Godel’s Theorem Without Tears

Essential Incompleteness in Synthetic Computability
Dominik Kirst &
Universitit des Saarlandes, Saarland Informatics Campus, Saarbriicken, Germany

Benjamin Peters &
Universitit des Saarlandes, Saarland Informatics Campus, Saarbriicken, Germany

—— Abstract

Godel published his groundbreaking first incompleteness theorem in 1931, stating that a large class
of formal logics admits independent sentences which are neither provable nor refutable. This result,
in conjunction with his second incompleteness theorem, established the impossibility of concluding
Hilbert’s program, which pursued a possible path towards a single formal system unifying all of
mathematics. Using a technical trick to refine Gédel’s original proof, the incompleteness result was
strengthened further by Rosser in 1936 regarding the conditions imposed on the formal systems.

Computability theory, which also originated in the 1930s, was quickly applied to formal logics
by Turing, Kleene, and others to yield incompleteness results similar in strength to Gédel’s original
theorem, but weaker than Rosser’s refinement. Only much later, Kleene found an improved but far
less well-known proof based on computational notions, yielding a result as strong as Rosser’s.

In this expository paper, we work in constructive type theory to reformulate Kleene’s incom-
pleteness results abstractly in the setting of synthetic computability theory and assuming a form of
Church’s thesis, an axiom internalising the fact that all functions definable in such a setting are com-
putable. Our novel, greatly condensed reformulation showcases the simplicity of the computational
argument while staying formally entirely precise, a combination hard to achieve in typical textbook
presentations. As an application, we instantiate the abstract result to first-order logic in order to
derive essential incompleteness and, along the way, essential undecidability of Robinson arithmetic.

This paper is accompanied by a Coq mechanisation covering all our results and based on existing
libraries of undecidability proofs and first-order logic, complementing the extensive work on mechan-
ised incompleteness using the Godel-Rosser approach. In contrast to the related mechanisations, our
development follows Kleene’s ideas and utilises Church’s thesis for additional simplicity.

2012 ACM Subject Classification Theory of computation — Constructive mathematics; Theory of
computation — Type theory; Theory of computation — Logic and verification

Keywords and phrases incompleteness, undecidability, synthetic computability theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.30

Supplementary Material To seamlessly integrate the mechanisation with the written text, each
formal statement in the PDF version of this paper is hyperlinked with HTML documentation of the
Coq files (signalled via a small Coq symbol).

InteractiveResource (Website): https://wuw.ps.uni-saarland.de/extras/incompleteness
Software (Source Code): https://github.com/uds-psl/coq-synthetic-incompleteness

1 Introduction

Shortly after Godel published his celebrated completeness theorem of first-order logic [15, 17]
in 1930, he discovered the surprising phenomenon of incompleteness [16] of sufficiently
strong axiom systems. While completeness states that all valid formulas are provable,
incompleteness (sometimes called negation-incompleteness for disambiguation) refers to the
existence of independent sentences that are neither provable nor refutable from a given set of
axioms. Considered from the programmatic perspective of metamathematics, completeness
encouragingly entails that the formal method of syntactic, finitary deduction is an adequate
© Dominik Kirst and Benjamin Peters;
37 licensed under Creative Commons License CC-BY 4.0
31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 30; pp. 30:1-30:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kirst@cs.uni-saarland.de
https://orcid.org/0000-0003-4126-6975
mailto:s8bnpete@stud.uni-saarland.de
https://doi.org/10.4230/LIPIcs.CSL.2023.30
https://www.ps.uni-saarland.de/extras/incompleteness
https://github.com/uds-psl/coq-synthetic-incompleteness
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2

Godel's Theorem Without Tears

means to explore mathematical validities. In contrast, incompleteness establishes a principal
limitation to axiomatic reasoning and therefore triggered a long tradition of interpretations
(and sometimes misinterpretations [14]) in mathematics, philosophy, and even pop culture,!
especially regarding the consequential observation that no such sufficiently strong axiom
system can verify its own consistency (referred to as Godel’s second incompleteness theorem).

Concretely, Gédel showed that for all formal systems expressing enough properties of the
natural numbers while being sound (i.e. all derivable arithmetical sentences are true for the
standard model over N) or at least w-consistent (i.e. if ¢(7) is provable for all numerals 7,
then Jz. () is not provable) one can explicitly construct an independent sentence. For
his elaborate construction, a lot of machinery regarding the arithmetisation of syntax and
deduction systems as well as their interplay with substitution had to be developed, for instance
Godel numbering, the S-function, and the diagonal lemma. All this complexity obscures
the underlying simple liar paradox of the constructed self-referential sentence, which is the
reason why even full textbooks (e.g. Smith’s monographs [44, 45]) are devoted to a formal
exposition. Rosser later improved on the result by lifting the requirement of w-consistency
to plain consistency using a technically compact trick, entailing essential incompleteness
meaning that independent sentences can be constructed in all consistent extensions of an
incomplete system, but he still followed the same rather sophisticated strategy [42].

Only with the development of formal notions of computability and the resulting discovery
of undecidability in 1936 by Church [4] and Turing [53], a much simpler proof strategy
relying on a direct encoding of the halting problem was conceived, as directly remarked in
Turing’s paper. The underlying observation (already anticipated by Post, cf. [40]) is that
complete axiom systems are decidable,? and thus systems able to express the halting problem
and therefore inheriting its undecidability must be incomplete. To establish that a given
system correctly expresses the halting problem, however, one typically relies on soundness to
extract termination information from a formal derivation and, additionally, the proof does
not readily yield a concrete independent sentence. Thus the nowadays well-known proof of
incompleteness via undecidability, though elementary enough to be taught in basic courses
on computability theory, yields a result even weaker than Godel’s original statement ahead
of Rosser’s refinement.

Far less well-known is the line of work pursued by Kleene [26, 27, 28, 29, 30], ultimately
accomplishing a form of incompleteness as strong as Rosser’s while still transparently
showcasing the computational core of the argument.® Kleene’s improved strategy is based on
a switch from the encoded halting problem to encoding a pair of recursively inseparable sets
via a stronger representability property, which is in turn established by a technique akin to
Rosser’s trick in [42]. By this switch the requirement of soundness instead of consistency
can be avoided, since no termination information needs to be extracted from derivations but
only existing derivations and refutations need to be preserved. Moreover, on more careful
inspection already of the previous argument employing the halting problem, an explicit
independent sentence can be extracted, similarly for the improved version. The only drawback
of the computational variant of Godel’s first incompleteness theorem is that it no longer
prepares the machinery for the second incompleteness theorem, but for the mere construction
of independent sentences Kleene’s argument seems superior and deserves wider popularity.

See Douglas Hofstadter’s classic “Godel, Escher, Bach” [21] or far-reaching Youtube channels like Derek
Muller’s Veritasium (https://www.youtube.com/watch?v=HeQX2HjkcNo).

Where we crucially consider the collection of axioms as enumerable, since the set of sentences satisfied
in the standard model over N is a simple example of a complete but undecidable theory.

For instance, a recent posting on the FOM mailing list (https://cs.nyu.edu/pipermail/fom/
2021-September/022872.html) testified surprise “to discover such a proof laid out” in equally as-
tonished blog posts and StackExchange threads.

https://www.youtube.com/watch?v=HeQX2HjkcNo
https://cs.nyu.edu/pipermail/fom/2021-September/022872.html
https://cs.nyu.edu/pipermail/fom/2021-September/022872.html

D. Kirst and B. Peters

Working in the constructive type theory CIC [5, 36], we translate Kleene’s incompleteness
proofs to the framework of synthetic computability of Richman and Bauer [41, 1], replacing
the formal model of computation needed for the notions of enumerability and decidability by
the implicit computation inherent to any intuitionistic meta-theory like CIC. Taking this
perspective, Kleene’s proofs can be further enhanced as no (often left informal) manipulation
of Turing machines, u-recursive functions, or untyped A-terms is necessary to single out the
computable functions N — N. Instead, the necessary constructions can be (then directly
formally) done with respect to all functions N — N as they are guaranteed to be computable
by definability in our intuitionistic meta-theory. To enable the usual diagonalisation referring
to universal machines for negative results, we assume variants of Church’s thesis [31, 41, 9, 8],
internalising the computability of all definable functions and inducing synthetic definitions
of an undecidable halting problem and recursively inseparable sets.

With such a synthetic reformulation of Kleene’s ideas, we contribute a strikingly simple
yet fully formal proof of the strong Gédel-Rosser incompleteness theorem, isolating the
computational essence at the core of the phenomenon. To this end, we first work with a
fully abstract notion of formal systems to pin down their necessary properties and showcase
the strategy free of any contingent overhead, an approach also followed by Beklemishev [2],
Smullyan [46], Popescu and Traytel [38, 39], as well as Kirst and Hermes [23]. Subsequently, we
instantiate the abstract development to the concrete case of first-order arithmetic, culminating
in a proof of essential incompleteness of Robinson arithmetic Q, a finitely axiomatised fragment
of Peano arithmetic PA. First, this conclusion is drawn, still maintaining the argument’s
simplicity, by assuming Church’s thesis directly for Q as already employed by Hermes and
Kirst [20]. Afterwards we replace this assumption by Church’s thesis for p-recursive functions
and an application of the, naturally highly non-elementary, DPRM theorem [6, 33] to bring
every p-recognisable predicate into Diophantine and thus Q-expressible form.

On top of the mathematical contribution to formalise the computational incompleteness
proofs in synthetic computability theory, especially the abstract proofs are straightforward
to implement in the Coq proof assistant [49], suggesting that the chosen approach is well-
suited for the notoriously hard mechanisation of incompleteness [43, 35, 19, 37, 39]. This
approach was already exploited in [23], where only the weakest incompleteness result is
derived from the undecidability of Q and PA. Following up on [23], the code for the abstract
Godel-Rosser theorem implemented as part of this paper spans merely about 200 lines, while
the instantiation to Q adds roughly 2500 lines on top of the employed Coq libraries for
first-order logic [24] and undecidability proofs [13]. The latter contains Larchey-Wendling
and Forster’s extensive mechanisation of the DPRM theorem [32], which could be replaced
by a much weaker arithmetisation of a machine model to allow for a realistic comparison to
the previous stand-alone mechanisations. Nevertheless, we deem it a valuable contribution
to complement the extensive line of work regarding mechanisations of Godel’s original proof
strategy with the first equally general mechanisation of the computational argument.

Outline. In Section 2 we summarise preliminary definitions and facts about constructive
type theory, synthetic computability, and first-order logic. Then in the core technical part,
we give synthetic and abstract proofs of the weak computational incompleteness theorem
(Section 3) and Kleene’s improvement (Section 4), the latter assuming a general form of
Church’s thesis. In Section 5, the abstract results are instantiated to Robinson arithmetic
Q, assuming Church’s thesis for Q to maintain a simple proof outline. Afterwards, this
assumption is derived from a more conventional axiom referring to p-recursive functions,
now carrying out the core argument why Q can represent computation (Section 6). We close
with some general remarks and further comments on related and future work in Section 7.

30:3

CSL 2023

30:4

Godel's Theorem Without Tears

2 Preliminaries

In order to make this paper self-contained and accessible to a broader audience, we briefly
outline the synthetic approach to computability theory and the representation of first-order
logic in constructive type theory as used in prior work [10, 11, 25, 23].

2.1 Constructive Type Theory

We work in the framework of a constructive type theory such as CIC implemented in Coq,
providing a predicative hierarchy of type universes above a single impredicative universe
P of propositions. On type level, we have the unit type 1 with unique element * : 1, the
void type 0, function spaces X — Y, products X x Y, sums X + Y, dependent products
V(z : X).Fx, and dependent sums ¥ (z : X). Fz. On propositional level, these types are
denoted by logical notation (T, L, —, A, V, V, and 3). So-called large elimination from P
into computational types is restricted, in particular case distinction on proofs of V and 3 to
form computational values is disallowed. On the other hand, this restriction is permeable
enough to allow large elimination of the equality predicate =: VX. X — X — P specified by
the constructor V(z : X).z = z, as well as function definitions by well-founded recursion.
We further employ the basic inductive types of Booleans (B := tt | ff), Peano natural
numbers (n: N:=0|n+ 1), as well as the option type (O(X) :="27| (), and add further
inductive types by need. Note that there is a canonical embedding of B into N, encoding tt
as 1 and ff as 0, which we sometimes use to interpret functions X — B as functions X — N.

2.2 Synthetic Computability Theory

The base of the synthetic approach to computability theory of Richman and Bauer [41, 1] is
the fact that all functions definable in an intuitionistic foundation are computable. This fact
applies to many variants of constructive type theory and we let the assumed variant sketched
in the previous section be one of those. Of course, we are confident that in particular the
predicative calculus of cumulative inductive constructions (pCulC) [51], the variant of CIC
currently implemented in Coq, satisfies this condition although there is no formal proof yet.
As a basis we can introduce decidability, semi-decidability, and enumerability of decision
problems synthetically, i.e. without reference to a formal model of computation (cf. [10]):

¥ Definition 1. Let P : X — P be a predicate over a type X.
P is decidable if there exists d : X — B with Px iff dx = tt,
P is enumerable if there exists e : N — O(X) with Px ¢ff In.en = "2,
P is semi-decidable if there exists s : X — N — B with Pz iff In.sxzn = tt.

On data types like N, semi-decidability and enumerability coincide:
¥ Fact 2. Every predicate P : N — P is semi-decidable iff it is enumerable.

Due to this fact, we will interchange both notions fluidly where appropriate to trigger
different intuitions. In general, we prefer the view of semi-decidability as it harmonises with
the much-used concept of partial functions.

¥ Definition 3. f: X — N —= O(Y) is a partial function if it is deterministic, i.e.:
Vann'yy'. fan ="y = fan' ="y wy=y

We write f : X —= Y to denote that f is a partial function from X toY. We write fx | y if
there is n with fxn="y", fx | if there isy with fz Ly, and fx 1 if fzn =0 for all n.
The notation fx | is meant to suggest termination while f x T denotes divergence.

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.Definitions.html#decidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.Definitions.html#decidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.EnumerabilityFacts.html#enumerable_semi_decidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.EnumerabilityFacts.html#enumerable_semi_decidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.utils.html#part
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.utils.html#part

D. Kirst and B. Peters

From every partial function f : X — Y that is total, i.e. satisfies fx | for all x, one
can extract a function X — Y. Conversely, every function X — Y induces a total partial
function X — Y. We therefore freely change between both perspectives.

Finally, we introduce a notion of reductions capable of transporting decidability, fore-
shadowing the way how computational properties of formal systems can be expressed.

¥ Definition 4. Given predicates P: X — P and Q : Y — P, we call a function f: X =Y a
(many-one) reduction if Pz iff Q (f) for all x. We write P < Q if such a function exists.

¥ Fact 5. If P X Q and Q is decidable, then so is P.

Note that all these synthetic notions are only meaningful as long as no classical axioms
jeopardising the computational interpretation of the function space X — Y are assumed.
Instead, we will consider several axioms internalising the computational interpretation later.

2.3 First-Order Logic

The abstract incompleteness theorems discussed in Sections 3 and 4 make no reference to
a concrete formalism, but the instantiation subject to Sections 5 and 6 will be based on
first-order logic. We therefore summarise the representation of first-order terms and formulas
with inductive types T and F, respectively, as underlying [24]:

t,t':T == x|O|St|tat |[tat (z:N)
o) F = t=t' | 1| o3| oA | oVip | Va. o | Tz, (z:N)
Given a number n : N; we write 7 for the numeral S™ O. Given formulas ¢ and ¥, we let

< denote p—L and p<+1p denote (p-31)A(1p=>p). We write () to indicate that x is the
only variable occurring free (i.e. not bound by a quantifier) in ¢ and ¢(t) to denote the usual

capture-avoiding substitution of x with ¢, similarly for formulas with more free variables.

Axiom systems are represented as enumerable predicates A : F — P. We will consider
the standard axiomatisation of Peano arithmetic PA, consisting of the defining equations
for @& and ®, injectivity of S, disjointness of S and O, as well as the induction scheme. The
weaker system of Robinson arithmetic Q is obtained by replacing the induction scheme with
a formula expressing case distinction.

Deduction systems are represented as inductive predicates of type (F - P) - F — P
relating a context with a formula. Concretely, we use classical (F.) and intuitionistic (F;)
natural deduction but since all presented results are agnostic to the particular flavour we
simply write A - ¢ standing for both. Since we assume axiomatisations A to be enumerable,
their deductive closure denoted by A"™ can be shown enumerable, too.

A general representation of (Tarski) semantics is based on types M providing the
structure to interpret the function symbols of the term language, giving rise to the recursive
entailment relation M F ¢ embedding formulas into propositions of the meta-logic. In this
paper, we are exclusively concerned with the standard model A/ with N as domain and the
natural interpretations of the function symbols. In this model, N E ¢ evaluates to ordinary
arithmetical statements and in particular N F PA can be shown. Note that for A/ F PA to
hold constructively, it is crucial that we do not by default include classical axioms in PA [54].

In previous work [23], reductions from the solvability of Diophantine equations (Hqo) as
formalised by Larchey-Wendling and Forster [32] to arithmetical systems were verified. We
recollect this fact to include the resulting weak form of incompleteness (already observed
in [23]) as motivating approximation in the uniformised framework of this paper. Again note
that without additional axioms a predicate like Hiy cannot be shown undecidable in the
synthetic sense but, given its actual undecidability, serves as a suitable computational taboo.

¥ Fact 6. There is a reduction witnessing Hig < Q™ and Hyg < PA".

30:5

CSL 2023

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.Definitions.html#reduces
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.Definitions.html#reduces
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.ReducibilityFacts.html#dec_red
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.Synthetic.ReducibilityFacts.html#dec_red
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Reductions.H10p_to_FA.html#H10_to_deduction_Q
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Reductions.H10p_to_FA.html#H10_to_deduction_Q

30:6

Godel's Theorem Without Tears

3 Synthetic and Abstract Approach to Incompleteness

In this and the next section, we develop incompleteness results of various strengths in a
purely abstract setting. Our exposition follows the computational approach described by
Kleene [29, 30], which we translate to the setting of synthetic computability to achieve a
highly condensed but still fully formal presentation. We begin with the underlying notion of a
formal system, involving only modest assumptions about sentences, negation, and provability.

% Definition 7 (Formal System). A triple S = (S, ,F) is called a formal system if:
S is a type, considered the sentences of S,
4:S — S is a function on sentences, considered the negation operation,
F:S — P is a semi-decidable predicate on sentences, considered the provable sentences.
Consistency holds in the form that for all ¢ :' S not both F ¢ and = —p.
A formal system S’ = (S,5,F') is called an extension of S if - ¢ implies F' ¢ for all .
Moreover, S is called decidable if the provability predicate - is decidable.

This general definition captures first-order axiomatisations as will be made precise in
Section 5, but also applies to many other formalisms including constructive type theories
like CIC or classical systems like HOL.

(Negation-)completeness can be easily expressed as a property of such formal systems,
contrasting an informative notion of incompleteness relying on independent sentences.

¥ Definition 8 (Completeness). We call S complete if for all p either b ¢ or b ~p. In
contrast, S admits an independent sentence if there is @ with neither = ¢ nor - =p.

To obtain a first weak form of incompleteness, it suffices to observe that complete formal
systems are decidable, therefore deciding every decision problem they can encode. This
observation is an immediate consequence of Post’s theorem [1, 10], however, we prefer to
give an alternative proof employing a partial decider that will be reused later.

% Lemma 9 (Partial Decider). One can construct a partial function ds : S — B with:
Vo. (Fperdspltt) A (Fp e dselff)
Note that by this specification ds eractly diverges on the independent sentences of S.

Proof. By the definition of formal systems, we have semi-deciders f; for Ap. - ¢ and f5 for
Ap. F —g, where the latter is obtained from the former by testing if a given negation -y is
derivable, i.e. by fo ¢ := f1 (-¢). Then we construct ds : S — B to be the (partial) function
that on input ¢ simultaneously runs f; ¢ and fa ¢, returns tt if the former terminates and ff
if the latter terminates, and diverges otherwise:

dspn := if fion then Ttt7 else if fo o n then Tff7 else 0
Consistency is used as the crucial property to show that this function is deterministic. <«
Now the connection of completeness and decidability can be established transparently:
¥ Fact 10 (Decidability). If S is complete, then it is decidable.
Proof. By completeness the partial decider ds is total, inducing a decider S — B. |

To derive said weak form of incompleteness, it remains to clarify what it means for a
formal system to encode a decision problem. An intuitive characterisation, called weak
representability, exhibits the structure of many-one reductions.

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#FS
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#FS
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#complete
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#complete
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#is_provable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#is_provable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#complete_decidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#complete_decidable

D. Kirst and B. Peters 30:7

¥ Definition 11 (Weak Representability). S weakly represents P : X — P if P XS, i.e. if
there is a function v : X — S such that Px <> &+ rx. If only & rx implies P x, then we call
S sound for P and r (or simply sound for P if we leave r implicit).

We can now derive incompleteness in the sense that systems weakly representing an
undecidable problem cannot be complete. As the property of weak representability is preserved
along sound extensions, we instantiate this result later to derive weak incompleteness of PA
and other axiomatisations sound for N.

¥ Theorem 12 (Weak Incompleteness). If S weakly represents P : X — P, then for any
extension S’ of S sound for P it holds that if S’ is complete, then P is decidable. Therefore,
if P is known to be undecidable, then S’ must be incomplete.

Proof. Note that any sound extension S’ of S still weakly represents P. Since completeness
induces decidability of F (Fact 10), we obtain decidability of P from Fact 5. <

4 Improving the Computational Incompleteness Result

Although Theorem 12 correctly identifies the computational essence of incompleteness, namely

the connection to undecidability, it still falls short of the stronger Goédel-Rosser theorem:

1. The reliance on weak representability excludes consistent but unsound extensions and
hence, for instance, essential incompleteness of Q cannot be achieved.

2. There is no concrete example of an independent sentence constructed since the global
completeness assumption is needed to totalise the partial decider ds.

3. The result is presented only up to a computational taboo, i.e. the decidability of a problem
known to be undecidable, instead of an actual contradiction.

In this section, we address these shortcomings one-by-one, yielding the strongest form
of incompleteness possible. Regarding the third improvement, the only way to derive a
contradiction from a computation taboo is to assume an axiom that restricts the ambient
constructive type theory to a computational interpretation. Concretely, we now assume a
variant of Church’s thesis [31], namely EPF for “enumerability of partial functions” [41, 9, 8].
It postulates a universal function © : N — (N — N) computing all partial functions, i.e. for
every f: N — N there is a code ¢ such that ©,. agrees with f (extensionally).

¥ Axiom 13 (EPF). There is a universal function © : N — (N — N) satisfying:
Vf:N—=N.de:N.Vexy.O.z ly+< fzly
This assumption induces a canonical undecidable problem:

¥ Definition 14 (Halting Problem). We define the self-halting problem by Ko x := 0O, z |.

The self-halting problem for © can be easily shown undecidable by the usual diagonalisa-
tion argument. Following this argument in a constructively more informative way, we show
that every potential decider for Kg necessarily diverges on a concretely constructed input.

¥ Fact 15. Kg is enumerable, but for every candidate decider d : N — B with
Ve.Kex < dx | tt

one can construct a concrete value x with =Ko x such that dx 1.

CSL 2023

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#weakly_represents
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#weakly_represents
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#weakly_representable_decidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#weakly_representable_decidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#EPF_N
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#EPF_N
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#self_halting
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#self_halting
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#self_halting_diverge
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#self_halting_diverge

30:8

Godel's Theorem Without Tears

Proof. We first define the partial function f : N — B such that fx | tt whenever dx | ff
and fx 1 otherwise. Now using EPF we obtain a code ¢ for f and deduce for x := ¢ that

drltt & Kgrx & O,z e fzle faoltt & delff

from which we conclude dx 1. That Kg is not decidable follows since every decider N — B
would induce a total candidate decider N — B. Finally, enumerability of Kg is standard. <«

We can now identify an intermediate refinement of the incompleteness theorem, providing
a concrete independent sentence up to an actual contradiction, which corresponds to the
result originally shown by Godel (in the semantic form requiring soundness instead of
w-consistency).

% Theorem 16 (Godel's Incompleteness). If S weakly represents Ko, then any extension S’
of § sound for Kg admits an independent sentence.

Proof. Let r : N — S weakly represent Kg in S, therefore also in all sound extensions S’.
The function d := dg- o r is a candidate decider for Kg in the sense of Fact 15 since:

Kex ©Fra & do(rax)ltt & dltt

Then by Fact 15 there is a particular z with d x 17 and we observe that the sentence r x can
neither be provable nor refutable since in either case dx | by specification of dg. |

In order to tackle the remaining improvement, namely the applicability to consistent
extensions, we follow Kleene’s idea to switch to a stronger notion of representability that is
not affected by unsound formal systems. Since for weak representability of a predicate P it
was crucial to obtain Pz from F r x, so to extract information from a derivation, one might
hope that this can be replaced by a proof of - = (rz) from —P x, as this has a derivation
in the conclusion and therefore transports along any extension. Unfortunately, this strong
notion of representability can only be achieved for decidable predicates, thus ruling out the
encoding of the undecidable Kg for a contradiction. However, it is possible to specify a
very similar notion involving a second predicate), such that still all derivations appear in
conclusions but P and @ can be instantiated with undecidable problems, respectively.

¥ Definition 17 (Strong Separability). S strongly separates P : X — P and Q : X — P if
there is a function r : X — S such that P x implies - rx and Q x implies - -r x.

The notion of strong separability can now be instantiated with any pair of recursively
inseparable problems (i.e. problems excluding any total decider discriminating them) to
derive essential incompleteness. The canonical pair of such recursively inseparable problems
in the context of EPF refers to the self-halting problems for specific output.

¥ Definition 18. We define the problems Kz := 0,2 | 1 and Ky z := 0,z | 0.

As done with the normal self-halting problem before (Fact 15), we do not just refute any
discriminating decider but show that every partial decider actually diverges on an explicitly
constructed input.

¥ Fact 19. K§ and K are enumerable, but for every candidate separator s : N — B with
Vo, (Kgz — sz ltt) A (K§z — sz | ff)

one can construct a concrete value x with =K§ z and =K% x such that sz 1.

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#halt_incompleteness
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#halt_incompleteness
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#strongly_separates
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.formal_systems.html#strongly_separates
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#theta_self_return
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#theta_self_return
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#recursively_separating_diverge
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf.html#recursively_separating_diverge

D. Kirst and B. Peters

Proof. We define the partial function f : N — B such that fx | ff if sz | tt, fz | ttif
sx | ff, and fx 1 otherwise. Using EPF we obtain a code ¢ for f and deduce for = := ¢ that

sxltt & fzlff & 0,2]0 < K%x = sz | ff
selff & foltt & 0,201 & Kyr = szt

from which we conclude sz 1. Again, enumerability of Kg and K% is standard. |

The desired strong incompleteness theorem, now corresponding to Rosser’s refinement of
Godel’s result, follows for all formal systems that capture enough computation to strongly
separate K and K@.

¥ Theorem 20 (Gddel-Rosser Incompleteness). If S strongly separates Kg and K, then any
extension S’ of S admits an independent sentence, i.e. S is essentially incomplete.

Proof. Let 7 : N — S strongly separate K¢ and K% in S, therefore also in all consistent
extensions &’. The function s := dg/ or is a candidate separator for K and K% since:

Kbz =Frez & ds(rz)ltt & sltt
Kir = F e o ds(rz) | ff < s |ff

Then by Fact 19 there is a particular z with sz 1 and we observe that the sentence r x can
neither be provable nor refutable since in either case sz | by specification of ds/. <

To emphasise the connection with computational incompleteness, we observe essential
undecidability of formal systems of the same expressivity as required in Theorem 20.

¥ Theorem 21 (Essential Undecidability). If S strongly separates K& and K@, then any
extension S’ of S is undecidable, i.e. S is essentially undecidable.

Proof. Given 7 : N — S strongly separating K}, and K& and d : S — B deciding &', the
(total) function s := d o r would recursively separate K¢ from K, contradicting Fact 19. <

5 Essential Incompleteness of Robinson Arithmetic

We next instantiate the abstract approach to incompleteness from the previous sections to
the case of first-order arithmetic. To this end, we now make precise that every consistent
axiomatisation .4 induces a formal system S4 = (S, 5.4, .4) where

S 4 is the type of closed formulas ¢ : F,

4 is the negation function —¢ restricted to closed ¢,

4 is the provability predicate A I ¢ restricted to closed ¢, and

F 4 ¢ simultaneous to k4 —¢ is ruled out by the consistency of A.

We then say that A is complete if its induced formal system S, is complete, i.e. if either
AbE ¢ or AF 5 for all closed ¢. Similarly, we say that A admits an independent sentence
if S does, i.e. if there is some closed ¢ with neither A F ¢ nor A F -p. Note that here, as
our notational convention suggests, we deliberately include both the intuitionistic and the
classical ND system, so our treatment of incompleteness applies to both flavours.

Since reductions P < A" establish that S4 weakly represents P, we can immediately
derive a weak form of incompleteness from previous results.

% Theorem 22 (Weak Incompleteness, cf. [23]). If PA is complete, then Hyg is decidable.

30:9

CSL 2023

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#insep_essential_incompleteness
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#insep_essential_incompleteness
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#insep_essential_undecidability
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.abstract_incompleteness.html#insep_essential_undecidability
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Util.Friedman.html#incompleteness_Q
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Util.Friedman.html#incompleteness_Q

30:10

Godel's Theorem Without Tears

Proof. We have Hyg < PA" by Fact 6, so Spa weakly represents Hig. Then if PA were
complete, Hyg were decidable by Theorem 12. |

Note that this result also applies to all sound extensions of PA, i.e. extensions A such that
from A F ¢ one can derive N F ¢, as well as to all weaker (and hence vacuously incomplete)
fragments, in particular Q. We refer the reader to [23] for more detail on this weak form of
incompleteness obtained from the reduction of Hig in a synthetic sense.

To obtain the stronger result concerning merely consistent extensions, we prepare to
instantiate Theorem 20 to the case of Q, as this axiomatisation exactly provides the needed
representability requirements. For this instantiation, note that although EPF is an axiom
strong enough to yield undecidable problems, it does not necessarily restrict the function
space N — N to a concrete model of computation expressible in Q. We therefore need to
assume a more explicit form of Church’s thesis to derive the desired representability within Q.
An elegant strategy is to directly assume Church’s thesis for Q itself (CTq) as introduced by
Hermes and Kirst [20], instantiate Theorem 20 with elementary arguments, and afterwards
deliver the rather involved argument that CTq follows from a more conventional explicit
form of EPF for u-recursive functions.

To state CTq, we first identify the semantically well-behaved class of ¥;-formulas.

% Definition 23 (A;- and X;-formulas, cf. [20]). We say that ¢ : F is a Aq-formula if for all
substitutions o such that o n is closed for all n : N we have Q = p[o] or Q F ~p[o]. Moreover,
we say that 1 : F is a Xq-formula if there is a Aq-formula v such that p = 3... 3.

CTq then states that any function N — N is fully captured by a 3;-formula.

¥ Axiom 24 (CTq). For all partial f : N — N there exists a ¥1-formula o(x,y) with:
Voy. frzly < QY. o@y) ¢y =7

To enable the usage of the results from the previous section solely assuming CTq, we
show that CTq yields a universal function © as formerly postulated with EPF.

¥ Fact 25. Given that we now assume CTq, in particular EPF holds.

Proof. We choose as universal function © : N — (N — N) the partial function that on
input ¢ and x enumerates all derivations from Q and terminates with value y if a derivation
QFVYY.¢o.(Z,y) >y =7 is found for ¢, being the c-th formula.

Then given a partial function f : N — N, the assumption of CTq guarantees that f is
captured by some X;-formula ¢ = ¢, for some ¢. Then we deduce for all x and y

O.rly & QEYY . p (T, Y)Y =7y & faly
as desired to establish that © is universal. <

In the case of total functions, the capturing condition can be slightly simplified, which
yields the actual formulation of CTq used in [20].

¥ Fact 26 (Total CTq, cf. [20]). For all f : N — N there exists a X1-formula ¢(z,y) with:
Ve, QEYY . o(@y) &y = fx

From CTq we can derive all the representability conditions employed in Section 3. In fact,
we obtain more precise conditions involving X;-formulas ¢(x) providing uniform encoding
functions rn := ¢(m).

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.sigma1.html#Sigma1
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.sigma1.html#Sigma1
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#CTQ
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#CTQ
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_epfn
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_epfn
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_ctq_total
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_ctq_total

D. Kirst and B. Peters

¥ Definition 27. Given P, P’ : N — P and a X -formula ¢(x) we say that
© weakly ¥q-represents P if Pn < QF ¢(n) and
@ strongly X1-separates P and P’ if Pn — QF ¢(m) and P'n — QF -p(n).

So if ¢ for instance ¥;i-represents P : N — P, then rn := ¢(7) witnesses that the system
Sq weakly represents P in the sense of Definition 11, analogously for strong 3;-separability.

% Theorem 28 (Representability, cf. [20]). Q can represent predicates as follows:
1. Every enumerable predicate over N is weakly X1 -representable.
2. Every pair of disjoint enumerable predicates over N is strongly X1 -separable.

Proof. We establish both claims independently:
1. An enumerator e of P can be recast as a function N — N with Pz iff In.en = x + 1.
Applying CTq, we obtain a ¥;-formula ¢ capturing e and deduce:

Pr e dnen=z+1< Qren=57 © In.QF o7 ST) & QF Ik.o(k,ST)

Thus ¢(z) := Fk. p(k, S x) weakly X;-represents P.

2. A partial decider d : N — B can be constructed with Px iff dz | tt, and P’z iff dx | ff,
analogously to the partial decider defined in Lemma 9. Applying CTq, we obtain a
Y-formula ¢ capturing d and deduce:

Px = dzltt = QF oz, 1)
Pz =delff= QFg0) = QF p(x1)

Thus ¥ (x) := ¢(x,1) strongly X1-separates P and P’. <

Note that the weak representability property (1) of Theorem 28 could be used to ob-
tain independent sentences for all sound extensions of Q based on the intermediate result
Theorem 16. Already given the strong separability property (2), however, we immediately
conclude the stronger essential incompleteness of Q based on Theorem 20.

¥ Theorem 29. Any consistent aziomatisation A D Q admits an independent sentence.

Proof. We apply Theorem 20, so we only need to show that Q strongly separates K, and
K. Since these are enumerable, this follows from (2) of Theorem 28. <

Similarly, we can observe the essential undecidability of Q based on Theorem 21.
¥ Theorem 30. Any consistent aziomatisation A D Q is undecidable.

Proof. We apply Theorem 21 and then argue as in the proof of Theorem 29. <

6 Deriving Church’s Thesis for Robinson Arithmetic

Arguably, by the assumption of CTq we have sidestepped much of the actual work needed to
establish the essential incompleteness of Q. To showcase that most of this work concerned with
the representability properties can actually be done feasibly and only an axiom connecting
the synthetic level with a concrete model of computation is necessary, we now derive CTq
from a common version of Church’s thesis for p-recursive functions (EPF,). Note that
Church’s thesis for any Turing complete model could be consistently assumed as discussed
by Forster [9] and thus by the upcoming derivation we in particular justify the consistency
of CTq. We also remark that our derivation relies on the heavy-weight DPRM theorem
as mechanised by Larchey-Wendling and Forster [32], however, one could also give a less
informative but more direct arithmetisation of formal computation.

30:11

CSL 2023

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_weak_repr
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_weak_repr
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_weak_repr
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#ctq_weak_repr
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_incomplete
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_incomplete
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_undecidable
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.fol_incompleteness.html#Q_undecidable

30:12

Godel's Theorem Without Tears

We refer to [32] for full detail about an encoding of p-recursive functions in CIC and only
require a step-indexed interpreter ©* : N — (N — N). For ©" we then state EPF, which
will only be used to show that the graph of a given partial function is py-enumerable, and
therefore Diophantine by the DPRM theorem.

¥ Definition 31. EPF, states that ©" is universal for all partial functions:
Vi:N—=N3dc:NVey. Oz lye faly

To prepare the result that EPF, implies CTq, we need a bit more machinery about
Y1-formulas ¢, especially the completeness property that for deriving Q F ¢ it suffices to
show A F . This and forthcoming observations can be simplified by the fact that a prefix
of existential quantifiers can be compressed into a single existential quantifier:

¥ Lemma 32. For every ¥y -formula ¢ there is a Ay -formula o with Q - o < Jp.

Proof. By induction on the length of the quantifier prefix of ¢. For the inductive step it
suffices to show that two quantifiers can be merged into one, i.e. that for a given A;-formula
o there is a Aj-formula ¢ with Q F (3z. Jy. p(x,y)) <> (2. ¥ (2)). We set:

Y(z) = o Fk.z2=20k)ATy. Gk.2= kD y) Ap(z,y)

The sought equivalence is not hard to establish as one can instantiate z := x @& y. Proving
that 1 is Ay is more tedious but less insightful as this requires to establish decidability of
bounded quantifications via their equivalence to iterated disjunctions formally in Q. <

Note that from now on we use <y as the common notation for Jk.y = = @ k but that
we indeed also need to employ the symmetric variant 3k.y = k @ z in the previous proof
since Q does not recognise addition as commutative.

¥ Fact 33 (X;-completeness, cf. [20]). If ¢ is closed and 31, then N E ¢ implies Q F .

Proof. By Lemma 32 we may assume that ¢ has the form 3t where ¢ is A;. Then from
N E ¢ we obtain n : N such that N E 1(m). Now since (7) is closed we have either Q F ¥ (7)
or Q F “)(m) by the definition of Aj, where the former immediately yields Q F ¢ and where
the latter contradicts N F ¢ via soundness. |

We can now give a proof that EPF, implies CTq based on a technique resembling Rosser’s
trick in his refinement of G&édel’s original incompleteness proof. To provide some intuition,
the idea is to refine a formula weakly >;-representing a predicate such that a witness not only
guarantees a solution but also that all potential smaller solutions show similar behaviour.

¥ Fact 34. EPF, implies CTq.

Proof. Let f: N — N be given, the goal is to capture f by some ¥;-formula ¢. From EPF,
we obtain some ¢ such that f is computed by ©%. Now since ©F is p-recursive, we can apply
the DPRM theorem to obtain a polynomial equation p = ¢ recognising the graph of O4.
From the reduction verified in [23] we obtain that solvability of p = ¢ agrees with derivability
of vpq = IV p*r=¢* in Q

fely <« QF ‘Pp,q(fa?)

This intermediate result states that the graph of f is weakly X;-representable and can be
refined to a capturing as needed in CTq using a general variant of Rosser’s trick. First, with
Lemma 32 we refine ¢, 4(z,y) to a formula 3k. ¢ (z, y, k) where ¢ is A;. Secondly, we set

¢ (2,9, k) = Y@,y k) AWK .y ok <yokSy(y K) Sy =y
followed by ¢(z,y) = k. ¢/ (x,y, k) and verify that ¢ captures f as desired for CTq:

https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf_mu.html#theta_mu
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.epf_mu.html#theta_mu
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.sigma1.html#Sigma1_compression
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.sigma1.html#Sigma1_compression
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.sigma1.html#Sigma1_completeness
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.sigma1.html#Sigma1_completeness
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#epf_mu_ctq
https://www.ps.uni-saarland.de/extras/incompleteness/website/Undecidability.FOL.Incompleteness.ctq.html#epf_mu_ctq

D. Kirst and B. Peters

Assuming fx | y, we want to derive Vy’.go(f, y') <y’ = 7 formally within Q. Note

that from fz | y we obtain some natural number k with ¢(Z,7, k) as base. Using
¥1-completeness, we can in fact derive ¢'(%,7, k) as this is straightforward to verify in
the standard model .

This establishes the backwards direction of the sought equivalence, for the forward
direction assume ¢(Z,y’) for some variable y’. Hence ¢'(Z,y’, k') for some variable £/,
complementing ¢’ (Z,7, k) from before. As Q can derive that either 7@k < v/ @ k’ or
y' @ k' <7 @k, we obtain ¢’ =7 in either case from the construction of ¢'.

If conversely Q - Vy'. o(Z,y') <+ 4y =7, then in particular Q - 3k. ¢(Z, 7, k) from which
we obtain fz | y by the representability property of ¢, 4. <

In fact, we also expect that CTq implies EPF, as this basically boils down to the same
proof as in Fact 25, with the difference that all computability arguments are done for
p-recursive functions instead of synthetically.

7 Discussion

In this paper, we first gave generic incompleteness proofs of different strengths for abstract
formal systems with a negation operation, translating ideas of Kleene to the framework of
synthetic computability. The strongest version states essential incompleteness of formal
systems strongly separating canonical enumerable and disjoint predicates. Secondly, we

instantiated our results to first-order logic over the axiomatisation of Robinson arithmetic Q.

The instantiation was first approximated assuming CTq and then using EPF,, the DPRM

theorem, and Rosser’s trick to show strong »;-separability of disjoint enumerable predicates.

The remaining assumption of EPF,, is a common formulation of Church’s thesis, already
mentioned as a consistent axiom for constructive mathematics in the textbook by Troelstra
and van Dalen [52]. Though no consistency proof for the specific case of EPF,, in CIC has
been conducted, equivalent formulations of Church’s thesis have been shown consistent in
closely related type theories by Swan and Uemura [47] and Yamada [55], see also Forster’s
discussion [9] for an overview of formulations of Church’s thesis in CIC.

7.1 Coq Mechanisation

The mechanisation consists of two main parts: the abstract incompleteness proofs and their
instantiation to first-order logic. The former consists of roughly 400 lines of code, of which
only around 200 are required for the strongest incompleteness proofs, while the latter consists
of around 2500 lines of code. The development is based on Coq libraries of undecidability
proofs [13] and first-order logic [24], from which code particularly on synthetic computability,
the DPRM theorem, as well as the encoding of first-order logic is reused, respectively.

Mechanising and working with partial functions and Church’s thesis is straightforward.

The paper proofs, however, tend to follow a slightly different structure than their mechanised
counterparts, in particular when dealing with equivalences, such as in Fact 15. Otherwise,
the mechanisation of Sections 3 and 4 is remarkably unremarkable.

Mechanising the instantiation to first-order logic, however, was a lot more work. We
build upon an existing mechanisation of first-order logic by Kirst et al. [24] that includes
most fundamental definitions and lemmas for working with first-order logic. As opposed to
the definitions presented in this text, it defines formulas and terms to be parametric in a
signature, i.e. types of predicate and function symbols with their corresponding arities, and
uses de Bruijn indices instead of explicit naming to implement binding. While the former

30:13

CSL 2023

30:14

Godel's Theorem Without Tears

difference did not affect the mechanisation other than requiring some boilerplate code, the
latter repeatedly caused us problems. Mechanising structures that include binders, such
as predicate logic or programming languages, is well known to be much more tedious than
dealing with them on paper, where many lemmas on and properties of substitutions are
largely glossed over.

Notably, a lot of work (almost half of the mechanisation of the instantiation, by lines of
code) went into mechanising Q-decidability of bounded quantification and ¥;-completeness
due to the technicality of these results. These proofs relied heavily on the first-order proof
mode for Coq by Koch, as described in [22], allowing us to use tactics similar to the
ones included with Coq to show statements within first-order logic. The proof mode also
provides translations between a de Bruijn representation of logical formulas and a named
representation, which greatly improves the ergonomics of working with first-order logic. This
project would have been much more tedious if we did not have the proof mode available.

7.2 Related Work

Variants of Godel’s incompleteness theorems. The Godel-Rosser approach to incomplete-
ness was developed in the 1930s, primarily by Godel [16] and Rosser [42]. Kleene presented
his approach to incompleteness prominently in both of his books [29, 30], as well as multiple
papers [26, 27, 28, 29, 30]. Turing mentioned similar ideas to show incompleteness in his
seminal paper on the Entscheidungsproblem [53].

Different proofs of Godel’s first incompleteness theorem, among them some abstract ones,
have been considered by Beklemishev [2], Smullyan [46], as well as Popescu and Traytel [39].
Our approach especially shares similarities with the former two, as they also consider Kleene’s
computational proofs in an abstract setting, while the latter approach is mechanised but based
on the Godel-Rosser strategy. Another computational account of Gédel’s incompleteness
theorem was anticipated independently by Post [40].

Synthetic computability theory in CIC. The basic principles of synthetic computability
theory as introduced by Richman and Bauer [41, 1] were first applied to CIC by Forster
et al. [10]. An investigation of Church’s thesis [31, 52] to enhance the expressivity and
applicability of synthetic computability theory in CIC was conducted by Forster [7, 9, 8].
Note that Forster uses an axiomatic notion of partial functions which can be instantiated
with our representation (Definition 3). Moreoever, the obtained framework was used to
mechanise various undecidability results for several decision problems [13], including the
solvability of Diophantine equations [32] by Larchey-Wendling and Forster.

Hermes and Kirst [20] use synthetic methods to analyse Tennenbaum’s theorem [50] in
constructive type theory, stating that the standard model over N is the only computable
model of PA. In their development, they assume CTq for total functions (Fact 26) and leave
the derivation of CTq from a more common axiom for synthetic computability such as EPF,,
for future work. They also introduce a related but stronger semantic notion of ¥;-formulas
based on decidability properties (compared to our Definition 23) and derive corresponding
versions of weak Yi-representability (Theorem 28) and ¥;-completeness (Fact 33).

Mechanisations of Godel’s incompleteness theorems. The earliest mechanisation of
Godel’s first incompleteness theorem was developed by Shankar in 1994 [43] using Nqthm [3],
also called the Boyer-Moore theorem prover, a proof assistant based on Lisp. He does not
mechanise incompleteness of arithmetic, but of a finite set theory, which simplifies encoding
recursive structures, such as formulas and proofs, immensely. His development consists of

D. Kirst and B. Peters

around 20000 lines of code. A mechanisation of incompleteness of first-order arithmetic,
based on an axiomatisation similar to Robinson arithmetic, was first developed by O’Connor
in 2005 [35] using Coq, consisting of almost 44 000 lines of code. Another mechanisation of
incompleteness of arithmetic using HOL Light [18] was developed by Harrison in 2009 [19].

More recently, both of G6del’s incompleteness theorems were mechanised by Paulson in
2014 [37] in around 12000 lines of Isabelle [34] code. He showed incompleteness of a finite
set theory slightly different from the one used by Shankar. To our knowledge, he was the
first to give a complete mechanisation of Godel’s second incompleteness theorem, relying on
a proof outline by Swierczkowski [48]. Also using Isabelle, Popescu and Traytel [38, 39] in
2019 mechanised both incompleteness theorems using the Gédel-Rosser approach abstractly,
based on a much more subtle notion of formal systems than ours, additionally incorporating
substitutions, soundness, arithmetic, and more.

None of the mechanisations mentioned above used Kleene’s approach to incompleteness,
let alone a synthetic approach to computability arguments. However, for example O’Connor
used the representability of primitive recursive functions as an intermediate step to show
weak representability of first-order provability, similarly as in Gédel’s original proof.

The weak computational form of incompleteness for first-order arithmetic and set theory
in Coq was mechanised by Kirst and Hermes [23], as a by-product of a general approach
to the undecidability of first-order axiom systems. Their result differs from ours in two
ways: First, they do not obtain essential incompleteness since they rely on Kleene’s early
proof using the halting problem (see Theorem 12). Instead, they give an abstract notion of
formal systems incorporating soundness, and use it to deduce incompleteness of all sound
extensions of their axiomatisation. Secondly, their development does not deduce falsity from
the assumption of incompleteness, instead constructing a decider for the halting problem of
Turing machines, which also prevents them from constructing an independent sentence.

7.3 Future Work

We have not considered the conditions under which Rosser’s trick is applicable abstractly
but just gave the concrete proof of strong separability derived from weak representability for
Q in Section 6. Generalising this proof could simplify future instantiations of the stronger
incompleteness results, as long as the abstraction is sufficiently simple.

Similarly on the abstract level, it is conceivable that instead of working with EPF to
internalise that every function N — N is computable from the start, one could also axiomatise
a predicate (N — N) — P describing the computable functions with enough closure properties
to perform the intermediate constructions. Then one can still assume EPF to obtain the
same results for the trivially true predicate, but also an assumption-free version (then better
comparable to the related mechanisations) could be obtained if the predicate refers to a
specific model of computation for which the necessary closure properties are verified.

Our instantiation to first-order logic with Robinson’s Q currently relies on Larchey-
Wendling and Forster’s mechanisation of the DPRM theorem [32]. The DPRM theorem,
however, is a much stronger statement than the representability property we actually need,
and is considerably harder to show. Using our mechanisation of ¥;-completeness, it appears
feasible to obtain weak representability of y-enumerable predicates (or predicates enumerable
in any equivalent model of computation) for Q directly by just finding first-order formulas
that define these predicates in the standard model. Similar approaches have been taken by
O’Connor [35] and Paulson [37].

In Section 6, we showed that EPF, implies Church’s thesis for Q. Along the lines of
Fact 25, we expect the converse to be provable as well by first showing that, given any
partial function by Q, its graph is p-enumerable, which suffices for its p-computability.

30:15

CSL 2023

30:16

Godel's Theorem Without Tears

Mechanising this fact, however, would be challenging because we would have to implement

our first-order logic, that is, substitution, enumerability of provable formulas, etc. using

u-recursive functions. Automatic extractions of such functions for first-order logic, specifically
into a lambda calculus, have already been investigated by Forster, Kirst, and Wehr [11] using
a tool by Forster and Kunze [12].

—— References

1

10

11

12

13

14

15
16

17

18

Andrej Bauer. First steps in synthetic computability theory. Electronic Notes in Theoretical
Computer Science, 155:5-31, 2006.

Lev D. Beklemishev. Gdédel incompleteness theorems and the limits of their applicability. i.
Russian Mathematical Surveys, 65(5):857, 2010.

Robert S. Boyer, Matt Kaufmann, and J S. Moore. The Boyer-Moore theorem prover and its
interactive enhancement. Computers & Mathematics with Applications, 29(2):27-62, 1995.
Alonzo Church. A note on the Entscheidungsproblem. The journal of symbolic logic, 1(1):40-41,
1936.

Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis, INRIA, 1986.
Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for exponential
Diophantine equations. Annals of Mathematics, pages 425-436, 1961.

Yannick Forster. Church’s thesis and related axioms in Coq’s type theory. In Christel Baier
and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer Science
Logic (CSL 2021), volume 183 of LIPIcs, pages 21:1-21:19, Dagstuhl, Germany, 2021.
Yannick Forster. Computability in constructive type theory. PhD thesis, Saarland University,
2021.

Yannick Forster. Parametric Church’s thesis: Synthetic computability without choice. In
International Symposium on Logical Foundations of Computer Science, pages 70-89. Springer,
2022.

Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability in Coq, with
an application to the Entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2019.

Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems for first-order logic
analysed in constructive type theory: Extended version. Journal of Logic and Computation,
31(1):112-151, 2021.

Yannick Forster and Fabian Kunze. A certifying extraction with time bounds from Coq
to call-by-value lambda calculus. In John Harrison, John O’Leary, and Andrew Tolmach,
editors, 10th International Conference on Interactive Theorem Proving, volume 141 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1-17:19, Dagstuhl, Germany, 2019.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITP.2019.17.
Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Dominik
Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik Wehr, and Maximilian Wuttke. A
Coq library of undecidable problems. In CogPL 2020, New Orleans, LA, United States, 2020.
URL: https://github.com/uds-psl/coq-library-undecidability.

Torkel Franzén. Gédel’s theorem: an incomplete guide to its use and abuse. AK Peters/CRC
Press, 2005.

Kurt Godel. Uber die Vollstindigkeit des Logikkalkiils. PhD thesis, University of Vienna, 1929.
Kurt Godel. Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme 1. Monatshefte fir mathematik und physik, 38(1):173-198, 1931.

Kurt Gédel. Die Vollstandigkeit der Axiome des logischen Funktionenkalkiils. Monatshefte fiir
Mathematik und Physik, 37:349-360, 1930. URL: https://zbmath.org/?q=an’%3A56.0046.04.
John Harrison. HOL Light: a tutorial introduction. In Formal Methods in Computer-Aided
Design, pages 265-269. Springer Berlin Heidelberg, 1996.

https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://github.com/uds-psl/coq-library-undecidability
https://zbmath.org/?q=an%3A56.0046.04

D. Kirst and B. Peters

19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, 2009.

Marc Hermes and Dominik Kirst. An analysis of Tennenbaum’s theorem in constructive type
theory. In 7th International Conference on Formal Structures for Computation and Deduction
(FSCD 2022), 2022.

Douglas R. Hofstadter. Gédel, Escher, Bach. Basic books New York, 1979.

Johannes Hostert, Mark Koch, and Dominik Kirst. A toolbox for mechanised first-order logic.
In The Coq Workshop, 2021.

Dominik Kirst and Marc Hermes. Synthetic undecidability and incompleteness of first-order
axiom systems in Coq (extended version). To appear.

Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick Forster, Marc Hermes, Mark
Koch, Dominique Larchey-Wendling, Niklas Miick, Benjamin Peters, Gert Smolka, and
Dominik Wehr. A Coq library for mechanised first-order logic. In The Coq Workshop, 2022.
Dominik Kirst and Dominique Larchey-Wendling. Trakhtenbrot’s Theorem in Coq: Finite
Model Theory through the Constructive Lens. Logical Methods in Computer Science, Volume
18, Issue 2, June 2022. doi:10.46298/1mcs-18(2:17)2022.

Stephen C. Kleene. General recursive functions of natural numbers. Mathematische annalen,
112(1):727-742, 1936.

Stephen C. Kleene. Recursive predicates and quantifiers. Transactions of the American
Mathematical Society, 53(1):41-73, 1943.

Stephen C. Kleene. A symmetric form of Godel’s theorem. Journal of Symbolic Logic, 16(2),
1951.

Stephen C. Kleene. Introduction to Metamathematics, 1952.

Stephen C. Kleene. Mathematical Logic. Dover books on mathematics. Dover Publications,
2002.

Georg Kreisel. Church’s thesis: a kind of reducibility axiom for constructive mathematics,
1970.

Dominique Larchey-Wendling and Yannick Forster. Hilbert’s Tenth Problem in Coq (Extended
Version). Logical Methods in Computer Science, Volume 18, Issue 1, March 2022.

Juri V. Matijasevic. Enumerable sets are Diophantine. In Soviet Math. Dokl., volume 11,
pages 354-358, 1970.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283. Springer Science & Business Media, 2002.

Russell O’Connor. Essential incompleteness of arithmetic verified by Coq. In International
Conference on Theorem Proving in Higher Order Logics, pages 245-260. Springer, 2005.
Christine Paulin-Mohring. Inductive definitions in the system Coq - rules and properties. In
International Conference on Typed Lambda Calculi and Applications, pages 328—-345. Springer,
1993.

Lawrence C. Paulson. A mechanised proof of Gddel’s incompleteness theorems using Nominal
Isabelle. Journal of Automated Reasoning, 55(1):1-37, 2015.

Andrei Popescu and Dmitriy Traytel. A formally verified abstract account of Gédel’s incom-
pleteness theorems. In International Conference on Automated Deduction, pages 442-461.
Springer, 2019.

Andrei Popescu and Dmitriy Traytel. Distilling the requirements of Gédel’s incompleteness
theorems with a proof assistant. Journal of Automated Reasoning, 65(7):1027-1070, 2021.
Emil L. Post. Absolutely unsolvable problems and relatively undecidable propositions—account
of an anticipation (1941). Collected Works of Post, pages 375-441, 1994.

Fred Richman. Church’s thesis without tears. The Journal of symbolic logic, 48(3):797-803,
1983.

Barkley Rosser. Extensions of some theorems of Gédel and Church. The journal of symbolic
logic, 1(3):87-91, 1936.

30:17

CSL 2023

https://doi.org/10.46298/lmcs-18(2:17)2022

30:18

Godel's Theorem Without Tears

43

44

45

46

47

48

49

50

51

52

53

54
55

Natarajan Shankar. Proof-checking metamathematics. PhD thesis, The University of Texas at
Austin, 1986.

Peter Smith. An introduction to Gédel’s theorems. Cambridge University Press, 2013.

Peter Smith. Gédel without (too many) tears, 2021.

Raymond M. Smullyan. Gédel’s incompleteness theorems. Oxford University Press on Demand,
1992.

Andrew W. Swan and Taichi Uemura. On Church’s thesis in cubical assemblies. Mathematical
Structures in Computer Science, pages 1-20, 2019.

Stanislaw Swierczkowski. Finite sets and Godel’s incompleteness theorems. Dissertationes
Mathematicae, 422:1-58, 2003.

The Coq Development Team. The Coq proof assistant, January 2022. doi:10.5281/zenodo.
5846982.

Stanley Tennenbaum. Non-Archimedean models for arithmetic. Notices of the American
Mathematical Society, 6(270):44, 1959.

Amin Timany and Matthieu Sozeau. Consistency of the predicative calculus of cumulative
inductive constructions (pCulC). CoRR, abs/1710.03912, 2017. arXiv:1710.03912.

Anne S. Troelstra and Dirk Van Dalen. Constructivism in Mathematics. Vol. 121 of Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1988.

Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London mathematical society, 2(1):230-265, 1937.

Benno Van den Berg and Jaap Van Oosten. Arithmetic is categorical, 2011. Technical report.
Norihiro Yamada. Game semantics of Martin-Lof type theory, part III: its consistency with
Church’s thesis. arXiv e-prints, 2020. arXiv:2007.08094.

https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
http://arxiv.org/abs/1710.03912
http://arxiv.org/abs/2007.08094

	1 Introduction
	2 Preliminaries
	2.1 Constructive Type Theory
	2.2 Synthetic Computability Theory
	2.3 First-Order Logic

	3 Synthetic and Abstract Approach to Incompleteness
	4 Improving the Computational Incompleteness Result
	5 Essential Incompleteness of Robinson Arithmetic
	6 Deriving Church's Thesis for Robinson Arithmetic
	7 Discussion
	7.1 Coq Mechanisation
	7.2 Related Work
	7.3 Future Work

