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—— Abstract

Whether a changing string is member of a certain regular language can be maintained in the DynFO
framework of Patnaik and Immerman: after changing the symbol at one position of the string, a
first-order update formula can express — using additionally stored information — whether the resulting
string is in the regular language.

We extend this and further known results by considering changes of many positions at once. We
also investigate to which degree the obtained update formulas imply work-efficient parallel dynamic
algorithms.
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1 Introduction

Which queries allow for efficient, parallel updates of their results under changes to their
input? Dynamic descriptive complexity theory is a fundamental framework for addressing
this question, which was proposed independently by Patnaik and Immerman [17] as well as
by Dong and Su [8] in the early nineties. In their frameworks, dynamic update programs
formalized via first-order formulas are used for updating both query results and helpful
auxiliary data after changes to an input structure. Queries maintainable in this fashion
are said to be in the class DynFO and, due to classical correspondences [25], can also be
maintained in constant time by parallel random-access machines with polynomially many
processors.

The class DynFO is surprisingly powerful. It is known, for instance, that all context-
free languages [10, Theorem 4.1] as well as the reachability query [4, Theorem 1] can be
maintained by first-order update programs, and that all properties expressible in monadic
second-order logic can be maintained assuming that the input structure retains bounded
treewidth [6, Theorem 6.1]. All these results have been stated solely for changes that modify
a single tuple. Also, although these results imply that updates can be performed in constant
parallel time, they usually do not consider the necessary work, that is, the total number
of necessary computation steps, to perform such an update. A DynFO program that uses
first-order formulas of quantifier-depth ¢ to update k-ary auxiliary relations over a domain of

t+k if it is evaluated naively. In fact, many DynFO programs

size n essentially requires work n
require at least quadratic work, some updates for important queries as graph reachability
have a polynomial work bound with much higher degree.
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Towards practical applications, therefore two additional aspects need to be taken into
account: (1) How to deal with batch changes of non-constant size?, and (2) How much work
is required for updates after changes?

Several results for maintaining queries under batch changes have been obtained recently.
Reachability is in DynFO under changes of O(log)i gn) many edges [7, Theorem 1], and even
under changes of size O(log®n), for any ¢ € N, for undirected graphs or for insertions only
[5, Theorems 6 and 7]. For declaratively specified batch changes, it is known that undirected

reachability can be maintained under first-order defined insertions and acyclic reachability

under insertions defined by quantifier-free formulas [22, Theorems 4.2 and 4.5]. Context-free
languages are maintainable under X;-defined changes [21, Theorem 9].

For work-efficient dynamic first-order programs, not much has been done so far. A
framework for studying work-efficient DynFO is introduced in [18]. There it is shown that
under changes of single positions it is possible to maintain regular languages with O(n¢) work
for all € > 0, and that star-free languages and certain context-free (non-regular) languages
can be maintained with polylogarithmic work.

The focus of this paper is to study these two aspects for the membership problem for
regular languages, and in particular to explore how to deal with batch changes with as little
work as possible. Our main contributions are:

Regular (string) languages and regular tree languages can be maintained under changes

of polylogarithmic size. For regular string languages, only work O(n) is necessary, for

all e > 0.

Star-free (string) languages can be maintained under changes of polylogarithmic size with

polylogarithmic work. No significant improvement is possible with respect to the class of

languages.

The main proof tool for the upper bounds, already used in [5], is to exploit the power of
first-order formulas on small substructures. Intuitively, on small substructures, first-order
quantifiers are as powerful as (restricted) second-order quantifiers. Exploiting this yields
that first-order formulas are as powerful as LOGCFL on substructures of polylogarithmic
size — a fact previously observed in the context of constant-depth circuits of size 2" in 1,
cf. Lemma 8.1]. For maintaining queries under changes of polylogarithmic size, this can now
be used by performing LOGCFL computations on structures defined on the elements affected
by the change. We also investigate the expressive power of second-order quantification over
relations of bounded size.

We infer the lower bounds from classical lower bounds from circuit complexity.

Parts of these results have been included in the PhD thesis of the second author [26].

Outline. After recalling essential notions from descriptive dynamic complexity theory in
Section 2, we discuss how the expressivity of first-order formulas on small substructures can
be exploited for dealing with large changes to a structure in Sections 3 and 6. We then
introduce our techniques by establishing that regular languages can be maintained under
changes of polylogarithmic size in Section 4, and discuss how to generalize these techniques
to dynamic programs that use little work in Section 5.

2 The dynamic setting

We introduce the main notions of the dynamic complexity framework, following [23, 18].
We slightly adapt the framework to take into account both batch changes and the required
amount of work.
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Preliminaries. A schema o is a set of relation symbols and function symbols, each with a
corresponding arity. A relational structure S over some schema o consists of a finite domain D,
a relation RS C DF for each k-ary relation symbol R € ¢ and a function f°: D¥ — D for
every k-ary function symbol f € o. All structures considered in this work are equipped with
a linear order < on their domain D, so we assume that D is an initial segment {0,...,n—1}
of the natural numbers.

Words over an alphabet ¥ are represented by structures over the schema that includes <
and a relation R, for every o € ¥: domain elements represent the positions of the word, and
i € R, means that position i carries the symbol ¢. A position ¢ may be included in at most
one relation R, ; if it is not included in any such relation we say that it is empty and labeled
with e. Labeled trees have an additional relation E such that (u,v) € E holds exactly if v is
the parent of u.

First-order logic FO is defined in the usual way, we refer to [15] for details. We allow
if-then-else constructs in terms: if ¢; and to are terms and ¢ is a formula, then ITE (¢, t1,t2)
is a term. It evaluates to the valuation of t; if ¢ is satisfied, and to the valuation of ¢,
otherwise. Throughout this work we allow first-order formulas to access the linear order <
on the structures and relations 4+ and x that encode addition and multiplication on the
domain D, and write FO(<, 4, X) to make this explicit.

Circuits and complexity classes. First-order logic with the numeric relations <, +, x is
equivalent to (first-order uniform) AC?, the class of problems that are decided by uniform
families of constant-depth circuits with polynomially many “and”-, “or”- and “not”-gates,
where the former two may have unbounded fan-in. The complexity class LOGCFL contains
all problems that can be reduced in logarithmic space to a context-free language. It includes
NL and is included in AC!.

Dynamic problems. In our setting, a dynamic problem is characterized by (1) the schema
oin of an input structure, and (2) the set A of allowed change and query operations.
An example is the dynamic membership problem for some language L:

The input structure is a word w = wyg - - - wy,_1 of some length n over the alphabet ¥ of L.

Change operations have the form SET,(P), for o € ¥ U {e}. A concrete such change has
as parameter a set P of positions and is applied by setting the symbols for all positions
i€ P too.

The operation MEMBER allows querying whether the current word is in L, where empty
positions are ignored. So, it returns whether wg o ---ow,_; € L holds.

For the purpose of this paper, a change operation in general has the form 6(P), where
P is a relation variable. This definition reflects that we are interested in changes of many
elements at once. We use change operations that restrict the allowed size of a parameter
relation P, as allowing the input to change arbitrarily basically turns a dynamic problem
into a static problem, as one needs to solve the problem from scratch any time the input is
replaced. Mostly we are interested in changes that insert or delete a polylogarithmic number
of tuples with respect to the domain size.

To ensure that we are able to access changed elements with little work, so, without
enumerating over all elements, we demand that each change §(P) for a unary relation P
comes with a function CHD: D — D that maps the i-th element of the (linearly ordered)
domain D to the i-th element in P according to the order on D, for all i < |P|. If P is a
k-ary relation, there are k functions CHDy, ..., CHDy that map to the first, ..., k-th element
in the i-th tuple in P according to the lexicographic ordering.

35:3
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Query operations have the form Q(p), where p is a parameter tuple of element variables.
For instance, the MEMBER query from above is a query operation without parameters. An
example for a query operation on words with parameters is RANGE(¢, '), which receives two
positions ¢ and 7 as parameters and asks whether wyo---ow, is in L. We also consider query
operations that return domain elements instead of a truth value. For example, consider a
dynamic problem NEXTINSET that has as input a set S C {1,...,n}, change operations
INS(P) and DEL(P) that respectively insert a set P C {1,...,n} of numbers into S and
delete such a set from S, and query operations PRED(%) and SUCC(7), where PRED(4) returns
the predecessor of ¢ in S (so, the largest element of S that is smaller than ) and succ(q)
returns its successor (the smallest element of S that is larger than 7).

Maintenance of dynamic problems. The goal of a dynamic program P is to maintain some
dynamic problem II: it must be able to answer queries to the input structure which is allowed
to change according to the change operations. To do so, P stores and updates an auxiliary
structure A over some schema o,,, and over the same domain as the input structure. This
structure A consists of a set of auxiliary relations and auxiliary functions.

A first-order dynamic program expresses an update of its auxiliary structure as well as
the answer to a query by means of first-order formulas and terms. For each query operation
@ with parameters p it has a query rule of the form on query Q(p) yield ¢q(p), where ¢g
is a (first-order) query formula or query term, depending on the type of the result of @, over
the combined schema i, U 0,ux of input and auxiliary structure.

For each change operation §(P) and each auxiliary relation symbol R € o, with arity &
the dynamic program has an update rule of the form

on change §(P) update R at (t,(Z),...,tx(z)) as & (P;z) for all pco(z).

Here, ¢F(P;7) is a (first-order) update formula and ti,...,t; are first-order terms, all
over the schema i, U 0aux U {P,CHD}, and (%) is a constraint formula for the tuple
T =x1,...,xy of variables. The constraint formula is a conjunction of inequalities z; < f;(n)
for i € {1,...,£}, using FO(<, +, x)-definable functions f; : N — N.

After a change 0(P) to an input structure Z with current auxiliary structure A, the effect
of an update on the auxiliary relation R is as follows. Let Z’ be the input structure after
the change. The new relation RA" in the updated auxiliary structure A4’ contains all (old)
tuples @ € R4 such that a is not equal to (t1(D),...,tx(b)) for any tuple b that satisfies c.
Additionally, RA" contains all tuples (t,(b),...,t,(b)) such that b satisfies oo and @& (D)
holds in (Z, A, P, CHD).

Phrased differently, ¢ is used to enumerate all tuples b such that containment of
(t1(b),...,tx(b)) in R may change. Whether that tuple is inserted into R (if it was not
already present) or deleted from R (if it was already present) depends on the evaluation of
the update formula <p5R(l_)) on the changed input structure and the old auxiliary structure,
given the information on the change provided by P and CHD.

Update rules for auxiliary functions are defined analogously, but use an update term
(instead of pF(P;z)) that determines the new function value for a tuple (t1(b),...,t%(b))
such that b satisfies the constraint.

We say that a dynamic program P maintains a dynamic problem II, if it can always
answer all queries correctly. More precisely, P maintains II if applying a query operation
after a sequence « of change operations on an initial structure Z; yields the same result
as evaluating the corresponding query rule on the combined input and auxiliary structure

that is obtained by applying the update rules corresponding to « to (Zp,.Ap), where Ay is
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an initial auxiliary structure. Following Patnaik and Immerman [17], we demand that the
initial input structure Zy is empty, so, has empty relations and all function values being 0.
The initial auxiliary structure is over the same domain as Zy and is defined from Zy by some
first-order definable initialization.

The class DynFO is the class of all dynamic problems that are maintained by some
first-order dynamic program.

The work of a dynamic program. It is not immediately clear how to measure the work
of a dynamic program, as first-order logic is declarative. Schmidt et al. [18] introduce a
detailed framework that allows for a comparatively easy way to specify updates and queries,
as well as to associate a work bound. This is done via constant-time PRAMs that implement
a first-order dynamic program, for which the amount of work is well-defined as the total
number of the steps of the processors.

The framework of [18] introduces more intricate syntax elements for specifying dynamic
programs that allow in some cases for a translation into more efficient PRAMs. For example,
in the syntax of [18] one can distinguish parts of an update formula that need to be evaluated
for every tuple (¢1(Z),...,tx(Z)) and parts that only need to be evaluated once.

In this paper, we are only interested in work bounds of the form “polylogarithmic in n”
or “O(n®) for arbitrary € > 07, so single logarithmic factors are less important. This allows
us to be a bit coarser.

For us, the work of a first-order formula is just the number of wires in the AC? circuit that
is obtained by the straight-forward translation of first-order formulas into bounded-depth
circuits. We allow quantifiers of the form 3z < f(n) and Vo < f(n), for FO(<, +, x)-definable
functions f: N — N, to prevent that quantifiers always introduce a factor of n for the work
bound.

The work of a query rule is the work of its query formula. The work of an update
rule with constraint formula o (Z) = 21 < fi(n) A--- Axe < fo(n) is the product of the
functions f; and the work of the update formula, as the update formula needs to be evaluated

fi(n) - -+ - fe(n) times.

An example: NextInSet. To illustrate the setting, and because we use this result in
Section 5, we show that NEXTINSET can be maintained under changes of polylogarithmic
size with a polylogarithmic amount of work. Recall that NEXTINSET provides two queries
PRED(%) and succ(i) that return the predecessor respectively the successor of 4 in a linearly
ordered set S that is subject to insertions and deletions.

» Lemma 1. For every ¢ € N there is a d € N such that NEXTINSET can be maintained in
DynFO(<, +, x) under changes of size log®n with O(log? n) work.

Proof. We adapt the proof of [18, Lemma 4.1] that shows that NEXTINSET can be maintained
in DynFO with work O(logn) under insertions and deletions of single elements. The dynamic
program maintains a complete binary tree with ordered leaves {1,...,|D|}, where D is the
domain, including a function anc such that anc(x, k) returns the k-th ancestor of z in the
tree. We associate with every tree node an interval according to the leaves in its subtree.
We say that a node covers an element if it is in the interval associated with the node. The
auxiliary structure stores for each node the minimum and maximum element of S that is
covered by the node. A succ(i) or PRED(%) query can be answered with O(logn) work using
this information (cf. [18]).

35:5
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To update the auxiliary information when log®n elements are inserted or deleted, one
can enumerate the log®n - logn tree nodes for which the information needs to be updated:
all nodes that lie on the path from a leave corresponding to a changed element to the root of
the tree. For each such node z, the new maximum is calculated as follows:

Insertions. First, find the largest inserted element that is covered by x: the inserted

element ¢ that is covered by x and is larger than any other inserted element covered by =z.

This element can be identified with log?* n work. Compare ¢ with the current maximum

of  and update the maximum if necessary.

Deletions. If the current maximum is deleted, use PRED(%) to query the predecessor

for each deleted element ¢ covered by x, using O(logn) work per query. By pairwise

comparison, find the largest such predecessor that is not itself deleted. If it is covered by

x, it is the new maximum, otherwise there is none.

The minimum of = is updated symmetrically. In total, an update can be performed using
polylogarithmic work.

Formally, the update rule for the auxiliary function max that maps an inner node z to
the maximal element of S covered by x is as follows:

on change INS(P) update max at anc(CHD(z1),x2) as ¢ (1, %2)

for all z; <log°n Az <logn

Here, we address an inner node = as the xs-th tree-ancestor of the z1-th changed element.
The update term @R (x1,x2) is defined as ITE(maxins > MaXeyr, MaXins, MaXcyr ), where
maXc,, = max(anc(CHD(x1),x2)) gives the current maximum for node x, and max;,s is the
maximal changed element CHD(z;) such that the formula anc(CHD(z1), x2) = anc(CHD(x;), x2)

is satisfied. <

3 First-order logic on substructures of polylogarithmic size

When a string is changed in polylogarithmically many positions, first-order update formulas
for maintaining some language L have to be able, at a minimum, to decide for strings of this
size whether they are a member of L. This is necessary for dealing with polylogarithmically
many changes of subsequent positions. In the more general case that the changes are not
subsequent, changes of polylogarithmic size partition a string into as many pieces. Known
information about these pieces needs then to be combined by first-order update formulas to
decide membership in L for the new string.

Thus, for maintaining properties under changes of polylogarithmic size, it is helpful to
know the expressive power of first-order formulas on small substructures of this size.

We use the well-known fact that many complexity classes can be captured by bounded-
depth circuits of subexponential size.

For the moment we simply state the result and infer a corollary suitable for our needs.
Later, in Section 6, we will re-visit these results from another perspective.

» Lemma 2 ([1, cf. Lemma 8.1]). For every language L € LOGCFL and every € > 0 there is
a d such that L can be decided by depth-d circuits of size 2.

It follows that first-order formulas can express LOGCFL-computable queries on substruc-
tures of polylogarithmic size, which we formalize in Corollary 3. See also [5, Theorem 3]
for an analogous statement regarding NL-computable queries. Corollary 3 requires that the
circuits from Lemma 2 can be constructed uniformly, which is implicit in the proof given
by [1] and will be made explicit in our discussion in Section 6.
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» Corollary 3. Let k and c be arbitrary natural numbers, and let QQ be a k-ary, LOGCFL-
computable query on o-structures. There is an FO(<, +, X) formula ¢ over schema o U {C}
such that for any o-structure S with n elements, any subset C' of its domain of size at most
O(log®n), and any k-tuple a € C* it holds that

a € Q(S[C)) if and only if (S,C) = ¢(a).

Here, S[C] denotes the substructure of S induced by C'. Moreover, there is an equivalent
ACO circuit of size O(n€), for every e with 0 < e < 1.

Proof. Let ), ¢ and € be fixed with 0 < ¢ < 1. The bounded-depth circuits that are
guaranteed to exist by Lemma 2 for ¢ = £ have polynomial size 2(logn) — O(n), so, are
AC-circuits. As every AC-circuit has an equivalent FO(<, +, x)-formula, the statement
follows. |

4 Regular languages under many changes

We show in this section that regular languages of strings and trees can be maintained in
DynFO. For now, we will not aim for work-efficient updates; this aspect will be treated in
Section 5. We prove these intermediate results also to introduce the techniques.

For both string and tree languages our approach is similar. Every change affects a
polylogarithmic number of elements of the underlying string or tree, respectively. We
enrich the substructure that is induced by these affected elements by information from the
maintained auxiliary relations. Thanks to Corollary 3, the first-order update formulas can
express any query from LOGCFL on this substructure, which provides sufficient information
to tell whether the full structure is a member of the regular language.

» Theorem 4. One can maintain in DynFO(<, 4, X)

(a) membership in any regular (string) language, and

(b) membership in any regular tree language

under changes of log®n many symbols, for any fired ¢ € N, where n is the size of the
underlying string respectively tree.

Proof. Towards (a), fix a regular language L over some alphabet 3, and let A = (Q, %, 4, qo, F')
be a DFA for L.

To maintain membership in L under changes of single positions, the dynamic program
by Gelade et al. [10] uses auxiliary relations of the form S, ,(k,¢) for all states p and ¢ of

A. It maintains that pairs (k,¢) of positions are in S, , if and only if 6*(p,wy, - - - wy) = q.

Here, w = wy - - - w, is the input word and ¢* is the extension of the transition function
¢ from symbols o € ¥ to words from X*. Clearly, w € L if and only if (1,n) € Sy, 4, for
some accepting state gy € F' of A; and this condition can easily be expressed by a first-order
formula.

We show that these auxiliary relations can be maintained in DynFO(<, +, x) under
changes of polylogarithmic size. In a nutshell, we show that updating these auxiliary relations
after such changes boils down to computing the product of polylogarithmically many elements
of the transition monoid of A. This product can be computed in FO(<, 4+, x) by Corollary 3,
as it can be done in NC!' C LOGCFL.

We make this approach more precise now. When w = wj - --w, is changed to w’ =
wj - - -wy,, the auxiliary relations S, , are updated as follows. An interval (k,¢) is in the
new auxiliary relation S, 4 if and only if 6*(p, wy, - - - w}) = ¢. The update formula, for each
interval (k, ),

35:7
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(1) splits wy, - - - wy into at most O(log®n) pieces uo, ..., um, according to the changes;

(2) assigns to each piece u; its corresponding element ; : Q — @ of the transition monoid
of A, i.e., the function v; that maps p’ € Q to ¢’ € Q if A transitions from p’ to ¢’ when
reading u;;

3) computes the product v & 4/ o---0~); and
0 m 0
(4) lets (k,£) € Sp 4 if and only if v(p) = g¢.

More precisely, suppose the change operation affected the positions {i1,...,%,} in the
interval (k,¢). For (1), define P < {ig,i1,...,0m,ims1}, where ig = k and ipqq = £+ 1.
For each 0 < j < m, the piece u; is defined as the substring w; ---wj  _ i
that starts with a changed position ¢; and ends just before the next changed position (except
for the border cases). For (2), the element +; of the transition monoid for A on u; can be
inferred from the stored auxiliary relations. The computation in (3) can be performed in
FO(<, +, x) due to Corollary 3.

Towards (b), fix a regular tree language L. We assume that input trees T' are represented
as structures with relations FIRSTCHILD and NEXTSIBLING with the obvious meaning. This

is without loss of generality, as these relations can be defined by first-order formulas for any

/
p of wi ---w

ordered tree. Using these relations, we can regard T to be a binary tree. It is well-known
(see for example [16, Lemma 1]) that any regular tree language over ranked or unranked trees
is accepted by a (finite deterministic bottom-up) tree automaton that reads the FIRSTCHILD-
NEXTSIBLING encoding of the tree. Such a tree automaton A = (Q, %, 0, qo, F'), with state
set (), transition function §: @ x @ x ¥ — @, initial state gy and set F' of accepting states,
assigns in a bottom-up run to a leaf with symbol o the state d(qo, go, o) and to an inner
node with symbol o and children labeled with states p, ¢, respectively, the state d(p,q, o). It
accepts if the state assigned to the root is in F'.

To maintain membership in L under changes of a single node label, Gelade et al. in [10]
mainly use binary auxiliary relations that are again of the form S, 4(u, v), for states p,q € Q.
Intuitively, (u,v) € S, means that A assigns the state p to the node u, if the state for node
v is forced to be ¢ — no matter which state A actually assigns to v based on its subtree and
the transition function §.

We show that these auxiliary relations can be updated after changes of the labels of
polylogarithmically many nodes. For this we assume the existence of the descendant relation
on the tree nodes, which can be made available as an auxiliary relation. Our strategy is
analogous to part (a): we show that first-order formulas can define a labeled binary tree
with polylogarithmically many nodes such that from the information whether this tree is a
member of some other regular tree language we can infer whether the changed input tree
is in L, and how the other auxiliary relations need to be updated. Thanks to Corollary 3,
this approach can be implemented by FO(<, 4+, x) update formulas, as regular tree language
membership (for deterministic bottom-up automata) is in NC! C LOGCFL.

We give some more details. Let P be the set of at most O(log®n) nodes whose labels are
modified by a change, resulting in an input tree 77. Without loss of generality, we assume
that for two nodes v, v’ € P also their lowest common ancestor is in P, and that if for a node
v € P a descendant from its left or right subtree is contained in P, also some descendant from
its other subtree is in P. So, with the help of the descendant relation on T', we can define
in FO a binary tree Tp with node set P and edges from a node to its “nearest descendants”
inT.

We assign labels to the nodes of Tp according to the behavior of A on the subtree of T”
that is rooted in the respective node. If v € P is a leaf of Tp, then its label is just the state
q € Q that A assigns to this node in T”. As the only difference in the subtree rooted at v
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between T and T” is the label of v itself, this state can easily be expressed using the old
auxiliary relations and the transition function of A. If v € P is an inner node of Tp, its label
is a function v: Q X Q — @. Intuitively, this labels says that if A assigns in T’ some states
P, q to the nodes uy,us that are the children of v in Tp, then it assigns the state v(p, q) to
v in T”. This label can be expressed in first-order logic from the old auxiliary relations as
follows. Let v1,v9 be the children of v in T such that u; is a descendant of v; and us is a
descendant of vs. If the state p is assigned to u; in T’, then the state p’ is assigned to v; that
satisfies (u1,v1) € Spp. Symmetrically one can determine the state ¢’ that is assigned to vy
in T’. The state that is assigned to v can then be read from the transition function of A.
Another bottom-up tree automaton can “evaluate” Tp in the natural way. By Corollary 3,
an FO(<, 4, x) update formula can determine the state that this automaton assigns to every
inner node, and in particular the state ¢’ € @ that it assigns to the root of T),. From this
state, the update formula can determine the state g that A assigns to the root of T”, and
therefore can check whether 77 € L. The auxiliary relations of the form S, , can be updated
similarly. |

5 Regular languages, big changes, small work

So far we have seen that membership in regular languages can be maintained under polylog-
arithmic changes. In this section, we will re-visit this result and analyze the required work.
We employ the framework for work-efficient dynamic complexity introduced in Section 2.

In [18] it was shown that regular languages can be maintained with work O(n¢) under
single-tuple changes. We first lift this result to changes of polylogarithmic size. After arguing
why polylogarithmic work cannot be achieved for polylogarithmic changes, we will then
take a look at first-order definable regular languages. Here, again, we lift a result from [18]
and show that such languages can be maintained with polylogarithmic work under changes
of polylogarithmic size. It remains open whether membership in regular languages can be
maintained in DynFO with (’)(logd n) work for some d under single tuple changes; in Section 7
we will discuss why proving barriers likely requires new insights.

We start by analyzing the work required for maintaining membership in regular languages
under polylogarithmic changes.

» Theorem 5. One can maintain membership in reqular languages in DynFO(<, 4, X) with
work O(n°) under changes of size log®n, for ¢ € N and all € > 0.

Proof. In Theorem 4, membership of a regular language L was maintained by storing, for
each pair (k,£) of positions of the input string w, the behavior of a DFA A = (Q, %, 4, qo, F)
accepting L when reading wy, - - - wy. When a symbol is changed, ©(n?) such pairs are affected
in the worst case, resulting in an at least quadratic amount of work for processing large
changes.

Schmidt et al. [18] introduced a technique for decreasing the amount of work to O(n¢),
for all € > 0. The technique can be lifted to polylogarithmic changes in a straightforward
fashion. For the sake of completeness we sketch the idea.

The idea in Schmidt et al. [18] is to store elements of the transition monoid of the
automaton only for some well-chosen subwords called special intervals, such that each
position is contained in only (’)(ne/) special intervals, for any ¢ > 0. These special intervals
are arranged in a hierarchy whose depth depends solely on €. It is then shown that the
element of the transition monoid for each (not necessarily special) interval can be computed
bottom-up with the help of a constant number of special intervals.
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We use the same hierarchy of intervals for polylogarithmic changes and apply the strategy
from the proof of Theorem 4. Changes are now distributed to intervals of the hierarchy. As
each changed symbol affects O(nel) special intervals, O(log®n - nel) special intervals need to
be updated.

For each special interval that contains at least one changed position, we execute steps
(1)—(4) from the proof of Theorem 4. Step (1) splits the interval into pieces, each containing
exactly one changed position; this requires O(log®n) work. Step (2) computes the transition
monoid element of each piece; this requires constant work per piece. Step (3) computes the
product of up to O(log® n) monoid elements; this can be done in O(n¢") work, for any €’ > 0
by Corollary 3. Step (4) requires a constant amount of work. This sums up to O(ne'/) work
needed to update one pair (k,¢) in a relation Sy, .

In total, O(log®n - n¢ -n¢") = O(nf) work is needed to process an update of size log® n,
for suitable choices of €, €. <

We now show that one cannot do much better than stated in the previous theorem:
there are regular languages which cannot be maintained with polylogarithmic work under
polylogarithmic changes. Even more, we will exactly characterize the languages that can be
maintained with polylogarithmic work under such changes.

A language is star-free if it can be expressed by a regular expression without Kleene star
but with negation. Star-free languages have many equivalent characterizations: A language
is star-free if and only if it is first-order definable (with only <) if and only if its syntactic
monoid is aperiodic [20]. The syntactic monoid of L is the monoid with the least number of
elements that recognizes L. Here, a monoid M recognizes a language L C 3* if there is a
morphism h: ¥* — M and a set ' C M such that L = h=1(F). A monoid M is aperiodic if
there is a k such that m* = m*+! for all m € M.

» Theorem 6. For a reqular language L, the following are equivalent:

(a) L is star-free.

(b) For all ¢c € N and some d € N depending on ¢, L can be maintained in DynFO(<, +, x)
with work O(log® n) under changes of size O(log®n).

We first prove that non-star-free languages cannot be maintained with polylogarithmic
work under polylogarithmic changes. The following lemma will be helpful.

» Lemma 7. If a language L can be maintained in DynFO(<, +, X) with f(n) work under
insertions of size logn then there is a constant-depth circuit of size O(f(2")) that decides L
(for inputs of size n).

Proof sketch. Suppose L can be maintained in DynFO(<,+, x) with f(n) work under
insertions of size logn. From the update formulas for L one can construct a constant-depth
circuit family which has O(f(n)) many gates for inputs of length logn, using the standard
conversion from first-order formulas to circuits. Such a circuit simulates the update formulas
for the insertion of the input into an empty structure. The circuit family thus has O(f(2"))
many gates for inputs of length n. |

It is well-known that for computing the number of 1s modulo a prime p occurring in a
bit string of length n, a Boolean circuit of depth ¢ requires 20(n' /) gates (see [24] or, for
instance, [13, Theorem 12.27] for a modern exposition).

» Lemma 8. If a regular language L is not star-free, then it cannot be maintained in
DynFO(<, +, x) with work O(log® n) under changes of size O(logn), for any d € N.
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Proof. Suppose that L is a regular language which is not star-free. Then its syntactic monoid
M is not aperiodic. Therefore, there must be an m € M as well as k,p € N such that
mP = mFtP and mF+? #£ mP for all 1 < i < p, that is, from some point onward, multiplying
m with itself becomes periodic with period p.

Assume, towards a contradiction, that L can be maintained with work O(log? n) under
changes of size O(logn), for some d € N. Then, by Lemma 7, there is a constant-depth
circuit of size O(f(2")) = O(log® 2") = O(n?) for L, and therefore also a circuit family C of
this size for the word problem for M.

Let p be the smallest prime factor of p and let ¢t = g. From the family C = (C,,)nen,
we construct a constant-depth circuit family D = (D,,)nen of size n? which computes the
number of 1’s in a 0-1-string modulo p. The idea is to use the period of the element m € M
for simulating “modulo p”. For an input of length n, the circuit D,, with input a;...a,

simulates Cy, 1 for the input my ... my,+ defined via

m, fore<k
mi =<¢m, ifi>kand ag_p)moan =1
1, ifi>kand @) modn =0

So, from an input with ¢ many 1s we get an input that contains m exactly ¢t/ + k times. So,
my - Mypyr, = mF if and only if £ =0 (mod p).
The existence of D contradicts Smolensky’s lower bound [24]. <

We now show that star-free languages can be maintained with polylogarithmic work
under polylogarithmic changes. In [18], this was shown for single tuple changes.

» Lemma 9. One can maintain membership in star-free languages in DynFO(<, +, x) with
work O(logd n) under changes of size log®n, for all ¢ € N and some d € N depending on c.

Proof. The statement follows from a detailed analysis of the dynamic programs used in [18,
Theorem 5.3] (see also the long version [19, Theorem B.4]), which is based on the approach
used in [9].
We sketch the main ideas and necessary adaptations. Instead of maintaining membership
of a star-free language L, we aim at maintaining range queries for L’s syntactic monoid M.
The dynamic problem RANGE(M) for a monoid M has as input sequences mgq - - - m,—1 of
elements of M, allows for setting positions of this sequence to some element m € M U {e},
and support queries of the form RANGE(Y, r) which return the product mgo---om,.
Syntactic monoids M of star-free languages have one of the following four forms [14]:
(a) M = {1}
(b) M ={1,0,...,0"% = o**1} for some k
(c) oo’ =0c forall o,0' € M — {1}
(d) M =V UT for submonoids V,T C M such that opror € T — {1} for all opy € M, 07 €
T-{1}

The idea in [19, Theorem B.4]) and [9] is to inductively construct dynamic programs for
RANGE(M) for each of the Cases (a)—(d). For Case (a) this is trivial. Cases (b) and (c¢) can
be maintained using a single NEXTINSET instance: For case (b), one needs to find at most k
non-neutral symbols. In case (c), the product depends on the first symbol differing from 1.
This instance changes only at polylogarithmic many positions and can therefore be updated
with polylogarithmic work due to Lemma 1.

Case (d) is more complicated. Suppose m is the input sequence of monoid elements. The
dynamic program for RANGE(M) relies on queries to the following data structures:
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A RANGE(V) instance for the sequence v = vg - - - v,,—1, where v; = m; if m; € V and else
V; = 1

A RANGE(T) instance for the sequence t = to---t,—1, where t; = m; if m; € T — {1}
and else t; = 1.

A NEXTINSET instance for the set of switching positions i where m; € T — {1}, but
mi+1 ¢ T — {1}

A RANGE(T) instance maintaining the sequence u = ug - - - 41, where wu; is the product
mjy1 ... m; of the elements between the last switching position j before 7 and i if 7 is a
switching position, and 1 otherwise.

All four data structures can be maintained in polylogarithmic work under changes of poly-

logarithmic size: NEXTINSET due to Lemma 1 and both RANGE(V) and RANGE(T') by

induction.
The dynamic program for RANGE(M) can answer queries by combining the answers of

constantly many queries to the above data structures (see [19, Theorem B.4]) and [9]).
Next, we describe the strategy how the dynamic program for RANGE(M) handles updates

of polylogarithmic size to the input sequence m. To this end the program:

(1) Updates the sequences v and ¢.

(2) Computes the new switching positions: Each changed position in m possibly causes a
constant number of elements to change their switching status (depending on the update
and its position in its old block, see [18]). For each such position 4, check whether i is a
switching position after the update by checking whether m;, m; ;1 are in T — {1}.

(3) Computes the new block product u; for all switching positions of affected blocks.

(4) Updates the NEXTINSET instance for the switching positions, the RANGE(T) instances
for t and u, and the RANGE(V) instance for v.

Steps (1) and (2) are straightforward and only update polylogarithmically many positions.
Step (3) requires only polylogarithmically many work, as only polylogarithmically many
positions changed their switching status and thus the blocks can be updated by polylogarith-
mically many queries to the (old) RANGE(T') instance for u, each requiring polylogarithmic
work. Step (4) can be done in polylogarithmic work, since for each of the instances only
changes of polylogarithmic size occurred and those can be handled with polylogarithmic
work. <

This also concludes the proof of Theorem 6.

6 Expressive power of quantification over small sets

In this section, we re-visit the power of first-order logic on small substructures. In the
previous sections, via Corollary 3 and its usage, we have seen that for maintaining properties
with first-order update formulas under changes of polylogarithmic size, it is essential to know
the expressive power of first-order logic on substructures of polylogarithmic size. Corollary 3
relies on the existence of constant-depth circuits of subexponential size for all LOGCFL
problems, see Lemma 2.

We now take a different perspective and relate the expressive power of first-order logic
on small substructures to the expressive power of second-order logics where second-order
quantification is restricted to relations of small size. The results of this section provide an
alternative proof of Lemma 2, but also give further insights into second-order logics with
size-restricted quantification, which we think is interesting in its own right.
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An element of a domain D of size n carries logn bits of information. Intuitively, assuming
the presence of arithmetic relations, this means that in substructures over a subdomain
D’ C D of size logn, first-order quantifiers can quantify subsets: if, e.g., an existential
quantifier selects a number &k € {0,...,n — 1}, then the subset A C D’ is selected where the
i-th element of D’ is in A if the i-th bit of k in its binary encoding is 1.

Similarly, first-order quantifiers over D can quantify subsets of size {/|D’| over subdomains
D’ C D of polylogarithmic size log®n, for some d > c¢. The binary string of length logn that
is obtained from an existentially quantified number k € {0,...,n — 1} is split into clé‘;%gn
segments of length cloglogn each. The quantified subset A C D’ contains the i-th element
of D’ if one segment is the binary encoding of i. As Cl(l)g%gn € QYD) = Q(/1og n) for
all d > ¢+ 1, the claim follows.

The quantification of relations with arity £ > 1 can be simulated as well over subdomains
of size log®n: a tuple of k elements can be encoded by a bit string of length ckloglogn.

This gives rise to the following variants of second-order logic, where the size of quantified
sets is restricted. For r € N, the subset SO of second-order logic allows quantification over
relations of arity at most r. For a fixed function f : N — N, we define f(n)-rSO to be the
logic that has the syntax of SO but restricts quantification to relations with at most f(n)
many tuples, where n is the size of the underlying domain. For r = 1, this logic is called
f(n)-MSO.

Of course, f(n)-rSO has the same expressive power as rSO if f € Q(n"). We will now
highlight that it is still very expressive when the size of quantified sets is bounded by functions
f € o(n). Our main interest is in functions f(n) = /n, for arbitrary fixed ¢, due to the
above motivation.

In the rest of this section we discuss the power of f(n)-rSO (see Subsection 6.1) and in
particular of f(n)-MSO (see Subsection 6.2).

6.1 The power of f(n)-SO

The restriction of SO to quantification over relations of size /n is very expressive, especially
if we allow formulas to use built-in arithmetic relations.

There are complete problems from each level of the polynomial hierarchy contained in
/n-MSO for each ¢ € N. For instance, a padded version of 3-colorability, where positive
instances with m edges come with m¢ isolated nodes (and instances without such isolated
nodes are negative), is still NP-complete yet expressible in /n-3IMSO.

While some of its problems are contained, it is unlikely that all of NP is contained in
/n-rSO for some 7 > 1 and any r € N, as this would contradict the exponential time
hypothesis: 3-SAT cannot be solved in time 2°(") [12]. This is due to the fact that all
/n-rSO-definable problems have (bounded-depth) circuits of subexponential size.

» Proposition 10. If a problem L can be expressed by a /n-rSO formula, for some ¢,r € N,

then there is a d € N such that L can be decided by a FO-uniform family of depth-d circuits
of size 20Uogn¥n)

Proof sketch. We use the naive translation from formulas to circuits. Suppose there is an
/n-rSO formula ¢ that expresses L, for some natural numbers ¢ and r. Let d be the depth
of the syntax tree of . Given some n, from the syntax tree of ¢ we construct in the natural
way a depth-d Boolean circuit C), for input strings of length n as follows. Every existential
quantifier is replaced by an “or” gate, with fan-in n for a first-order quantifier and with
fan-in upper-bounded by n” V" for an ¢/n-rSO quantifier. Analogously, universal quantifiers
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are replaced by “and” gates with fan-in n or n” V™ respectively. The obtained circuit is a

tree of depth d and of degree at most n” V™, so the number of gates is upper-bounded by
(nr%)d+1 _ 2(9(logn€/ﬁ). <

» Corollary 11. If 3-SAT € /n-rSO for some i,r € N with ¢ > 1, then the exponential time
hypothesis fails.

Thus, NP can likely not be captured by /n-rSO. This raises the question, which
complexity classes can be captured.

The following theorem shows that /n-rSO captures LOGCFL. In conjunction with
Proposition 10, it gives an alternative proof for Lemma 2 (which is from [1, Lemma 8.1]).

» Theorem 12. Let Q) be a query that is computable in LOGCFL. There is an r € N such
that Q is expressible in /n-rSO(<, +, x), for every ¢ € N.

To prove this result, we show that there is an r € N such that /n-rSO contains a problem
that is LOGCFL-complete under FO(<, 4, x) reductions, for every ¢ € N. It follows that for
every problem L € LOGCFL there is a d-dimensional FO(<, +, x) reduction to the complete
problem, for some d € N, and therefore that L is in &/n-(dr)SO(<, +, x) for every ¢ € N.

The problem we consider is the word problem for groupoids. A (finite) groupoid G =
(G, 0,1) consists of a finite set G and a binary operation o: G x G — G on this set with
identity 1. Note that o does not need to be associative. The F' word problem over a groupoid
G for a fixed set F' C G asks: given a sequence wi, .. ., w, of elements of G, can one introduce
parentheses such that wy o - - - o w,, evaluates to an element from F'?

» Lemma 13 ([2, Corollary 3.4]). There is a groupoid G = (G,0,1) and a set F C G such
that the F word problem over G is LOGCFL-complete under FO(<, +, X)-reductions.

» Proposition 14. Let G = (G,0,1) be a groupoid and let F C G be a set of groupoid
elements. The F word problem over G is in /n-2S0, for every ¢ € N.

Proof. Let ¢ € N be fixed and let wy,...,w, be the input sequence. We first explain how
the problem can be solved for sub-sequences wy, ..., w, of length r — ¢ + 1 = /n of the
input. Note that /n parentheses are sufficient to fully determine the evaluation order on
this sub-sequence. A /n-2SO formula ¢} can existentially quantify |G| binary relations P,
for all g € G, with the intention that if (i1,42) € P, then there is an evaluation order such
that w;, o---ow;, evaluates to g, and this evaluation order is encoded by further tuples in
the relations (P;)4eq. A first-order formula can check whether these quantified relations
encode a consistent evaluation that results in a fixed element h € G.

For the following formulation of ¢} we assume that the input sequence is encoded by sets
R, for each g € G. The construct z + 1 is an abbreviation for the successor of z which can
be easily expressed in FO using the linear order on the positions. For ease of presentation,
we assume that parentheses are also introduced for single positions, so the evaluation order
for two positions wq, wse is represented as ((wy) o (w2)). Technically, then 2/n parentheses
are necessary which can be encoded by quantifying two relations of size /n for every g € G.
We ignore this detail.

o (6,7) = 3P, 3P, [Ph(ﬁ,r) A /\ VxVy[(a: >Ny <1 APy(z,y)) -
geG

=y ARV N (Pule2) AP+ )]

g1092=g
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This formula ¢} for sequences of length /n can be lifted to sequences of length V/n2, as
the evaluation tree for a sequence of this length can be decomposed into O(/n) subtrees of
size at most /n: think of deleting O(/n) tree edges such that the tree decomposes into a
forest with components of size at most y/n. For each of these components, the formulas ¢},
describe a possible evaluation. On the basis of this evaluation, another /n-2S0 formula can
express the possible evaluation of the whole sequence.

More formally, the formula (p% (¢,7) that expresses whether a subsequence wy o - - 0w, of
length  — ¢ + 1 = v/n2 of the input can be evaluated to h € G is obtained from o (l,7) by
replacing the subformula (z = y A Ry(z)) by ¢} (2, y) and the atoms Py, (z, z) and Py, (z+1,y)
by o) (2, 2) and @y, (z+1,y), respectively. Repeating this step yields a formula ¢f, (¢,7) that
expresses whether the full sequence w; o - - - o w, can be evaluated to h. The final formula
expressing the problem only needs to check that @?(1, n) holds for some f € F. <

6.2 The power of f(n)-MSO

We have seen that /n-rSO is quite powerful. It turns out that the same is true already
for the case r = 1. As an example of the expressive power of /n-MSO, we outline that it
captures MSO on strings and trees for all ¢ € N.

We first show that /n-MSO can express graph reachability. Recall that reachability is
expressible in full MSO by the formula

ereacn(s,1) 2 VX ((X<s> Avavy((X(@) A B@,y) = X)) X(t))

which uses that a node t can be reached from a node s if and only if all sets of nodes that
include s and are closed under outgoing edges also include t.

» Theorem 15. Graph reachability can be expressed in /n-MSO, for every ¢ > 1.

Proof. The idea is simple and has been used similarly in Savitch’s Theorem, in the context
of small-depth circuits for small distance connectivity (see [3]) and for trading time with
alternations (see Nepomnjascii’s Theorem and [1]): For determining whether there is a path
from s to t of length up to n in /n-MSO, for some ¢ € N, recursively decompose such paths
into «/n pieces until only paths of length /n remain.

More precisely, we first construct a /n-MSO formula that expresses reachability via paths
of length at most /n in graphs G of size n. Such a formula ¢ g7 pgacn(s,t) basically states
that there is a subset W of nodes (of size at most /n + 1) such that ¢ is reachable from s in
G[W]. As we can only quantify over sets of size at most /n, the formula asserts that there
is an edge from s to a node v such that t is reachable from v via a path of length at most

n—1:

© ¢/m—Rreacu(5,1) = s=tVvIIWVX <E(5,v) AW (v)

/\(X CWAX(@)A VxVy((X(x) AW (y) A E(z,y)) — X(y)))—) X(t)) .

With a Savitch-like construction, this formula can be lifted to paths of greater length. A
path of length v/n2? can be decomposed into /n paths of length ¢/n. So, the /n-MSO
formula ¢ ¢z po. (s, t) that we obtain from ¢ ¢ gpaon(s,t) by replacing atoms E(x,y)
with ¢ ¢m_Rpacu (T, y) expresses reachability along paths of length v/n2. Repeating this step
c times results in an /n-MSO formula that expresses reachability along paths of length
/n¢ = n, that is, a formula that expresses graph reachability. <
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With similar decompositions as used in the proof of the previous theorem, it is easy to
show that /n-MSO is as expressive as MSO on strings and trees.

» Theorem 16. The following queries can be expressed in /n-MSO, for every ¢ > 1:
(a) membership in any regular language,

(b) membership in any regular tree language.

Proof. Fix some ¢ > 1.

Towards (a), let L be some regular language over an alphabet ¥ and let A = (Q, 2, §, qo, F')
be a deterministic finite automaton (DFA, with state set @), transition function 4, initial
state go and set F' of accepting states) that decides L. We outline how an /n-MSO formula
for L can be constructed.

The usual approach to express membership in L in MSO is to construct a formula ?-9(j, k)
for any pair p, g of states of A such that ¢P9(j, k) is satisfied on a string w = wy - - - wy, if
A goes from state p to state ¢ while reading the word wj - - - wg, so, if 6*(p, w; - - - wi) = q.
This formula existentially quantifies for all states g € @ the set of positions from w such that
A assumes the state g after reading this position. The formula then checks whether for all
pairs of neighboring positions these choices are consistent with the transition function 4.

An almost identical /n-MSO-formula w’%(j, k) can check whether 6*(p, w41 ---wg) = ¢
holds, as long as w;41 - - - wy is a substring of length at most /n. Similar to the proof of
Theorem 15, this formula can be lifted to substrings of larger size.

Towards (b), we follow a similar approach and construct formulas for larger and larger
parts of the input tree. We introduce some notation to define subtrees of a tree more easily.
Let T = (V, E,r) be a rooted tree, t € V and B C V. The tree T'(t, B) is the subtree of T
rooted at ¢, but all inner nodes of this subtree that are in B become leaves. More formally,
let T'(t) = (V’, E’) be the subtree of T rooted at ¢, and let B’ = BN V'. The tree T(t, B)
results from T'(t) by removing all children of B’ and their subtrees. Like in the proof of
Theorem 4(b), we assume without loss of generality that T is a binary tree.

Let L be a regular tree language over an alphabet ¥ and let A = (Q, %, 9, g0, F') be a
corresponding tree automaton. Suppose we are given a set B of tree nodes and a partition
By, ..., By, of this set that associates a state ¢; € Q) to every node from B. Analogously to
part (a), there is an /n-MSO formula d}‘ic/ﬁ(t, By,,...,By,) that expresses for trees T'(t, B)
of size /n that A assigns the state g to ¢ in T'(¢, B) if the initial states on the leaf nodes
from B are as given by the partition. This formula existentially quantifies for each state from
Q@ a set of nodes and verifies that A actually assigns these states to the corresponding nodes.
By using constantly many copies of each quantifier, one can obtain an analogous formula for
subtrees of size O(/n).

A formula ¥% (¢, By, ..., By,) for subtrees T'(t, B) of size v/n? existentially quantifies

Vn?
a set B’ of nodes as well as a partition into £ sets By ,..., B, with the intention that for
each t' € B’ U {t} the subtrees T'(¢', B U B’) have size at most 2/n. It then checks that for
all t' € B U {t} the formula 1#%/5(75’, By, UB] ..., By, UBy)) is satisfied.
We iterate this step and obtain a formula ¢2(t) that expresses whether 4 assigns the
state g to t in T'(¢), and the final formula for the word problem of L only needs to check

whether 1 () holds for any accepting state f € F. <

As mentioned before, Theorem 16 shows that /n-MSO and MSO have the same expressive
power on words and trees, respectively, for each ¢ € N. This is not true any more if the
quantifiers are further restricted.
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» Proposition 17. For f(n) € n°Y there is no f(n)-MSO formula ¢ that expresses the
membership in the language

Lao = {w € {a,b}* | w has an even number of a’s}

Proof. Fix f(n) € n°1). We assume that there is an f(n)-MSO formula ¢ that expresses Laa
and aim for a contradiction to Hastad’s lower bound on the size of constant-depth circuits
for PARITY [11].

Analogously to the proof of Proposition 10, there is a d such that for any n we can obtain
from ¢ a depth-d circuit C), for input strings of length n. Gates of this circuit have degree at
most n/(™ so the number of gates is upper-bounded by (nf(”))d‘Irl = logn(d+1)f(n) which

1
for f(n) € n°M is not in 2% “ ") the lower bound for depth-d circuits that compute a
parity function on n input bits [11]. <

7 Discussion and future directions

In this paper we have seen that regular languages can be maintained under polylogarithmic
changes. We also have seen that results on work-efficiency from [18] can be transferred from
single-tuple changes to polylogarithmic changes for regular languages. We further discussed
the power of first-order logic on small structures, as this is an essential tool in our proofs.

We highlight three open questions. While we have seen that regular languages cannot
be maintained with polylogarithmic work under polylogarithmic changes (see Lemma 8), it
remains open whether polylogarithmic work suffices for single tuple changes. Lower bounds
in this case seem to require new techniques, as membership in regular languages can be
maintained with polylogarithmic work under single tuple changes for change sequence up
to polylogarithmic length. Thus, lower bounds have to exploit long change sequences, but
unfortunately most known lower bound proof techniques in dynamic complexity theory are
expected to be applicable only for constant-length change sequences.

» Open question 1. Can membership in regular languages be maintained in DynFO with
polylogarithmic work under single tuple changes?

Apart from knowing that membership in context-free languages is in DynFO under single
tuple changes [10, Theorem 4.1], our knowledge about dynamic membership for context-free
languages is very limited.

» Open question 2. Can membership in all context-free languages be maintained under
changes of non-constant size?

The dynamic program used in [10, Theorem 4.1] yields a naive work bound O(n”) for
membership in context-free languages as it uses 4-ary auxiliary relations which are updated
using three nested existential quantifiers. Using significantly less work than O(n“~1!), where
w is the matrix multiplication exponent, is likely not possible, since the k-Clique conjecture
fails if O(n*~17¢) work suffices for some € > 0 [18, Theorem 6.4].

» Open question 3. How much work is required for maintaining membership in context-free
languages (under single tuple changes)?
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