
Complexity Classifications via Algebraic Logic
Reijo Jaakkola !Ï

Tampere University, Finland

Antti Kuusisto !Ï

Tampere University, Finland
University of Helsinki, Finland

Abstract
Complexity and decidability of logics is an active research area involving a wide range of different
logical systems. We introduce an algebraic approach to complexity classifications of computational
logics. Our base system GRA, or general relation algebra, is equiexpressive with first-order logic
FO. It resembles cylindric algebra but employs a finite signature with only seven different operators,
thus also giving a very succinct characterization of the expressive capacities of first-order logic. We
provide a comprehensive classification of the decidability and complexity of the systems obtained by
limiting the allowed sets of operators of GRA. We also discuss variants and extensions of GRA, and
we provide algebraic characterizations of a range of well-known decidable logics.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Decidability, complexity, algebraic logic, fragments of first-order logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.27

Related Version Full Version: https://arxiv.org/abs/2005.01184

Funding The authors were funded by the Academy of Finland project Theory of computational logics,
grant numbers 324435, 328987 (to December 2021) and 352419, 352420, 353027 (2022 onwards).
Reijo Jaakkola: Academy of Finland project Theory of Computational Logics, grant 328987
Antti Kuusisto: Academy of Finland project Theory of Computational Logics, grants 324435, 328987,
352419, 352420, 353027

1 Introduction

The fall of Hilbert’s program and the realization of the undecidability of first-order logic FO
put an end to the most prestigious plans of automating mathematical reasoning. However,
research with more modest aims continued right away. Perhaps the most direct descendant
of Hilbert’s program was the work on the classical decision problem, i.e., the initiative to
classify the quantifier prefix classes of FO according to whether they are decidable or not.
This major program was successfully completed in the 1980’s, see [7] for an overview.

Subsequent work has been more scattered but active. The current state of the art on
decidability and complexity of fragments of FO divides roughly into two main branches:
research on variants of two-variable logic FO2 and the guarded fragment GF. Two-variable
logic FO2 is the fragment of FO that allows only two variable symbols. It was shown decidable
in [33] and NexpTime-complete in [12]. The extension of FO2 with counting quantifiers, or
C2, was proved decidable in [13, 35] and NexpTime-complete in [36]. Research on variants
of FO2 is currently very active, see, e.g., [5, 8, 21, 22, 29, 43] for some recent work. See
also [14, 20] where the uniform one-dimensional fragment U1 is defined. This system extends
FO2 to a logic that allows an arbitrary number of variables but remains NexpTime-complete.

The guarded fragment GF was initially conceived as an extension of modal logic, being a
system where quantification is similarly localized as in the Kripke semantics for modal logic.
After its introduction in [1], it was soon shown 2ExpTime-complete in [11]. The guarded
fragment has proved successful in relation to applications, and it has been extended in several

© Reijo Jaakkola and Antti Kuusisto;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reijo.jaakkola@tuni.fi
https://reijojaakkola.github.io/
https://orcid.org/0000-0003-4714-4637
mailto:antti.kuusisto@tuni.fi
https://homepages.tuni.fi/antti.kuusisto/
https://orcid.org/0000-0003-1356-8749
https://doi.org/10.4230/LIPIcs.CSL.2023.27
https://arxiv.org/abs/2005.01184
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Complexity Classifications via Algebraic Logic

ways, see, e.g., the loosely guarded [6], clique guarded [10] and packed [30] fragments. All
these logics have the same 2ExpTime-complete complexity as GF (see, e.g., [4]). The more
recently introduced guarded negation fragment GNFO [4] is a very expressive extension of
GF based on restricting the use of negation in the same way GF restricts quantification. The
logic GNFO also extends the unary negation fragment UNFO [42] which is orthogonal to GF
in expressive power. GNFO shares the 2ExpTime-completeness of GF, and so does UNFO.

Other known decidable fragments of FO include the monadic fragment of FO [27]; the
Maslov class [31]; the fluted logic [40], [37]; the binding form systems [32] and generalizations
of prefix classes in, e.g., [44]. Moreover, in the highly active field of description logics [2],
complexities of FO-fragments are classified in great detail, operator by operator.

The current state of the art involves a huge number of different logical frameworks,
tailored for different purposes. Consequently the related research can be a bit scattered, and
could benefit from more systematic approaches. The current article suggests an algebraic
framework that enables a possible systematic approach to related studies.

Our contributions. We introduce a research method for classifying complexity and decidab-
ility of fragments of FO (and beyond) within an algebraic framework. We believe the setting
nicely enables reasonably general and fine-grained studies of related questions. One of the
key ideas is to always identify a finite collection of operators to capture the expressive power
of FO or some other logic of interest – so our algebras have finite signatures. In FO, there
are essentially infinitely many quantifiers ∃xi due to the different variable symbols xi, and
this issue gives rise to the infinite signature of cylindric set algebras, which are the principal
algebraic formulation of FO. Basing our investigations on finite signatures leads to a nicely
controlled setting that elucidates how the expressive power of FO arises. This is achieved by
listing a finite set of operators that the expressivity of FO is based on.

The principal system we introduce is built on the algebraic signature (e, p, s, I,¬, J,∃).
The atomic terms of the related algebra are simply relation symbols (of any arity), and
complex algebraic terms are built from atoms by applying the operators in the signature in
the usual way. This defines an algebra over every relational structure M. The atomic terms
R are interpreted as the corresponding relations RM.

The operators correspond to functions that modify relations into new relations over M

as follows. e is the constant operator denoting the equality relation over M. p is a cyclic
permutation operator while s is a swap operator (swapping the last two elements of tuples). I
is a substitution operator, which deletes tuples whose last two members are not identical and
then projects away the last coordinate of the remaining tuples (this correspond to variable
substitutions in FO). ¬ and J are the complementation and join operators, respectively.
Finally, ∃ is the projection operator (projects the last element away from tuples).

We let GRA(e, p, s, I,¬, J,∃) refer to the system based on these operators, with GRA
standing for general relation algebra. To simplify notation, we also let GRA stand for
GRA(e, p, s, I,¬, J,∃) in the current article. Furthermore, by GRA \ f1, . . . , fk we refer to
GRA with the operators f1, . . . , fk ∈ {e, p, s, I,¬, J,∃} removed.

We begin our study by proving that GRA and FO are equiexpressive. The next aim
is to classify the decidability and complexity properties of the principal subsystems of
GRA. Firstly, GRA \ ¬ is trivially decidable, every term being satisfiable. Nevertheless,
GRA \ ¬ is interesting, as we show it can define precisely all conjunctive queries with
equality. Then we establish that GRA \ ∃ is NP-complete. We then show that satisfiability
of GRA \ J can be checked by a finite automaton, and futhermore, we prove GRA \ I to be
NP-complete. We thereby identify new decidable low-complexity fragments of FO. Including

R. Jaakkola and A. Kuusisto 27:3

the discovery of the algebraic systems, we identify, e.g., the NP-complete fragment F of FO
based on the restriction that when forming conjunctions φ(x1, . . . , xm) ∧ ψ(y1, . . . , yn), the
sets {x1, . . . , xm} and {y1, . . . , yn} of variables should be disjoint.

On the negative side, we show that GRA(p, I,¬, J,∃) is Π0
1-complete, so removing either

e or s (or both) from GRA does not lead to decidability. Thus we have the following close
to complete first classification: removing any of the operators ¬,∃, I, J gives a decidable
system, while dropping e or s (or both) keeps the system undecidable. The only open case
concerning the removal of a single operator is GRA \ p. We leave the study of the complexity
and decidability of subsystems of GRA there in this introductory article.

To push our approach further, we define a general notion of a relation operator which puts
connectives and (generalized) quantifiers under the same umbrella concept. The definition is
a slight generalization of the notion of a generalized quantifier due to Mostowski [34] and
Lindström [26]. We then study variants of GRA with different sets of relation operators.

In particular, we characterize the guarded fragment, two-variable logic, fluted logic and
unary negation fragment by algebras. The guarded fragment corresponds to the algebra
GRA(e, p, s, \, ∩̇,∃) where the symbol \ denotes relative complementation and ∩̇ the suffix
intersection operator. The suffix intersection is similar to standard intersection but makes
sense also when intersecting relations of different arities. Two-variable logic – over vocabularies
with at most binary relation symbols – corresponds to GRA(e, s,¬, ∩̇,∃), and fluted logic to
GRA(¬, ∩̇,∃). Finally, the unary negation fragment corresponds to GRA(e, p, s,¬1, J, J, ∃),
where ¬1 denotes 1-dimensional negation and J the dual operator of J .

Observe that the algebras for fluted logic and two-variable logic are clearly rather
intimately related (note that we do not impose restrictions on relation symbol arities for
fluted logic). Also, as the guarded fragment is characterized by GRA(e, p, s, \, ∩̇,∃), and as
GRA(e, s,¬, ∩̇,∃) and GRA(e, p, s,¬, ∩̇,∃) can be shown equiexpressive over vocabularies
with at most binary relations, also two-variable logic and the guarded fragment are very nicely
and closely linked. These kinds of results demonstrate the explanatory power and potential
usefulness of comparing FO-fragments under the same umbrella framework based on different
kinds of finite signature algebras. Indeed, each finite operator set specifies precisely what the
building blocks of the related logic are, giving a nice, compact expressivity characterization.

The contributions of this article can be summarized by the following four points. (1)
The main objective is to introduce an algebraic approach for classifying the complexity and
decidability properties of logics via different finite signature algebras. (2) Concretely, we
provide a comprehensive classification of the principal subsystems of GRA(e, p, s, I,¬, J,∃)
(which itself characterizes FO). In each solved case, we also pinpoint the complexity of the
system. In the process, we also identify interesting new decidable fragments of FO. (3) We
find algebraic characterizations for FO and some of its main decidable fragments such as FO2,
guarded fragment, fluted logic and unary negation fragment. (Furthermore, we additionally
find algebras that characterize conjunctive queries, equality-free FO, quantifier-free FO and
the set of first-order atoms.) We also provide a 2ExpTime-completeness result for the algebra
for the guarded fragment GF. This turns out to require some nice proof techniques and
new notions (e.g., the notion of a term guard) to keep the translations between GF and the
algebra polynomial. (4) We define a general notion of a relation operator.

Further notes on related work. We already extensively surveyed the related work concerning
our program. We now give further related information on algebraic issues.

There are various algebraic approaches to FO, e.g., Tarski’s cylindric algebras, their
semantic counterparts cylindric set algebras and the polyadic algebras of Halmos. The
book [16] gives a comprehensive and relatively recent account of the these systems. Also,

CSL 2023

27:4 Complexity Classifications via Algebraic Logic

variants of Codd’s relational algebra [9] are very important. The main systems studied within
that setting relate to domain independent first-order logic. The closest approach to our
system is Quine’s predicate functor logic [38, 39, 41]. This system comes in several variants,
with different sets of operators used. Variants of predicate functor logic can be naturally
considered to be within the scope of our research program. Predicate functor logic has been
studied very little, and we are not aware of any work relating to complexity theory that
predates our current work. The notable works within this framework include the complete
axiomatizations given in [23] and [3]. Concerning further algebraic settings, Tarski’s relation
algebra (see [16]) is also related to our work, but focuses on binary relations. For some recent
results on algebras of relations, see, e.g., [15].

The article [19] is the arXiv-preprint of the current article with full proofs of all results,
with the exception of Theorem 6 which will be proved in the final full version. [19] has already
been followed-up by [17], where several natural extensions of so-called ordered logic, fluted
logic and FO2 were studied within the algebraic framework introduced below. [18] is the first
version of the prerint [19] of the current article. The article [18] contains many of the results
below, but using a slightly different set of algebraic operators. The research program realized
in the current article was proposed in [24]. That article discusses the FO-equivalence of the
operators of [18] and suggests, for example, studying systems with limited permutations.

2 Preliminaries

Let A be an arbitrary set. As usual, a k-tuple over A is an element of Ak. When k = 0, we
let ϵ denote the unique 0-tuple in Ak = A0. Note that A0 = B0 = ∅0 = {ϵ} for all sets A
and B. Note also that ∅k = ∅ for all positive integers k. If k is a non-negative integer, then
a k-ary AD-relation over a set A is a pair (R, k) where R ⊆ Ak is a k-ary relation in the
usual sense, i.e., simply a set of k-tuples. We call (∅, k) the empty k-ary AD-relation.
For a non-negative integer k, we let ⊤k (respectively, ⊥k) denote an operator that maps any
set A to the AD-relation ⊤k(A) := (Ak, k) (respectively, ⊥k(A) := (∅, k)). We may write
⊤A

k for ⊤k(A) and simply ⊤0 for ⊤0(A), and we may write ⊥A
k or ⊥k for ⊥k(A). We note

that ⊥∅
k = ⊤∅

k iff k ̸= 0. When T = (R, k) is a k-ary AD-relation, we let rel(T) denote R
and write ar(T) = k to refer to the arity of T . If T is an AD-relation, t ∈ T always means
that t ∈ rel(T).

The notion of a model is defined as usual in model theory, assuming domains are never
empty. For simplicity, we restrict attention to relational models, i.e., vocabularies of models
do not contain function or constant symbols. The domain of a model A is denoted by A, the
domain of B by B, et cetera. We let τ̂ denote the full relational vocabulary containing
countably infinitely many relation symbols of each arity k ≥ 0. We let VAR = {v1, v2, . . . }
denote the countably infinite set of exactly all variables used in first-order logic FO. We
also use metavariables (e.g., x, y, z, x1, x2 . . .) to refer to symbols in VAR. The syntax of
FO is built as usual, starting from the set of atoms consisting of equality atoms (i.e.,
atoms with the equality symbol =) and relation atoms R(x1, . . . , xn) where R ∈ τ̂ . By an
FO-formula φ(x1, . . . , xk) we refer to a formula whose free variables are exactly x1, . . . , xk.
An FO-formula φ (without a list of variables) may or may not have free variables. Free(φ)
denotes the set of free variables of φ. Now, let (x1, . . . , xk) be a tuple of pairwise distinct
variables and consider a formula φ(x1, . . . , xk). Let also (y1, . . . , yk) be a tuple of pairwise
distinct variables. Then we let φ(y1, . . . , yk) be the formula obtained from φ(x1, . . . , xk) by
simultaneously replacing each free variable xi by yi for all i ≤ k (and avoiding variable
capture by renaming bounded variables, if necessary).

R. Jaakkola and A. Kuusisto 27:5

Let k ≥ 0 and consider an FO-formula φ(vi1 , . . . , vik
) where i1 < · · · < ik. The formula

φ(vi1 , . . . , vik
) defines the AD-relation

(
{(a1, . . . , ak) ∈ Ak | A |= φ(a1, . . . , ak) }, k

)
in the

model A. Notice that we make crucial use of the linear ordering of the subindices of the
variables vi1 , . . . , vik

in VAR. We let φA denote the AD-relation defined by φ in A. Notice –
to give an example – that φ(v1, v2, v3) and φ(v6, v8, v9) define the same AD-relation over any
model. It is important to recall this phenomenon below. When using the six metavariables
x, y, z, u, v, w, we henceforth always assume (x, y, z, u, v, w) = (vi1 , vi2 , vi3 , vi4 , vi5 , vi6) for
some indices i1 < i2 < i3 < i4 < i5 < i6. Now, to clarify a further technical issue, let us
consider the formulas R(v1, v2) and R(v1, v1). Observe that while R(v1, v2) defines a binary
AD-relation, the atom R(v1, v1) defines a unary one since the only variable in it is v1.

Consider the formulas φ := v1 ̸= v1 and ψ := v1 ̸= v1 ∧ v2 ≠ v2. Now φA is the
empty unary AD-relation and ψA the empty binary AD-relation. The negated formulas
¬φ and ¬ψ then define the universal unary and binary AD-relations (¬φ)A = (A, 1) and
(¬ψ)A = (A× A, 2), respectively. This demonstrates why we consider AD-relations rather
than ordinary relations: if φ and ψ both defined the ordinary empty relation ∅ in A, then
the action of ¬ in A on the input ∅ would appear ambiguous.

A conjunctive query (CQ) is a formula ∃x1 . . . ∃xk ψ where ψ is a conjunction of atoms
R(y1, . . . , yn). For example ∃y∃z(R(x, y, z) ∧ S(y, z, u, v)) is a CQ with the free variables
x, u, v. A conjunctive query with equality (CQE) is like a CQ but also allows equality
atoms in addition to relation atoms R(y1, . . . , yn).

3 An algebra for first-order logic

In this section we define an algebra equiexpressive with FO. To this end, consider the algebraic
signature

(
e, p, s, I,¬, J,∃

)
where e is an algebraically nullary symbol (i.e., a constant), the

symbols p, s, I,¬,∃ have arity one, and J has arity two. Let τ be a vocabulary, i.e., a set of
relation symbols. The vocabulary τ defines a set of terms (or τ -terms) built by starting
from the the symbols e and R ∈ τ and composing terms by using the symbols p, s, I,¬, J,∃
in the usual way. Thereby e and each R ∈ τ are terms, and if T and T ′ are terms, then
so are p(T), s(T), I(T), ¬(T), J(T , T ′), ∃(T). We often leave out brackets when using
unary operators and write, for example, IpR instead of I(p(R)). Each term T is associated
with an arity ar(T) which, as we will see later on, equals the arity of the AD-relation that
T defines on a model. We define that ar(R) is the arity of the relation symbol R, and
we define ar(e) = 2; ar(pT) = ar(T); ar(sT) = ar(T); ar(¬T) = ar(T); ar(J(T , T ′))
= ar(T) + ar(T ′). Finally, for I and ∃, we define and ar(IT) = ar(∃T) = ar(T) − 1 if
ar(T) ≥ 1 and ar(IT) = ar(∃T) = 0 when ar(T) = 0.

Given a model A of vocabulary τ , each τ -term T defines an AD-relation T A over A, and
the arity of T A will indeed be equal to the arity of T . Consider terms T and S and assume
we have defined AD-relations T A and SA. Then the below conditions hold.

R) Let R be a k-ary relation symbol in τ , so R is a constant term in the algebra. We define
RA =

(
{(a1, . . . , ak) |A |= R(a1, . . . , ak) }, k

)
.

e) We define eA =
(
{(a, a)| a ∈ A}, 2

)
. We call e the equality constant.

p) If ar(T) = k ≥ 2, we define (p(T))A =
(
{(ak, a1, . . . , ak−1) | (a1, . . . , ak) ∈ T A }, k

)
,

where (ak, a1, . . . , ak−1) is the k-tuple obtained from the k-tuple (a1, . . . , ak) by moving
the last element ak to the beginning of the tuple. If ar(T) is 1 or 0, we define (p(T))A = T A.
We call p the cyclic permutation operator.

CSL 2023

27:6 Complexity Classifications via Algebraic Logic

s) If ar(T) = k ≥ 2, we define
(
s(T))A =

(
{(a1, . . . , ak−2, ak, ak−1) | (a1, . . . , ak) ∈

T A }, k
)
, where (a1, . . . , ak−2, ak, ak−1) is the k-tuple that is obtained from the k-tuple

(a1, . . . , ak) by swapping the last two elements ak−1 and ak but keeping the other elements
as they are. If ar(T) is 1 or 0, we define (s(T))A = T A. We call s the swap operator.

I) If ar(T) = k ≥ 2, we let (I (T))A be the AD-relation(
{(a1, . . . , ak−1) | (a1, . . . , ak−1, ak) ∈ T A and ak−1 = ak}, k − 1

)
.

If ar(T) is 1 or 0, then (I (T))A = T A. We call I the substitution operator.
¬) Let ar(T) = k. We define (¬(T))A =

(
{(a1, . . . , ak) | (a1, . . . , ak) ∈ Ak \ rel(T A) }, k

)
.

Note, in particular, that if T A = (∅, 0) = ⊥A
0 , then (¬(T))A = ({ϵ}, 0) = ⊤A

0 , and vice
versa, if T A = ⊤A

0 , then (¬(T))A = ⊥A
0 . We call ¬ the complementation operator.

J) Let ar(T) = k and ar(S) = ℓ. We define (J(T ,S))A to be the AD-relation(
{(a1, . . . , ak, b1, . . . , bℓ) | (a1, . . . , ak) ∈ T A and (b1, . . . , bℓ) ∈ SA}, k + ℓ

)
.

Note that ϵ is interpreted as the identity of concatenation, so if rel(T A) = {ϵ}, then
(J(T ,S))A = (J(S, T))A = SA and (J(T , T))A = ({ϵ}, 0). We call J the join operator.

∃) If ar(T) = k ≥ 1, we let (∃(T))A be the AD-relation(
{(a1, . . . , ak−1) | (a1, . . . , ak) ∈ T A for some ak ∈ A }, k − 1

)
where (a1, . . . , ak−1) is the (k − 1)-tuple obtained by removing the last element of
(a1, . . . , ak). When ar(T) = 0, then (∃(T))A = T A. We call ∃ the projection operator.

We denote this algebra by GRA(e, p, s, I,¬, J,∃) where GRA stands for general relation
algebra. A set {f1, . . . , fk} of operators defines the general relation algebra GRA(f1, . . . , fk).
In this paper – only to simplify notation – we write GRA for GRA(e, p, s, I,¬, J,∃). We
identify GRA(f1, . . . , fk) with the set of τ̂ -terms of this algebra, where τ̂ is the full relational
vocabulary. On the logic side, we similarly identify FO with the set of τ̂ -formulas.

Let G be some set of terms of some general relation algebra GRA(f1, . . . , fk). Formally,
the satisfiability problem for G takes as input a term T ∈ G and returns ‘yes’ iff there exists
a model A such that T A is not the empty AD-relation of arity ar(T).

An FO-formula φ and term T are equivalent if φA = T A for every τ -model A (where τ
is an arbitrary vocabulary that is large enough so that φ is a τ -formula and T a τ -term).
For example, the formula R(v1, v2) is equivalent to R, while R(v2, v1) ∧ (P (v1) ∨ ¬P (v1)) is
equivalent to sR. Note that under our definition, R(v3, v6) and R(v1, v2) are both equivalent
to the term R while the formulas are not equivalent to each other. This causes no ambiguities
as long as we use the terminology carefully. Also, R(v1, v2) ∧ v3 = v3 is not equivalent to the
term R as it defines a ternary rather than a binary relation. Furthermore, recall that in our
setting, the formula T (v1, v1, v2) defines a binary relation and v8 = v8 a unary relation.

It is useful to remember below how the use of the operator p is reflected to corresponding
FO-formulas: if rel

(
RA

)
= {(a, b, c, d)} = rel

(
(Rxyzu)A

)
, then rel

(
(pR)A

)
= {(d, a, b, c)} =

rel
(
(Ryzux)A

)
, so the tuple (a, b, c, d) has its last element moved to the beginning of the

tuple, while Rxyzu has the first variable x moved to the end of the tuple of variables. It is
also useful to understand how the operator I works. For example, if rel

(
RA

)
= {(a, b, c, d)} =

rel
(
(Rxyzu)A

)
, then rel

(
(IR)A

)
= {(a, b, c)} if c = d, and else rel

(
(IR)A

)
= ∅. Thus IR is

equivalent to Rxyzz which is obtained from Rxyzu by the variable substitution u 7→ z.
Let S1 be a set of terms of our algebra and S2 a set of FO-formulas. Then S1 and S2

are equiexpressive if each term in S1 has an equivalent formula in S2 and conversely
each formula in S2 an equivalent term in S1. The sets S1 and S2 are called sententially
equiexpressive if each sentence of S2 has an equivalent 0-ary term in S1 and conversely
each 0-ary term S1 has an equivalent sentence in S2.

R. Jaakkola and A. Kuusisto 27:7

▶ Theorem 1. FO and GRA are equiexpressive.

Proof. Translating terms to FO formulas is straightforward. Suppose then that φ ∈ FO.
Consider first the cases where φ is one of the atoms x = x, x = y. Then the corresponding
terms are, respectively, Ie and e. Assume then that φ is R(vi1 , . . . , vik

) for k ≥ 0. Suppose
first that no variable symbol gets repeated in the tuple (vi1 , . . . , vik

) and that i1 < · · · < ik.
Then the term R is equivalent to φ. We then consider the cases where (vi1 , . . . , vik

) may
have repetitions and the variables may not be linearly ordered (i.e., i1 < · · · < ik does not
necessarily hold). We can permute any relation in every possible way by using the operators
p and s; for the sake of completeness, we present the following steps that prove this claim.

Consider a tuple (a1, . . . , ai, . . . , ak) of the relation RA in a model A. Now, we can move
the element ai an arbitrary number n of steps to the left (while keeping the rest of the tuple
otherwise in the same order) by doing the following: (1) repeatedly apply p to the term R,
making ai the rightmost element of the tuple; (2) apply then the composed function ps (so s
first and then p) precisely n times; (3) Apply p repeatedly to put the tuple into the ultimate
desired order. Moving ai to the right is similar. Intuitively, we keep moving ai to the left and
continue even when it has gone past the leftmost element of the original tuple. Formally, we
can move ai by n steps to the right by performing the above three steps so that in step 2, we
apply the composed function ps exactly k − n− 1 times.

This shows that we can move an arbitrary element anywhere in the tuple, and thereby it
is clear that with p and s, we can permute a relation in all possible ways. Since we indeed
can permute tuples without restrictions, we can also deal with the possible repetitions of
variables in R(vi1 , . . . , vik

). Indeed, we can bring any two elements to the right end of a
tuple and then use I. We discussed this phenomenon already above, but for extra clarity, we
once more illustrate the issue by providing a related, concrete example. So let us consider
the formula R(v1, v2, v1) (which defines a binary relation). We observe that R(v1, v2, v1) is
equivalent to the term pIpp(R), so we first use p twice to permute R, then we use I to
identify coordinates, and finally we use p once more.

So, to sum up, we permute tuples by p and s and we use I for identifying variables. Thus,
using p, s, I, we can find an equivalent term for every quantifier-free formula R(vi1 , . . . , vik

).
Now suppose we have equivalent terms S and T for formulas φ and ψ, respectively. We

will discuss how to translate ¬φ, φ ∧ ψ and ∃viφ. Firstly, clearly ¬φ can be translated to
¬S. Translating φ ∧ ψ is done in two steps. Suppose φ and ψ have, respectively, the free
variables vi1 , . . . , vik

and vj1 , . . . , vjℓ
. We first write the term J(S, T) which is equivalent to

χ(v1, . . . , vk+ℓ) := φ(v1, . . . , vk) ∧ ψ(vk+1, . . . , vk+ℓ); note here the new lists of variables. We
then deal with the possible overlap in the original sets {vil

, . . . , vik
} and {vjl

, . . . , vjℓ
} of

variables of φ and ψ. This is done by repeatedly applying p, s and I to J(S, T) in the same
way as used above when dealing with atomic formulas. Indeed, we above observed that we
can arbitrarily permute relations and identify variables by using p, s, I. Finally, translating
∃viφ is easy. We first repeatedly apply p to the term S corresponding to φ to bring the
element to be projected away to the right end of each tuple. Then we use ∃. After this we
again use p repeatedly to put the term into the final wanted form. ◀

The following corollary is now easy to extract from the above proof. It gives a nice,
algebraic characterization of atomic formulas of FO.

▶ Corollary 2. GRA(p, s, I) is equiexpressive with the set of relation atoms of FO, and
GRA(e, p, s, I) is equiexpressive with the set of all atoms of FO.

CSL 2023

27:8 Complexity Classifications via Algebraic Logic

4 Relation operators and fragments of first-order logic

The FO-equivalent algebra GRA = GRA(e, p, s, I,¬, J,∃) is only one of many interesting
related systems. Defining alternative algebras equiexpressive with FO is one option, but it is
also interesting to consider weaker, stronger and orthogonal systems. We next give a general
definition that enables classifying all such algebras in a systematic way. In the definition, ADA

is the set of all AD-relations (of every arity) over a set A. If T1, . . . , Tk are AD-relations over
A, then (A, T1, . . . , Tk) is called an AD-structure. A bijection g : A → B is an isomorphism
between AD-structures (A, T1, . . . , Tk) and (B,S1, . . . , Sk) if ar(Ti) = ar(Si) for each i and
g is an ordinary isomorphism between (A, rel(T1), . . . , rel(Tk)) and (B, rel(S1), . . . , rel(Sk)).

▶ Definition 3. A k-ary relation operator f is a map that outputs, given an arbitrary
set A, a k-ary function fA : (ADA)k → ADA. The operator f is isomorphism invariant in
the sense that if the AD-structures (A, T1, . . . , Tk) and (B,S1, . . . , Sk) are isomorphic via
g : A → B, then (A, fA(T1, . . . , Tk)) and (B, fB(S1, . . . , Sk)) are, likewise, isomorphic via g.

An arity-regular relation operator is a relation operator with the property that the arity
of the output AD-relation depends only on the sequence of arities of the input AD-relations.

To illustrate the notion of a relation operator, let us consider some concrete examples.
Suppose T and S are both of arity k. We define (T ∪S)A = (rel(T A)∪rel(SA), k), (T ∩S)A =
(rel(T A) ∩ rel(SA), k), and (T \ S)A = (rel(T A) \ rel(SA), k). And if T and S have different
arities, then ∩ and ∪ return (∅, 0) and \ returns T A. Suppose then that T and S have arities
k and ℓ, respectively. Calling m := max{k, ℓ}, we let

(T ∩̇ S)A =
(
{(a1, . . . , am) | (am−k+1, . . . , am) ∈ T A and (am−ℓ+1, . . . , am) ∈ SA}, m

)
,

so intuitively, the tuples overlap on some suffix of (a1, . . . , am) (note that when k or ℓ is zero,
then (am+1, am) denotes the 0-tuple ϵ). We call ∩̇ the suffix intersection.

In the next section we prove that the guarded fragment GF is sententially equivalent
to GRA(e, p, s, \, ∩̇,∃). We note that in [25, 16], the authors define Codd-style relational
algebra systems (with inherently infinite signatures) and they then prove their systems to be
sententially equiexpressive with GF. The system in [25] uses, e.g., a semijoin operator, which
is a join operation but employs also a conjunction of identity atoms as part of the input to it.
The algebra of [16] employs, e.g., an essentially ternary join operator where the extra input
essentially acts as an atomic guard. Both systems have an implicit access to variables via the
infinite signatures and extra features, e.g., extra inputs.

The proofs of the characterizations in [25, 16] differ considerably from our corresponding
argument, the translations from algebra to logic being inherently exponential in [25] and
[16]. We carefully develop techniques that allow us to give a polynomial translation from
GRA(e, p, s, \, ∩̇,∃) to GF, which in turn allows us to prove a 2ExpTime upper bound for
the satisfiability problem of GRA(e, p, s, \, ∩̇,∃), the same as that for GF. Since we will also
give a polynomial translation from GF to GRA(e, p, s, \, ∩̇,∃), it follows that the satisfiability
problem for the algebra is 2ExpTime-complete. Thus GRA(e, p, s, \, ∩̇,∃) is the first algebra
for GF for which the same 2ExpTime complexity has been proved.

We next give a characterization for two-variable logic. Technically, the characterization
has some similarities with, e.g., the modal-logic-based characterization in [28].

▶ Theorem 4. FO2 and GRA(e, s,¬, ∩̇,∃) are sententially equiexpressive over vocabularies
with at most binary relations.

Proof. The algebra GRA(e, s,¬, ∩̇,∃) with at most binary relation symbols clearly contains
only terms of arity at most two. Thus it is easy to translate the terms into FO2.

R. Jaakkola and A. Kuusisto 27:9

We then consider the converse translation. We assume that FO2 is built using ¬,∧ and ∃
and treat other connectives and ∀ as abbreviations in the usual way.

Now, let φ ∈ FO2 be a sentence with at most binary relations, and let x and y be the two
variables that occur in φ. Note indeed that φ is a sentence, not an open formula. We first
convert φ into a sentence that does not contain any subformulas of type ψ(x)∧χ(y) (or of type
ψ(x) ∨ χ(y)) as follows. Consider any subformula ∃x η(x, y) where η(x, y) is quantifier-free.
Put η into disjunctive normal form and distribute ∃x over the disjunctions. Then distribute
∃x also over the conjunctions as follows. Consider a conjunction αi(x, y) ∧ βi(y) ∧ γi where
each of αi, βi, γi are conjunctions of literals; the formula γi contains the nullary relation
symbols and αi(x, y) contains the literals of type π(x, y) and π′(x). We distribute ∃x into
αi(x, y)∧βi(y)∧γi so that we obtain the formula ∃xαi(x, y)∧βi(y)∧γi. Thereby the formula
∃x η(x, y) gets modified into the formula

∨n
i=1(∃xαi(x, y) ∧ βi(y) ∧ γi) which is of the right

form and does not have x as a free variable. Next we can repeat this process for other
existential quantifiers in the formula (by treating the subformulas with one free variable in
the way that atoms with one free variable were treated in the above translation step for
η(x, y)). Having started from the sentence φ, we ultimately get a sentence equivalent to φ
but having no subformulas of the form ψ(x) ∧ χ(y) or of the form ψ(x) ∨ χ(y).

Next we translate an arbitrary sentence φ ∈ FO2 that satisfies the above condition to an
equivalent term. We let v ∈ {x, y} denote a generic variable.

Atoms of the form P (v) (respectively v = v) translate to P (respectively ∃e). Relation
symbols of arity 0 translate to themselves. R(x, y) translates to R and R(y, x) translates to
sR. And R(v, v) translates to ∃(R ∩̇ e) and the atoms x = y and y = x translate to e.

Now suppose we have translated ψ to T . Then ¬ψ translates to ¬T . If ψ has one free
variable v, then ∃vψ translates to ∃T . If ψ has two free variables, then we either translate
∃vψ to ∃T when v is y and to ∃sT when v is x.

Consider now a formula ψ ∧χ and suppose that we have translated ψ to T and χ to S. If
at least one of ψ and χ is a sentence, we translate ψ∧χ to (T ∩̇ S). Otherwise, due to the form
of the sentence φ to be translated, we have Free(ψ) ∩ Free(χ) ̸= ∅. Now ψ(x, y) ∧ χ(x, y),
ψ(y) ∧ χ(x, y) and ψ(x, y) ∧ χ(y) are all translated to T ∩̇ S, while ψ(x, y) ∧ χ(x) and
ψ(x) ∧ χ(x, y) are translated to s(sT ∩̇ S) and s(T ∩̇ sS), respectively. ◀

We note that limiting our algebraic characterizations of GF and FO2 to sentential equiex-
pressivity is a choice based on the relative elegance of the results. Sentential equiexpressivity
suffices for the almost all practical scenarios.

Now, let GRA2(e, s,¬, ∩̇,∃) denote the terms of GRA(e, s,¬, ∩̇,∃) that use at most binary
relation symbols; there are no restrictions on term arity, although clearly at most binary terms
arise. The proof of Theorem 4 gives a translation of FO2-sentences to GRA2(e, s,¬, ∩̇,∃).
However, the translation is not polynomial, so we do not immediately get a NexpTime lower
bound for the satisfiability of GRA2(e, s,¬, ∩̇,∃). Nevertheless, we can prove the following.

▶ Theorem 5. The satisfiability problem of GRA2(e, s,¬, ∩̇,∃) is NexpTime-complete.

We then briefly consider fluted logic (FL) and the unary negation fragment (UNFO).
The logic FL is a decidable fragment of FO that has recently received increased attention in
the research on first-order fragments, see. e.g., [17, 37]. Now, it is straightforward to show
that fluted logic is equiexpressive with GRA(¬, ∩̇,∃). The logic UNFO is a well-established
decidable fragment of FO that enjoys many of the desirable properties that modal logics
have [42]. Roughly speaking, its syntax is obtained from that of FO by restricting the use of

CSL 2023

27:10 Complexity Classifications via Algebraic Logic

negation only to formulas that have at most one free variable. To characterize UNFO, we
will need to introduce two additional relation operators. Suppose that T and S are terms of
arity k AND ℓ respectively. We define

(J(T ,S))A = ({(a1, . . . , ak, b1, . . . , bℓ) | (a1, . . . , ak) ∈ T A or (b1, . . . , bℓ) ∈ SA}, k + ℓ).
Thus J is the dual of J . If k ≤ 1, we define (¬1(T))A = (¬(T))A, and otherwise (¬1(T))A =
⊥0. We call ¬1 the one-dimensional negation. It can be shown that UNFO is equiexpressive
with GRA(e, p, s, I,¬1, J, J, ∃).

By comparing the algebraic characterizations, we observe FO2 and fluted logic are very
interestingly and intimately related, and the full system GRA(e, s,¬, ∩̇,∃) obviously contains
both fluted logic and FO2. Note also the close relationship of these systems to the algebra
GRA(e, p, s, \, ∩̇,∃) for GF. These connections demonstrate how the algebraic approach can
nicely elucidate the relationships between seemingly different kinds of fragments of FO.
Indeed, FO2, FL and GF seem much more closely related than one might first suspect.

Another advantage of our algebraic approach is that it naturally suggests new fragments,
as one can select their favourite operators and consider the resulting algebras. Inspired by
the present work, in [17] this idea was put into action and various interesting extensions
of ordered and fluted logic were studied. Here we point out yet another natural fragment
inspired by our algebraic approach, namely the algebra GRA(e, s, \, ∩̇,∃). This algebra is
interesting since, e.g., it contains the guarded FO2 and guarded FL on the level of sentences.

▶ Theorem 6. The satisfiability problem of GRA(e, s, \, ∩̇,∃) is ExpTime-complete.

The proof of this theorem is quite involved, but it follows a well-known path: we design
a polynomial space alternating Turing machine which tries to construct a tree-like model
for the input term. The key point here is that since permutations are heavily restricted in
GRA(e, s, \, ∩̇,∃), the “nodes” of the tree-like model have polynomial size. The proof will be
presented in the final full version. Note that it is straightforward to read a first-order syntax
for this system from the algebra. It essentially mixes the ideas behind FO2 and the guarded
variant of fluted logic.

5 An algebra for the guarded fragment

In this section we consider GRA(e, p, s, \, ∩̇,∃) and show that it is sententially equiexpressive
with GF. Recall that GF is the logic that has all atoms R(x1, . . . , xk), x = y and x = x, is
closed under ¬ and ∧, but existential quantification is restricted to patterns ∃x1 . . . ∃xk(α ∧ ψ)
where α is an atomic formula (a guard) having (at least) all the free variables of ψ ∈ GF.

We start by defining the notion of a term guard of a term T . Term guards are a
central concept in our proof. The term guard of a term T of GRA(e, p, s, \, ∩̇,∃) is a tuple
(S, (i1, . . . , ik)), where S ∈ GRA(e) and k = ar(T) ≤ ar(S), with the following properties.
1. The tuple (i1, . . . , ik) consists of pairwise distinct integers ij such that 1 ≤ ij ≤ ar(S).
2. For every model A and every tuple (a1, , ak) ∈ T A, there exists a tuple

(b1, . . . , bar(S)) ∈ SA such that (a1, . . . , ak) = (bi1 , . . . , bik
).

The intuition is that the term guard (S, (i1, . . . , ik)) of T gives an atomic term S and a
list (i1, . . . , ik) of coordinate positions (of tuples of SA) that guard the tuples of T A. The
remaining ar(S) − k coordinate positions of the tuples of SA are intuitively non-guarding.
The following lemma will be used below when translating algebraic terms to GF.

▶ Lemma 7. Every term T ∈ GRA(e, p, s, \, ∩̇,∃) has a term guard. Furthermore the term
guard can be computed from T in polynomial time.

R. Jaakkola and A. Kuusisto 27:11

Proof. We will define inductively a mapping which maps each term T of the system
GRA(e, p, s, \, ∩̇,∃) to a term guard for T . We start by defining that e will be mapped
to (e, (1, 2)) and that every relational symbol R will be mapped to (R, (1, . . . , ar(R))).

Suppose then that we have mapped a k-ary term T to the term guard (S, (i1, . . . , ik)).
Using the term guard (S, (i1, . . . , ik)) as a starting point, we will construct term guards for
the terms pT and sT . Firstly, term guard for pT will be (S, (ik, i1, . . . , ik−1)), where we have
simply permuted the tuple (i1, . . . , ik) with p. (Note that if k ≤ 1, then the permuted tuple
is the same as the original tuple, as p leaves tuples of length up to 1 untouched.) Similarly,
the term guard for sT will be (S, (i1, . . . , ik−2, ik, ik−1)), where this time we have permuted
the tuple (i1, . . . , ik) with s. (Again if k ≤ 1, the permuted tuple is the original tuple.)

The other cases are similar. Recall the assumption that we have mapped a k-ary term T to
the term guard (S, (i1, . . . , ik)), and suppose further that an ℓ-ary term P has been mapped
to the term guard (S ′, (j1, . . . , jℓ)). If k ≥ ℓ, then T ∩̇ P will be mapped to (S, (i1, . . . , ik)),
and if k < ℓ, then T ∩̇ P will be mapped to (S ′, (j1, . . . , jℓ)). Independently of how the arities
k and ℓ are related, T \P will always be mapped to (S, (i1, . . . , ik)). (Recall that if the arities
of the terms Q and R differ, then by definition Q\R is equivalent to Q). If k ≥ 1, the term
∃T will be mapped to (S, (i1, . . . , ik−1)). If k = 0, ∃T maps to the same term guard as T .

Since this mapping is clearly computable in polynomial time, the claim follows. ◀

▶ Theorem 8. GRA(e, p, s, \, ∩̇,∃) and GF are sententially equiexpressive.

Proof. We will first show that for every formula ∃x1 . . . ∃xk ψ of GF, there is an equi-
valent term of GRA(e, p, s, \, ∩̇,∃). We begin our (ultimately inductive) argument by
first showing this for a formula φ := ∃x1 . . . ∃xk ψ where ψ is quantifier-free. We as-
sume φ = ∃x1 . . . ∃xk(α(y1, . . . , yn) ∧ β(z1, . . . , zm)) where α(y1, . . . , yn) is an atom and
{z1, . . . , zm} ⊆ {y1, . . . , yn} and {x1, . . . , xk} ⊆ {y1, . . . , yn}.

Now consider a conjunction α ∧ ρ where α = α(y1, . . . , yn) is our guard atom and ρ an
arbitrary atom whose set of variables is a subset of {y1, . . . , yn}. We call such a conjunction
an α-guarded atom. For each α-guarded atom, we can find an equivalent term as follows.
First, by Corollary 2, we can write a term equivalent to any atomic FO-formula using e, p, s, I;
note that we can use I in GRA(e, p, s, \, ∩̇,∃), since if ar(T) > 1, then IT is equivalent to
∃(T ∩̇ e), and if ar(T) ≤ 1, then IT is equivalent to T . Therefore we can find terms Tα and
Tρ equivalent to α and ρ, respectively. Now, the term Tα ∩̇ Tρ is not likely to be equivalent to
α ∧ ρ, as the variables in α ∧ ρ can be unfavourably ordered instead of matching each other
nicely. However – recalling that p and s can be composed to produce arbitrary permutations
– we first permute Tα to match Tρ at the last coordinates of tuples, then we combine the
terms with ∩̇, and finally we permute the obtained term to the final desired form. In this
fashion we obtain a term for an arbitrary α-guarded atom.

Now recall the formula α(y1, . . . , yn) ∧ β(z1, . . . , zm) from above. For each atom γ in β,
let T α

γ denote the term equivalent to the α-guarded atom α ∧ γ formed from γ. The formula
β is a Boolean combination composed from atoms by using ¬ and ∧. We let Tβ denote the
term obtained from β by replacing each atom γ by the term T α

γ , each ∧ by ∩̇ and each ¬ by
relative complementation with respect to Tα (i.e., formulas ¬ η become replaced by Tα \ η∗

where η∗ is the translation of the formula η). It is easy to show that Tβ is equivalent to
α(y1, . . . , yn)∧β(z1, . . . , zm). Thus we can clearly apply p and ∃ in a suitable way to the term
Tβ to get a term equivalent to the formula φ = ∃x1 . . . ∃xk(α(y1, . . . , yn) ∧ β(z1, . . . , zm)).

Thus we managed to translate φ. To get the full translation, we mainly just keep repeating
the procedure just described. The only difference is that above the formula β(z1, . . . , zm)
was a Boolean combination of atoms, while now β will also contain formulas of the form

CSL 2023

27:12 Complexity Classifications via Algebraic Logic

∃x1 . . . ∃xr(δ ∧ η) in addition to atoms. Proceeding by induction, we get a term equivalent to
∃x1 . . . ∃xr(δ∧ η) by the induction hypothesis, and otherwise we proceed exactly as described
above. This concludes the argument for translating formulas to terms.

Let us then translate terms into equivalent formulas of GF. We proceed by induction. As
GF is closed under Boolean operators, the only non-trivial case is the translation of ∃. The
hard part in this case is to ensure that we can translate ∃ so that the resulting formula has a
suitable guarding pattern (with a suitable guard atom) and thereby belongs to GF.

So suppose that we have translated T to ψ(v1, . . . , vk). By Lemma 7, we can find a term
guard (S, (i1, . . . , ik)) for T . By the definition of term guards, S is e or some relation symbol
R. We let m denote the arity of S, and we let α(v1, . . . , vm) denote R(v1, . . . , vm), if S is a
relation symbol, and v1 = v2 if S is e. Notice that {i1, . . . , ik} ⊆ {1, . . . ,m} by the definition
of term guards. Now define χ(vi1 , . . . , vik

) := ∃v(α(v1, . . . , vm) ∧ ψ(vi1 , . . . , vik
)), where v

lists those variables from {v1, . . . , vm} that are not included in (vi1 , . . . , vik
). Modifying

χ(vi1 , . . . , vik
) to the formula χ(v1, . . . , vk) and recalling the definition of term guards, we

now observe that ∃T is equivalent to ∃vkχ(v1, . . . , vk) which is a GF-formula. ◀

As GF is 2ExpTime-complete and the above translations polynomial, the following holds.

▶ Corollary 9. The satisfiability problem for GRA(e, p, s, \, ∩̇,∃) is 2ExpTime-complete.

6 Decidable fragments of GRA

In this section we identify subsystems of GRA = GRA(e, p, s, I,¬, J,∃) with a decidable
satisfiability problem. We concentrate on systems obtained by limiting to a subset of the
operators involved. We show that removing any of the operators ¬,∃, J, I leads to decidability,
and we also pinpoint the exact complexity of each system. As a by-product, we make obser-
vations about conjunctive queries (CQs) and show NP-completeness of, e.g., GRA(¬, J,∃)
and GRA(I,¬, J). We also give a characterization for quantifier-free FO.

Our first result concerns GRA with the complementation operation ¬ removed. All
negation-free fragments of FO are trivially decidable – every formula being satisfiable – and
thus so is GRA(e, p, s, I, J, ∃). Nevertheless, this system has the following very interesting
property concerning conjunctive queries with equality, or CQEs.

▶ Proposition 10. GRA(e, p, s, I, J, ∃) is equiexpressive with the set of CQEs. Also, the
system GRA(p, s, I, J, ∃) is equiexpressive with the set of conjunctive queries (CQs).

Proof. Analyzing the proof that GRA(e, p, s, I,¬, J,∃) and FO are equiexpressive, we see
that GRA(e, p, s, I, J, ∃) can express every formula built from relational atoms and equality
atoms with conjunctions and existential quantification. Conversely, an easy induction on
term structure establishes that every term of the system GRA(e, p, s, I, J, ∃) is expressible
by a CQE. The claim for GRA(p, s, I, J, ∃) follows similarly, noting that e is used only to
express the atoms x = x and x = y in the proof of Theorem 1. ◀

We then consider GRA without ∃.

▶ Proposition 11. GRA(e, p, s, I,¬, J) is equiexpressive with quantifier-free FO, and the
satisfiability problem for GRA(e, p, s, I,¬, J) is NP-complete.

(We can sharpen the lower bound by showing that already GRA(I,¬, J) is NP-complete.)
We then consider the join-free fragment of GRA. It turns out to be interestingly tame, with
a very low complexity:

R. Jaakkola and A. Kuusisto 27:13

▶ Theorem 12. Satisfiability of GRA(e, p, s, I,¬,∃) can be checked by a finite automaton.

We then study GRA without I and show it NP-complete. We begin by identifying a new
decidable fragment F of FO. The new logic F turns out to be an interesting, low-complexity
fragment of FO, as we will prove it NP-complete. The fragment F is defined as the set of
formulas φ of FO which satisfy the following condition: if (ψ ∧ χ) is a subformula of φ, then
Free(ψ) ∩ Free(χ) = ∅ (note here that disjunction is not treated as a primitive operator; the
primitive operators of F are ¬, ∧, ∃).

We will then establish NP-completeness of GRA\I. We will first show that the satisfiability
problem of F is complete for NP. The upper bound is based on a non-deterministic reduction
to the satisfiability problem of the set of relational Herbrand sentences. We note that
checking satisfiability of equality-free relational Herbrand sentences is known to be PTime-
complete, see Theorem 8.2.6 in [7]. However, there seems to be no explicit proof of the
PTime-completeness of case with equality in the literature, so we provide it in [19].

▶ Theorem 13. The satisfiability problem of F is NP-complete.

Proof. For the lower bound, suppose φ is a formula of propositional logic. We obtain an
equisatisfiable formula of F by replacing each proposition symbol pi by the sentence ∀xPi(x).

We thus consider the upper bound. Let χ ∈ F be a formula. First we transform χ into
negation normal form, thus obtaining a formula χ′. Now note that in F , the formula ∀x(φ∨ψ)
is equivalent to either (φ∨ψ), (∀xφ∨ψ) or (φ∨∀xψ) since Free(φ)∩Free(ψ) = ∅. Similarly,
∃x(φ ∧ ψ) is equivalent to (φ ∧ ψ), (∃xφ ∧ ψ) or (φ ∧ ∃xψ). Thus we can push all quantifiers
past all connectives in the formula χ′ in polynomial time, getting a formula χ′′.

Let C be the set of all conjunctions obtained from χ′′ as follows: begin from the syntax
tree of χ′′ and keep eliminating disjunctions ∨, always keeping one of the two disjuncts. Now
χ′′ is satisfiable iff some β ∈ C is satisfiable. Starting from χ′′, we nondeterministically guess
some β ∈ C (without constructing C). Now, β is a conjunction of formulas Q1x1 . . . Qkxk η

where Qi ∈ {∀,∃} for each i and η is a literal. Putting β in prenex normal form, we get
a relational Herbrand sentence. In [19] we show that satisfiability of relational Herbrand
sentences is PTime-complete. ◀

Using Theorem 13, we then determine the exact complexity of GRA\I.

▶ Theorem 14. The satisfiability problem of GRA(e, p, s,¬, J,∃) is NP-complete.

Proof. We shall first show that GRA(e, p, s,¬, J,∃)-terms translate to equisatisfiable formulas
of F in polytime: the upper bound of the current theorem then follows due to Theorem
13. We use induction on the structure of terms T of GRA(e, p, s,¬, J,∃). For the base case
of the induction we note that e is equivalent to v1 = v2 and R to R(v1, . . . , vk). Suppose
then that T is equivalent to φ(v1, . . . , vk). Then ¬T is equivalent to ¬φ(v1, . . . , vk) and ∃T
to ∃vkφ(v1, . . . , vk). We translate sT to the variant of φ(v1, . . . , vk) that swaps vk−1 and
vk and pT to φ(v2, . . . , vk, v1). Finally, suppose that T translates to φ(v1, . . . , vk) and P to
ψ(v1, . . . , vℓ). Now J(T ,P) is translated to φ(v1, . . . , vk) ∧ψ(vk+1, . . . , vk+ℓ). This concludes
the proof of the upper bound.

For the lower bound, we shall prove the sharper result that the satisfiability problem of
GRA(¬, J,∃) is NP-hard. We give a reduction from SAT. Let φ be a formula of propositional
logic. Let {p1, . . . , pn} be the set of proposition symbols in φ, and let {P1, . . . , Pn} be a set
of unary relation symbols. Let φ∗ be the formula obtained from φ by replacing each symbol
pi with ∀xPi(x). It is easy to see that φ and φ∗ are equisatisfiable. Finally, since ∀xPi(x) is
equivalent to ¬∃¬Pi, the sentence φ∗ can be expressed in GRA(¬, J,∃). ◀

CSL 2023

27:14 Complexity Classifications via Algebraic Logic

7 Undecidable fragments of GRA

In this section we identify undecidable subsystems of GRA. We show that GRA is undecidable
without s and also without e. The principal technical result of this section is the following
theorem, dealing with GRA without both e and s. Recall that Π0

1 denotes the set of languages
with recursively enumerable complements.

▶ Theorem 15. The satisfiability problem of GRA(p, I,¬, J,∃) is Π0
1-hard.

As the satisfiability problem of FO is Π0
1-complete, Theorem 15 implies the following corollary.

▶ Corollary 16. Satisfiability of GRA(p, s, I,¬, J,∃) and GRA(e, p, I,¬, J,∃) are Π0
1-

complete.

A standard method of proving undecidability is via a reduction from the tiling problem
of the grid N × N, which is well-known to be Π0

1-complete [7]. While we also follow this
approach in our proof of Theorem 15, we have to deal with the fact that in GRA(p, I,¬, J,∃)
we can only permute variables in a cyclic manner.

We begin by recalling the tiling problem for N×N. A tile is a function t : {R,L, T,B} →
C where C is a countably infinite set of colors. We let tX denote t(X). Intuitively, tR, tL, tT
and tB are the colors of the right, left, top and bottom edges of a tile. Now, let T be a finite
set of tiles. A T-tiling of N × N is a function f : N × N → T such that for all i, j ∈ N, we
have tR = t′L when f(i, j) = t and f(i+ 1, j) = t′, and similarly, tT = t′B when f(i, j) = t

and f(i, j + 1) = t′. Intuitively, the right color of each tile equals the left color of its right
neighbour, and analogously for top and bottom colors. The tiling problem for the grid N×N
asks, with the input of a finite set T of tiles, if there exists a T-tiling of N × N. It is well
known that this problem is Π0

1-complete. We will show that satisfiability of GRA(p, I,¬, J,∃)
is undecidable by reducing the tiling problem to it.

Define the standard grid GN := (N × N, R, U) where R = {((i, j), (i+ 1, j)) | i, j ∈ N}
and U = {((i, j), (i, j+1)) | i, j ∈ N}. If G is a structure of vocabulary {R,U} with the binary
relation symbols R and U , then G is grid-like if there is a homomorphism τ : GN → G.
Consider then the extended vocabulary {R,U,L,D} where L and D are binary. Define

φinverses := ∀x∀y(R(x, y) ↔ L(y, x)) ∧ ∀x∀y(U(x, y) ↔ D(y, x))
φsuccessor := ∀x(∃yR(x, y) ∧ ∃yU(x, y))
φcycle := ∀x∀y∀z∀u[(L(y, x) ∧ U(x, z) ∧R(z, u)) → D(u, y)].

Then define Γ := φinverses ∧ φsuccessor ∧ φcycle. The intended model of Γ is the standard
grid GN extended with two binary relations, L pointing left and D pointing down.

▶ Lemma 17. Let G be a structure of vocabulary {R,U,L,D}. If G |= Γ, then there is a
homomorphism from GN to G ↾ {R,U}, i.e,. to the restriction of G to the vocabulary {R,U}.

Proof. As G satisfies φinverses and φcycle, it is easy to see that G satisfies the sentence
φgrid−like := ∀x∀y∀z∀u[(R(x, y) ∧ U(x, z) ∧ R(z, u)) → U(y, u)]. Using this sentence and
φsuccessor, it is easy to inductively construct a homomorphism from GN to G ↾ {R,U}. ◀

Fix a set of tiles T. We simulate the tiles t ∈ T by unary relation symbols Pt. Let φT be
the conjunction of the following sentences (the 2nd one on the first row could be dropped):

∀x
∨

t∈T Pt(x)
∧

t ̸=t′ ∀x¬(Pt(x) ∧ Pt′(x))∧
tR ̸=t′

L
∀x∀y¬(Pt(x) ∧R(x, y) ∧ Pt′(y))

∧
tT ̸=t′

B
∀x∀y¬(Pt(x) ∧ U(x, y) ∧ Pt′(y))

The following claim shows, using Lemma 17, that N × N is T-tilable iff φT ∧ Γ is satisfiable.

R. Jaakkola and A. Kuusisto 27:15

▷ Claim 18. The grid N × N is T-tilable iff φT ∧ Γ is satisfiable.

Proof. Suppose there is a model G so that G |= φT ∧ Γ. Therefore, by Lemma 17, there exists
a homomorphism τ : GN → G ↾ {R,U}. Define a tiling T of N × N by setting T ((i, j)) = t if
τ((i, j)) ∈ Pt. Since G |= φT and τ is homomorphism, the tiling is well-defined and correct.

Now suppose that there is a tiling T of N × N using T. Thus we can expand GN =
(N × N, R, U) to G′

N = (N × N, R, U, L,D, (Pt)t∈T) in the obvious way. Clearly G′
N |= φT ∧ Γ.

◁

We can now prove Theorem 15; it suffices to show that φT and each sentence in Γ is
expressible in GRA(p, I,¬, J,∃). Now, the sentence φgrid−like in the proof of Lemma 17
reveals the key trick in our argument. The sentence φgrid−like would be the natural choice for
our argument rather than φcycle. Indeed, we could replace Γ = φinverses ∧ φsuccessor ∧ φcycle

in the statement of Lemma 17 by φsuccessor ∧φgrid−like, as the proof of the lemma shows. But
translating φgrid−like to GRA(p, I,¬, J,∃) would become an obstacle due to the arrangement
of the variables and the lack of s in the algebra. We solve this issue by using φcycle instead
of φgrid−like. By extending the vocabulary, we were able to formulate φcycle so that the
variables in it occur in a cyclic order. The steps below will demonstrate that by using this
cyclicity, we can express φcycle in GRA(p, I,¬, J,∃) even though it lacks the swap operator s.

Let us first express φinverses. Note that φinverses is equivalent to the conjunction
∀x∀y(R(x, y) → L(y, x)) ∧ ∀x∀y(L(y, x) → R(x, y))

∧ ∀x∀y(U(x, y) → D(y, x)) ∧ ∀x∀y(D(y, x) → U(x, y)).
Let us show how to express ∀x∀y(R(x, y) → L(y, x)) in GRA(p, I,¬, J,∃); the other conjuncts
are treated similarly. Consider the formula R(x, y) → L(y, x). To express this, consider first
the formula ψ := R(x, y) → L(z, u) which can be expressed by the term T = ¬J(R,¬L). Now,
to make ψ equivalent to R(x, y) → L(y, x), we could first write y = z ∧ x = u ∧ ψ and then
existentially quantify z and u away. On the algebraic side, an essentially corresponding trick
is done by transitioning from T first to Ip (T) and then to IpIp (T) and finally reordering
this by p, i.e., going to pIpIp (T). This term is equivalent to R(x, y) → L(y, x). Therefore
the sentence ∀x∀y(R(x, y) → L(y, x)) is equivalent to ∀∀pIpIp T where ∀ = ¬∃¬.

Consider then the formula φcycle = ∀x∀y∀z∀u[(L(y, x) ∧ U(x, z) ∧R(z, u)) → D(u, y)].
In the quantifier-free part, the variables occur in a cyclic fashion, but with repetitions. We
first translate the repetition-free variant (L(v1, v2) ∧ U(v3, v4) ∧ R(v5, v6)) → D(v7, v8) by
using ¬ and J , letting T be the resulting term. Now we would need to modify T so that the
repetitions are taken into account. To introduce one repetition, first use p on T repeatedly
to bring the involved coordinates to the right end of tuples, and then use I. Here p suffices
(and s is not needed) because φcycle was designed so that the repeated variable occurrences
are cyclically adjacent to each other in the variable ordering. Thus it is now easy to see that
we can form a term T ′ equivalent to (L(v1, v2) ∧ U(v2, v3) ∧R(v3, v4)) → D(v4, v1), and T ′

can easily be modified to a term for φcycle.
From subformulas of φT, consider the formula ¬(Pt(x) ∧R(x, y) ∧Pt′(y)). Here ψ(x, y) :=

R(x, y) ∧ Pt′(y) is equivalent to T := IJ(R,Pt′) and Pt(x) ∧ ψ(x, y) thus to pIJ(pT , Pt). It
is now easy to see how to translate the rest of φT and also φsuccessor. ◀

8 Conclusions

The principal aim of the article has been to introduce an approach for systematically studying
logics via algebras based on finite signatures. The technical results obtained demonstrated
how the setting works.

CSL 2023

27:16 Complexity Classifications via Algebraic Logic

Our work can be continued into many directions; the key is to identify relevant collections
of relation operators and provide classifications for the thereby generated systems. This work
can naturally involve systems that capture FO, but also stronger, weaker and orthogonal
ones. In addition to decidability, complexity and expressive power, also completeness of
equational theories (including the one for GRA) is an interesting research direction.

References
1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded

fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.
2 Franz Baader, Ralf Küsters, and Frank Wolter. Extensions to description logics. In Franz

Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors, The Description Logic Handbook: Theory, Implementation, and Applications, pages
219–261. Cambridge University Press, 2003.

3 John Bacon. The completeness of a predicate-functor logic. Journal of Symbolic Logic,
50:903–921, 1985.

4 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. Journal of the ACM,
62(3):22:1–22:26, 2015.

5 Saguy Benaim, Michael Benedikt, Witold Charatonik, Emanuel Kieronski, Rastislav Lenhardt,
Filip Mazowiecki, and James Worrell. Complexity of two-variable logic on finite trees. ACM
Transactions on Computational Logic, 17(4):32:1–32:38, 2016.

6 Johan Van Benthem. Dynamic bits and pieces. ILLC research report, University of Amsterdam,
1997.

7 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997.

8 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. ACM
Transactions on Computational Logic, 17(4):31:1–31:27, 2016.

9 Edgar F. Codd. Relational completeness of data base sublanguages. Research Report / RJ /
IBM / San Jose, California, RJ987, 1972.

10 Erich Grädel. Invited talk: Decision procedures for guarded logics. In Harald Ganzinger, editor,
Automated Deduction – CADE-16, 16th International Conference on Automated Deduction,
Proceedings, volume 1632 of Lecture Notes in Computer Science, pages 31–51. Springer, 1999.

11 Erich Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64(4):1719–1742,
1999.

12 Erich Grädel, Phokion Kolaitis, and Moshe Vardi. On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

13 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable.
In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science LICS, pages
306–317. IEEE, 1997.

14 Lauri Hella and Antti Kuusisto. One-dimensional fragment of first-order logic. In Rajeev
Goré, Barteld P. Kooi, and Agi Kurucz, editors, Invited and contributed papers from the tenth
conference on “Advances in Modal Logic” AiML, pages 274–293. College Publications, 2014.

15 Jelle Hellings, Catherine L. Pilachowski, Dirk Van Gucht, Marc Gyssens, and Yuqing Wu.
From relation algebra to semi-join algebra: An approach to graph query optimization. The
Computer Journal, 64(5):789–811, 2021.

16 Robin Hirsch and Ian Hodkinson. Relation algebras by games. North Holland, 2002.
17 Reijo Jaakkola. Ordered Fragments of First-Order Logic. In 46th International Symposium

on Mathematical Foundations of Computer Science (MFCS 2021), volume 202 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 62:1–62:14, 2021.

18 Reijo Jaakkola and Antti Kuusisto. Algebraic classifications for fragments of first-order logic
and beyond. CoRR, abs/2005.01184v1, 2020.

R. Jaakkola and A. Kuusisto 27:17

19 Reijo Jaakkola and Antti Kuusisto. Algebraic classifications for fragments of first-order logic
and beyond. arXiv Preprint, arXiv:2005.01184v2, 2021.

20 Emanuel Kieronski and Antti Kuusisto. Complexity and expressivity of uniform one-
dimensional fragment with equality. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and
Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 – 39th International
Symposium, MFCS, Proceedings, Part I, volume 8634 of LNCS, pages 365–376. Springer, 2014.

21 Emanuel Kieronski, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable
first-order logic with equivalence closure. SIAM Journal on Computing, 43(3):1012–1063, 2014.

22 Emanuel Kieronski, Ian Pratt-Hartmann, and Lidia Tendera. Equivalence closure in the
two-variable guarded fragment. J. Log. Comput., 27(4):999–1021, 2017.

23 Steven T. Kuhn. An axiomatization of predicate functor logic. Notre Dame Journal of Formal
Logic, 24:233–241, 1983.

24 Antti Kuusisto. On games and computation. CoRR, abs/1910.14603, 2019.
25 Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz, and Jan Van den Bussche. The semijoin

algebra and the guarded fragment. Journal of Logic, Language and Information, 14(3):331–343,
2005.

26 Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32(3):186–195,
1966.

27 Leopold Löwenheim. Über möglichkeiten im relativkalkül. Matematische Annalen, 76(4):447–
470, 1915.

28 Carsten Lutz, Ulrike Sattler, and Frank Wolter. Modal logic and the two-variable fragment. In
Laurent Fribourg, editor, Computer Science Logic, 15th International Workshop, CSL, 2001.

29 Amaldev Manuel and Thomas Zeume. Two-variable logic on 2-dimensional structures. In
Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), volume 23 of
LIPIcs, pages 484–499. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013.

30 Maarten Marx. Tolerance logic. Journal of Logic, Language and Information, 10(3):353–374,
2001.

31 S. Ju. Maslov. The inverse method for establishing deducibility for logical calculi. In V. P.
Orevkov, editor, Logical and logical-mathematical calculus. Part I, Trudy Mat. Inst. Steklov,
volume 98, pages 26–87. Public, 1968.

32 Fabio Mogavero and Giuseppe Perelli. Binding forms in first-order logic. In Stephan Kreutzer,
editor, 24th EACSL Annual Conference on Computer Science Logic, CSL, volume 41 of LIPIcs,
pages 648–665, 2015.

33 Michael Mortimer. Reasoning about strategies: On the model-checking problem. Mathematical
Logic Quarterly, 21(1), 1975.

34 Andrdzej Mostowski. On a generalization of quantifiers. Fundamenta Mathematicae, 44(1):12–
36, 1957.

35 Leszek Pacholski, Wieszlaw Szwast, and Lidia Tendera. Complexity of two-variable logic with
counting. In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science LICS,
pages 318–327. IEEE, 1997.

36 Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers.
Journal of Logic, Language and Information, 14(3):369–395, 2005.

37 Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera. The fluted fragment revisited.
Journal of Symbolic Logic, 84(3):1020–1048, 2019.

38 Willard Van Quine. Toward a calculus of concepts. The Journal of Symbolic Logic, I:2–25,
1936.

39 Willard Van Quine. Variables explained away. In Proceedings of the American Philosophical
Society, 1960.

40 Willard Van Quine. On the limits of decision. In Proceedings of the 14th International Congress
of Philosophy, volume III, pages 57–62. University of Vienna, 1969.

41 Willard Van Quine. Algebraic logic and predicate functors. In Logic and Art, pages 214–238.
Bobbs-Merrill, Indianapolis, Indiana, 1972.

CSL 2023

27:18 Complexity Classifications via Algebraic Logic

42 Luc Segoufin and Balder ten Cate. Unary negation. Logical Methods in Computer Science,
9(3), 2013.

43 Szymon Torunczyk and Thomas Zeume. Register automata with extrema constraints, and an
application to two-variable logic. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and
Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 873–885. ACM, 2020.

44 Marco Voigt. A fine-grained hierarchy of hard problems in the separated fragment. In 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pages 1–12. IEEE, 2017.

	1 Introduction
	2 Preliminaries
	3 An algebra for first-order logic
	4 Relation operators and fragments of first-order logic
	5 An algebra for the guarded fragment
	6 Decidable fragments of GRA
	7 Undecidable fragments of GRA
	8 Conclusions

