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Abstract
We outline an attempt at transporting the well-known theory of enhancements for the coinduction
proof method, widely used on behavioural relations such as bisimilarity, onto the realms of inductive
behaviour relations, i.e., relations defined from inductive observables, and discuss relevant literature.
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1 Discussion

In this paper we discuss, informally, an attempt [35] at transporting the well-known theory
of enhancements for the coinduction proof method, widely used on behavioural relations
such as bisimilarity, onto the realms of inductive behaviour relations, i.e., relations defined
from inductive observables. We also comment on the relevant literature. We refer to [35] for
more details.

Behavioural relations (equalities, preorders) represent a one of the most basic elements
for reasoning on programs or systems, because any transformation or property that we wish
to prove is supposed to be in agreement with the behavioural relation adopted. A number of
proposals for behavioural preorders and equalities have been made in the literature; see, e.g,
van Glabbeek’s spectrum [11,12]. Among the notions so formulated, bisimilarity has emerged
as one of the most studied and used [19, 21]. While introduced in Concurrency Theory,
bisimilarity has spread to other areas of Computer Science, as well as to other domains such
as Mathematics and Cognitive Science.

Bisimilarity is the union of all bisimulations. A bisimulation is a relation on the terms
of a language that is invariant under the observables of the language (i.e., what can be
observed of the terms). Thus the definition itself immediately leads to a well-established
proof technique: to prove two terms bisimilar, find a bisimulation relation containing the
two terms as a pair. Furthermore, such a proof method can be enhanced, with the goal of
making it more effective (easier to use, both in paper proofs and in tools for automated
or semi-automated analysis) and more broadly applicable. Examples of enhancements are
“up-to context”, “up-to transitive closure”, “up-to bisimilarity”, “up-to environment”, and so
on [29]. Theories of enhancements have been proposed [25,26,31]. Most important, these
theories allow one to combine enhancements so to obtain, for free, the soundness of more
complex enhancements. Bisimilarity and the bisimulation proof method are instances of a
coinductive definition and of the coinduction proof method. Analogously the bisimulation
enhancements can be lifted to coinduction; see [28] for a presentation that follows fixed-point
theory. Abstract formulations of the meaning of coinductive enhancements have also been
given using category theory. The main technical tools are final semantics, coalgebras, spans
of coalgebra homomorphisms, fibrations, and corecursion schemes. See, e.g., [4, 27,30] (based
on earlier works such as [3, 15, 17, 18, 37]), and [2, 5, 6, 16]. Enhancements of corecursion
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schemes may also be examined using the generalised powerset construction [36]. For more
details on coinductive enhancements, we refer to the technical survey [28] and to the historical
review [29].

The bisimulation proof method and its enhancements are a major reason for the success
of bisimilarity. Sometimes the enhancements seem essential to be able to carry out a proof:
defining a full bisimulation, with all needed pairs, can be considerably hard, let alone carrying
out the whole proof. This is frequent in languages for name mobility such as the π-calculus
and its many dialects, and in languages including higher-order features such as λ-calculi. In
these languages bisimilarity is hardly ever applied without enhancements.

As a behavioural equivalence, however, bisimilarity has also been criticised. One of
the main arguments is that it may be regarded as too fine, discriminating processes that
an external observer could not tell apart. For instance, in the CSP community failure
equivalence [7] is used in place of bisimilarity. Another argument against bisimilarity is that
it does not have a natural associated preorder. For instance, similarity – the “one-way”
bisimilarity – or variants of it do not yield bisimilarity as their induced equivalence [33].
(Further, similarity as a behavioural preorder is often inadequate because it does not respect
deadlocks.) Various inductive behavioural relations, both preorders and equivalences, have
been put forward and studied that improve on such limitations: examples are preorders
based on traces, failures, ready sets, refusals, may and must testing, ready and failure traces,
e.g., [1, 7–9,12,13,20,22–24]. We call them “inductive” because resulting from inductively-
defined observables, usually enriched forms of traces. Correspondingly, we sometimes call
“inductive” the resulting enhancements.

At the heart of theories of bisimulation enhancements such as [25, 26, 31] is the notion of
progression. A progression from a relation R to a relation S, written R ⟩→ S, indicates that
pairs of processes in R can match each other’s actions and their derivatives (i.e., the processes
resulting from performing such actions) are in S. The progressions that are considered are of
the form R ⟩→F(R), where F is a function on relations. Conditions on functions on relations
guarantee soundness of the progressions, meaning that if R ⟩→F(R) then R only includes
pairs of bisimilar processes. These are functorial-like conditions such as respectfulness [31]
and compatibility [25]. Such conditions can then be extended to higher-order functions, also
called constructors, so to be able to combine sound functions, that is, to derive sophisticated
sound functions – and hence sophisticated proof techniques for bisimilarity – from simpler
ones. As an example, “up-to bisimilarity” can be combined with “up-to context” yielding
“up-to bisimilarity and context”, in which one is allowed, in the bisimulation game, both to
rewrite the derivative processes into bisimilar ones, and to remove, in the resulting terms,
a common context. In fact, in this way even “up-to bisimilarity” is derivable from simpler
functions, namely the identity function and the constant function mapping every relation
onto bisimilarity itself [31].

To investigate the enhancements in an inductive setting, in [35] the observables for the
inductive behavioural preorders and equivalences are described by means of modal formulas.
The operators include the “diamond” ⟨ µ ⟩. θ, to detect the possibility of performing the
action µ, a (possibly infinitary) ’and’, to permit multiple observations, and a set of atomic
observables. (Without the atomic observables, it is the positive fragment of Hennessy-Milner
logic [14].) Progressions are maintained as the basic schema for studying enhancements.
In fact, one-way progressions, called semi-progressions and written R ⟩⇀S, are employed,
aiming to capture also preorders (besides equivalences). The meaning of soundness, and the
conditions on functions to guarantee soundness, are however modified. Moreover, everything
is parametrised on a preorder, say ≾, as the theory is supposed to be applicable to different



D. Sangiorgi 4:3

preorders. Thus, in such enhancements, a function F is sound for ≾ if R ⟩⇀F(R) implies
that R is included in the given preorder ≾ ; and similarly for equivalences. The crux of
this theory of inductive enhancements is the condition for functional soundness that should
permit composition of enhancements. The condition hinges on the inductive definition of the
observables. A weight is associated to each observable, intuitively expressing the depth of the
nesting of actions in the behaviour of a process that may have be looked at when checking
that observable. This yields a stratification of the preorder ≾; at stage n of the preorder, ≾n,
only the observables of weight less than or equal to n are taken into account. The condition
for functional soundness, called weight-preservation, requires that if R complies with ≾n, i.e.,
R ⊆ ≾n, then also F(R) should comply, i.e., F(R) ⊆ ≾n. In the case of equivalences, rather
than preorders, one adds analogous converse requirements on pairs of related processes.

Common basic functions and constructors in the literature about bisimulation enhance-
ments are shown to be weight-preserving, and may therefore be used also in inductive
enhancements. Examples of basic functions and constructors are function composition, union,
chaining (that gives us relational composition), and the context-closure function These closure
properties allow one to derive sophisticated sound functions (and hence sophisticated proof
techniques) from simpler ones. Examples of derived functions are the transitive-closure func-
tion, the closure under context and ≾ (the analogous of the “up-to context and bisimilarity”
enhancement for bisimilarity).

The inductive preorders and equivalences considered in [35] are the best-known relations
in the literature, following [11,12]. They include the trace, failure, failure trace, ready, and
ready trace preorders (other preorders, like may and must testing and refusal, coincide with
some of these, under mild conditions on the transitions performed by the processes), and their
induced equivalences. In all cases, the soundness of the above functions and constructors is
usually straightforward, the only exception being the context-closure function. As the theory
of inductive enhancement is parametrised on a preorder, proofs can sometimes be made
parametric on such a preorder, so to make them valid for a number of preorders. See [35] for
examples.

The paper [35] develops its work for ordinary Labeled Transition Systems (LTSs). A
theory is proposed both for strong semantics, where all actions are equally visible, and
for weak semantics, in which a special action denoting internal activity may be partly or
completely ignored. It is well-known that theories of weak coinductive enhancements tend
to be rather more involved than the “strong” theories. For instance, a useful constructor,
chaining, is sound only in the strong theories; to compensate for this, auxiliary relations such
as expansion [32] and contraction [34] have been introduced. Similar issues show up in the
inductive enhancements. In addition, some of the weak behavioural relations make use of state
predicates such as stability, which do not appear in the strong case. Some of the technical
solutions that are adopted for the inductive setting are inspired from those used in the
coinductive setting, others are specific to the weight-based conditions for induction mentioned
above. For instance, different forms of weak weight are considered (e.g., distinguishing the
contribution of internal and visible actions), and their relative advantages and disadvantages
are examined.

Another approach at transferring the coinductive enhancements to an inductive setting is
based on the techniques of unique solutions of equations [10, 34]. Such proof techniques (for
weak bisimilarity) employ equations as well as special inequations called contractions. The
techniques give one the power of some bisimulation enhancements such as “up-to context”,
and can be transferred to relations such as trace equivalence and trace preorder. In general
the techniques seem to have a limited applicability to preorders: they can only be used to
show that a given process is related to the “syntactic solution of an equation”, that is, the
process whose syntactic definition is the equation itself.
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2 Further work

We comment some directions of work to be explored. First, it would be interesting to see
if and how the theory of inductive enhancements can be formulated in a more abstract
setting, e.g., fixed-point theory or category theory. Proposals along these lines exist for the
coinductive enhancements. Their meaning in the inductive setting is unclear, both because
the observables are inductive and because of the coinductive flavour of the semi-progressions
at the heart of the theory. Also, it is unclear how the theory could be lifted to a probabilistic
setting and labelled Markov processes.

A powerful enhancement is up-to context. The paper [35] uses first-order LTSs and
examines a a CCS-like language. Here an objective would be to examine general conditions
that guarantee its soundness, more precisely the weight-preserving property. Such conditions
could, for instance, look at the format of the rules defining the operational behaviour of the
operators of the language. In coinduction, up-to-context has been shown very effective in
higher-order languages, such as λ-calculi or languages enriched with functional features, and
nominal languages such as the π-calculus. The objective could thus be extended towards the
transfer of the inductive enhancements to these classes of languages.

Finally, it would be interesting to see if the theory can be lifted to behavioural relations
that make use of both inductive and coinductive observables. Examples of observables that
are naturally defined coinductively are infinite traces and divergence. Divergence in particular
often appears in definition of weak behavioural relations (e.g., failure semantics and must
testing).
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