
A Positive Perspective on Term Representation
Dale Miller !

Inria Saclay, Palaiseau, France
LIX, Institut Polytechnique de Paris, France

Jui-Hsuan Wu !

LIX, Institut Polytechnique de Paris, France

Abstract
We use the focused proof system LJF as a framework for describing term structures and substitution.
Since the proof theory of LJF does not pick a canonical polarization for primitive types, two different
approaches to term representation arise. When primitive types are given the negative polarity, LJF
proofs encode terms as tree-like structures in a familiar fashion. In this situation, cut elimination
also yields the familiar notion of substitution. On the other hand, when primitive types are given
the positive polarity, LJF proofs yield a structure in which explicit sharing of term structures is
possible. Such a representation of terms provides an explicit method for sharing term structures.
In this setting, cut elimination yields a different notion of substitution. We illustrate these two
approaches to term representation by applying them to the encoding of untyped λ-terms. We also
exploit concurrency theory techniques – namely traces and simulation – to compare untyped λ-terms
using such different structuring disciplines.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases term representation, sharing, focused proof systems

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.3

Category Invited Talk

Related Version Full Version: https://hal.inria.fr/hal-03843587

Acknowledgements We thank Beniamino Accattoli and Kaustuv Chaudhuri for their valuable
discussions and suggestions. We also thank anonymous reviewers for their comments on an earlier
draft of this paper.

1 Introduction

The structure of terms and expressions are represented variously via labeled trees or directed
acyclic graphs (DAGs). When such expressions contain bindings, additional devices are
needed. We follow a familiar line of research in which the design of term representations is
motivated by proof-theoretic considerations. Accordingly, we rely on proof theory in the hope
that it will provide careful and formal descriptions of the term structures that serve as the
foundation of theorem provers, semantic specifications, interpreters, parsers, and compilers.

Applications of structural proof theory usually start with either natural deduction or
sequent calculus proof systems, both of which were introduced by Gentzen in [15]. For our
purposes here, these two proof systems are inadequate: natural deduction (with or without
generalized elimination rules [36]) seems too restrictive, and sequent calculus seems too
unstructured. Instead, we use the LJF proof system [24], which results from applying the
notions of polarity and focusing [1, 17] to Gentzen’s LJ proof system as a framework for
studying term structures with and without bindings and with and without explicit sharing
constructs. By examining the dynamics of cut-elimination in LJF, we can also describe
substitution into such term structures.

© Dale Miller and Jui-Hsuan Wu;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 3; pp. 3:1–3:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dale.miller@inria.fr
https://orcid.org/0000-0003-0274-4954
mailto:jwu@lix.polytechnique.fr
https://orcid.org/0000-0001-5880-5379
https://doi.org/10.4230/LIPIcs.CSL.2023.3
https://hal.inria.fr/hal-03843587
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 A Positive Perspective on Term Representation

Focused proof theories have been successfully applied within the Curry-Howard cor-
respondence: for example, call-by-value, call-by-name, and call-by-push-value evaluation
strategies have been related to different choices in polarizing type expressions [34, 39, 42].
Instead of dealing with functional programming style evaluation, we address a more primitive
notion: what is a term (used to encode programs), and what is substitution (used to describe
various kinds of evaluation). Even this more narrow setting has been addressed using the
focused proof systems LJT [12, 22] and LJQ [11]. As in those papers, we shall consider
proofs-as-terms and not proofs-as-programs since we do not consider the evaluation of such
structures in this paper.

2 The LJF proof system

Gentzen’s sequent calculus proof system LJ [15] employs rather tiny and slippery inference
rules: they are tiny since most of them deal with at most one logical connective at a
time, and they are slippery since the order in which they are applied can often be freely
reorganized. As a result, it is hard to use LJ to identify large-scale structures in proofs. For
example, capturing the two phases of proof search in logic programming – goal-reduction
and backchaining – with sequent calculus rules requires rather technical arguments about
permutations of inference rules [30]. Andreoli’s invention of a focused proof system for linear
logic [1] provided means for adding more structure to sequent calculus proofs for linear logic.
This notion of focusing was eventually moved to intuitionistic and classical logic as the LJF
and LKF proof systems [24]. This paper considers only intuitionistic logic and only for
formulas built using implication as the only logical connective.

2.1 LJF inference rules
There are two kinds of sequents in LJF: the ⇑-sequents Γ ⇑ Θ ⊢ ∆ ⇑ ∆′ and the ⇓-sequents
Γ ⇓ Θ ⊢ ∆ ⇓ ∆′. Here, all four zones Γ, Θ, ∆, and ∆′ are multisets of formulas. Given that
we are in an intuitionistic proof system, we require that the multiset union ∆ ∪ ∆′ is always
a singleton. The zones Γ and ∆′ are called the left and right storage zones. The zones Θ
and ∆ are called the left and right staging areas. As these names suggest, formulas in the
storage zones can persist during the construction of a proof, while formulas in the staging
area are intended to have a limited impact on the long-term construction of such a proof.
Occurrences of logical connectives introduced by the left and right introduction rules only
appear in the staging area. As we shall see, the only sequents with empty staging areas are
of the form Γ ⇑ · ⊢ · ⇑ ∆. Such sequents are called border sequents: when we define synthetic
inference rules in Definition 6, these sequents form the borders (the conclusion and premises)
of synthetic inference rules.

Notational conventions: We usually denote an empty zone by explicitly using the dot ·.
Also, while every LJF sequent has two occurrences of either ⇑ or ⇓, we write fewer of these
arrows by adopting the convention that we drop writing · ⇓ and · ⇑ when they appear on
the right, and we drop writing ⇓ · and ⇑ · when they appear on the left. Finally, since the
right side of sequents have exactly one formula, we replace writing ⇓ · with ⇓ and ⇑ · with ⇑.
Thus, the sequent Γ ⇑ · ⊢ · ⇑ E can be written as Γ ⊢ E and the sequent Γ ⇓ · ⊢ E ⇓ · can be
written as Γ ⊢ E ⇓ . As a result of these conventions, border sequents in LJF will resemble
sequents in LJ , which is a completely desirable resemblance.

In the general setting, Gentzen’s LJ proof system involves unpolarized formulas, while
the LJF focused proof system involves polarized formulas. Since, in this paper, we are only
interested in one logical connective, the implication ⊃, and since the polarization of an

D. Miller and J.-H. Wu 3:3

Decide, Release, and Store Rules
N, Γ ⇓ N ⊢ A

N, Γ ⊢ A
Dl

Γ ⊢ P ⇓
Γ ⊢ P

Dr
Γ ⇑ P ⊢ A

Γ ⇓ P ⊢ A
Rl

Γ ⊢ N ⇑
Γ ⊢ N ⇓ Rr

Γ, C ⇑ Θ ⊢ ∆′ ⇑ ∆
Γ ⇑ Θ, C ⊢ ∆′ ⇑ ∆

Sl
Γ ⇑ Θ ⊢ A

Γ ⇑ Θ ⊢ A ⇑ Sr

Initial Rules Introduction Rules for implication
δ(A) = +

A, Γ ⊢ A ⇓ Ir

δ(A) = −
Γ ⇓ A ⊢ A

Il

Γ ⊢ B ⇓ Γ ⇓ B′ ⊢ A

Γ ⇓ B ⊃ B′ ⊢ A
⊃L

Γ ⇑ Θ, B ⊢ B′ ⇑
Γ ⇑ Θ ⊢ B ⊃ B′ ⇑

⊃R

Figure 1 The rules of (cut-free) LJF for the implicational fragment of propositional intuitionistic
logic.

implication is unambiguous (it is negative), the only distinction between unpolarized and
polarized formulas falls on atomic formulas: in polarized formulas, we need to describe the
polarity of atomic formulas explicitly. (We remind the reader that a logical connective is
polarized negatively if its right introduction rule is invertible.)

▶ Definition 1. An atomic bias assignment is a function, δ, that maps atomic formulas to
either + or −. A formula B is negative if it is either an implication or atomic and δ(B) = −.
A formula B is positive if it is atomic and δ(B) = +.

The LJF proof system for intuitionistic propositional logic over just implication is given
in Figure 1. This figure uses the following schema variables: P is a positive formula, N is
a negative formula, A is an atomic formula, and B, B′, and C denote arbitrary formulas.
Note that in our simplified setting, a positive formula is also atomic.

An ⇑-phase is a collection of occurrences of ⇑-sequents that are all connected via inference
rules; similarly, a ⇓-phase is a collection of occurrences of ⇓-sequents that are all connected
via inference rules. The decide rules Dl and Dr are the only inference rules (in a cut-free
proof) that have a border sequent as a conclusion. Thus, the decide rules sit on top of an
⇑-phase while their premises are at the bottom of a ⇓-phase. The store rules Sl and Sr work
within an ⇑-phase. The release rules Rl and Rr are dual to the decide rules in that they sit
on top of a ⇓-phase while their premises are at the bottom of an ⇑-phase.

When searching for a proof in LJF, the only occurrence of don’t know nondeterminism
occurs with the decide rules. There is a possible choice to decide on the right or left (Dl or
Dr), and if Dl is selected, then another important choice is which formula in the left storage
should be selected.

The following soundness and completeness theorem for LJF can be found in [24], where
these theorems are proved for full first-order intuitionistic logic. (That paper also proves
that LJF captures the structure of LJT and LJQ as well as some hybrid forms of those two
proof systems.)

▶ Theorem 2. Let B be an unpolarized formula composed only of implications and atomic
formulas.
1. If B is provable in LJ and if δ(·) is any atomic bias assignment for the atoms in B, then

the sequent · ⇑ · ⊢ B ⇑ · is provable in LJF.
2. If δ(·) is an atomic bias assignment for the atoms in B and if · ⇑ · ⊢ B ⇑ · is provable in

LJF then B is provable in LJ .

The theorem above implies that polarization of atomic formulas does not affect provability
in LJF: in particular, if · ⇑ · ⊢ B ⇑ · is provable for some atomic bias assignment then that
sequent is provable for all such polarizations. On the other hand, different choices of atomic

CSL 2023

3:4 A Positive Perspective on Term Representation

bias assignments can make a big difference in the shape and size of LJF proofs. We illustrate
this difference in the next section. Before doing that, we define the order of a formula and
state two technical results about the order of formulas within LJF proofs.

▶ Definition 3 (Order of a formula). The order of the formula B, written ord(B), is defined
as follows: ord(A) = 0 if A is atomic and ord(B1 ⊃ B2) = max(ord(B1) + 1, ord(B2)).

Note that if we claim that all formulas in a multiset must have an order that is less than
0, then that multiset must necessarily be empty. The following proposition is proved by a
straightforward induction on the structure of formulas.

▶ Proposition 4. Let B be a formula such that ord(B) ≤ n. There is an ⇑-phase that
has · ⇑ · ⊢ B ⇑ · as its conclusion and has premises that are border sequents. Those border
sequents are of the form Γ ⇑ · ⊢ · ⇑ A, where A is atomic (i.e., ord(A) = 0) and the formulas
in Γ have order less than or equal to n − 1.

The following proposition is proved by a simple induction on the structure of proofs.

▶ Proposition 5. Let Ξ be a (cut-free) LJF proof of the border sequent Γ ⇑ · ⊢ · ⇑ A, where
A is atomic and the formulas in Γ have order less than or equal to n. Then every border
sequent in Ξ is of the form Γ, ∆ ⇑ · ⊢ · ⇑ A′ where A′ is an atomic formula and all formulas
in ∆ are of order less than or equal to n − 2.

2.2 Synthetic inference rules
The following definitions are based on similar definitions in [27].

▶ Definition 6 (Synthetic inference rule). A left synthetic inference rule is a rule of the form

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆
B.

This rule is justified by a
derivation of the form

Γ1 ⇑ · ⊢ · ⇑ ∆1 . . . Γn ⇑ · ⊢ · ⇑ ∆n.

Π
Γ ⇓ B ⊢ ∆

Γ ⇑ · ⊢ · ⇑ ∆
Dl

Here, B ∈ Γ, n ≥ 0, and within Π, a ⇓-sequent never occurs above an ⇑-sequent. The
structure of LJF proofs also forces B ∈ Γi for all 1 ≤ i ≤ n. Given our use of only
implications, it is the case that there is a unique left synthetic inference rule for a given
formula. The formula B can be used to name this left synthetic inference rule, and we say
that this is the left synthetic inference rule for B. We can similarly define the notion of right
synthetic inference rule: however, in our context where the only positive formulas that can be
used in a Dr rule are atomic, the only inference rule that can be applied to the premise of the
Dr rule is Ir. As a result, right synthetic inference rules in our setting have zero premises
and appear only at the leaves of proofs. We often write just synthetic inference rule to mean
the left variant.

▶ Definition 7 (Bipole). A bipole is a (left) synthetic inference rule in which all formulas
stored using the store rules within the derivation justifying this synthetic inference rule are
atomic formulas.

Bipoles are, therefore, synthetic inference rules in which the only difference between the
concluding sequent and any one of its premises is the presence or absence of atomic formulas.
Note that, since we are only admitting implications, the synthetic rule for B is a bipole if
and only if ord(B) ≤ 2.

D. Miller and J.-H. Wu 3:5

The primary use of the LJF proof system in this paper is to build large-scale, synthetic
rules that we can add to the unpolarized proof system LJ : focusing gives us a framework to
create such rules from Gentzen’s micro rules. We define such an extension of LJ below and
then illustrate it with two examples.

▶ Definition 8 (Rules from polarized theory). Let T be a finite set of formulas of order two
or less, and let δ be an atomic bias assignment. We define LJ⌊δ, T ⌋ to be the two-sided proof
system built as follows. The only sequents in the LJ⌊δ, T ⌋ proof system are of the form Γ ⊢ A

where A is atomic and Γ is a multiset of atomic formulas. The inference rules of LJ⌊δ, T ⌋
correspond to synthetic inference rules in the following way. For every left synthetic inference
rule

T , Γ1 ⊢ A1 . . . T , Γn ⊢ An

T , Γ ⊢ A
B,

where B ∈ T is a neg-
ative formula, then the
rule

Γ1 ⊢ A1 . . . Γn ⊢ An

Γ ⊢ A
B

is added to LJ⌊δ, T ⌋. The right synthetic inference rules are of the form

Γ ⊢ A
provided A ∈ T and δ(A) = +,

and these are added as well. The only other inference rule added to LJ⌊δ, T ⌋ is the rule

Γ, A ⊢ A
init

where A is atomic. If δ(A) = −, this rule is justified by the Dl rule, while if δ(A) = +, this
rule is justified by the Dr rule.

▶ Example 9. Let n ≥ 0 and let a0, a1, . . . , an be a sequence of distinct atomic (propositional)
formulas. Let T be the multiset of formulas {d0, . . . , dn}, where d0 is a0, d1 is a0 ⊃ a1, and
so on until dn is a0 ⊃ · · · ⊃ an−1 ⊃ an. Let δ−(·) be the atomic bias assignment that gives
all atomic formulas the negative polarity and let δ+(·) be the atomic bias assignment that
gives all atomic formulas the positive polarity. The inference rules in LJ⌊δ−, T ⌋ contains the
init rule along with the following n + 1 rules

Γ ⊢ a0
d0

Γ ⊢ a0
Γ ⊢ a1

d1
Γ ⊢ a0 Γ ⊢ a1

Γ ⊢ a2
d2 · · ·

Γ ⊢ a0 · · · Γ ⊢ an−1

Γ ⊢ an
dn.

Given these inference rules, there is a unique proof of ⊢ an, and that proof has 2n occurrences of
these inference rules. The negative bias assignment to atomic formulas yields the backchaining
interpretation of these formulas. In contrast, the inference rules in LJ⌊δ+, T ⌋ contains the
init rule along with the following n rules

Γ, a0, a1 ⊢ A

Γ, a0 ⊢ A
d1

Γ, a0, a1, a2 ⊢ A

Γ, a0, a1 ⊢ A
d2 · · ·

Γ, a0, . . . , an−1, an ⊢ A

Γ, a0, . . . , an−1 ⊢ A
dn.

Given these inference rules, it is easy to note that there are an infinite number of proofs of
a0 ⊢ an, and that the shortest of these proofs contains n occurrences of synthetic inference
rules plus one occurrence of the initial rule. The positive bias assignment to atomic formulas
yields the forward-chaining interpretation of these clauses.

There are several proofs in the literature that show how cut can be eliminated within
focusing proofs. Some proofs, such as the one given by Liang & Miller in [24, 26], introduce
different variants of the cut rule and follow a rather tedious argument detailing how these cut

CSL 2023

3:6 A Positive Perspective on Term Representation

rules move through individual inference rules within ⇑ and ⇓ phases. Bruscoli & Guglielmi [4]
provided a different style of proof of cut elimination in a focused proof system for linear
logic in which they showed how cuts could move through entire phases at a time. Other
phase-based cut-elimination proofs appear in [6, 25, 35, 41, 42]. Part II of Graham-Lengrand’s
HdR dissertation [20] and Simmons’s article [37] provide overviews of such cut-elimination
proofs. While none of the proofs mentioned above deal directly with synthetic rules in the
sense that we have defined them here, the paper [27] does have a cut-elimination theorem
that directly deals with eliminating cuts in proofs with synthetic rules. The following theorem
follows directly from [27, Theorem 16]. It can also be proved directly by simple induction.
Let the atomic cut rule be the rule

Γ ⊢ A Γ, A ⊢ B

Γ ⊢ B
Acut,

where A is atomic. When we add this rule to LJ⌊δ, T ⌋, then B is also atomic.

▶ Theorem 10 (Cut admissibility for LJ⌊δ, T ⌋). Let T be a set of formulas of order two or
less and let δ(·) be an atomic bias assignment. The atomic cut rule is admissible for the
proof system LJ⌊δ, T ⌋.

3 Synthetic inference rules as term constructors

Many approaches to relating proofs and terms start with the assumption that terms have
been defined, say, as λ-term, and that the notion of proof is derived from terms, e.g., proofs
are often identified as dependently typed λ-terms [21]. As we motivated in the introduction,
we plan to reverse this influence by starting with proof structures as given and then deriving
term structures from them. In particular, we shall map synthetic inference rules directly to
the constructors used to build terms.

The first step in translating proofs to terms is to annotate sequents properly. We shall
annotate assumptions (i.e., formulas on the left-hand side of sequents) with variables (i.e.,
token of type var) and annotate the conclusion (i.e., the formula on the right-hand side of
sequents) with a term of type tm. The term constructor that corresponds to the init rule
(Definition 8) is written ⌈·⌉ and has syntactic type var → tm. The corresponding annotated
inference rule is simply

Γ ⊢ ⌈x⌉ : A
init, provided that x : A ∈ Γ.

The following example illustrates how the proofs in Example 9 can be seen as terms.

▶ Example 11. Consider changing the naming of the formulas used in Example 9 into typing
assumptions, as follows:

d0 : a0, d1 : a0 ⊃ a1, . . . , dn : a0 ⊃ · · · ⊃ an−1 ⊃ an.

Here, d0, . . . , dn are all of syntactic type var. Under the δ− atomic bias assignment, the
synthetic rules can be annotations as

Γ ⊢ t0 : a0 · · · Γ ⊢ ti−1 : ai−1

Γ ⊢ (Ei t0 · · · ti−1) : ai
di,

where 0 ≤ i ≤ n. The syntactic type of constructor Ei is tm → · · · → tm → tm (where tm
occurs i + 1 times). On the other hand, if all atomic formulas are polarized positively, then
the annotated synthetic rules are

Γ, x0 : a0, . . . , xi−1 : ai−1, y : ai ⊢ t : A

Γ, x0 : a0, . . . , xi−1 : ai−1 ⊢ (Fi x0 . . . xi−1 (λy.t)) : A
(provided y is new),

D. Miller and J.-H. Wu 3:7

where i ≥ 1. The syntactic type of Fi (i ≥ 1) is var → · · · → var → (var → tm) → tm
(where var occurs i + 1 times). Below, we display the unique proof of a4 using the En

constructors and the shortest proof of a4 using the Fn constructors: the structure on the
right allows for explicit sharing of subterms while the structure on the left must repeat these
subterms.
(E4 (E3 (E2 (E1 E0) (E1 E0)) (E2 (E1 E0) (E1 E0)))

(E3 (E2 (E1 E0) (E1 E0)) (E2 (E1 E0) (E1 E0))))
(F1 d0 (λx1.

(F2 d0 x1 (λx2.

(F3 d0 x1 x2 (λx3.

(F4 d0 x1 x2 x3 (λx4. ⌈x4⌉))))))))

More generally, we can describe the structure of synthetic inference rules as follows. In
order to compute the left synthetic inference rule that corresponds to using Dl on the indexed
formula f : B, where ord(B) ≤ 2, we must know how the atomic formulas in B are polarized.
In what follows, we assume that there are exactly two atomic bias assignments, namely, δ−

and δ+. We consider these two cases separately. In the following discussion, we use ∆ as
a schematic variable to range over multisets of atomic formulas and use w̄ to denote a list
of variables, say, w1, . . . , wn for some n ≥ 0. The notation w̄ : ∆ denote a type assignment,
say, w1 : A1, . . . , wn : An, where w̄ is w1, . . . , wn and ∆ is A1, . . . , An. Finally, whenever we
construct typing assignments for the left-hand side of sequents, we will always assume that
the names assigned types are all distinct.

Consider first the case that we are using δ−. Any formula B such that ord(B) ≤ 2 can
be written as

(∆1 ⊃ A1) ⊃ · · · ⊃ (∆m ⊃ Am) ⊃ A0 (m ≥ 0)

where ∆1, . . . , ∆m are multisets of atomic formulas. (If ∆ is empty then ∆ ⊃ B is simply
B.) If the displayed formula above has order 0 then m = 0. If that formula has order 1 then
m ≥ 1 and ∆1, . . . , ∆m are empty. If that formula has order 2 then m ≥ 1 and at least one
of ∆1, . . . , ∆m is nonempty. In any case, all of the formulas ∆1 ⊃ A1, . . . , ∆m ⊃ Am have
negative polarity. In this case, the left synthetic inference rule corresponding to B can be
written as

Γ, w̄1 : ∆1 ⊢ t1 : A1 . . . Γ, w̄m : ∆m ⊢ tm : Am

Γ ⊢ (f (λw̄1.t1) . . . (λw̄m.tm)) : A0

By w̄ : {D1, . . . , Dn} we mean w1 : D1, . . . , wn : Dn, assuming that all the tokens w1, . . . , wn

are all distinct and do not occur in Γ. If the list of variables w̄ is empty, then we abbreviate
λw̄.t as simply t.

Now consider the second case where we are using δ+. In this case, we note that any
formula B such that ord(B) ≤ 2 can be written as

∆0 ⊃ (∆1 ⊃ A1) ⊃ · · · ⊃ (∆m ⊃ Am) ⊃ A0 (m ≥ 0)

(We assume that all the atomic argument types are listed before the non-atomic argument
types.) Here, ∆0, . . . , ∆m are all multisets of atomic formulas, and we assume that ∆1, . . . , ∆m

are nonempty. If the displayed formula above has order 0 then m = 0 and ∆0 is empty. If
that formula has order 1 then m = 0 and ∆0 is nonempty. If that formula has order 2 then
m ≥ 1. In this way of presenting the type of f , the (atomic) argument types in ∆0 all have
positive polarity, while the remaining argument types all have negative polarity. Thus, the
left synthetic inference rule corresponding to B can be written as

Γ, w̄1 : ∆1 ⊢ t1 : A1 . . . Γ, w̄m : ∆m ⊢ tm : Am Γ, y : A0 ⊢ t : A

Γ ⊢ name y = (f ū (λw̄1.t1) . . . (λw̄m.tm)) in t : A
provided ū : ∆0 ⊆ Γ

CSL 2023

3:8 A Positive Perspective on Term Representation

The proviso to this rule means that every type assumption u1 : D1, . . . , un : Dn is a member
of Γ (here, ū is u1, . . . , un and ∆0 is {D1, . . . , Dn}). We do not assume that the variables in
u1, . . . , un are distinct. The first m premises above construct abstracted terms, and the last
premise continues to construct a term for type A but this time with an additional variable y

that names the structure (f ū (λw̄1.t1) . . . (λw̄m.tm)). Note also that the first arguments of
f (written here as ū) must already be present on the left-hand side of the conclusion.

▶ Example 12. Using this notation, the last term in Example 11 can be written as follows.

name x1 = (F1 d0) in
name x2 = (F2 d0 x1) in
name x3 = (F3 d0 x1 x2) in
name x4 = (F4 d0 x1 x2 x3) in ⌈x4⌉

To provide a simple, graphical illustration of how atomic bias assignments can affect
term structure, consider the typing assignment {z : i, f : i ⊃ i ⊃ i}. The following two terms
denote proofs built with synthetic inference rules in which i has a negative and positive
polarity, respectively.

(f (f z z) (f z z))
name y1 = (f z z) in name y2 = (f y1 y1) in y2.

These terms could also be displayed as the following labeled tree and DAG. Here, we display
the tree associated with a term with its root at the top and its leaves below: this is, of course,
the opposite convention to how proof trees are commonly displayed.

z z z z z

f f f

ff

y1

y2

In an appendix of the extended version of this paper [32], we show how these constructors
– corresponding to synthetic inference rules – can be implemented using the λκ-calculus, a
term representation for LJF introduced by Brock-Nannestad et al. in [3].

In the following subsections, we note two applications of the term representations that
we have described above.

3.1 Intermediate representation of programs
The name expressions used above resemble the more common let expressions, but they are
different in at least two important ways. First, the let-expression “let x = r in t” is often
considered to be a non-normal term since it sometimes abbreviates the β-redex ((λx.t)r).
In contrast, the term “name x = r in t” is normal if t is normal. (Note that the synthetic
inference rules are built without the use of the cut inference rule.) Second, the term r in a
let-expression can be an arbitrary term, whereas in the name-expression, the term r must
have a particular structure: when we are considering only first-order signatures, r must be
the application of a constructor to one or more variables (and not to general terms).

Given an expression E using negative bias syntax, there might be a subexpression, say
E′, that has many occurrences in E. If we let F (x) denote the result of replacing every
occurrence of E′ in E with the variable x, then the expression let x = E′ in F (x) might be

D. Miller and J.-H. Wu 3:9

a more appropriate presentation of E in which the subformula E′ is named and explicitly
shared. Such an operation in often called common subexpression elimination. The positive
bias syntax that we have described here is orthogonal to this processing in the sense that
the positive bias assignment syntax forces all function applications (not just those that are
repeated) to be named while there is no guarantee that naming is not redundant (i.e., a
given subterm might be given two names). Of course, if one takes care in building terms
using positive bias assignment, it is possible to build terms where common subexpressions
are explicitly shared.

A useful intermediate representation of programs in compilers of functional programming
languages is the administrative normal form (ANF) [13] in which all arguments to functions
are values, that is, either constants, variables, or λ-abstractions. Clearly, when we are using
positive bias assignment syntax, the expressions that result are in ANF.

Various other term representations have been developed for focused proofs that contain
more logical connectives and inference rules than we have considered here. See, for example,
[5, 23, 37]. However, atomic formulas are given the negative polarity in these references.

3.2 Encoding functional expressions as relational queries
When a Prolog programmer needs to compute the value of a mathematical expression, such as√

b2 − 4ac, it is necessary to explicitly convert the calls to various functions (here, subtraction,
addition, multiplication, and square root) into associated relations. For example, addition on
real numbers is usually represented by the three-place predicate plus such that the atomic
formula (plus x y z) holds if and only if x + y = z. Now assume that relations are available
to encode each primitive function. One way to organize the relations needed to compute the
expression above involves converting that expression into positive bias syntax. For example,
the function-based expression above can be written as

name n1 = b × b in name n2 = 4 × a in name n3 = n2 × c in
name n4 = n1 − n3 in name n5 =

√
n4 in ⌈n5⌉.

As described in [16], it is straightforward to convert such an expression into a series of
calls to predicates. In particular, we can rewrite this expression by replacing [name n =
f x1 · · · xi in •] with [∃n.(Rf x1 · · · xi n) ∧ •], where Rf is a relation that computes the
function f . Assuming that times, minus, and sqrt are all relations that compute multiplication,
subtraction, and the (positive) square root, then the relational presentation can be given as

∃n1. times b b n1∧∃n2. times 4 a n2∧∃n3. times n2 c n3∧∃n4. minus n1 n3 n4∧∃n5. sqrt n4 n5,

which is an expression that is easily written as a Prolog goal formula.

4 The untyped lambda-calculus

Let D be an atomic formula and let Γ0 be the theory {(D ⊃ D) ⊃ D, D ⊃ (D ⊃ D)}. This
theory is inconsistent in that every formula built from implications and D is provable from
Γ0. We choose to consider Γ0 because cut-free proofs in LJF of Γ0 ⊢ D correspond to closed
untyped λ-terms. The following derivations result from applying Dl to these two formulas
(assuming that Γ0 ⊆ Γ).

Ξ1

Γ ⊢ D ⇓
Ξ2

Γ ⊢ D ⇓
Ξ3

Γ ⇓ D ⊢ D

Γ ⇓ D ⊃ (D ⊃ D) ⊢ D
⊃L × 2

Γ ⊢ D
Dl

Ξ4

Γ, D ⊢ D

Γ ⇑ D ⊢ D ⇑ Sl, Sr

Γ ⊢ D ⊃ D ⇑ Rr, ⊃R
Ξ5

Γ ⇓ D ⊢ D

Γ ⇓ (D ⊃ D) ⊃ D ⊢ D
⊃L

Γ ⊢ D
Dl

CSL 2023

3:10 A Positive Perspective on Term Representation

These derivations can only be extended to have border sequents as premises if we reveal the
polarity assigned to D. If D is polarized negatively, then Ξ1 and Ξ2 are both Rr while Ξ3
and Ξ5 are Il. In this case, the resulting synthetic inference rules are

Γ ⊢ D Γ ⊢ D
Γ ⊢ D

and
Γ, D ⊢ D

Γ ⊢ D
.

On the other hand, if D is polarized positively, then Ξ1 and Ξ2 are both Ir while Ξ3 and Ξ5
is Rl. In this case, the resulting synthetic inference rules are

Γ, D, D, D ⊢ D

Γ, D, D ⊢ D
and

Γ, D ⊢ D Γ, D ⊢ D

Γ ⊢ D
.

Without annotations, these inference rules are not illuminating. We provide such annotations
next.

4.1 Using negative bias syntax for the untyped lambda-calculus
If we polarize D negatively, the (annotated) synthetic inference rules based on Γ0 yield
the standard tree-like representation for the untyped λ-calculus. In particular, consider an
annotated LJF proof of a sequent of the form Γ0, x1 : D, . . . , xn : D ⊢ t : D. The synthetic
inference rules in such a proof are either the result of deciding on xi : D (for 1 ≤ i ≤ n)
followed by Il or on one of the two formulas in Γ0. The three inference rules annotate these
three choices for using the Dl rule.

Γ ⊢ t : D Γ ⊢ s : D
Γ ⊢ napp t s : D

Γ, x : D ⊢ t : D

Γ ⊢ nabs (λx.t) : D Γ ⊢ nvar xi : D
provided xi : D ∈ Γ

The constructors represented by these synthetic rules are listed below, along with their
syntactic types (using typing declarations from λProlog [29]).

type napp tm -> tm -> tm.
type nabs (var -> tm) -> tm.
type nvar var -> tm.

As we have assumed before, var and tm are primitive types: annotations on the left side
of sequents have type var while annotations on the right side have type tm. The prefix n
on these names is meant to remind us that we assigned D the negative polarity. As an
example of using these constructors, the untyped λ-term ((λx.xx)(λx.xx)) can be written as
the following term of type tm:1

(napp (nabs x\ napp (nvar x) (nvar x))
(nabs x\ napp (nvar x) (nvar x))).

Many computational logic systems, such as λProlog, Abella, LF, and Isabelle, encode the
untyped λ-calculus in this fashion.

4.2 Using positive bias syntax for the untyped lambda-calculus
If we polarize D positively, we get different synthetic rules based on using Γ0 and, hence, we get
a different format for encoding the untyped λ-calculus. Again, there are exactly three synthetic
inference rules for LJF proofs of sequents of the form Γ0, x1 : D, . . . , xn : D ⇑ · ⊢ · ⇑ t : D,
but this time there are two left synthetic inference rules and one right synthetic inference
rules.

1 The λ-abstraction of λProlog is written using an infix backslash.

D. Miller and J.-H. Wu 3:11

Γ, y : D ⊢ t : D

Γ ⊢ papp xi xj (λy.t) : D
provided Γ contains xi : D and xj : D

Γ, x : D ⊢ t : D Γ, y : D ⊢ s : D

Γ ⊢ pabs (λx.t) (λy.s) : D Γ ⊢ pvar xi : D
provided xi : D ∈ Γ

The constructors represented by these synthetic rules can be given the following syntactic
typing.

type papp var -> var -> (var -> tm) -> tm.
type pabs (var -> tm) -> (var -> tm) -> tm.
type pvar var -> tm.

The prefix p on these names is meant to remind us that, in this case, we assigned D the
positive polarity. Using these constructors, the untyped λ-term ((λx.xx)(λx.xx)) can be
written as the term

(pabs (x\ papp x x (y\ pvar y)) (u\ papp u u (z\ pvar z)))

Note that this untyped λ-term contains two occurrences of papp while in the previous
representation, this term contains three occurrences of napp.

In order to make terms in this syntax easier to read, we will often use the name-expressions
presented before. In particular, the expression (papp u v (w\ Body)), which denotes the
application of the variable u to the variable v, and then naming that application as w in
the scope of Body. Thus, this expression can also be written using the expression name w
= (app u v) in Body. Similarly, the expression (pabs R (w\ Body)) can be written as
name w = (abs R) in Body. If we used this syntax, then the expression above denoting
((λx.xx)(λx.xx)) is written as

name u = (abs x\ name y = (app x x) in y) in
name z = (app u u) in z

That is, u is used to name the encoding for the term (λx.xx), and then that name is used
twice in building the final application that is named z. Extending this example slightly, we
see that the expression (((λx.xx)(λx.xx))(λx.xx)) can be written as

(pabs (x\ papp x x (y\ pvar y)) (u\ papp u u (z\ papp z u v\ pvar
v)))

or, using the name syntax, as

name u = (abs x\ name y = (app x x) in y) in
name z = (app u u) in
name v = (app z u) in v.

As this alternative syntax suggests, the syntax that results from making the primitive type D

positive makes sharing explicit by its requirement that all applications are built from named
structures and that that application is named itself. It is also clear that the following two
expressions denote the same untyped λ-term.

name u = (abs x\ name y = (app x x) in y) in
name z1 = (app u u) in
name z2 = (app u u) in
name v = (app z1 u) in v

CSL 2023

3:12 A Positive Perspective on Term Representation

name u1 = (abs x\ name y = (app x x) in y) in
name z = (app u1 u1) in
name u2 = (abs x\ name y = (app x x) in y) in
name v = (app z u2) in v

The first of these terms illustrates that a named structure might not be used in its scope: we
call this vacuous naming. The second of these terms illustrates that the same structure can
be named twice: we call this redundant naming. The proof theory behind LJF allows for
both vacuous and redundant naming: we currently see no proof-theoretic device that can
cleanly eliminate these kinds of naming expressions.

This style of syntactic representation seems relatively low-level since it uses names to
designate all constructors in a term. Such a representation of terms resembles, in fact, the
use of pointers to encode terms in memory: a pointer (name) indicates a unit of memory
that contains the name of a constructor followed by a vector of pointers to that constructor’s
arguments.

4.3 Tracing untyped lambda-terms
Given that we have two different formats for untyped λ-terms, it is a natural question whether
or not two such expressions denote the same untyped λ-term. For example, it seems sensible
to consider the last three expressions in Section 4.2 (based on positive bias assignment) as
equivalent in some sense to each other and to the following expression (based on negative
bias assignment).

(napp (napp (nabs x\ napp (nvar x) (nvar x))
(nabs x\ napp (nvar x) (nvar x)))

(nabs x\ napp (nvar x) (nvar x)))

Broadly speaking, there are two approaches to answering this question. The “white box”
approach examines the actual syntax of proof expressions to see if they should be considered
equal. For example, in the setting of natural deduction, two proofs are often considered equal
if they reduce to the same normal form. Given that we are considering proofs built with
difference sets of (synthetic) inference rules, a different approach needs to be taken, such as
the approach described in [35], where proofs based on positive bias assignment to atomic
formulas are systematically converted to proofs based on negative bias assignment.

Instead, we propose to use a “black box” approach in which we probe a term to describe
traces within expressions. For example, we can ask whether or not the term denotes a
top-level application or not. This check is easy to make for negative bias syntax by simply
examining the top-level symbol of the expression. It is also easy to check for the expressions
using the positive bias assignment: simply examine the top-level naming structure, say,

[name x1 = E1 in name x2 = E2 in · · · name xn = En in xj]

and check if Ej is an application or not. If two expressions denote an application, we
can continue to develop a trace by examining either the first or second argument of that
application. Similarly, we can examine two expressions to see if they denote a λ-abstraction.
If they are both λ-abstractions, then we can probe the body of those abstractions, taking
appropriate care when descending under a binding.

A formal specification of such trace predicates is easy in a language such as λProlog. In
particular, the following declarations define the datatype of traces through untyped λ-terms.

D. Miller and J.-H. Wu 3:13

type ntrace , ptrace tm -> trace -> o.

ntrace (napp M _) (left P) :- ntrace M P.
ntrace (napp _ N) (right P) :- ntrace N P.
ntrace (nabs R) (bnd P) :- pi x\pi p\ ntrace (nvar x) p =>

ntrace (R x) (P p).

ptrace (papp U V K) P :-
pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U) P) =>

(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V) P) =>
ptrace (K x) P.

ptrace (pabs R K) P :-
pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-

pi p\ pi u\ ptrace (pvar u) p => ptrace (R u) (Q
p))

=> ptrace (K x) P.

Figure 2 Traces through negative and positive bias syntax.

kind trace type.
type left , right trace -> trace.
type bnd (trace -> trace) -> trace.

The specification of traces within both variants of expressions for (closed) untyped λ-terms is
given in Figure 2. Note that the orders of the clauses for ntrace are 0, 1, 2 while for ptrace
the orders are 0, 3, and 4.2 If we wish to treat open expressions, we can add a constant, say
w, to denote a free variable, along with the declarations

type w var.
type wtrace trace.

ntrace (nvar w) wtrace .
ptrace (pvar w) wtrace .

We say that two expressions denoting untyped λ-terms (using either positive or negative
bias assignment) are trace equivalent if they both have the same traces.3 It is easy to prove
that two expressions using the negative bias syntax are trace equivalent if and only if they
are α-equivalent.4 This statement is not true for positive bias syntax: in particular, the
examples at the end of Section 4.2 that illustrate vacuous and duplicate naming all have the
same traces but are not α-convertible expressions.

We note that in λProlog, it is possible to synthesize an expression from a list of traces
using, for example, a query such as

?- forall (ntrace T) [(bnd (u\ left (bnd (v\ left u)))),
(bnd (u\ left (bnd (v\ right v)))),
(bnd (u\ right u))].

T = nabs (u\ napp (nabs (v\ napp (nvar u) (nvar v))) (nvar u))

2 Standard techniques can be used to rewrite the last two of these clauses to clauses of order 2 at the
expense of adding new predicate constants. See Appendix A of [32] for such a specification.

3 In concurrency theory, this notion is more often called maximal trace equivalence.
4 See http://abella-prover.org/examples/lambda-calculus/term-structure/path.html for a short,

formal proof of this claim in Abella.

CSL 2023

http://abella-prover.org/examples/lambda-calculus/term-structure/path.html

3:14 A Positive Perspective on Term Representation

Kind op type.
Type app val -> val -> op.
Type abs (val -> tm) -> op.

Kind pair type.
Type pr val -> op -> pair.

Kind node type.
Type nd list pair -> tm -> node.

Figure 3 An Abella specification of sharing simulation.

Here, forall is a higher-order predicate that applies its predicate argument (here, (ntrace
T)) to all members in its second argument. A black box method of converting an expression
using the positive bias assignment into an expression using negative bias assignment proceeds
as follows: first, list all possible traces in the positive bias assignment expression, and second,
synthesize the negative bias assignment expression using the technique illustrated above (see
also [29, Section 7.4.2]).

4.4 Sharing bisimulation
Determining that two untyped λ-term expressions are trace equivalent by enumerating every
trace in them has an exponential cost since all sharing structures are removed when listing
traces. Condoluci et al. [9] developed a graphic representation of sharing in the untyped
λ-calculus using λgraphs. When an appropriate bisimulation is defined on nodes in such
λgraphs, it is possible to check the bisimilarity in such graphs in linear time. As is known
from concurrency theory, bisimilarity implies (maximal) trace equivalence. In our setting, if
two terms – represented as two nodes in a λgraph – are bisimilar, then those two terms are
also trace equivalent.

To illustrate how one can manipulate positive bias syntax effectively, we used Abella [2]
to specify a simulation relation (closely related to the bisimulation relation defined in [9])
that compares two expressions in such a way that unfolding of the sharing does not happen.

The top-level of an untyped λ-term expression based on the positive bias assignment for
D can be described as a pair containing an association list of naming variables and operations
(such as app and abs used above) and the name of a particular naming variable. For example,
the last term displayed in Section 4.2 can be seen as a list of four pairs, namely,

[⟨u1,(abs x name y = (app x x) in y)⟩, ⟨z,(app u1 u1)⟩,
⟨u2,(abs x name y = (app x x) in y)⟩, ⟨v,(app z u2)⟩].

along with the designation of one particular variable, here v. This presentation suggests
encoding such terms using the Abella declarations (which are similar to λProlog declarations)
found in Figure 3. For example, the example term displayed above can be written as the
Abella term of type name

(nd ((pr n4 (app n2 n3)) ::
(pr n3 (abs x\ papp x x y\ pvar y)) ::
(pr n2 (app n1 n1)) ::
(pr n1 (abs x\ papp x x y\ pvar y)) :: nil)

(pvar n4))

D. Miller and J.-H. Wu 3:15

(Here, the symbols n1, . . ., n4 are examples of nominal constants in Abella.) In this setting,
expressions using positive bias syntax are encoded as terms of type node.

Structures of type node can be used to generate a labeled transition system in which
some arcs are labeled. These labels, called actions here, are of the following three kinds (see
the full specification in Figure 4).
1. Primitive actions are described using the predicate paction. Such actions name a variable.
2. Bound actions, specified using baction, carry an abstraction node to the body of that

abstraction.
3. Application actions, specified using faction, carry an application node to either its left

or right argument: this action names that direction.

The ∇-quantifier [14, 31] (written in Abella as nabla) is used to manage nominal constants
and binding mobility [28]. The distinction between free action and bound action here is
essentially the same as has been used to specify various simulations in the π-calculus [33].
Our specification of simulation in the presence of both free and bound actions follows the
specification technique of Tiu & Miller [38] that also relied on the ∇-quantifier. Given our
simulation specification, the bisimulation specification is also easy to write.

5 Cut elimination at the level of synthetic rules

Theorem 10 states that cut elimination holds for proofs built using synthetic inference rules.
Our goal in this section is to use cut elimination to determine what substitution into terms
should be. In particular, if we have the term t and we have the abstraction of x over term s,
how do we compute the result of substituting t for x in s? Clearly, the answer will depend
on which polarity assumption we are using for primitive types.

In order to see how cut-elimination can yield substitution, consider the following instance
of the cut rule: here, E and E′ are atomic formulas, and the LJF proofs ΞL and ΞR are
cut-free.

ΞL

Γ ⊢ t : E′
ΞR

Γ, x : E′ ⊢ s : E
Cut0

Γ ⊢ Cut0(x.s, t) : E

While the term Cut0(x.s, t) is not a term, it denotes the result of substituting u for x in t.
By performing cut-elimination on this proof, we will arrive at a cut-free proof and the term
annotating that proof should denote the result of such a substitution.

We illustrate here how the cut-elimination procedure works on our two encodings of
untyped λ-terms.5 In particular, we will provide specifications (using λProlog code) to define
the predicates

type nsubst , psubst tm -> (var -> tm) -> tm -> o.

that have the following specification: given S and T of type tm and R of type var -> tm then
(nsubst T R S) is provable if and only if T, R, and S use the constructors napp, nabs, and
nvar and S is the result of substituting T into the bound variable of R. Similarly, we wish to
have the same kind of specification for (psubst T R S) but with the arguments S, T, and R
built using the constructors papp, pabs, and pvar.

5 The cut-elimination procedure is given in Appendix B of [32].

CSL 2023

3:16 A Positive Perspective on Term Representation

Define paction : list val -> node -> val -> prop by
paction Vs (nd C (pvar w)) w ;
paction Vs (nd C (pvar V)) V := member V Vs.

Define baction : node -> (val -> node) -> prop by
nabla n, baction (nd ((pr n (abs R)):: C) (pvar n))

(u\ nd C (R u)) ;
nabla n, baction (nd ((pr M (Op n)):: (C n)) (pvar n)) Nd :=

nabla n, baction (nd (C n) (pvar n)) Nd.

Kind direction type.
Type right , left direction .

Define faction : node -> direction -> node -> prop by
nabla n, faction (nd ((pr n (app U V)):: C) (pvar n)) right

(nd C (pvar V)) ;
nabla n, faction (nd ((pr n (app U V)):: C) (pvar n)) left

(nd C (pvar U)) ;
nabla n, faction (nd ((pr M (Op n)):: (C n)) (pvar n)) A T :=

nabla n, faction (nd (C n) (pvar n)) A T.

Define sim : list val -> node -> node -> prop ,
simm : list val -> node -> node -> prop by

sim Vs (nd C (papp U V K)) Nd :=
nabla n, sim Vs (nd ((pr n (app U V)):: C) (K n)) Nd ;

sim Vs (nd C (pabs R K)) Nd :=
nabla n, sim Vs (nd ((pr n (abs R)):: C) (K n)) Nd ;

sim Vs (nd D (pvar T)) (nd C (papp U V K)) :=
nabla n, sim Vs (nd D (pvar T)) (nd ((pr n (app U V)):: C) (K

n)) ;
sim Vs (nd D (pvar T)) (nd C (pabs R K)) :=

nabla n, sim Vs (nd D (pvar T)) (nd ((pr n (abs R)):: C) (K
n)) ;

sim Vs (nd C (pvar U)) (nd D (pvar V)) :=
simm Vs (nd C (pvar U)) (nd D (pvar V)) ;

simm Vs P Q :=
(forall N, paction Vs P N -> paction Vs Q N) /\
(forall A R, faction P A R -> exists S, faction Q A S /\

sim Vs R S) /\
(forall R, baction P R -> exists S,

baction Q S /\
nabla u, sim (u::Vs) (R u) (S

u)).

Figure 4 An Abella specification of sharing simulation.

D. Miller and J.-H. Wu 3:17

When terms are built using negative bias syntax, the cut always moves to the right branch,
which means that substitution can be defined recursively on R. Moreover, substitution is
applied to all the arguments of constructors recursively. Thus, we have the following λProlog
specification of nsubst.

nsubst T (x\ nvar x) T.
nsubst T (x\ nvar Y) (nvar Y).
nsubst T (x\ napp (R x) (S x)) (napp R’ S’) :-

nsubst T R R’, nsubst T S S’.
nsubst T (x\ nabs y\ R x y) (nabs y\ R’ y) :-

pi y\ nsubst T (x\ R x y) (R’ y).

Note that this substitution predicate moves recursively through its second (abstracted)
argument. This style of substitution is, of course, the familiar one. Using the following
functional equations, we can write this substitution operation as a postfix operator.

(nvar x)[x/t] = t;
(nvar y)[x/t] = (nvar y), provided x and y are different;
(napp R S)[x/t] = (napp R[x/t] S[x/t]), and
(nabs (λy.R))[x/t] = (nabs λy. (R[x/t])), provided that x and y are different and y is
not free in t.

When terms are built using the positive polarity, the cut moves to the left branch, which
means that the substitution can be defined recursively on the first argument.

psubst (papp U V K) R (papp U V H) :- pi x\ psubst (K x) R (H x).
psubst (pabs S K) R (pabs S H) :- pi x\ psubst (K x) R (H x).
psubst (pvar U) R (R U).

Note that the last line of this specification uses a meta-level β-reduction but only to effect a
variable renaming substitution. An example query using this last predicate is the following.

?- psubst (papp w w y\ papp y y z\ papp z z v\ pvar v)
(x\ papp x x pvar) R.

R = papp w w (y\ papp y y (z\ papp z z (v\ papp v v u\ pvar u)))

Another example of substitution using this style of syntax is given graphically (and using
the name notation) in Figure 5.

We can instead write this substitution operation as a prefix operator using the following
functional equations. Below, the operation t[x := u] denotes the replacement of every free
occurrence of x in t by the variable u, provided that no free occurrence of x is in the scope
of a binding on u.

[(papp u v (λy.K))/x]R = (papp u v (λy.[K/x]R), provided x and y are different;
[(pabs S (λy.K))/x]R = (pabs S (λy.[K/x]R), provided x and y are different; and
[(pvar u)/x]R = R[x := u], provided no free occurrence of x is in the scope of a binding
on u.

Given our discussion of checking the simulation of two untyped λ-terms in Section 4.4, we
know that such terms can be represented as a pair, say, ⟨Γ, u⟩ where Γ is an association list
between a variable (of type var) and an operation (of type op) that indicates the kind of
node that variable names (either an application or an abstraction). An equivalent description
for substitution can then be given as follow: The result of substituting the term ⟨Γ, u⟩ for x

in the term ⟨Γ′, u′⟩ is the term ⟨(Γ′[x := u]) ⊔ Γ, u′⟩, where ⊔ denotes appending of two
lists.

CSL 2023

3:18 A Positive Perspective on Term Representation

appy

appz

root1

x

appv

appu

root2

a

name y = app x x in
name z = app y y in z

name v = app a a in
name u = app v v in u

appy

appz

root3

appv

appu

a

name v = app a a in
name u = app v v in
name y = app u u in
name z = app y y in z

Figure 5 The term at root3 is the result of substituting the term at root2 for x into the term at
root1. Operationally speaking, the pointers to x are redirected to point to u instead.

6 Related and future work

One goal of developing a logical framework, such as LJF, is to account for many other calculi
within that framework. The literature contains other approaches to term representation
that have also been motivated by focused proof systems [11, 12, 23]. Since LJF can easily
account for several other focusing proof systems for intuitionistic logic [24], this framework
should similarly account for such term calculi. Other frameworks have been used to justify
term structures: for example, it would be interesting to see if there are any overlaps with the
terms-as-graphs work of Grabmayer [19].

While many constructors for building term structures are only second-order, it is natural
and occasionally important to be able to treat constructors of order greater than 2. Of
course, the proof theory of LJF can treat formulas of all orders. However, the notion of
synthetic inference rule (which is here limited to second order) would need to be generalized.
In a setting with such higher-order constructors, cut elimination should be able to derive
and generalize hereditary substitutions [40].

As mentioned in Section 4.4, the λgraphs in [9] represent sharing as DAG structures in
the untyped λ-calculus. We conjecture that by using a multifocused version of the LJF proof
system, we should be able to prove that maximal multifocused LJF proofs correspond to
λgraphs. Maximal multifocused proofs have been shown elsewhere to correspond to graphical
proof systems, such as proof nets [8], expansion proofs [7], and natural deduction proofs [35].

D. Miller and J.-H. Wu 3:19

The black box methods of probing the structure of terms with sharing (see Sections 4.3
and 4.4) is closely related to well-established results in concurrency theory. However, these
methods are not based on proof-theoretic principles, at least not that we have established
here. We hope to find a way to describe trace equivalence and bisimilarity via proof-theoretic
concepts. These notions seem related to Girard’s Ludics project [18]. One promising approach
might start with recognizing that simulations can be seen as winning strategies and that
winning strategies can be related to focused proofs [10].

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and

Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.
2 David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen

Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifications. Journal
of Formalized Reasoning, 7(2):1–89, 2014. doi:10.6092/issn.1972-5787/4650.

3 Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in focused
intuitionistic logic. In Moreno Falaschi and Elvira Albert, editors, Proceedings of the 17th
International Symposium on Principles and Practice of Declarative Programming, Siena, Italy,
July 14–16, 2015, pages 43–54. ACM, 2015. doi:10.1145/2790449.2790528.

4 Paola Bruscoli and Alessio Guglielmi. On structuring proof search for first order linear logic.
Theoretical Computer Science, 360(1-3):42–76, 2006. doi:10.1016/j.tcs.2005.11.047.

5 Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic and Computation,
13(5):639–688, 2003. doi:10.1093/logcom/13.5.639.

6 Kaustuv Chaudhuri. Focusing strategies in the sequent calculus of synthetic connectives. In
Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR: International Conference
on Logic, Programming, Artificial Intelligence and Reasoning, volume 5330 of LNCS, pages
467–481. Springer, November 2008. doi:10.1007/978-3-540-89439-1_33.

7 Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof system isomorphic
to expansion proofs. J. of Logic and Computation, 26(2):577–603, 2016. doi:10.1093/logcom/
exu030.

8 Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-
focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and L. Ong, editors, Fifth International
Conference on Theoretical Computer Science, volume 273 of IFIP, pages 383–396. Springer,
September 2008. doi:10.1007/978-0-387-09680-3_26.

9 Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen. Sharing equality is
linear. In Proceedings of the 21st International Symposium on Principles and Practice of
Declarative Programming, pages 1–14, 2019. doi:10.1145/3354166.3354174.

10 Olivier Delande, Dale Miller, and Alexis Saurin. Proof and refutation in MALL as a game.
Annals of Pure and Applied Logic, 161(5):654–672, February 2010. doi:10.1016/j.apal.2009.
07.017.

11 Roy Dyckhoff and Stephane Lengrand. Call-by-value λ-calculus and LJQ. J. of Logic and
Computation, 17(6):1109–1134, 2007. doi:10.1093/logcom/exm037.

12 José Espírito Santo. Completing herbelin’s programme. In Simona Ronchi Della Rocca, editor,
Typed Lambda Calculi and Applications, 8th International Conference, TLCA 2007, Paris,
France, June 26-28, 2007, Proceedings, volume 4583 of LNCS, pages 118–132. Springer, 2007.
doi:10.1007/978-3-540-73228-0_10.

13 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. ACM SIGPLAN Notices, 28(6):237–247, 1993. doi:10.1145/
155090.155113.

14 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information and
Computation, 209(1):48–73, 2011. doi:10.1016/j.ic.2010.09.004.

CSL 2023

https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1145/2790449.2790528
https://doi.org/10.1016/j.tcs.2005.11.047
https://doi.org/10.1093/logcom/13.5.639
https://doi.org/10.1007/978-3-540-89439-1_33
https://doi.org/10.1093/logcom/exu030
https://doi.org/10.1093/logcom/exu030
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1145/3354166.3354174
https://doi.org/10.1016/j.apal.2009.07.017
https://doi.org/10.1016/j.apal.2009.07.017
https://doi.org/10.1093/logcom/exm037
https://doi.org/10.1007/978-3-540-73228-0_10
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1016/j.ic.2010.09.004

3:20 A Positive Perspective on Term Representation

15 Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1935. Translation
of articles that appeared in 1934-35. Collected papers appeared in 1969. doi:10.1007/
BF01201353.

16 Ulysse Gérard and Dale Miller. Separating functional computation from relations. In Valentin
Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer Science Logic
(CSL 2017), volume 82 of LIPIcs, pages 23:1–23:17, 2017. doi:10.4230/LIPIcs.CSL.2017.23.

17 Jean-Yves Girard. A new constructive logic: classical logic. Math. Structures in Comp. Science,
1:255–296, 1991. doi:10.1017/S0960129500001328.

18 Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. Mathematical
Structures in Computer Science, 11(3):301–506, June 2001. doi:10.1017/S096012950100336X.

19 Clemens Grabmayer. Modeling terms by graphs with structure constraints (two illustrations).
In Maribel Fernández and Ian Mackie, editors, TERMGRAPH@FSCD, volume 288 of EPTCS,
pages 1–13, 2018. doi:10.48550/arXiv.1902.02010.

20 Stéphane Graham-Lengrand. Polarities and focussing: a journey from realisability to au-
tomated reasoning, December 2014. Habilitation à diriger des recherches. URL: https:
//tel.archives-ouvertes.fr/tel-01094980.

21 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, 1993. doi:10.1145/138027.138060.

22 Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In Computer Science Logic, 8th International Workshop, CSL ’94, volume 933 of
Lecture Notes in Computer Science, pages 61–75. Springer, 1995. doi:10.1007/BFb0022247.

23 Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents comme calcul
de lambda-termes et comme calcul de stratégies gagnantes. PhD thesis, Université Paris 7,
1995. URL: https://tel.archives-ouvertes.fr/tel-00382528.

24 Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and classical
logics. Theoretical Computer Science, 410(46):4747–4768, 2009. Abstract Interpretation and
Logic Programming: In honor of professor Giorgio Levi. doi:10.1016/j.tcs.2009.07.041.

25 Chuck Liang and Dale Miller. A focused approach to combining logics. Annals of Pure and
Applied Logic, 162(9):679–697, 2011. doi:10.1016/j.apal.2011.01.012.

26 Chuck Liang and Dale Miller. Focusing Gentzen’s LK proof system. In Thomas Piecha and
Kai Wehmeier, editors, Peter Schroeder-Heister on Proof-Theoretic Semantics, Outstanding
Contributions to Logic. Springer, 2022. To appear. URL: https://hal.archives-ouvertes.
fr/hal-03457379.

27 Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to synthetic
inference rules via focusing. Annals of Pure and Applied Logic, 173(5):1–32, 2022. doi:
10.1016/j.apal.2022.103091.

28 Dale Miller. Mechanized metatheory revisited. Journal of Automated Reasoning, 63(3):625–665,
October 2019. doi:10.1007/s10817-018-9483-3.

29 Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge
University Press, June 2012. doi:10.1017/CBO9781139021326.

30 Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51(1–2):125–157, 1991.
doi:10.1016/0168-0072(91)90068-W.

31 Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. on Computa-
tional Logic, 6(4):749–783, October 2005. doi:10.1145/1094622.1094628.

32 Dale Miller and Jui-Hsuan Wu. A positive perspective on term representations: Extended
paper. Technical report, Inria, 2022. URL: https://hal.inria.fr/hal-03843587.

33 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Part II.
Information and Computation, 100(1):41–77, 1992. doi:10.1016/0890-5401(92)90009-5.

https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF01201353
https://doi.org/10.4230/LIPIcs.CSL.2017.23
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1017/S096012950100336X
https://doi.org/10.48550/arXiv.1902.02010
https://tel.archives-ouvertes.fr/tel-01094980
https://tel.archives-ouvertes.fr/tel-01094980
https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/BFb0022247
https://tel.archives-ouvertes.fr/tel-00382528
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1016/j.apal.2011.01.012
https://hal.archives-ouvertes.fr/hal-03457379
https://hal.archives-ouvertes.fr/hal-03457379
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1007/s10817-018-9483-3
https://doi.org/10.1017/CBO9781139021326
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1145/1094622.1094628
https://hal.inria.fr/hal-03843587
https://doi.org/10.1016/0890-5401(92)90009-5

D. Miller and J.-H. Wu 3:21

34 Guillaume Munch-Maccagnoni and Gabriel Scherer. Polarised intermediate representation
of lambda calculus with sums. In 30th Symp. on Logic in Computer Science, pages 127–140.
IEEE Computer Society, 2015. doi:10.1109/LICS.2015.22.

35 Elaine Pimentel, Vivek Nigam, and João Neto. Multi-focused proofs with different polarity
assignments. In Mario Benevides and Rene Thiemann, editors, Proc. of the Tenth Workshop
on Logical and Semantic Frameworks, with Applications (LSFA 2015), volume 323 of ENTCS,
pages 163–179, July 2016. doi:10.1016/j.entcs.2016.06.011.

36 Jan von Plato. Natural deduction with general elimination rules. Archive for Mathematical
Logic, 40(7):541–567, 2001. doi:10.1007/s001530100091.

37 Robert J. Simmons. Structural focalization. ACM Trans. on Computational Logic, 15(3):21,
2014. doi:10.1145/2629678.

38 Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and modal logics
for the π-calculus. ACM Trans. on Computational Logic, 11(2):13:1–13:35, 2010. doi:
10.1145/1656242.1656248.

39 Philip Wadler. Call-by-value is dual to call-by-name. In 8th Int. Conf. on Functional
Programming, pages 189–201, New York, NY, 2003. ACM. doi:10.1145/944705.944723.

40 Keven Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical
framework I: The propositional fragment. In Post-proceedings of TYPES 2003 Workshop,
number 3085 in LNCS. Springer, 2003. doi:10.1007/978-3-540-24849-1_23.

41 Noam Zeilberger. Focusing and higher-order abstract syntax. In George C. Necula and Philip
Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,
pages 359–369. ACM, 2008. doi:10.1145/1328897.1328482.

42 Noam Zeilberger. On the unity of duality. Annals of Pure and Applied Logic, 153(1), 2008.
Special issue on classical logic and computation. doi:10.1016/j.apal.2008.01.001.

CSL 2023

https://doi.org/10.1109/LICS.2015.22
https://doi.org/10.1016/j.entcs.2016.06.011
https://doi.org/10.1007/s001530100091
https://doi.org/10.1145/2629678
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1145/944705.944723
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1145/1328897.1328482
https://doi.org/10.1016/j.apal.2008.01.001

	1 Introduction
	2 The LJF proof system
	2.1 LJF inference rules
	2.2 Synthetic inference rules

	3 Synthetic inference rules as term constructors
	3.1 Intermediate representation of programs
	3.2 Encoding functional expressions as relational queries

	4 The untyped lambda-calculus
	4.1 Using negative bias syntax for the untyped lambda-calculus
	4.2 Using positive bias syntax for the untyped lambda-calculus
	4.3 Tracing untyped lambda-terms
	4.4 Sharing bisimulation

	5 Cut elimination at the level of synthetic rules
	6 Related and future work

