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Abstract
We study the computational complexity of model checking and satisfiability problems of polyadic
modal logics extended with permutations and Boolean operators on accessibility relations. First,
we show that the combined complexity of the model checking problem for the resulting logic is
PTime-complete. Secondly, we show that the satisfiability problem of polyadic modal logic extended
with negation on accessibility relations is ExpTime-complete. Finally, we show that the satisfiability
problem of polyadic modal logic with permutations and Boolean operators on accessibility relations
is ExpTime-complete, under the assumption that both the number of accessibility relations that can
be used and their arities are bounded by a constant. If NExpTime is not contained in ExpTime,
then this assumption is necessary, since already the satisfiability problem of modal logic extended
with Boolean operators on accessibility relations is NExpTime-hard.
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1 Introduction

In recent years there has been increasing interest in generalizing complexity results for logics
that only have access to relation symbols of arity at most two, to logics that have access to
relations of arbitrary high arity, which we will call their polyadic extensions, see for example
[2, 12, 13, 14, 15, 18, 19, 21]. In [12] the authors introduced the uniform one-dimensional
logic U1, which is a polyadic extension of the two-variable logic FO2. It was proved in [18]
that the complexity of U1 satisfiability problem is NExpTime-complete, which is the same as
for FO2 [11]. In the very recent work [2] the forward guarded fragment FGF was introduced,
which is a polyadic extension of the description logic ALC with global diamond. In the same
work it was established that its satisfiability and conjunctive query entailment problems
have the same complexity as the corresponding problems in the case of ALC, i.e., both are
ExpTime-complete. In the two aforementioned examples the complexities of the base logic
and its polyadic extension coincided, but there are also examples where the polyadic extension
has a higher complexity. For instance, in [17] it is proved that the satisfiability problem of
guarded U1, which is a polyadic extension of guarded FO2, is NExpTime-complete, while
the satisfiability problem of guarded FO2 is ExpTime-complete [8].

While lifting complexity results from base logics to their polyadic extensions is, at least to
the author, already intrinsically interesting, it also has more applied motivations stemming
from, say, database theory, since polyadic relations occur naturally in various contexts and
having access to them can be advantageous. For instance, a simple relation such as “Alice
received a message M from Bob” is best viewed as a ternary relation. One application area
where the potential need for polyadic logics has been recognized is the very active field
of description logics [1]. Indeed, given that several description logics used in knowledge
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26:2 Complexity of Polyadic Boolean Modal Logics

representation can only access binary roles, it should not come as a surprise that several
polyadic description logics have been already suggested in the literature [5, 26, 29]. Finding
polyadic extensions of modal logics can be seen as attempts at finding natural polyadic
description logics.

To make the research around polyadic extensions more systematic, in [14] the authors
outlined a research program for systematically extending complexity results for description
logics – and modal logics more generally – into their polyadic counterparts, following the
ideas presented in [20]. The main idea is the following: since description logics can be seen as
standard modal logic extended with relation operators – such as inverse roles and counting –
and the standard modal logic has a canonical extension into a polyadic modal logic (namely
the extension in which diamonds can bind multiple formulas), one can easily obtain quite
canonical extensions of known description logics1. To demonstrate their research program in
action, the polyadic extension of ALCQI, i.e., the extension of ALC with inverse roles and
counting, was studied in [14]. The authors proved that the concept satisfiability problem for
this logic is Pspace-complete, which is the same as in the case of ALCQI.

The main purpose of the present work is to contribute to the above research program in
the context of Boolean modal logics, which are modal logics extended with Boolean operators
on accessibility relations [23]. In these logics one can for example write down formulas such
as ⟨¬R⟩p, which expresses that one can reach a world in which p is true via the complement
of the accessibility relation R. While being very natural modal logics as such, they are also
closely related to other interesting logics such as modal logics extended with the window
operator [7, 23], the two-variable logic [27] and the uniform one-dimensional fragment [20].
They have also been considered in the context of description logics [25].

Boolean modal logics present novel and intriguing technical challenges, especially when
studying the complexity of their satisfiability problems. Indeed, the most common explanation
for the good algorithmic properties of modal logics is that they often enjoy some variant of
the tree-model property [9, 28, 30], which Boolean modal logics lack. This is a consequence
of the fact that Boolean modal logics have access to complements of accessibility relations.
To clarify this important point, we point out that in Boolean modal logics one can write
statements such as [R][¬R]⊥ ∧ [¬R][¬R]⊥, which enforce that R needs to be interpreted in
the Kripke models of this sentence as the total binary relation. Clearly such sentences do
not have a tree-model property.

Satisfiability problems of Boolean modal logics were first studied in [23], where it was
proved that modal logic with negations of accessibility relations ML(¬) has ExpTime-
complete satisfiability problem, while the complexity of full Boolean modal logic ML(¬,∩) is
NExpTime-complete. As a follow-up to this work, in [27] authors studied the complexity
of the satisfiability problem for Boolean modal logic extended with inverses of accessibility
relations and equality ML(I, s,¬,∩), and proved that if the number of accessibility relations
is bounded by a constant, then its satisfiability problem is ExpTime-complete. Since FO2

has the same expressive power as ML(I, s,¬,∩) [27], the aforementioned complexity result
should be contrasted with the fact that the satisfiability problem of FO2 is NExpTime-hard
already over unary vocabularies.

In this work we partially extend these results to the polyadic case. First, we will prove that
the satisfiability problem of polyadic ML(¬), which we denote by PML(¬), has ExpTime-
complete satisfiability problem. Secondly, we will partially generalize the complexity result

1 Of course, some conceptual work is needed to figure out what are the canonical polyadic extensions of
the relevant role operators.
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of [27] by proving that polyadic Boolean modal logic extended with arbitrary permutations
of accessibility relations (as opposed to just inverses of binary accessibility relations), which
we denote by PML(p, s,¬,∩), has ExpTime-complete satisfiability problem, if the number
of accessibility relations in the underlying vocabulary and their arities are bounded by a
constant. We emphasize again that, if ExpTime ̸= NExpTime, then the aforementioned
assumption is necessary, since in general the satisfiability problem of PML(p, s,¬,∩) is
NExpTime-complete (see Proposition 3).

An important technical contribution of the present work is that we prove these two
results in a unified manner. Originally, the complexity of ML(¬) was established using
automata theory [23], while the complexity of ML(I, s,¬,∩) over vocabularies with at most
a constant number of accessibility relations was established via a poly-time reduction to the
satisfiability problem of modal logic with difference operator over a restricted class of Kripke
frames. In contrast, we establish upper bounds on the satisfiability problems of PML(¬)
and PML(p, s,¬,∩) by simply using elementary (albeit in the second case quite technical)
reductions to the satisfiability problem of polyadic ML extended with global diamond ⟨E⟩,
which we denote by PML + ⟨E⟩. These reductions were inspired by the reduction used in
[27] to establish the complexity of ML(I, s,¬,∩) over vocabularies with at most a constant
number of accessibility relations. The overall structure of these reductions is quite robust
and hence we expect that similar reductions will yield in the future several extensions of the
results presented in this paper.

In addition to studying satisfiability problems, we also study the combined complexity of
the model checking problem of PML(p, s,¬,∩), which is the variant where both the model
and the formula itself are received as part of the input, and prove that it is PTime-complete,
the non-trivial part being the upper bound. It is well-known that model checking problems
of various modal logics with tree-model property – even quite expressive ones such as the
guarded fragment – are PTime-complete [3, 10]. However, besides these modal logics and
finite variable fragments of first-order logic [10], it seems that there are not that many natural
logics known for which the complexity of the model checking problem lies in PTime. Note
that the formulas of PML(p, s,¬,∩) are neither guarded nor are they expressible in any finite
variable fragment of first-order logic. Thus, even though proving that the model checking
problem of PML(p, s,¬,∩) is in PTime turns out to be quite straightforward, we still believe
that the result is interesting since the logic PML(p, s,¬,∩) is quite distinct from other logics
known in the literature with PTime-complete combined complexity. Indeed, it would be
interesting to understand how much PML(p, s,¬,∩) could be extended while keeping its
combined complexity feasible.

The structure of this paper is as follows. First, in Section 2 we will formally define the
logics that are studied in this paper. Then, in Sections 3 and 4 we prove that the satisfiability
problems of PML(¬) and PML(p, s,¬,∩) respectively are ExpTime-complete, the latter
under the assumption that the number of accessibility relations and their arities are bounded
by a constant, which, as pointed out earlier, is necessary if ExpTime ̸= NExpTime. Finally,
in Section 5 we prove that the combined complexity of PML(p, s,¬,∩) is PTime-complete.

2 Preliminaries

In this paper we will only consider relation symbols of arity at least two. Given a relation
symbol R, we will use ar(R) to denote its arity. If τ is a set of relation symbols and Φ is a set
of propositional symbols, then a Kripke-model over (τ,Φ) is a tuple M = (W, (RM)R∈τ , V ),
where

CSL 2023



26:4 Complexity of Polyadic Boolean Modal Logics

1. W is a non-empty set (the set of possible worlds),
2. for every R ∈ τ we have that RM ⊆ W ar(R) and
3. V : Φ → P(W ).
Members of τ are also called accessibility relations. In what follows we will never specify
explicitly what the underlying set of propositional symbols is and we will only occasionally
specify the set of accessibility relations.

In this paper we consider extensions of standard polyadic (multimodal) modal logic via
relation operators, which are essentially mappings that map relational structures to relational
structures and which are invariant under isomorphisms. Since we will focus our attention
only on a specific set of relation operators, we will omit the formal definition of a relation
operator here, which can be found in [16].

The main relation operators that we are going to consider are p, s,¬,∩, where p and s

are called cyclic permutation and swap permutation respectively. Furthermore, for technical
reasons we are going to need two additional relation operators \,∪. Let τ denote a set of
relation symbols. Given k ≥ 2, the set of k-ary terms GRAk(p, s,¬,∩, \,∪)[τ ] is generated
by the following grammar

R ::= R | pR | sR | ¬R | R ∩ R | R\R | R ∪ R,

where R ∈ τ is a k-ary relation. We use GRA(p, s,¬,∩, \,∪)[τ ] to denote⋃
k≥2

GRAk(p, s,¬,∩, \,∪)[τ ],

which is the set of all terms. Arity of a term R is denoted by ar(R).
Let M be a Kripke model over τ and let R ∈ GRA(p, s,¬,∩, \,∪) be a k-ary term. We

define the interpretation of R over M recursively as follows.
1. If R = R ∈ τ , then we define JRKM = RM.
2. If R = pR′, then we define

JRKM = {(ak, a1, . . . , ak−1) ∈ W k | (a1, . . . , ak) ∈ JR′KM}

3. If R = sR′, then we define

JRKM = {(a1, . . . , ak−2, ak, ak−1) ∈ W k | (a1, . . . , ak) ∈ JR′KM}

4. If R = ¬R′, then we define JRKM = W k\JR′KM
5. If R = R′ ∩ R′′, then we define JRKM = JR′KM ∩ JR′′KM
6. If R = R′\R′′, then we define JRKM = JR′KM\JR′′KM
7. If R = R′ ∪ R′′, then we define JRKM = JR′KM ∪ JR′′KM

Given k ≥ 2, we let Sk denote the set of all bijections {1, . . . , k} → {1, . . . , k}. It
is a well-known group theoretic fact that every permutation σ ∈ Sk can be obtained by
composing cyclic permutation with swap permutation. Given this, we will adopt the notational
convention that we will use σ ∈ Sk to denote some fixed (possibly empty) sequence consisting
of operators p and s that generates it. The only explicit requirement that we impose on this
sequence is that it should not be possible to rewrite it into a smaller one. Thus, for example,
we use the identity permutation to denote the empty sequence.

The following lemma collects some elementary algebraic identities for terms.
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▶ Lemma 1. Let R1,R2 ∈ GRA(p, s,¬,∩, \,∪)[τ ] be k-ary terms and let σ ∈ Sk. Let M be
a Kripke model over τ .
1. J¬¬R1KM = JR1KM
2. Jσ¬R1KM = J¬σR1KM
3. Jσ(R1 ∩ R2)KM = J(σR1 ∩ σR2)KM
4. Jσ(R1 ∪ R2)KM = J(σR1 ∪ σR2)KM
5. J¬(R1 ∩ R2)KM = J(¬R1 ∪ ¬R2)KM
6. J¬(R1 ∪ R2)KM = J(¬R1 ∩ ¬R2)KM
7. J(R1 ∩ ¬R2)KM = J(R1\R2)KM
8. J(R1 ∪ ¬R2)KM = J¬(R2\R1)KM

Let R ∈ GRA(p, s,¬)[τ ] be a k-ary term. We say that R is a k-literal over τ , if it is
either of the form ¬σR or σR, for a k-ary relation symbol R ∈ τ . A maximally consistent
set ρ of k-literals over σ is called a k-table over τ . We identify tables ρ with terms

⋂
α∈ρ α.

Given a Kripke model M over τ and (w1, . . . , wk) ∈ W k we say that (w1, . . . , wk) realizes
a k-table ρ, if for every k-literal α we have that

(w1, . . . , wk) ∈ JαKM ⇔ α ∈ ρ.

Note that since tables are maximally consistent, each tuple in a given Kripke model realizes
a unique table. Conversely, the accessibility relations of a Kripke model can be described
completely by specifying what tables different tuples realize.

Given a k-table ρ and σ ∈ Sk we define

σ[ρ] :=
⋂

σ′R∈ρ
(σ ◦ σ′)R ∩

⋂
¬σ′R∈ρ

¬(σ ◦ σ′)R.

Note that for every k-table ρ and σ1, σ2 ∈ Sk we have that σ1[σ2[ρ]] = (σ1 ◦ σ2)[ρ]. Fur-
thermore, we note that it can be the case that σ[ρ] = ρ, even if σ is not the identity
permutation.2

Let Φ be a set of propositional symbols, τ a set of relation symbols and F ⊆
{p, s,¬,∩, \,∪}. The set of formulas PML(F)[τ,Φ] is generated by the following gram-
mar

φ ::= p | ¬φ | (φ ∧ φ) | ⟨R⟩(φ, . . . , φ︸ ︷︷ ︸
k-times

)

where p ∈ Φ and R ∈ GRA(F)[τ ] is a (k + 1)-ary term. We will use PML(F)[τ,Φ] + ⟨E⟩ to
denote the set of formulas generated by the grammar of PML(F)[τ,Φ] extended with the
rule

φ ::= ⟨E⟩φ

If τ contains only binary relation symbols, then we emphasize this by writing ML(F)[τ,Φ].
Given a natural number c a vocabulary τ is called c-bounded, if |τ | ≤ c and for every

R ∈ τ we have that ar(R) ≤ c. For example, the empty vocabulary is 0-bounded and a binary
vocabulary with five relation symbols is 5-bounded. If we are only considering c-bounded
vocabularies, then we emphasize this by writing PMLc. Thus PMLc[τ,Φ] entails that τ is
c-bounded. We emphasize that c should be thought of as a fixed constant.

2 Consider for example the permutation s and the 2-table {R, sR} over {R}, where R is a binary relation.

CSL 2023



26:6 Complexity of Polyadic Boolean Modal Logics

As in the case of Kripke models, for the rest of this paper we will never explicitly mention
the underlying set of propositional symbols. We will use standard shorthand notations:
φ ∨ ψ := ¬(¬φ ∧ ¬ψ), [R] := ¬⟨R⟩¬ and ⟨A⟩ = ¬⟨E⟩¬. Given a formula φ we let Subf(φ)
denote the set of subformulas of φ.

The semantics of our logics are standard and we will only recall here the semantic clauses
of ⟨R⟩(ψ1, . . . , ψk) and ⟨E⟩ψ. Given a Kripke model M over τ and w ∈ W we define

M, w ⊩ ⟨R⟩(ψ1, . . . , ψk) ⇔

there exists (w,w1, . . . , wk) ∈ JRKM such that M, wℓ ⊩ ψℓ, for every 1 ≤ ℓ ≤ k

and

M, w ⊩ ⟨E⟩ψ ⇔ there exists some w′ ∈ W such that M, w′ ⊩ ψ.

We will conclude this section by stating the complexity of the satisfiability problem of
PML + ⟨E⟩.

▶ Proposition 2. The satisfiability problem of PML + ⟨E⟩ is ExpTime-complete.

Proof. Lower bound follows from the well-known fact that the satisfiability problem of
ML + ⟨E⟩ is ExpTime-complete [4, Exercise 6.8.1]. Upper bound follows, say, from the
recent result that the satisfiability problem of the so-called guarded forward fragment FGF
is ExpTime-complete [2]. Indeed, by using variables carefully, one can guarantee that the
standard translation of PML + ⟨E⟩ into FO produces sentences of FGF. ◀

As mentioned in the introduction, existing results in the literature imply that the
satisfiability problem of PML(p, s,¬,∩) is NExpTime-complete.

▶ Proposition 3. The satisfiability problem of PML(p, s,¬,∩) is NExpTime-complete.

Proof. Lower bound follows from the fact that the satisfiability problem of ML(¬,∩) is
already NExpTime-hard [24]. For upper bound we note that PML(p, s,¬,∩) is contained in
U1 [20, Theorem 7], for which the satisfiability problem is NExpTime-complete [18]. ◀

3 Satisfiability problem of polyadic modal logic with negation

In this section we will show how the satisfiability problem of PML(¬) can be reduced in
polynomial time to that of PML + ⟨E⟩, which will yield the following result.

▶ Theorem 4. The satisfiability problem of PML(¬) is ExpTime-complete.

It seems most probable that the above complexity result continues to hold for PML(p, s,¬),
but we have not yet been able to show this.

Before presenting the reduction from PML(¬) to PML + ⟨E⟩, we first describe one brief
application of Theorem 4, which reflects one original motivation for the study of Boolean
modal logics [24]. Namely, we show that the logic PML extended with polyadic window
operator, which we denote by PML + ∇, has an ExpTime-complete satisfiability problem.
Consider a vocabulary τ . The grammar for generating the formulas of PML[τ ] + ∇ is the
grammar of PML[τ ] extended with the rule

φ ::= ∇R(φ, . . . , φ︸ ︷︷ ︸
k-times

),
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where R is a (k + 1)-ary accessibility relation, for every R ∈ τ . The semantics of formulas of
the form ∇R(ψ1, . . . , ψk) is defined as follows:

M, w ⊩ ∇R(ψ1, . . . , ψk) ⇔ For every (w1, . . . , wk) ∈ W k we have that if

M, wℓ ⊩ ψℓ, for every 1 ≤ ℓ ≤ k, then (w,w1, . . . , wk) ∈ RM.

It is easy to see that M, w ⊩ ∇R(ψ1, . . . , ψk) is equivalent with

M, w ⊩ [¬R](¬ψ1, . . . ,¬ψk)

and hence Theorem 4 immediately implies the following complexity results.

▶ Corollary 5. The satisfiability problem of PML + ∇ is ExpTime-complete.

Now we will present the reduction. Fix a formula φ ∈ PML(¬) and let τ denote the set
of accessibility relations occuring in φ. For every symbol R ∈ τ , we will introduce two fresh
symbols of the same arity, R1 and R2. Given ψ ∈ Subf(φ), we let t(ψ) denote the formula
obtained from ψ by replacing each ⟨R⟩ with ⟨R1⟩ and each ⟨¬R⟩ with ⟨R2⟩. Consider then
the following formula θ := t(φ) ∧ η, where

η :=
∧

⟨R1⟩(ψ1,...,ψk),
⟨R2⟩(χ1,...,χk)

∈Subf(t(φ))

(
⟨E⟩(¬⟨R1⟩(ψ1, . . . , ψk) ∧ ¬⟨R2⟩(χ1, . . . , χk))

→
∨

1≤ℓ≤k

⟨A⟩(¬ψℓ ∨ ¬χℓ)
)
.

Intuitively speaking, in every model of η we can extend the interpretations of R1 and R2,
for R ∈ τ , in such a way that they cover W ar(R), i.e., every tuple of length ar(R) belongs
either to the interpretation of R1 or to the interpretation of R2, while maintaining that the
resulting model is a model of t(φ), if the original model was.

Since the big conjunction in η ranges over only those formulas that occur as subformulas
in φ, the size of η is O(|φ|2), i.e., polynomial with respect to |φ|. The rest of this section is
devoted to proving that the above reduction is correct, i.e., φ is satisfiable iff θ is. We will
start with the left to right direction.

▶ Lemma 6. If φ is satisfiable, then so is θ.

Proof. Let M = (W, (R)R∈τ , V ) be a Kripke model and let w ∈ W be a world so that
M, w ⊩ φ. We then define the Kripke model N = (W, (R1)R∈τ , (R2)R∈τ , V ) by setting
that for every R ∈ τ , RN

1 = RM and RN
2 = W ar(R)\RM. Clearly N, w ⊩ t(φ). To verify

that N satisfies η, suppose that there exists ⟨R⟩(ψ, ..., ψk), ⟨¬R⟩(χ1, ..., χk) ∈ Subf(t(φ)) and
w0 ∈ W so that

N, w0 ⊩ ¬⟨R1⟩(ψ1, . . . , ψk) ∧ ¬⟨R2⟩(χ1, . . . , χk)

but

N, w ̸⊩
∨

1≤ℓ≤k

⟨A⟩(¬ψℓ ∨ ¬χℓ).

Thus for every 1 ≤ ℓ ≤ k there exists wℓ ∈ W so that N, wℓ ⊩ ψℓ ∧ χℓ. By construction,
we must either have that (w0, w1, ..., wk) ∈ RN

1 or (w0, w1, ..., wk) ∈ RN
2 , but clearly both of

these cases lead to a contradiction. ◀

CSL 2023



26:8 Complexity of Polyadic Boolean Modal Logics

Suppose then that θ is satisfiable. M be a Kripke model and let w ∈ W be a world so
that M, w ⊩ θ.

▶ Lemma 7. For every (w0, w1, . . . , wk) ∈ W k+1 and R ∈ τ there exists i ∈ {1, 2} so that
for every ⟨Ri⟩(ψ1, . . . , ψk) ∈ Subf(t(φ)) we have that if M, wℓ ⊩ ψℓ, for every 1 ≤ ℓ ≤ k,
then M, w0 ⊩ ⟨Ri⟩(ψ1, . . . , ψk).

Proof. Suppose that this is not the case. Thus there exists

⟨R1⟩(ψ1, . . . , ψk), ⟨R2⟩(χ1, . . . , χk) ∈ Subf(t(φ))

so that M, wℓ ⊩ ψℓ ∧ χℓ, for every 1 ≤ ℓ ≤ k, but

M, w0 ⊩ ¬⟨R1⟩(ψ1, . . . , ψk) ∧ ¬⟨R2⟩(χ1, . . . , χk).

Since M, w ⊩ η, we have that

M, w ⊩
∨

1≤ℓ≤k

⟨A⟩(¬ψℓ ∨ ¬χℓ),

which is a clear contradiction. ◀

Using Lemma 7, we can extend the model M as follows. For every (w1, . . . , wk) ̸∈ RM
1 ∪RM

2 ,
we choose i ∈ {1, 2} with the properties described in Lemma 7, and add (w1, . . . , wk) to RM

i .
We still use M to denote the resulting model. We emphasize that M has now the property that
for every (w1, . . . , wk) ∈ W k and R ∈ τ , either (w1, . . . , wk) ∈ RM

1 or (w1, . . . , wk) ∈ RM
2 .

▶ Lemma 8. M, w ⊩ t(φ)

Proof. A routine induction. ◀

We now define a Kripke model N = (W ∗, (RN)R∈τ , V
∗) over τ as follows. First, we

specify that W ∗ := W × {0, 1} and that for every (w, i) ∈ W ∗ we have that (w, i) ∈ V ∗(p)
iff w ∈ V (p). Next we need to define interpretations of relation symbols R ∈ τ . Fix such a
relation symbol R. For every (w0, i) ∈ W ∗ we define that if (w0, w1, . . . , wk) ∈ RM

1 , then

((w0, i), (w1, i+ 1 mod 2), . . . , (wk, i+ 1 mod 2)) ∈ RN.

Then, for every (w0, w1, . . . , wk) ∈ RM
2 we define that

((w0, i), (w1, i), . . . , (wk, i)) ̸∈ RN.

Finally, for every ((w0, i0), . . . , (wk, ik)) for which we have not specified whether they belong
to RN, we define that if (w0, . . . , wk) ̸∈ RM

2 then ((w0, i0), . . . , (wk, ik)) ∈ RN.

▶ Lemma 9. For every ψ ∈ Subf(φ) and w0 ∈ W we have that

N, (w0, i0) ⊩ ψ ⇔ M, w0 ⊩ t(ψ).

Proof. A routine induction. ◀

In particular N is a model of φ, since N, (w, 0) ⊩ φ, and hence φ is satisfiable. Thus we
can conclude that φ is satisfiable iff θ is.
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4 Satisfiability problem of polyadic Boolean modal logic with
permutations over bounded vocabularies

Recall that PMLc(p, s,¬,∩) denotes the restriction of PML(p, s,¬,∩) where we consider
only c-bounded vocabularies, c being a natural number which should be thought of as a fixed
constant. In this section we will give a polynomial time reduction from the satisfiability
problem of PMLc(p, s,¬,∩) to that of PML + ⟨E⟩, which will yield the following result.

▶ Theorem 10. The satisfiability problem of PMLc(p, s,¬,∩) is ExpTime-complete.

The reduction used in the proof of Theorem 10 is very similar to the reduction that
was used in the previous section to prove Theorem 4. The reader is encouraged to keep
this in mind when parsing the reduction, since even though the underlying ideas are again
elementary, the resulting reduction is quite technical.

An important property of PML(¬) is that it can not speak about intersections of access-
ibility relations. In the case of PML(p, s,¬,∩) this is obviously no longer the case, but it is
still possible to convert each sentence of PML(p, s,¬,∩) into an equi-satisfiable sentence with
an analogous property. If the number of underlying accessibility relations and their arities
are bounded by some constant, then this translation can also be carried out in polynomial
time.

▶ Lemma 11. Let φ ∈ PMLc(p, s,¬,∩)[τ ] be a formula. Then we can transform φ in
polynomial time to a formula φ∗ ∈ PMLc(p, s,¬,∩)[τ ], which has the following properties.
1. φ is satisfiable if and only if φ∗ is.
2. For every ⟨R⟩(ψ1, . . . , ψk) ∈ Subf(φ∗) the term R is a k-table over τ .

Proof. Note that since τ is c-bounded, the number of tables over τ is bounded by a constant.
By applying repeatedly Lemma 1, we can assume that in every formula ⟨R⟩(ψ1, . . . , ψk) ∈
Subf(φ) the term R is a boolean combination of (k + 1)-literals over τ . Pick an innermost
such subformula of φ. The term R is clearly equivalent with the term⋃

ρ|=R

ρ,

where each ρ is a (k + 1)-table over τ . Let pψ1 , . . . , pψk
denote fresh propositional symbols.

In φ we replace ⟨R⟩(ψ1, . . . , ψk) with the following formula∨
ρ|=R

⟨ρ⟩(pψ1 , . . . , pψk
).

Note the above formula is essentially of constant size, since the number of tables over τ is
bounded by a constant. Now, let φ′ denote the resulting formula. Without loss of generality
we will assume that τ contains at least one binary relation symbol. With this technical
assumption it is clear that φ is equisatisfiable with the formula

φ′ ∧
∧

1≤ℓ≤k

∧
2-table ρ

[ρ](pψℓ
↔ ψℓ).

Since the size of τ is bounded by a constant, the number of 2-tables over τ is also bounded
by a constant. Thus the size of the above formula is polynomial with respect to the size of
the original formula φ. It should be clear that by repeating the above procedure sufficiently
many times, we will eventually reach the desired formula. ◀
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▶ Remark 12. In Lemma 11 it is not enough to assume that there is a constant bound on the
arities of relations in τ to guarantee that the translation is efficient, i.e., polynomial time
computable, since already in the case of binary vocabularies there are exponentially many
tables. Likewise, it is not enough to assume that only the size of τ is bounded by a constant,
since the number of tables over a vocabulary which consists of a single relation R of arity n
is bounded from below by 2n.

For the rest of this section we will assume that φ satisfies property (ii) of Lemma 11.
Now, for 2 ≤ k ≤ m, where m = max{ar(R) | R ∈ τ}, let Tk denote the set of all tables over
τ . Each k-table ρ ∈ Fk can be seen as a k-ary accessibility relation and hence we will consider
the vocabulary τT :=

⋃
2≤k≤m Tk. We let t(φ) denote the sentence in PMLc[τT] which

is obtained from φ by replacing each table ρ ∈ GRA(p, s,¬,∩)[τ ] with the corresponding
relation symbol ρ ∈ τT.

We next describe sentences of PML[τT] + ⟨E⟩ which together play the same role that η
did in the previous section. We start with the following sentence, which we denoted by ξ1.

ξ1 := ⟨A⟩
∧

1≤k<m

∧
g:Tk+1→Sk+1
σρ:=g(ρ)

∧
h:Tk+1→(Subf(t(φ)))k

h(ρ)=(ψσρ
1 ,...,ψ

σρ
k

)

(( ∧
ρ∈X0

¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k )

∧
∧

1≤ℓ≤k

⟨E⟩
( ∧
ρ∈Xℓ

¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k ) ∧
∧
ρ̸∈Xℓ

ψ
σρ

σ−1
ρ (ℓ)

))
→

∨
ρ ̸∈X0

¬ψσρ

σ−1
ρ (0)

)
In the above sentence we use Xℓ to denote the set {ρ | σρ(0) = ℓ}. Note that since τ is
c-bounded, ξ1 is only of size at most polynomial with respect to the size of φ.

In addition to ξ1, we will need the following sentences, which will be denoted by ξ2 and
ξ3 respectively.

ξ2 := ⟨A⟩
∧

1≤k<m

∧
ρ∈Tk+1

∧
σ∈Sk+1
σ(0) ̸=0

∧
ψ1,...,ψk∈Subf(t(φ))

(
¬ψσ−1(0) ∨ ¬⟨ρ⟩(¬ψσ−1(1), . . . , ⟨σ[ρ]⟩(ψ1, . . . , ψk)︸ ︷︷ ︸

σ(0):th formula

, . . . ,¬ψσ−1(k))
)

ξ3 := ⟨A⟩
∧

1≤k<m

∧
ρ∈Tk+1

∧
σ∈Sk+1
σ(0)=0

∧
ψ1,...,ψk∈Subf(t(φ))(

⟨ρ⟩(ψσ−1(1), . . . , ψσ−1(k)) → ⟨σ[ρ]⟩(ψ1, . . . , ψk)
)

Again, since τ is c-bounded, ξ1 and ξ2 are only of size at most polynomial with respect to
the size of φ. We let Θ := t(φ) ∧ ξ2 ∧ ξ2 ∧ ξ3.

The sentences ξ1, ξ2, ξ3 might look rather complicated, but we emphasize again that they
are simply playing essentially the same role that η did in the previous section. Namely,
they axiomatize enough properties of tables so that in any model of Θ we can enlarge the
interpretations of the accessibility relations ρ in such a way that they cover all the tuples of
relevant length, while maintaining that the resulting model is still a model of t(φ).

The rest of this section is devoted towards proving that φ is satisfiable iff Θ. We start
with the easy direction.

▶ Lemma 13. If φ is satisfiable, then so is Θ.
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Proof. Let M = (W, (RM)R∈τ , V ) be a Kripke model and let w ∈ W be a world so that
M, w ⊩ φ. We then define the Kripke model N = (W, (ρN)ρ∈τT , V ) by setting that for every
ρ ∈ τT, ρN = JρKM. Clearly N, w ⊩ t(φ).

Let us then verify that N, w0 ⊩ ξ1, for any w0 ∈ W . Fix k, g and h. Suppose that

N, w0 ⊩
∧
ρ∈X0

¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k )

and that for every 1 ≤ ℓ ≤ k there exists wℓ so that

N, wℓ ⊩
∧
ρ∈Xℓ

¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k ) ∧
∧
ρ ̸∈Xℓ

ψ
σρ

σ−1
ρ (ℓ).

Our goal is to show that

N, w0 ⊩
∨
ρ ̸∈X0

¬ψσρ

σ−1
ρ (0).

Aiming for a contradiction, suppose that this is not the case. Since every tuple realizes a
table in M, there exists ρ ∈ τT so that (w0, w1, . . . , wk) ∈ ρN. Recall that the function g

associates a permutation σρ with ρ. Now (wσρ(0), . . . , wσρ(k)) ∈ JσρρKM. Let ℓ0 := σρ(0).
Then, for every ℓ ̸= ℓ0 we have that

N, wℓ ⊩ ψ
σρ

σ−1
ρ (ℓ),

since ρ ̸∈ Xℓ. This implies that

N, wσρ(ℓ) ⊩ ψ
σρ

ℓ ,

for every 1 ≤ ℓ ≤ k. On the other hand

N, wσρ(0) ⊩ ¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k ),

which is a contradiction, since σρ[ρ]N = JσρρKM.
Next, we will verify that N, w0 ⊩ ξ2, for any w0 ∈ W . Fix k, σ and ψ1, . . . , ψk ∈

Subf(t(φ)). Aiming for a contradiction, suppose that

N, w0 ⊩

(
ψσ−1(0) ∧ ⟨ρ⟩(ψσ−1(1), . . . ,¬⟨σ[ρ](ψ1, . . . , ψk), . . . , ψσ−1(k))

)
Thus there exists (w0, w1, . . . , wk) ∈ ρN so that M, wℓ ⊩ ψσ−1(ℓ), for every ℓ ̸= σ(0) (including
ℓ = 0), and

M, wσ(0) ⊩ ¬⟨σ[ρ]⟩(ψ1, . . . , ψk).

Now (wσ(0), . . . , wσ(k)) ∈ (σ[ρ])M and furthermore M, wσ(ℓ) ⊩ ψℓ, for every 1 ≤ ℓ ≤ k, which
is a contradiction.

Finally, we will verify that N, w0 ⊩ ξ3, for any w0 ∈ W . Fix k, σ and ψ1, . . . , ψk ∈
Subf(t(φ)). Aiming for a contradiction, suppose that

M, w0 ⊩ ⟨ρ⟩(ψσ−1(1), . . . , ψσ−1(k)),

but

M, w0 ⊩ ¬⟨σ[ρ]⟩(ψ1, . . . , ψk).

Now there exists (w0, w1, . . . , wk) ∈ ρN so that M, wℓ ⊩ ψσ−1(ℓ). Hence
(w0, wσ(1), . . . , wσ(k)) ∈ JσρKM = (σ[ρ])N, which is a contradiction, since M, wσ(ℓ) ⊩ ψℓ,
for every 1 ≤ ℓ ≤ k. ◀
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Suppose now that M is a Kripke model and that there is a w ∈ W so that M, w ⊩ Θ. To
obtain a model for φ, we start by extending M as follows.
1. For every 2 ≤ k ≤ m, ρ ∈ Tk, σ ∈ Sk and (w1, . . . , wk) ∈ ρM, we will add (wσ(1), . . . , wσ(k))

to (σ[ρ])M.
2. For every 2 ≤ k ≤ m and (w1, . . . , wk) ∈ W k, for which there does not exists ρ ∈ Tk so

that (w1, . . . , wk) ∈ ρM, we let ρ denote the relation promised by Lemma 14 (see below)
and we will add the tuple (wσ(1), . . . , wσ(k)) to (σ[ρ])M, for every σ ∈ Sk.

Letting M∗ denote the resulting model, we need to show that M∗, w ⊩ t(φ). We start
with the following lemma which guarantees that we can extend the interpretations of k-ary
accessibility relations in M in such a way that every tuple will belong to the interpretation
of at least one such relation.

▶ Lemma 14. For every 1 ≤ k < m and (w0, w1, . . . , wk) ∈ W k+1 there exists ρ ∈ Tk+1 so
that for all σ ∈ Sk+1 and ψ1, . . . , ψk ∈ Subf(t(φ)) we have that if M, wσ(ℓ) ⊩ ψℓ, for every
1 ≤ ℓ ≤ k, then M, wσ(0) ⊩ ⟨σ[ρ]⟩(ψ1, . . . , ψk).

Proof. Fix (w0, w1, . . . , wk) ∈ W k+1. Aiming for a contradiction, suppose that for every
ρ ∈ Tk+1 there exists σρ ∈ Sk+1 and ψ

σρ

1 , . . . , ψ
σρ

k ∈ Subf(t(φ)) so that

M, wσρ(ℓ) ⊩ ψ
σρ

ℓ ,

for every 1 ≤ ℓ ≤ k, but

M, wσρ(0) ⊩ ¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k ).

It is simple to verify that this entails that

M, w0 ⊩
∧
ρ∈X0

¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k )

∧
∧

1≤ℓ≤k

⟨E⟩
( ∧
ρ∈Xℓ

¬⟨σρ[ρ]⟩(ψσρ

1 , . . . , ψ
σρ

k ) ∧
∧
ρ̸∈Xℓ

ψ
σρ

σ−1
ρ (ℓ)

)
and since M, w0 ⊩ ξ1, we have that

M, w0 ⊩
∨
ρ ̸∈X0

¬ψσρ

σ−1
ρ (0),

which is a contradiction, since by assumption M, w0 ⊩
∧
ρ̸∈X0

ψ
σρ

σ−1
ρ (0). ◀

Secondly, we will need a lemma which guarantees that we can close the interpretations of
accessibility relations under permutations.

▶ Lemma 15. For every 1 ≤ k < m, ρ ∈ Tk+1, σ ∈ Sk+1 we have that if (w0, w1, . . . , wk) ∈
ρM, then for every ψ1, . . . , ψk ∈ Subf(t(φ)) we have that if M, wσ(ℓ) ⊩ ψℓ, for every 1 ≤ ℓ ≤ k,
then M, wσ(0) ⊩ ⟨σ[ρ]⟩(ψ1, . . . , ψk).

Proof. Fix k, ρ, σ and (w0, w1, . . . , wk) ∈ ρM. Aiming for a contradiction, suppose that there
exists ψ1, . . . , ψk ∈ Subf(t(φ)) so that

M, wσ(ℓ) ⊩ ψℓ,

for every 1 ≤ ℓ ≤ k, but

M, wσ(0) ⊩ ¬⟨σ[ρ]⟩(ψ1, . . . , ψk).
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We have now two cases based on whether or not σ(0) = 0. First, if σ(0) = 0, then since
M, w0 ⊩ ξ3, we have that

M, w0 ⊩ ⟨ρ⟩(ψσ−1(1), . . . , ψσ−1(k)) → ⟨σ[ρ]⟩(ψ1, . . . , ψk).

By assumption, (w0, w1, . . . , wk) ∈ ρM and M, wσ(σ−1(ℓ)) ⊩ ψσ−1(ℓ), for every 1 ≤ ℓ ≤ k, and
hence

M, w0 ⊩ ⟨ρ⟩(ψσ−1(1), . . . , ψσ−1(k)),

which implies that

M, w0 ⊩ ⟨σ[ρ]⟩(ψ1, . . . , ψk),

a contradiction.
Consider then the case σ(0) ̸= 0. Since M, w0 ⊩ ξ2, we have that

M, w0 ⊩

(
¬ψσ−1(0) ∨ ¬⟨ρ⟩(¬ψσ−1(1), . . . , ⟨σ[ρ]⟩(ψ1, . . . , ψk)︸ ︷︷ ︸

σ(0):th formula

, . . . ,¬ψσ−1(k))
)

By assumption M, wσ(σ−1(0)) ⊩ ψσ−1(0). Furthermore, since (w0, w1, . . . , wk) ∈ ρM and
M, wσ(σ−1(ℓ)) ⊩ ψσ−1(ℓ), for every ℓ ̸= σ(0), we must have that

M, wσ(0) ⊩ ⟨σ[ρ]⟩(ψ1, . . . , ψk),

which is a clear contradiction. ◀

A routine induction, which uses the previous two lemmas in the case of formulas of the
form ⟨ρ⟩(ψ1, . . . , ψk), can be used to establish that M∗, w ⊩ t(φ). For the rest of this section
we will use M to denote M∗.

Now we are ready to use M to construct a model for φ. We define a Kripke model
N = (W ∗, (RN)R∈τ , V

∗) over τ as follows. First, we define that

W ∗ := W × {2, . . . ,m} × N,

where N is the set of natural numbers. In what follows we will adopt the convention that we
will associate to every k-table ρ an unique index from the set N, which we simply denote by
ρ. We start our model construction by specifying that for every (w, ℓ, r) ∈ W ∗ we have that
(w, ℓ, r) ∈ V ∗(p) iff w ∈ V (p). Next we will assign tables to tuples. We first define that for
every (w0, ℓ, r) ∈ W ∗ and (w0, w1, . . . , wk) ∈ ρM the tuple

((w0, ℓ, r), (w1, 2, r + ρ), . . . , (wk, k + 1, r + ρ))

realizes the type ρ. Observe that each such tuple consists of k + 1 distinct elements. Indeed,
the first element is distinct from the remaining elements because r ̸= r + ρ, while the
remaining elements in the tuple are pairwise distinct because they differ with respect to their
second coordinate.

Notice that if we force a tuple to realize a table ρ, then for every σ ∈ Sk+1 the permutation
of this tuple under σ realizes the type σ[ρ]. Hence, it is not obvious that the above procedure
does not assign different tables to some tuples.

▷ Claim 16. In the above procedure, no tuple is assigned a table more than once.
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Proof. Suppose that we have assigned tables ρ1 and ρ2 to a tuple (w0, w1, . . . , wk). We want
to show that ρ1 = ρ2. By construction, our assumption implies that there are tuples

((w′
0, ℓ

′, r′), (w′
1, 2, r′ + ρ′), . . . , (w′

k, k + 1, r′ + ρ′))

and

((w′′
0 , ℓ

′′, r′′), (w′′
1 , 2, r′′ + ρ′′), . . . , (w′′

k , k + 1, r′′ + ρ′′))

and permutations σ1 and σ2 so that σ1 (respectively σ2) applied to the first (respectively the
second) tuple gives (w0, w1, . . . , wk), and furthermore that σ1[ρ′] = ρ1 and σ2[ρ′′] = ρ2. Since
for every 2 ≤ ℓ ≤ k + 1 there exists an unique element in the tuple (w0, w1, . . . , wk) which
has ℓ as its second coordinate, we must have that the two above tuples are in fact the same
tuples, since they are both permutations of (w0, w1, . . . , wk). In particular, ρ′ = ρ′′, since
r′ = r′′. Finally, because this single tuple consists of k+ 1 distinct elements and permutating
it with either σ1 or σ2 gives the same result – namely (w0, w1, . . . , wk) – we must have that
σ1 = σ2, and hence ρ1 = ρ2. ◁

Finally, for every tuple ((w0, ℓ0, r0), . . . , (wk, ℓk, rk) for which we have not yet assigned a
table, we will pick some ρ ∈ Tk+1 for which (w0, . . . , wk) ∈ ρM and assign the corresponding
table to our tuple. This completes the definition of N.

▶ Lemma 17. For every ψ ∈ Subf(φ) and w0 ∈ W we have that

N, (w0, ℓ, r) ⊩ ψ ⇔ M, w0 ⊩ t(ψ).

Proof. A routine induction. ◀

In particular N is a model of φ and hence φ is satisfiable. Thus we can conclude that φ
is satisfiable iff Θ is.

5 Model checking problem of polyadic Boolean modal logic with
permutations

In this section we prove that the combined complexity of PML(p, s,¬,∩) is PTime-complete.
Note that the corresponding lower bound follows already from the fact that the combined
complexity of standard modal logic is PTime-complete [10]. Throughout this section we will
assume that the domains of the models are equipped with some (arbitrary) linear order.

We start by defining precisely how we will encode Kripke models. In fact, we will describe
how we will encode arbitrary relational models, since it avoids some notational clutter. Given
two strings x and y, we will use x#y to denote their concatenation. The database encoding
of A is the sequence

1|A| ▷ lenc(R1) ▷ · · · ▷ lenc(Rm)

where ▷ is a separator character (the use of which could be of course avoided) and each
lenc(Ri) is a sequence

r1#r2# . . .#r|Ri|,

where each rj is a sequence consisting of ar(Ri)-many binary strings of length log2(|A|)
which encodes the jth tuple in RA

i . We note that the length of the database encoding of a
model A, denoted by ||A||, is

O

(
|A| +

∑
1≤i≤m

|Ri|ar(Ri) log2(|A|)
)
.
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▶ Remark 18. The encoding of models that we have presented here is not the only encoding
of relational structures one encounters in the literature. Another standard choice of encoding
can be found in [22], where the encoding essentially describes the “adjacency” matrix of each
relation, i.e., for every relation R and every tuple of length ar(R) there is a single bit which
indicates whether that tuple belongs to the interpretation of R. Note that if the arities of
relation symbols are bounded by a constant, then this encoding of models, which we call the
matrix encoding, is essentially equivalent with the database encoding of models.

If matrix encoding of models is used, then the PTime upper bound on the model
checking problem of PML(p, s,¬,∩) becomes somewhat trivial. Indeed, one can then compute
complements of relations in linear time, which allows one to easily reduce the model checking
problem of PML(p, s,¬,∩) to the model checking problem of, say, the guarded fragment,
which is known to be PTime-complete [3].

Next we will present our model checking algorithm. As an important preliminary step,
the following lemma will allow us to restrict our attention to formulas that contain only
terms which use negation in a very restricted way.

▶ Lemma 19. Suppose that R ∈ GRA(p, s,¬,∩)[τ ]. We can compute in polynomial time a
term R′ ∈ GRA(p, s,¬, \,∩,∪) so that R is equivalent with R′ and R′ is either of the form
R′′ or of the form ¬R′′, for some R′′ ∈ GRA(p, s, \,∩,∪)[τ ].

Proof. Using Lemma 1, we can bring all the negations occurring in the input term R to the
start of the term, which – after eliminating consecutive negations – results in a term which
is either of the form R′ or ¬R′, where R′ ∈ GRA(p, s, \,∩,∪)[τ ]. ◀

Suppose now that φ ∈ PML(p, s,¬,∩)[τ ] and M = (W, (RM)R∈τ , V ). Our goal is to
compute the set of worlds in M where φ is true. By applying Lemma 19, we can assume
that in each subformula ⟨R⟩(ψ1, . . . , ψk) the term R is either of the form R′ or ¬R′, where
R′ ∈ GRA(p, s, \,∩,∪)[τ ]. Using induction, one can show that the size of JR′KM is only
polynomial with respect to ||M||.

Now we will describe the model checking algorithm, which extends the standard labeling
algorithm that is often used in the context of modal logics [30]. The algorithm will use some
enumeration of the subformulas φ1, . . . , φn of φ which satisfies the requirement that if φj is
a proper subformula of φi, then j < i.

ν = ∅
for i = 1 through n do:

if φi = p then ν := ν ∪ {(p, V (p))}
if φi = ¬φj then ν := ν ∪ {(φi,W\ν(φj)}
if φi = φj ∧ φk then ν := ν ∪ {(φi, ν(φj) ∩ ν(φk)}
if φi = ⟨R⟩(φi1 , . . . , φik ) then

ν := ν ∪
(
φi,

{
w ∈ W

∣∣∣∣(w × ν(φi1) × · · · × ν(φik )
)

∩ JRKM ̸= ∅
})

if φi = ⟨¬R⟩(φi1 , . . . , φik ) then
U := ∅
for w ∈ W do:

for (w1, . . . , wk) ∈ ν(φi1) × · · · × ν(φik ) do:
if (w,w1, . . . , wk) ̸∈ JRKM then U := U ∪ {w} and break

ν := ν ∪ {(φi, U)}
return ν(φ)
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It is straightforward to check that the above algorithm is correct. We note that in certain
places the description of the algorithm is, for ease of exposition, somewhat informal. In
particular, we have not specified how in the case of ⟨¬R⟩(φi1 , . . . , φik ) the for-loop going
through the set ν(φi1) × . . . ν(φik ) should be implemented, which is in fact a somewhat
important detail, since we can not always construct this set explicitly as in the worst case
its size is proportional to |W |k (which is exponential in the size of the input, since k is not
bounded by a constant). However, this explicit construction can be avoided by maintaining
k pointers to elements of the sets ν(φiℓ). More precisely, we can initialize k pointers which
at the beginning point at the first element of A and which we will then increment in a
lexicographical manner.

We are now left with the easy task of proving that our algorithm runs in polynomial time.

▶ Lemma 20. The above algorithm runs in time polynomial with respect to

|φ| × ||M||.

Proof. The outermost for-loop is executed |Subf(φ)| ≤ |φ| times, so it suffices to argue
that each case within the loop can be done in time polynomial with respect to |φ| × ||M||.
The most non-trivial case is the case of ⟨¬R⟩(φi1 , . . . , φik ), where we can make the simple
observation that the running time of the for-loop going through ν(φi1)× . . . ν(φik ) is bounded
above by the size of JRKM ≤ ||M||, since it stops after we have encountered a tuple which
does not belong to JRKM (or after we have went through all the relevant k-tuples). ◀

Since the model checking problem of standard modal logic is PTime-complete, we have
the desired result.

▶ Theorem 21. The model checking problem of PML(p, s,¬,∩) is PTime-complete.

6 Conclusions

We have studied the computational complexity of model checking and satisfiability problems
of polyadic modal logics extended with permutations and Boolean operators on accessibility
relations. Concerning satisfiability problems, we have proved that the satisfiability problems
of both polyadic modal logic extended with negations of accessibility relations PML(¬)
and full polyadic Boolean modal logic extended with permutations over PML(p, s,¬,∩) are
ExpTime-complete, the latter under the assumption that the underlying set of accessibility
relations and their arities are bounded by a constant, which is necessary if ExpTime ̸=
NExpTime, since the satisfiability problem of PML(p, s,¬,∩) is in general NExpTime-
complete. We have also established that the model checking problem for full polyadic Boolean
modal logic extended with permutations PML(p, s,¬,∩) is PTime-complete. Our results
contribute to the research program outlined in [14] and extend the results of [24, 27] to
polyadic context.

Concerning future research directions, the reductions that we used in establishing com-
plexity bounds on satisfiability problems seem to be quite robust, and hence we expect
that in the future they can be used to extend the results presented here. For instance, one
can most likely show that PML(p, s,¬) has an ExpTime-complete satisfiability problem,
which we have not yet been able to do. In this direction a natural intermediate problem
would be to establish that PML(p, s) + ⟨E⟩ has an ExpTime-complete satisfiability problem,
since then one might be able to adapt the techniques used in this paper to reduce the
satisfiability problem of PML(p, s,¬) to that of PML(p, s) + ⟨E⟩. Following [14], we are
also quite confident that PML(p, s,¬) could be extended with counting without affecting its
ExpTime-completeness.
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Another obvious direction would be to show that if the number of accessibility relations
and their arities are bounded by a constant, then the satisfiability problem of PML(p, s,¬,∩)
extended with an equality operator I is ExpTime-complete. Indeed, such a result would
fully generalize the main result of [27] to polyadic context, which states the satisfiability
problem of ML(I, s,¬,∩) is ExpTime-complete, when the number of accessibility relations
is bounded by a constant. Here the main technical difficulty is that it seems that one needs
to reduce the satisfiability problem of PML(I, p, s,¬,∩) to that of PML extended with the
difference modality ⟨d⟩ [6] (as opposed to just reducing it to PML + ⟨E⟩). ⟨d⟩ψ states that
there exists a world which is different from the current world and in which ψ is true. Roughly
speaking, the need for ⟨d⟩ arises from the fact that one needs to encode basic properties of
equality I in the reduction.
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