as we claimed.
By using the right CSP-quantifier move in place of the left CSP-quantifier move, we
can prove that (B, β) |= φ implies (A, α) |= φ. Thus, (A, α) |= φ ⇐⇒ (B, β) |= φ, as
desired.

The implication (2) ⇒ (3) is trivially true, as FOk(CSP+
n) is contained in Lk

∞ω(CSP+
n).

(3) ⇒ (1): Observe first that since A is finite, there are only finitely many formulas
of FOk(CSP+

n) that are non-equivalent on A. Thus, for each assignment γ of A with
dom(γ) ⊆ Xk there is a formula Ψn,k

A (γ) ∈ FOk(CSP+
n) such that (A, γ) |= Ψn,k

A (γ), and
(∗) (C, δ) |= Ψn,k

A (γ) implies (A, γ) ≡k
n (C, δ) for any structure C and assignment δ.

Assume now that (A, α) ≡k
n (B, β). We show that Duplicator can play in the first round of

the game CSPG(α, β) in such a way that (A, α′) ≡k
n (B, β′) holds in the next position (α′, β′)

of the game. Clearly playing this way in all rounds of the game, Duplicator is guaranteed to
win, as the condition (A, α) ≡k

n (B, β) implies that α 7→ β ∈ PI(A,B). There are three cases
based on the type of the first move Spoiler chooses:

Spoiler makes a bijection move, and picks a variable y ∈ Xk. For the sake of simplicity
we use below the shorthand notation Ψa := Ψn,k

A (α[a/y]) for each a ∈ A. The assumption
(A, α) ≡k

n (B, β) implies that (B, β) |= ∃=|A|y (y = y), and for each a ∈ A, (B, β) |=
∃=mayΨa, where ma = |{a′ ∈ A | Ψa′ ⇔ Ψa}|. This means that |B| = |A| and
|{b ∈ B | (B, β[b/y]) |= Ψa}| = ma for all a ∈ A, whence there is a bijection f : A → B

such that for every a ∈ A, (B, β[f(a)]) |= Ψa. Thus, using this bijection f as her answer
to the move of Spoiler, Duplicator makes sure that (B, β[f(a)/y]) |= Ψa, and hence by
(∗), (A, α[a/y]) ≡k

n (B, β[f(a)/y]) holds in the next position (α[a/y], β[f(a)/y]) of the
game.

L. Hella 25:9

Spoiler makes a left CSP-quantifier move, and chooses r ∈ [k], an r-tuple y⃗ ∈ Xr
k of

variables and a colouring g : A → [n]. To simplify notation, we denote Ψn,k
A (α[⃗a/y⃗])

by Ψa⃗ for each a⃗ ∈ Ar. Let C = ([n], (RC
a⃗)a⃗∈Ar , RC

∅) be the canonical structure arising
from the function g and the formulas Ψa⃗: RC

a⃗ = {g(⃗a′) | Ψa⃗′ ⇔ Ψa⃗} and RC
∅ = ∅.

Then by the assumption (A, α) ≡k
n (B, β), (B, β) |= QCy⃗ ((Ψa⃗)a⃗∈Ar ,

∧
a⃗∈Ar ¬Ψa⃗). Thus,

there is a homomorphism h from the structure (B, (ΨB,β,y⃗
a⃗)a⃗∈Ar , (

∧
a⃗∈Ar ¬Ψa⃗)B,β,y⃗) to

C. Let Duplicator use this function h : B → [n] as her move, and assume that Spoiler
chooses next the tuple b⃗ ∈ Br. Since RC

∅ = ∅, there exists a⃗ ∈ Ar such that b⃗ ∈ ΨB,β,y⃗
a⃗ ,

i.e., (B, β [⃗b/y⃗]) |= Ψa⃗. Then h(⃗b) ∈ RC
a⃗ , whence by the definition of RC

a⃗ , there exists
a⃗′ ∈ Ar such that h(⃗b) = g(⃗a′) and Ψa⃗′ ⇔ Ψa⃗. We let Duplicator use this tuple a⃗′ as
the final step of her move. The next position in the game is then (α[⃗a′/y⃗], β [⃗b/y⃗]), and
(B, β [⃗b/y⃗]) |= Ψa⃗′ , whence (∗) implies that (A, α[⃗a′/y⃗]) ≡k

n (B, β [⃗b/y⃗]), as desired.
The case of right CSP-quantifier move is proved in the same way by switching the roles
of the structure (A, α) and (B, β). ◀

4.2 Bijective colouring game
As we mentioned in the beginning of Section 4, instead of the CSP game we will use another
game with simpler rules in the proof of the size hierarchy theorem in Section 7. We will now
introduce this game.

Assume again that A and B are τ -structures, and α and β are assignments on them
with dom(α) = dom(β) ⊆ Xk. Furthermore, let g : A → [n] and h : B → [n] be colourings.
We define next the bijective colouring game BCG(α, β, g, h) := BCG[A,B, n, k](α, β, g, h) for
(A, g, α) and (B, h, β) with parameters n and k.

▶ Definition 4. The rules of the game BCG[A,B, n, k](α, β, g, h) are the following:
(1) If α 7→ β /∈ PI(Ag,Bh), then the game ends, and Spoiler wins.
(2) Otherwise Duplicator chooses a bijection f : A → B (if |A| ̸= |B| the game ends and

Spoiler wins). Spoiler can now choose to play one of the two options:
Element move: Spoiler chooses a variable y ∈ Xk and an element a ∈ A. The
players continue by playing BCG(α[a/y], β[f(a)/y], g, h).
Colouring move: Spoiler chooses a function g′ : A → [n]. The players continue by
playing BCG(α, β, g′, h′), where h′ is the unique function B → [n] such that g′ = h′ ◦f .

(3) Duplicator wins the game if Spoiler does not win it in a finite number of rounds.

The following result shows that the bijective colouring game corresponds to an at least as
strong equivalence as the CSP game. We leave it as an open problem, whether the converse
of this holds.

▶ Theorem 5. If Duplicator has a winning strategy in the game BCG[A,B, n, k](α, β, g, h) for
some colourings g and h, then she has a winning strategy in the game CSPG[A,B, n, k](α, β).

Proof. Assume that g : A → [n] and h : B → [n] are colourings such that Duplicator has
a winning strategy in BCG(α, β, g, h). Then α 7→ β ∈ PI(Ag,Bh) ⊆ PI(A,B), and hence
Spoiler does not win CSPG(α, β) immediately in position (α, β). We will show that Duplicator
can play in the game CSPG(α, β) in such a way that the condition

(†) Duplicator has a winning strategy in BCG(γ, δ, g̃, h̃) for some g̃ : A → [n], h̃ : B → [n]

holds in every position (γ, δ) during the play. Since (†) implies that γ 7→ δ ∈ PI(A,B),
playing this way Duplicator is guaranteed to win the game CSPG(α, β).

CSL 2023

25:10 CSP Quantifiers

Assume now that Spoiler and Duplicator have reached in the game CSPG(α, β) a position
(γ, δ) such that (†) holds. Let f be the bijection given by the winning strategy of Duplicator
in BCG(γ, δ, g̃, h̃). We consider now the options Spoiler has for his move in CSPG(γ, δ).

Spoiler plays a bijection move, and picks a variable y ∈ Xk. We let Duplicator use
the bijection f as her answer. Let Spoiler choose a ∈ A to complete the round of
the game. By the choice of f , Duplicator has then a winning strategy in the game
BCG(γ[a/y], δ[f(a)/y], g̃, h̃). Thus (†) holds in the next position (γ[a/y], δ[f(a)/y]) of
the game CSPG(α, β).
Spoiler plays a right CSP-quantifier move, and picks a tuple y⃗ = (y1, . . . , yr) ∈ Xr

k and
a colouring h′ : B → [n]. Duplicator answers this by choosing g′ = h′ ◦ f . Note that if
Spoiler chooses g′ in the game BCG(γ, δ, g̃, h̃), then the next position is (γ, δ, g′, h′). Thus
Duplicator has a winning strategy in BCG(γ, δ, g′, h′). Let Spoiler choose next a tuple
a⃗ = (a1 . . . , ar) ∈ Ar. We define the components bi of the answer b⃗ ∈ Br of Duplicator
by induction on i ∈ [r]:

Assume that b1, . . . , bi, i < r, are already defined, and Duplicator has a winning
strategy in BCG(γ [⃗ai/y⃗i], δ[⃗bi/y⃗i], g′, h′), where a⃗i := (a1, . . . , ai), b⃗i := (b1, . . . , bi)
and y⃗i := (y1, . . . , yi). Let fi+1 be the bijection given by Duplicators winning strategy
in this game. Let Spoiler now play an element move and choose the component ai+1
as his move. Then we let bi+1 = fi+1(ai+1). By the choice of fi+1, Duplicator has a
winning strategy in the continuation BCG(γ [⃗aiai+1/y⃗iyi+1], [⃗bibi+1/y⃗iyi+1], g′, h′) of
the game.

Thus, choosing the tuple b⃗ defined above as her answer to a⃗, Duplicator guarantees that
condition (†) holds in the next position (γ [⃗a/y⃗], δ[⃗b/y⃗]).
The case of left CSP-quantifier move is proved in the same way. ◀

▶ Corollary 6. If Duplicator has a winning strategy in the game BCG[A,B, n, k](α, β, g, h)
for some colourings g and h, then (A, α) ≡k

∞ω,n (B, β).

Thus, the bijective colouring game can be used for proving undefinability results for
Lω

∞ω(CSP+
n) in the usual way: a generalized quantifier QK is not definable in Lω

∞ω(CSP+
n)

if for all k there are structures Ak ∈ K and Bk /∈ K such that Duplicator has a winning
strategy in BCG[Ak,Bk, n, k](∅, ∅, g, h) for some g and h.

5 Generalized CFI structures

Fix a natural number n, a 3n-ary relation symbol Rn, and a connected 3-regular ordered
graph G = (V,E,<G). We describe now the details of the construction of generalized
CFI structures Aev

n (G) and Aod
n (G). We start by defining structures Av

n = (Av
n, R

v
n) and

Ãv
n = (Av

n, R̃
v
n) for v ∈ V that will be used as building blocks of Aev

n (G) and Aod
n (G). However,

before this we introduce some useful notation.
We denote the set of all permutations of a set T by S(T) and the set of even permutations

of T by A(T). If T is an indexed set of the form {ti | i ∈ [n+ 1]} and π ∈ S(T), then we use
the notation π⃗ for the n-tuple (π(t1), . . . , π(tn)) (note that π(tn+1) is not included in π⃗, as
π is completely determined by the values π(ti) for i ∈ [n]). The parity p(π) ∈ {0, 1} of a
permutation π ∈ S(T) is defined as

p(π) :=
{

0, if π ∈ A(T)
1, if π /∈ A(T).

For a, b ∈ {0, 1}, we denote their sum modulo 2 by a⊕ b.

L. Hella 25:11

For v ∈ V , we denote by e⃗(v) the tuple (r, s, t) of edges adjacent to a vertex v ∈ V , where
the components are listed in the order <G. Furthermore, we denote by E(v) the set {r, s, t}.
For the definition of Av

n and Ãv
n we also fix distinct elements ae

i for all e ∈ E and i ∈ [n+ 1].

▶ Definition 7. For each e ∈ E, we define Ae
n := {ae

i | i ∈ [n+ 1]}.
For each v ∈ V , we define Av

n := Ar
n ∪As

n ∪At
n, where e⃗(v) = (r, s, t).

Let v ∈ V and e⃗(v) = (r, s, t). We define the {Rn}-structures Av
n := (Av

n, R
v
n) and

Ãv
n := (Av

n, R̃
v
n) by setting

Rv
n := {π⃗ρ⃗ σ⃗ ∈ P v

n | p(π) ⊕ p(ρ) ⊕ p(σ) = 0}
R̃v

n := {π⃗ρ⃗ σ⃗ ∈ P v
n | p(π) ⊕ p(ρ) ⊕ p(σ) = 1},

where we use the notation
P v

n := {π⃗ρ⃗ σ⃗ | π ∈ S(Ar
n), ρ ∈ S(As

n), σ ∈ S(At
n)}

We can now state the important characterization of the automorphisms of these structures
and isomomorphisms between them. We say that a bijection f : Av

n → Av
n preserves edges if

f(ae
i) ∈ Ae

n for all e ∈ E(v) and i ∈ [n]. Note that if this holds, then f =
⋃

e∈E(v) fe, where
fe := f ↾ Ae

n for each e ∈ E(v).

▶ Lemma 8. Let f : Av
n → Av

n be a bijection, and let e⃗(v) = (r, s, t).
(a) f is an automorphism of Av

n and Ãv
n if and only if it preserves edges and p(f) :=

p(fr) ⊕ p(fs) ⊕ p(ft) = 0;
(b) f is an isomorphism between Av

n and Ãv
n if and only if it preserves edges and p(f) = 1.

Proof. If f does not preserve edges, then at least for two of the edges e ∈ E(v) there are
permutations π ∈ S(Ae

n) such that f(π⃗) /∈ {ρ⃗ | ρ ∈ S(Ae
n)}. Clearly this means that π⃗ can

be extended to a tuple a⃗ ∈ Rv
n such that f (⃗a) /∈ Rv

n and f (⃗a) /∈ R̃v
n. Thus, f is neither an

automorphism of Av
n, nor an isomorphism from Av

n to Ãv
n. Similarly, there is a tuple b⃗ ∈ R̃v

n

extending π⃗ such that f (⃗b) /∈ Rv
n and f (⃗b) /∈ R̃v

n, whence f is neither an automorphism of
Ãv

n, nor an isomorphism from Ãv
n to Av

n.
Assume then that f is edge preserving. Clearly in order to determine whether f is an

automorphism of Av
n and Ãv

n (or an isomorphism between them), it suffices to consider tuples
of the form a⃗ = π⃗ρ⃗ σ⃗ ∈ P v

n . Observe that f (⃗a) = fr(π⃗)fs(ρ⃗)ft(σ⃗) =
−−−→
fr ◦ π

−−−→
fs ◦ ρ

−−−→
ft ◦ σ and

p(fr ◦ π) ⊕ p(fs ◦ ρ) ⊕ p(ft ◦ σ) = p(π) ⊕ p(ρ) ⊕ p(σ) ⊕ p(f).

Note further that P v
n is the disjoint union of Rv

n and R̃v
n. Thus, if p(f) = 0, we have

a⃗ ∈ Rv
n ⇐⇒ a⃗ /∈ R̃v

n ⇐⇒ f (⃗a) /∈ R̃v
n ⇐⇒ f (⃗a) ∈ Rv

n,

and if p(f) = 1, we have

a⃗ ∈ Rv
n ⇐⇒ a⃗ /∈ R̃v

n ⇐⇒ f (⃗a) ∈ R̃v
n ⇐⇒ f (⃗a) /∈ Rv

n.

This completes the proof of both (a) and (b). ◀

We assign next an {Rn}-structure An(G,U) to each subset U of V . The CFI structures
Aev

n (G) and Aod
n (G) are later defined as special cases of An(G,U).

▶ Definition 9. Let U ⊆ V . We define the {Rn}-structure An(G,U) := (An(G), Rn(G,U))
by setting

An(G) :=
⋃

v∈V A
v
n = {ae

i | i ∈ [n+ 1], e ∈ E}
Rn(G,U) :=

⋃
v∈V R

v
n(U),

where Rv
n(U) = R̃v

n if v ∈ U and Rv
n(U) = Rv

n if v /∈ U .

CSL 2023

25:12 CSP Quantifiers

▶ Lemma 10. If U,U ′ ⊆ V are such that |U | ≡ |U ′| (mod 2), then An(G,U) and An(G,U ′)
are isomorphic.

Proof. It suffices to prove the following claim:
(∗) If U,U ′ ⊆ V and |(U \ U ′) ∪ (U ′ \ U)| = 2, then An(G,U) ∼= An(G,U ′).
The lemma follows from this, since by repeated use of (∗) we see that An(G,U) ∼= An(G, ∅)
whenever |U | is even, and An(G,U) ∼= An(G, {v}) for any v ∈ V whenever |U | is odd.

To prove (∗), assume that U,U ′ ⊆ V and (U \ U ′) ∪ (U ′ \ U) = {u, u′}. Since G is
connected, there is an E-path P consisting of edges ei = {ui−1, ui}, i ∈ [ℓ], such that u0 = u

and uℓ = u′. For each e ∈ E, we define a function fe : Ae
n → Ae

n as follows:
If e = ei for some i ∈ [ℓ], then fe(ae

1) = ae
2, fe(ae

2) = ae
1 and fe(ae

j) = ae
j for j > 2.

Otherwise fe = idAe
n

(the identity function of Ae
n).

Let f : An(G) → An(G) be the function determined by the functions fe, e ∈ E: f(ae
i) = fe(ae

i)
for all i ∈ [n+ 1] and e ∈ E. We show next that f is an isomorphism from An(G,U) to
An(G,U ′). Clearly it suffices to show that, for each v ∈ V , the restriction fv of f to the set
Av

n is an isomorphism Av
n(U) → Av

n(U ′), where Av
n(U) := (Av

n, R
v
n(U)).

Note first that fv = fr ∪ fs ∪ ft, where (r, s, t) = e⃗(v), whence fv is an edge preserving
bijection. We consider now the following three cases according to the number n(P, v) :=
|{i ∈ [ℓ] | ei ∈ E(v)}| (note that the case n(P, v) = 3 is not possible):
(1) If n(P, v) = 0, then clearly p(fv) = 0 and Av

n(U) = Av
n(U ′) ∈ {Av

n, Ã
v
n}. Thus, fv is an

isomorphism Av
n(U) → Av

n(U ′) by Lemma 8(a).
(2) If n(P, v) = 1, then clearly p(fv) = 1 and v ∈ {u, u′}, and hence either Av

n(U) = Av
n

and Av
n(U ′) = Ãv

n, or Av
n(U) = Ãv

n and Av
n(U ′) = Av

n. Thus, the claim follows from
Lemma 8(b) .

(3) If n(P, v) = 2, then p(fv) = 0 and v /∈ {u, u′}, whence Av
n(U) = Av

n(U ′) ∈ {Av
n, Ã

v
n}.

The claim follows again from Lemma 8(a). ◀

By Lemma 10, there are at most two isomorphism types of the structures An(G,U). We
use Aev

n (G) := An(G, ∅) and Aod
n (G) := An(G, {v0}) as representatives of these classes, where

v0 ∈ V is the smallest vertex with respect to the order <G. To simplify notation, we denote
Rn(G, ∅) and Rn(G, {v0}) simply by Rev

n and Rod
n , respectively.

6 Separating the CFI structures

We prove next that Aev
n (G) and Aod

n (G) are indeed non-isomorphic. More precisely, we show
that Aev

n (G) and Aod
n (G) are separated by a constraint satisfaction problem CSP(Cn). The

template structure Cn is defined as follows:

▶ Definition 11. We define Cn := (Cn,Rn) to be the {Rn}-structure such that
Cn := [n+ 1], and
Rn = {π⃗ρ⃗ σ⃗ | π, ρ, σ ∈ S[n+ 1], p(π) ⊕ p(ρ) ⊕ p(σ) = 0}.

Here we consider Cn as the indexed set {ci | i ∈ [n+ 1]}, where ci = i for each i ∈ [n+ 1].

▶ Proposition 12. Aev
n (G) ∈ CSP(Cn), but Aod

n (G) /∈ CSP(Cn).

Proof. Given a permutation π ∈ S(Ae
n), e ∈ E, we denote its natural projection to [n+ 1]

by π∗: i.e., π∗(i) = j if and only if π(ae
i) = ae

j . Note that clearly p(π∗) = p(π).

L. Hella 25:13

We show that the function g : An(G) → Cn such that g(ae
i) = i for all e ∈ E and

i ∈ [n+ 1], is a homomorphism Aev
n (G) → Cn. Thus, assume that a⃗ ∈ Rev

n . Then a⃗ ∈ Rv
n

for some v ∈ V , whence there are permutations π ∈ S(Ar
n), ρ ∈ S(As

n) and σ ∈ S(At
n),

such that p(π) ⊕ p(ρ) ⊕ p(σ) = 0 and a⃗ = π⃗ρ⃗ σ⃗, where e⃗(v) = (r, s, t). Then we have
g(⃗a) = g(π⃗)g(ρ⃗)g(σ⃗) = π⃗∗ρ⃗∗σ⃗∗ ∈ Rn, since p(π∗) ⊕ p(ρ∗) ⊕ p(σ∗) = p(π) ⊕ p(ρ) ⊕ p(σ) = 0.

To prove that Aod
n (G) /∈ CSP(Cn), assume towards a contradiction that h : An(G) → Cn

is a homomorphism Aod
n (G) → Cn. For each e ∈ E, we let χe : [n+ 1] → [n+ 1] be the

function such that χe(i) := h(ae
i).

We observe first that χe is a bijection for all e ∈ E. Indeed, if χe is not a bijection, then
there are i, j ∈ [n+ 1], such that i ̸= j and χe(i) = χe(j). Let π ∈ S(Ae

n) be a permutation
such that ae

i and ae
j occur in π⃗. Then there are edges e′ and e′′ and permutations ρ ∈ S(Ae′

n)
and σ ∈ S(Ae′′

n) such that a⃗ ∈ Rod
n , where a⃗ is either π⃗ρ⃗ σ⃗, ρ⃗ π⃗σ⃗, or ρ⃗ σ⃗π⃗ (depending on the

order between e, e′ and e′′). On the other hand, h(⃗a) /∈ Rn, since h(π⃗) is not of the form η⃗

for any permutation η ∈ S[n+ 1]. Hence h is not a homomorphism against our assumption.
Observe next that if π ∈ S(Ae

n), then h(π(ae
i)) = χe(π∗(i)) for all i ∈ [n+ 1], whence

h(π⃗) = −−−−→χe ◦ π∗. In particular, h(⃗ι) = χ⃗e for the identity permutation ι of Ae
n. Consider now

a vertex v ∈ V \ {v0} with e⃗(v) = (e1, e2, e3) and the tuple a⃗ = ι⃗1ι⃗2ι⃗3, where ιj ∈ S(Aej
n)

is the identity permutation of Aej
n for j ∈ [3]. Then a⃗ ∈ Rod

n , whence we must have
h(⃗a) = χ⃗e1 χ⃗e2 χ⃗e3 ∈ Rn, or equivalently, p(χe1) ⊕ p(χe2) ⊕ p(χe3) = 0.

On the other hand, if e⃗(v0) = (d1, d2, d3), ιj ∈ S(Adj
n) is the identity permutation of

A
dj
n for j ∈ [2], and π ∈ S(Ad3

n) \ A(Ad3
n), then a⃗ = ι⃗1ι⃗2π⃗ ∈ Rod

n . Hence we must have
h(⃗a) = χ⃗d1 χ⃗d2

−−−−−→χd3 ◦ π∗ ∈ Rn, or equivalently, p(χd1) ⊕ p(χd2) ⊕ p(χd3) ⊕ p(π∗) = 0. Since
p(π∗) = 1, it follows that p(χd1) ⊕ p(χd2) ⊕ p(χd3) = 1.

For each v ∈ V , let O(h, v) be the number |{e ∈ E(v) | p(χe) = 1}|. By the observations
above, we see that O(h, v) is even for all v ∈ V \ {v0} and O(h, v0) is odd. Thus we see that
the sum O(h) :=

∑
v∈V O(h, v) of these numbers is odd. However this is impossible, since

clearly O(h) = 2 · |{e ∈ E | p(χe) = 1}|, as each e ∈ E is adjacent to exactly two vertices. ◀

▶ Proposition 13. CSP(Cn) is NP-complete.

Proof. We give a reduction from 3-colourability to CSP(C2); it is easy to generalize this
reduction to the case of CSP(Cn) with n > 2. Given a graph G = (V,E), we define an
{R2}-structure D = (D,RD

2) as follows:
D := V ∪ {(u, v, i) | {u, v} ∈ E, i ∈ [2]},
RD

2 := {(u, v, u, v, (u, v, 1), (u, v, 2)) | {u, v} ∈ E}.
We show that G is 3-colourable if and only if D ∈ CSP(C2).

Assume first that h : V → [3] is a 3-colouring of G. Let g be the extension of h
to the set D obtained by setting g(u, v, i) = i for all {u, v} ∈ E and i ∈ [2]. If a⃗ =
(u, v, u, v, (u, v, 1), (u, v, 2)) ∈ RD

2 , then g(⃗a) = (h(u), h(v), h(u), h(v), 1, 2) = π⃗ π⃗ ι⃗, where
π ∈ S[3] is the permutation such that π(1) = h(u) and π(2) = h(v), and ι ∈ S[3] is the
identity permutation. Thus we see g(⃗a) ∈ R2, as clearly p(π) ⊕ p(π) ⊕ p(ι) = 0. Hence g is a
homomorphism D → C2.

On the other hand, if g : D → [3] is a homomorphism D → C2, then necessarily g(u) ̸= g(v)
whenever {u, v} ∈ E. Thus, the restriction of g to V is a 3-colouring of G. ◀

We do not know whether the structures Aev
n (G) and Aod

n (G) can be separated by a PTIME-
computable CSP-quantifier, but, in any case, there is a PTIME-property that separates them.

▶ Proposition 14. There exists a PTIME-computable class K of {Rn}-structures that is
closed under isomorphisms such that Aev

n (G) ∈ K and Aod
n (G) /∈ K.

CSL 2023

25:14 CSP Quantifiers

Proof. Let K consist of all structures that are isomorphic to Aev
n (G) for some ordered

connected 3-regular graph G = (V,E,<G). Then Aev
n (G) ∈ K by definition, and Aod

n (G) /∈ K
by Lemma 10 and Proposition 12.

We need to show that the membership problem of K is in PTIME. Let B = (B,RB
n) be

an {Rn}-structure. We describe now an algorithm for deciding whether B ∈ K.

(1) We define first a binary relation P on B by the condition

(b, b′) ∈ P ⇐⇒ there are tuples b⃗1, b⃗2, b⃗3 ∈ Bn such that b⃗1⃗b2⃗b3 ∈ RB
n ,

b occurs in b⃗i and b′ occurs in b⃗j for some 1 ≤ i ≤ j ≤ 3.

If B is in the class K, then the transitive closure ⪯ of P is a linear pre-order of B (i.e.,
it is transitive and satisfies the dichotomy law: b ⪯ b′ or b′ ⪯ b for all b, b′ ∈ B). Thus,
we compute the transitive closure ⪯ of P and reject B if it is not a linear pre-order.

(2) Next we define the equivalence relation ∼ that corresponds to ⪯:

b ∼ b′ ⇐⇒ b ⪯ b′ and b′ ⪯ b.

We check that every ∼-equivalence class [b] ∈ B/∼ has exactly n+ 1 elements; if this is
not the case, then clearly B is not in K, and hence B is rejected.

(3) We define an ordered graph G = (V,E,<G) related to B as follows:
V := {[b] ∪ [c] ∪ [d] | [b], [c], [d] ∈ B/∼, [b]n × [c]n × [d]n ∩RB

n ̸= ∅},
E := {{u, v} | u, v ∈ V, u ̸= v, u ∩ v ̸= ∅},
<G is the strict version of the lexicographic linear order on V obtained from the linear
pre-order ⪯ (note that ⪯ is a linear order on B/∼).

If B is isomorphic to Aev
n (G′) for some G′ = (V ′, E′, <G′), then clearly G ∼= G′, and the

mapping f({u, v}) = u ∩ v defines a bijection E → B/∼. Thus, B is rejected if G is not
an ordered connected 3-regular graph, or if f is not a bijection E → B/∼.

(4) For each e ∈ E, let {be
1, . . . , b

e
n+1} be an arbitrary enumeration of the equivalence class

f(e). For each v ∈ V , let Bv be the structure (v,RB
n ∩ v3n), and let hv : v → Av

n be the
function hv(be

i) = ae
i for each e ∈ E such that f(e) ⊆ v and each i ∈ [n+ 1]. Define the

sets U+, U− ⊆ V as follows:
U+ := {v ∈ V | hv is an isomorphism Bv → Av

n},
U− := {v ∈ V | hv is an isomorphism Bv → Ãv

n}.
If B is in K, then U+ ∪U− = V . Thus, B is rejected, if U+ ∪U− ̸= V . On the other hand,
if U+ ∪ U− = V , then the function h =

⋃
v∈V hv is an isomorphism B → An(G,U−).

By Lemma 10, An(G,U−) ∼= Aev
n if and only if |U−| is even. Thus, B is accepted if |U−|

is even, and rejected otherwise.

Clearly each of the steps (1)–(4) of the algorithm can be realized in polynomial time. In
particular, since |v| = 3(n+ 1) for all v ∈ V and n is a constant, the sets U+ and U− can be
computed in polynomial time with respect to |B|. ◀

7 Winning the bijective colouring game

Our aim is to prove that Duplicator has a winning strategy in the bijective colouring game
BCG[Aev

n (G),Aod
n (G), n, k] provided that G is large enough with respect to the parameter k.

Here being large enough is defined in terms of a game, CRk(G), that is a minor variation of
the cops&robber game introduced in [10].

L. Hella 25:15

The game CRk(G) uses G as a board, and is played between two players, Cop and Robber.
Positions of the game are pairs (F, u), where F ⊆ E is such that |F | ≤ k and u ∈ V . If
E(u) ⊆ F , then the game ends immediately, and Cop wins. If this is not the case, then the
players play a round as follows:

Robber chooses a path P : u0, . . . , uℓ from u = u0 to some vertex u′ = uℓ such that
{ui−1, ui} /∈ F for all i ∈ [ℓ].
Cop chooses an edge e ∈ E and a set F ′ ⊆ F ∪ {e} such that |F ′| ≤ k.
The next position of the game is (F ′, u′).

Robber wins the game if Cop does not win it in a finite number of rounds.
The intuitive idea of the game is that Cop has k cop pebbles that he moves on the edges

of G, and Robber moves one pebble on the vertices of G. Cop tries to capture Robber by
surrounding her pebble by his cop pebbles. In each round, Robber can escape along a path
that does not contain cop pebbles, and after that Cop is allowed to either add one unused
cop pebble on the board, or move one cop pebble to a new position. Robber wins if she can
escape forever.

▶ Definition 15. Let F ⊆ E be a set of edges such that |F | ≤ k. We denote by Wk(F,G)
the set of all vertices u ∈ V such that Robber has a winning strategy in the game CRk(G)
starting from position (F, u).

If Robber has a winning strategy in the game CRk(G) from a given position, then she
can choose a move in the first round in such a way that she has a winning strategy from the
next position after Cop’s move. We formulate this simple principle in terms of the winning
set Wk(F,G).

▶ Lemma 16. Let F ⊆ E be a set of edges such that |F | ≤ k, and let u ∈ V . If u ∈ Wk(F,G),
then there exists an E-path u0 . . . , uℓ from u = u0 to a vertex u′ = uℓ such that {ui−1, ui} ̸∈ F

for all i ∈ [ℓ], and u′ ∈ Wk(F ′, G) for all e ∈ E and F ′ ⊆ F ∪ {e} such that |F ′| ≤ k.

In order to win the bijective colouring game for Aev
n (G) and Aod

n (G), Duplicator has to
use edge preserving bijections f : An(G) → An(G), i.e., bijections f such that f(ae

i) ∈ Ae
n

for all e ∈ E and i ∈ [n+ 1]. We denote the restriction of an edge preserving f to the set
Ae

n by fe. Note that fe ∈ S(Ae
n) for each e ∈ E, and f is the disjoint union of the bijections

fe. Furthermore, for each v ∈ V we denote the restriction of f to the set Av
n by fv. Thus, if

e⃗(v) = (r, s, t), then fv = fr ∪ fs ∪ ft.
We formulate next another important property of bijections that Duplicator will use in

her strategy.

▶ Definition 17. An edge preserving bijection f : An(G) → An(G) is good if there is exactly
one vertex v ∈ V such that the following holds:
(TW) either v ̸= v0 and p(fv) = 1, or v = v0 and p(fv) = 0.
If in addition g, h : An(G) → [n] are colourings and g = h ◦ f , then f is good for g and h.

We denote the set of all good bijections by GB(G), and the set of all bijections that are
good for g and h by GBgh(G). Furthermore, if f ∈ GB(G), then we denote the unique vertex
v such that (TW) holds by tw(f).

The intuition behind condition (TW) is that tw(f) (the “twist of f”) is the only vertex v
such that fv does not preserve the relation Rn.

Note that for any v ∈ V there are bijections f ∈ GB(G) such that tw(f) = v. In the case
v = v0, this is witnessed by the identity function idAn(G) of An(G). For v ̸= v0, this follows
from the proof of Lemma 10: in the case U = {v0} and U ′ = {v} the isomorphism f from
A(G,U) to A(G,U ′) constructed in the proof is in GB(G) and clearly tw(f) = v.

CSL 2023

25:16 CSP Quantifiers

It is also crucial in Duplicator’s strategy that the partial functions p = α 7→ β corres-
ponding to positions (α, β, g, h) of the game BCG[Aev

n (G),Aod
n (G), n, k] are restrictions of

bijections f that are good for g and h, and whose twist tw(f) is far enough from dom(p).

▶ Definition 18. A partial function p : An(G) → An(G) is good for g and h if |dom(p)| ≤ k

and there exists a bijection f ∈ GBgh(G) such that p ⊆ f and tw(f) ∈ Wk(F p, G), where
F p := {e ∈ E | dom(p) ∩Ae

n ̸= ∅}. We denote the set of all partial functions that are good
for g and h by GPgh(G).

We prove next that all good partial functions are partial isomorphisms.

▶ Lemma 19. If p ∈ GPgh(G), then p ∈ PI(Aev
n (G)g,Aod

n (G)h).

Proof. Let f be a bijection in GBgh such that p ⊆ f and tw(f) ∈ Wk(F p, G). Then
g = h ◦ f , whence g(a) = h(p(a)) for all a ∈ dom(p). Furthermore, since f satisfies the
condition (TW) and tw(f) ∈ Wk(F p, G), we have p(fv) = 0 for every v ∈ V \ {v0} such that
dom(p)3n ∩ P v

n ̸= ∅, and p(fv0) = 1 if dom(p)3n ∩ P v0
n ≠ ∅. Thus, the claim follows from

Lemma 8. ◀

The next lemma is the key for defining Duplicator’s strategy in the bijective colouring
game BCG[Aev(G),Aod(G)]: it shows that if p = α 7→ β is a good partial function for g
and h, then there is a suitable good bijection f ′ that Duplicator can play in the position
(α, β, g, h).

▶ Lemma 20. Let g, h : An(G) → [n] be colourings. Assume that p ∈ GPgh(G). Then
there exists f ′ ∈ GBgh(G) such that p ⊆ f ′ and tw(f ′) ∈ Wk(F ′, G) for any e ∈ E and
F ′ ⊆ F p ∪ {e} with |F ′| ≤ k.

Proof. By the definition of GPgh there is a bijection f ∈ GBgh(G) such that p ⊆ f and
tw(f) ∈ Wk(F p, G). Hence, by Lemma 16, there exists an E-path u0, . . . , uℓ from tw(f) = u0
to some vertex u′ = uℓ such that ei := {ui−1, ui} /∈ F p for all i ∈ [ℓ] and u′ ∈ Wk(F ′, G) for
any e ∈ E and F ′ ⊆ F p ∪ {e} with |F ′| ≤ k. We define the bijection f ′ we are looking for as
the union of component bijections f ′

e : Ae
n → Ae

n.
For all edges e ∈ E not on the path P , we let f ′

e := fe. Consider then an edge e on the
path P . By the pigeon hole principle, there are elements a, b ∈ Ae

n such that a ̸= b and
g(a) = g(b). We define now f ′

e as follows:

f ′
e(c) :=


fe(c), if c /∈ {a, b}
fe(b) if c = a

fe(a) if c = b.

Note that since g = h ◦ f , we have h(fe(a)) = h(fe(b)), whence g(c) = h(f ′
e(c)) for all c ∈ Ae

n.
Note further that p(f ′

e) = p(fe) ⊕ 1.
Clearly f ′ is an edge preserving bijection An(G) → An(G), and since g(c) = h(f ′

e(c))
holds for all e ∈ E and c ∈ Ae

n, we have g = h ◦ f ′. Moreover, since F p contains no edges of
the path P , we have p = f ↾ dom(p) = f ′ ↾ dom(p) ⊆ f ′.

To show that f ′ ∈ GBgh(G), we observe next that
p(f ′

v) = p(fv) for all v /∈ {u0, . . . , uℓ},
p(f ′

ui
) = p(f ′

ei
) ⊕ p(f ′

ei+1
) ⊕ p(fe) = (p(fei

) ⊕ 1) ⊕ (p(fei+1) ⊕ 1) ⊕ p(fe) = p(fui
) for each

i ∈ [ℓ− 1], where e is the third edge adjacent to ui, and
p(f ′

ui
) = p(f ′

ej
) ⊕ p(fe) ⊕ p(fe′) = (p(fej) ⊕ 1) ⊕ p(fe) ⊕ p(fe′) = p(fui) ⊕ 1 for (i, j) ∈

{(0, 1), (ℓ, ℓ)}, where e and e′ are the other two edges adjacent to ui.

L. Hella 25:17

Thus we see that there is a unique v ∈ V such that (TW) holds for f ′, and this unique vertex
is tw(f ′) = u′. Finally, by the choice of u′, we have tw(f ′) ∈ Wk(F ′, G) for any e ∈ E and
F ′ ⊆ F p ∪ {e} with |F ′| ≤ k. ◀

Putting together the previous lemmas we can now prove that the strategy based on
good bijections and good partial functions guarantees a win for Duplicator in the bijective
colouring game.

▶ Theorem 21. Assume that Wk(∅, G) ̸= ∅. Then there are colourings g, h : An(G) → [n]
such that Duplicator has a winning strategy in the game BCG[Aev

n (G),Aod
n (G), n, k](∅, ∅, g, h).

Proof. Let g0 and h0 be the trivial colourings An(G) → [n] defined by g0(a) = h0(a) = 1
for all a ∈ An(G). We will show that Duplicator has a winning strategy in the game
BCG[Aev

n (G),Aod
n (G), n, k](∅, ∅, g0, h0). It suffices to show that Duplicator can guarantee

that the condition

(∗) α 7→ β ∈ GPgh(G)

holds in every position (α, β, g, h) during the play. Indeed, by Lemma 19, this implies that
α 7→ β ∈ PI(Aev(G)g,Aod(G)h), and hence Spoiler cannot win the game.

Since Wk(∅, G) ̸= ∅, and g0 = h0 ◦ f holds for any bijection f : An(G) → An(G), there
is a bijection f0 ∈ GBgh(G) such that tw(f0) ∈ Wk(∅, G). Clearly ∅ 7→ ∅ = ∅ ⊆ f0, and
F ∅ = ∅. Thus f0 witnesses the fact that ∅ 7→ ∅ ∈ GPg0h0(G), whence condition (∗) holds for
the starting position (∅, ∅, g0, h0) of the game.

Assume then that Duplicator and Spoiler have reached a position (α, β, g, h) such that
condition (∗) holds. Let p := α 7→ β. By Lemma 20 there exists a bijection f ′ ∈ GBgh(G)
such that p ⊆ f ′ and

(†) tw(f ′) ∈ Wk(F ′, G) for any e ∈ E and F ′ ⊆ F p ∪ {e} with |F ′| ≤ k.

Let Duplicator play f ′ as her move. We consider separately the two options Spoiler has for
his answer:
(1) Spoiler plays an element move by choosing a variable y ∈ Xk and an element a ∈ An(G).

The next position of the game is (α′, β′, g′, h′), where α′ = α[a/y], β′ = β[f ′(a)/y], g′ = g

and h′ = h. Thus, f ′ ∈ GBg′h′(G) = GBgh(G). Let p′ := α′ 7→ β′. Since p ⊆ f ′ and
p′ ⊆ p∪ {(a, f ′(a))}, we have p′ ⊆ f ′. Furthermore, |F p′ | ≤ k and F p′ ⊆ F p ∪ {e}, where
e is the edge such that a ∈ Ae

n, whence by condition (†), we have tw(f ′) ∈ Wk(F p′
, G).

Thus f ′ witnesses that condtion (∗) holds in the position (α′, β′, g′, h′).
(2) Spoiler plays a colouring move by choosing a function g′ : An(G) → [n]. The next position

is (α′, β′, g′, h′), where α′ = α, β′ = β and h′ : An(G) → [n] is the unique function such
that g′ = h′ ◦ f ′. Since f ′ ∈ GB(G) and g′ = h′ ◦ f ′, we have f ′ ∈ GBg′h′(G). Let
p′ := α′ 7→ β′. Then p′ = p ⊆ f ′ by the choice of f ′. Using condition (†) in the
special case F ′ = F p = F p′ , we see that tw(f ′) ∈ Wk(F p′

, G). Thus we conclude that
α′ 7→ β′ = p′ ∈ GPg′h′(G), as desired. ◀

By Proposition 12, Aev
n (G) ∈ CSP(Cn) and Aod

n (G) /∈ CSP(Cn). Furthermore, it is
straightforward to show that for every k there is a graph G such that Wk(∅, G) ̸= ∅.3
Hence, by Theorem 21 and Corollary 6, for every k there are structures Ak ∈ CSP(Cn) and
Bk /∈ CSP(Cn) such that Ak ≡k

∞ω,n Bk. Thus we obtain the following size hierarchy result
for CSP-quantifiers.

3 Such graphs were constructed in Section 8 of [10] for the similar cops&robber game, which is more
difficult for Robber to win.

CSL 2023

25:18 CSP Quantifiers

▶ Corollary 22. For any integer n ≥ 2, there is a CSP-quantifier QC with sz(C) = n + 1
which is not definable in Lω

∞ω(CSP+
n).

Although by Proposition 13, CSP(Cn) is NP-complete, we can still use the structures
Aev

n (G) and Aod
n (G) for proving that PTIME cannot be captured by adding CSP-quantifiers

with bounded size templates to inflationary fixed point logic with counting. A suitable
PTIME-computable property separating Aev(G) and Aod(G) is provided by Proposition 14.
▶ Corollary 23. For any integer n ≥ 2, there is a PTIME-computable quantifier QK which is
not definable in IFPC(CSPn).

8 Conclusion

In this paper, we introduce two pebble games for extensions of the infinitary k-variable
logic Lk

∞ω by CSP-quantifiers. We prove that the first of these games, CSPG[A,B, n, k]
characterizes equivalence of A and B with respect to Lk

∞ω(CSP+
n), where CSP+

n is the union
of the class of all CSP-quantifiers CSP(C) with the size of C at most n and the class Q1 of
all unary quantifiers. Furthermore, we prove that the second game, BCG, corresponds to at
least as strong equivalence as CSPG: if Duplicator has a winning strategy in BCG[A,B, n, k],
then she has one in CSPG[A,B, n, k].

As our main contribution in the paper, we prove a size hierarchy result for CSP-quantifiers:
for all n ≥ 2 there is a CSP-quantifier QCn of size n+1 which is not definable in Lω

∞ω(CSP+
n).

For proving this, we introduce a new variation of the CFI construction, and use the game
BCG for showing that the structures Aev

n (G) and Aod
n (G) obtained in the construction are

equivalent with respect to Lk
∞ω(CSP+

n).
We conclude the paper by listing some open problems:

(1) The CSP-quantifiers QCn
that we use in the proof of the hierarchy result, Corollary 22,

are NP-complete. Is it possible to separate the structures Aev
n (G) and Aod

n (G) by some
PTIME-computable CSP-quantifier?

(2) The arity of the CSP-quantifier QCn
is 3n. Is it possible to find templates Dn, n ≥ 2,

such that QDn is not definable in Lω
∞ω(CSP+

n) and ar(Dn) = r for some constant r?
(3) We do not allow vectorization (i.e., interpreting ℓ-tuples as elements for some ℓ) in the

definition of L(QK), unlike is done in many other recent papers on the topic (e.g., the
papers [5, 6, 9, 14, 4] on rank logic). It is not difficult to define a version on the CSP
game that works for the ℓth vectorizations of quantifiers in CSP+

n . However, using
such games would probably be extremely hard (if not impossible), since they involve
existential second-order quantification of ℓ-ary relations. Furthermore, it seems quite
plausible that for any ℓ, n ≥ 2, equivalence with respect to the extension of Lk

∞ω by all
ℓth vectorizations of the quantifiers in CSP+

n is just isomorphism for large enough k.
The challenge is to prove or disprove this.

(4) What is the relationship between Lω
∞ω(CSP+

n) and the extension LAω(Q) of Lω
∞ω with

all linear algebraic operators (see [4])? Does equivalence with respect to one of these
logics imply equivalence with respect to the other? We believe that the answer to the
latter question is “no”. This is because LAω(Q) is closed under vectorizations, but it is
not plausible that Lω

∞ω(CSP+
n) is, and closing it with respect to vectorizations could

well lead to a logic whose equivalence is isomorphism (see the previous item).

References
1 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and counting

infinitary logic. Theor. Comput. Sci., 410(18):1666–1683, 2009. doi:10.1016/j.tcs.2008.12.
049.

https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1016/j.tcs.2008.12.049

L. Hella 25:19

2 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.37.

3 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identifications. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

4 Anuj Dawar, Erich Grädel, and Wied Pakusa. Approximations of isomorphism and logics
with linear-algebraic operators. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
112:1–112:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ICALP.2019.112.

5 Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with rank operators.
In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS
2009, 11-14 August 2009, Los Angeles, CA, USA, pages 113–122. IEEE Computer Society,
2009. doi:10.1109/LICS.2009.24.

6 Anuj Dawar and Bjarki Holm. Pebble games with algebraic rules. In Artur Czumaj, Kurt
Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and
Programming – 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part II, volume 7392 of Lecture Notes in Computer Science, pages 251–262.
Springer, 2012. doi:10.1007/978-3-642-31585-5_25.

7 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathematical
Logic. Springer, 1995.

8 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

9 Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! In Stephan
Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015,
September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages 390–404. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.390.

10 Lauri Hella. Logical hierarchies in PTIME. Inf. Comput., 129(1):1–19, 1996. doi:10.1006/
inco.1996.0070.

11 Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph can-
onization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris
Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New
York, New York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.

12 Phokion G. Kolaitis and Moshe Y. Vardi. A logical approach to constraint satisfaction. In Nadia
Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of Constraints – An
Overview of Current Research Themes [Result of a Dagstuhl Seminar], volume 5250 of Lecture
Notes in Computer Science, pages 125–155. Springer, 2008. doi:10.1007/978-3-540-92800-3_
6.

13 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

14 Moritz Lichter. Separating rank logic from polynomial time. In 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021,
pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470598.

15 Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195,
1966. doi:10.1111/j.1755-2567.1966.tb00600.x.

16 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.38.

CSL 2023

https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1007/BF01305232
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.1109/LICS.2009.24
https://doi.org/10.1007/978-3-642-31585-5_25
https://doi.org/10.4230/LIPIcs.CSL.2015.390
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-3-540-92800-3_6
https://doi.org/10.1007/978-3-540-92800-3_6
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1109/LICS52264.2021.9470598
https://doi.org/10.1111/j.1755-2567.1966.tb00600.x
https://doi.org/10.1109/FOCS.2017.38

	1 Introduction
	2 Preliminaries
	2.1 Notation and conventions
	2.2 Logics
	2.3 Constraint satisfaction problems

	3 Generalized quantifiers
	4 Pebble games
	4.1 Game for CSP-quantifiers
	4.2 Bijective colouring game

	5 Generalized CFI structures
	6 Separating the CFI structures
	7 Winning the bijective colouring game
	8 Conclusion

