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Abstract
Proof terms are syntactic expressions that represent computations in term rewriting. They were
introduced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of
reductions in (left-linear) first-order term rewriting systems. We study the problem of extending the
notion of proof term to higher-order rewriting, which generalizes the first-order setting by allowing
terms with binders and higher-order substitution. In previous works that devise proof terms for
higher-order rewriting, such as Bruggink’s, it has been noted that the challenge lies in reconciling
composition of proof terms and higher-order substitution (β-equivalence). This led Bruggink to
reject “nested” composition, other than at the outermost level. In this paper, we propose a notion
of higher-order proof term we dub rewrites that supports nested composition. We then define two
notions of equivalence on rewrites, namely permutation equivalence and projection equivalence, and
show that they coincide.
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1 Introduction

Term rewriting systems model computation as sequences of steps between terms, reduction
sequences, where steps are instances of term rewriting rules [15]. It is natural to consider
reduction sequences up to swapping of orthogonal steps since such reductions perform the
“same work”. The ensuing notion of equivalence is called permutation equivalence and was
first studied by Lévy [11] in the setting of the λ-calculus but has appeared in other guises
connected with concurrency [15, Rem.8.1.1]. As an example, consider the rewrite rule
c(x, f(y)) _ d(x, x) and the following reduction sequence where, in each step, the contracted
redex is underlined:

c(c(z, f(z)), f(z)) _ d(c(z, f(z)), c(z, f(z))) _ d(d(z, z), c(z, f(z))) _ d(d(z, z), d(z, z))
(1)

Performing the innermost redex first, rather than the outermost one, leads to:

c(c(z, f(z)), f(z)) _ c(d(z, z), f(z)) _ d(d(z, z), d(z, z)) (2)
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8:2 Reductions in Higher-Order Rewriting and Their Equivalence

The first step in (1) makes two copies of the innermost redex. It is the two steps contracting
these copies that are swapped with the first one in (1) to produce (2). Such duplication (and
erasure) contribute most of the complications behind permutation equivalence, both in its
formulation and the study of its properties.

Proof Terms. Proof terms are a natural representation for computations. They were
introduced by Meseguer as a means of representing proofs in Rewriting Logic [13] and exploited
by van Oostrom and de Vrijer in the setting of first-order left-linear rewriting systems, to study
equivalence of reductions in [17] and [15, Chapter 9]. Rewrite rules are assigned rule symbols
denoting the application of a rewriting rule. Proof terms are expressions built using function
symbols, a binary operator “;” denoting sequential composition of proof terms, and rule
symbols. Assuming the following rule symbol for our rewrite rule ϱ(x, y) : c(x, f(y)) _ d(x, x),
reduction (1) may be represented as the proof term: ϱ(c(z, f(z)), z) ; d(ϱ(z, z), c(z, f(z))) ;
d(d(z, z), ϱ(z, z)) and reduction (2) as the proof term: c(ϱ(z, z), f(z)) ; ϱ(d(z, z), z). One
notable feature of proof terms is that they support parallel steps. For instance, both proof
terms above are permutation equivalent to ϱ(c(z, f(z)), z) ; d(ϱ(z, z), ϱ(z, z)), which performs
the two last steps in parallel, as well as to ϱ(ϱ(z, z), z), which performs all steps simultaneously.
Permutation equivalence now can be studied in terms of equational theories on proof terms.

Equivalence of Reductions via Proof Terms for First-Order Rewriting. In [17], van
Oostrom and de Vrijer characterize permutation equivalence of proof terms in four alternative
ways. First, they formulate an equational theory of permutation equivalence ρ ≈ σ between
proof terms, such that for example ϱ(c(z, f(z)), z) ; d(ϱ(z, z), ϱ(z, z)) ≈ ϱ(ϱ(z, z), z) holds.
These equations account for the behavior of proof term composition, which has a monoidal
structure, in the sense that composition is associative and empty steps act as identities.
Second, they define an operation of projection ρ/σ, denoting the computational work that
is left of ρ after σ. For example, c(ϱ(z, z), f(z))/ϱ(c(z, f(z)), z) = d(ϱ(z, z), ϱ(z, z)). This
induces a notion of projection equivalence between proof terms ρ and σ, declared to hold
when both ρ/σ and σ/ρ are empty, i.e. they contain no rule symbols. Third, they define a
standardization procedure to reorder the steps of a reduction in outside-in order, mapping
each proof term ρ to a proof term ρ∗ in standard form. For example, the (parallel) standard
form of c(ϱ(z, z), f(z)) ; ϱ(d(z, z), z) is ϱ(c(z, f(z)), z) ; d(ϱ(z, z), ϱ(z, z)). This induces a
notion of standardization equivalence between proof terms ρ and σ, declared to hold when
ρ∗ = σ∗. Fourth, they define a notion of labelling equivalence, based on lifting computational
steps to labelled terms. Although these notions of equivalence were known prior to [17],
the main result of that paper is that they are systematically studied using proof terms and,
moreover, shown to coincide.

Higher-Order Rewriting. Higher-order term rewriting (HOR) generalizes first-order term
rewriting by allowing binders. Function symbols are generalized to constants of any given
simple type, and first-order terms are generalized to simply-typed λ-terms, including constants
and up to βη-equivalence. The paradigmatic example of a higher-order rewriting system is the
λ-calculus. It includes a base type ι and two constants app : ι→ ι→ ι and lam : (ι→ ι)→ ι;
β-reduction may be expressed as the higher-order rewrite rule app (lam (λz.x z)) y _ x y.
A sample reduction sequence is:

lam(λv.app(lam(λx.x), app(lam(λw.w), v))) _ lam(λv.app(lam(λx.x), v)) _ lam(λv.v) (3)
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Generalizing proof terms to the setting of higher-order rewriting is a natural goal. Just
like in the first-order case, we assign rule symbols to rewrite rules. One would then expect
to obtain proof terms by adding these rule symbols and the “;” composition operator to
the simply typed λ-calculus. If we assume the following rule symbol for our rewrite rule
ϱ x y : app (lam (λz.x z)) y _ x y, then an example of a higher-order proof term for (3) is:

lam
(

λv.
(
app(lam(λx.x), ϱ (λw.w) v) ; ϱ (λu.u) v

))
However, higher-order substitution and proof term composition seem not to be in conson-

ance, an issue already observed by Bruggink [4]. Consider a variable x. This variable itself
denotes an empty computation x _ x, so the composition (x ; x) also denotes an empty
computation x _ x. If σ is an arbitrary proof term s _ t, the proof term (λx.(x ; x)) σ

should, in principle, represent a computation (λx.x) s _ (λx.x) t. This is the same as s _ t,
because terms are regarded up to βη-equivalence. The challenge lies in lifting βη-equivalence
to the level of proof terms: if β-reduction is naively extended to operate on proof terms, the
well-formed proof term (λx.(x ; x)) σ becomes equal to (σ ; σ), which is ill-formed because
σ is not composable with itself if s ̸=βη t. Rather than simply disallowing the use of “;”
under applications and abstractions (the route taken in [4]), our aim is to integrate it with
βη-reduction.

Contribution. We propose a syntax for higher-order proof terms, called rewrites,
that includes βη-equivalence and allows rewrites to be freely composed. We then define a
relation ρ ≈ σ of permutation equivalence between rewrites, the central notion of our
work. The issue mentioned above is avoided by disallowing the ill-behaved substitution of a
rewrite in a rewrite “ρ{x\σ}”, and by only allowing notions of substitution of a term in a
rewrite ρ{x\s}, and of a rewrite in a term s{x\\ρ}. From these, a well-behaved notion of
substitution of a rewrite in a rewrite ρ{x\\\σ} can be shown to be derivable. We also define a
notion of projection ρ//σ. The induced notion of projection equivalence coincides with
permutation equivalence, in the sense that ρ ≈ σ iff ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt, where
ρtgt stands for the target term of ρ. The equivalence is established by means of flattening, a
method to convert an arbitrary rewrite ρ into a (flat) representative ρ♭ that only uses the
composition operator “;” at the top level and a notion of flat permutation equivalence
ρ ∼ σ. Flattening is achieved by means of a rewriting system whose objects are themselves
rewrites. This system is shown to be confluent and strongly normalizing. We also show that
permutation equivalence is sound and complete with respect to flat permutation
equivalence in the sense that ρ ≈ σ if and only if ρ♭ ∼ σ♭.

Structure of the Paper. In Section 2 we review Nipkow’s Higher-Order Rewriting Systems.
Section 3 proposes our notion of rewrite and Section 4 introduces permutation equivalence for
them. Flattening is presented in Section 5. In this section, we also formulate an equational
theory defining the relation ρ ∼ σ of flat permutation equivalence between flat rewrites.
It relies crucially on a ternary relation between multisteps, called splitting and written
µ⇔ µ1 ; µ2, meaning that µ and µ1 ; µ2 perform the same computational work. In Section 6
we first define a projection operator for flat rewrites ρ/σ, and we lift it to a projection
operator for arbitrary rewrites ρ//σ

def= ρ♭/σ♭. Then we show that the induced notion of
projection equivalence coincides with permutation equivalence. Finally, we conclude and
discuss related and future work. Detailed proofs can be found in the accompanying technical
report [2].
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8:4 Reductions in Higher-Order Rewriting and Their Equivalence

2 Higher-Order Rewriting

There are various approaches to HOR in the literature, including Klop’s Combinatory
Reduction Systems (CRSs) [8] and Nipkow’s Higher-Order Rewriting Systems (HRSs) [14,
12]. We consider HRSs in this paper. Their use of the simply-typed lambda calculus for
representing terms and substitution provides a suitable starting point for modeling our
rewrites. Moreover, HRS are arguably more general than CRS in that their instantiation
mechanism is more powerful [15, Sec.11.4.2]. We next introduce HRS. Assume given a
denumerably infinite set of variables (x, y, . . .), base types (α, β, . . .), and constant symbols
(c, d, . . .). The sets of terms (s, t, . . .) and types (A, B, . . .) are given by:

s ::= x | c | λx.s | s s A ::= α | A→ A

A term can either be a variable, a constant, an abstraction or an application. A type can
either be a base type or an arrow type. We write fv(s) for the free variables of s. We use Xn,
or sometimes just X if n is clear from the context, to denote a sequence X1, . . . , Xn. Following
standard conventions, s tn stands for the iterated application s t1 . . . tn, and An → B for the
type A1 → . . . An → B. We write s{x\t} for the capture-avoiding substitution of all free
occurrences of x in s with t and call it a term/term substitution. We identify terms that differ
only in the names of their bound variables. A typing context (Γ, Γ′, . . .) is a partial function
from variables to types. We write dom(Γ) for the domain of Γ. Given a typing context Γ
and x /∈ dom(Γ), we write Γ, x : A for the typing context such that (Γ, x : A)(x) = A, and
(Γ, x : A)(y) = Γ(y) whenever y ̸= x. We write · for the empty typing context and x ∈ Γ if
x ∈ dom(Γ). A signature of a HRS is a set C of typed constants c : A. A sample signature is
C = {app : ι→ ι→ ι, lam : (ι→ ι)→ ι} for ι a base type.

▶ Definition 1 (Type system for terms). Terms are typed using the usual typing rules of the
simply-typed λ-calculus:

(x : A) ∈ Γ
Var

Γ ⊢ x : A

(c : A) ∈ C
Con

Γ ⊢ c : A

Γ, x : A ⊢ s : B
Abs

Γ ⊢ λx.s : A→ B

Γ ⊢ s : A→ B Γ ⊢ t : A
App

Γ ⊢ s t : B

Given any Γ and A such that Γ ⊢ s : A can be proved using these rules, we say s is a typed
term over C. We typically drop C assuming it is implicit.

We assume the usual definition of β and η-reduction between terms. Recall that β-
reduction (resp. η-reduction) is confluent and terminating on typed terms. We write s ↓β

(resp. s ↓η) for the unique β-normal form (resp. η-normal form) of s. The β-normal form of
a term s has the form λxk.a t1 . . . tm, for a either a constant or a variable. The η-expanded
form of s is defined as:

s ↑η def= λxn+k.a (tm ↑η) (xn+1 ↑η) . . . (xn+k ↑η)

where s is assumed to have type An+k → B and the xn+1, . . . , xn+k are fresh. We use s ↕η
β

to denote the term s ↓β ↑η and call it the βη-normal form of s.
A substitution θ is a function from variables to typed terms such that θ(x) ̸= x only

for finitely many x. The domain of a substitution is defined as dom(θ) = {x | θ(x) ̸= x}.
The application of a substitution θ = {x1 7→ s1, . . . , xn 7→ sn} to a term t is defined as
θ t

def= ((λxn.t) sn) ↕η
β .
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▶ Definition 2. A pattern is a typed term in β-normal form such that all free occurrences of
a variable xi are in a subterm of the form xi t1 . . . tk with t1, . . . , tk η-equivalent to distinct
bound variables. A rewriting rule is a pair ⟨ℓ, r⟩ of typed terms in βη-normal form of the
same base type with ℓ a pattern not η-equivalent to a variable and fv(r) ⊆ fv(ℓ). An HRS is
a pair consisting of a signature and a set of rewriting rules over that signature. We typically
omit the signature.

▶ Definition 3. The rewrite relation →R for an HRS R is the relation over typed terms in
βη-normal form defined as follows:

⟨ℓ, r⟩ ∈ R
Root

θ ℓ →R θ r

s →R t
App

a rm s pn →R a rm t pn

s →R t
Abs

λx.s →R λx.t

where a is either a constant or a variable of type Am+1+n → B. We write ∗→R (resp. ∗↔R)
for the reflexive, transitive (resp. reflexive, symmetric and transtive) closure of →R .

▶ Example 4. Consider a base type ι and typed constants mu : (ι → ι) → ι and f : ι →
ι. Two sample rewriting rules are: ⟨mu(λy.x y), x (mu(λy.x y))⟩ and ⟨f x, g x⟩. All four
terms have base type ι. An example of a sequence of rewrite steps is mu (λx.f x) →R
f (mu (λx.f x)) →R f (mu (λx.g x)) →R g (mu (λx.g x)).

An HRS is orthogonal if: 1. The rules are left-linear, i.e. if the left-hand side ℓ has
fv(ℓ) = {x1, . . . , xn}, then there is exactly one free occurrence of xi in ℓ, for each 1 ≤ i ≤ n.
2. There are no critical pairs, as defined for example in [14, Def. 4.1]. Orthogonal HRSs
are deterministic in the sense that their rewrite relation is confluent. All of the examples of
HRSs presented above are orthogonal. In the sequel of this paper, we assume given a fixed,
orthogonal HRS R.

3 Rewrites

In this section we propose a syntax for higher-order proof terms, called rewrites1. Rewrites
for an HRS R are a means for denoting proofs in Higher-Order Rewriting Logic (HORL,
cf. Def. 7) which, in turn, correspond to reduction sequences in R (cf. Thm. 9). As in the
first-order case [13], HORL is simply the equational theory that results from an HRS but
disregarding symmetry. Given an HRS R, let Rc denote the set of pairs ⟨λxn.ℓ, λxn.r⟩ such
that ⟨ℓ, r⟩ ∈ R and {x1, . . . , xn} = fv(ℓ). We begin by recalling the definition of equational
logic (cf. Def. 5), the equational theory induced by an HRS. It is essentially that of [12,
Def. 3.11], except that in the inference rule ERule we use Rc rather than R. This equivalent
formulation will be convenient when introducing rewrites since free variables in the LHS of a
rewrite rule will be reflected in the rewrite too.

1 Our notion of rewrite is unrelated to that of Def. 2.4 in [13]; it corresponds to “proof terms” as introduced
in Sec. 3.1 in [13].

CSL 2023



8:6 Reductions in Higher-Order Rewriting and Their Equivalence

▶ Definition 5 (Equational Logic). An HRS R induces a relation .=R on terms defined by
the following rules:

Γ, x : A ⊢ s : B Γ ⊢ t : A
EBeta

Γ ⊢ (λx.s) t
.=R s{x\t} : B

Γ, x : A ⊢ s : B x /∈ fv(s)
EEta

Γ ⊢ λx.s x
.=R s : B

(x : A) ∈ Γ
EVar

Γ ⊢ x
.=R x : A

(c : A) ∈ C
ECon

Γ ⊢ c .=R c : A

Γ, x : A ⊢ s0
.=R s1 : B

EAbs
Γ ⊢ λx.s0

.=R λx.s1 : A → B

Γ ⊢ s0
.=R s1 : A → B Γ ⊢ t0

.=R t1 : A
EApp

Γ ⊢ s0 t0
.=R s1 t1 : B

⟨s, t⟩ ∈ Rc · ⊢ s : A · ⊢ t : A
ERule

Γ ⊢ s
.=R t : A

Γ ⊢ s0
.=R s1 : A

ESymm
Γ ⊢ s1

.=R s0 : A

Γ ⊢ s0
.=R s1 : A Γ ⊢ s1

.=R s2 : A
ETrans

Γ ⊢ s0
.=R s2 : A

▶ Theorem 6 (Thm. 3.12 in [12]). Γ ⊢ s
.=R t : A iff s ↕η

β
∗↔R t ↕η

β.

The (⇐) direction follows from observing that →β,η and ∗↔R are all included in .=R. The
(⇒) direction is by induction on the derivation of Γ ⊢ s

.=R t : A.
Higher-Order Rewriting Logic results from dropping ESymm in Def. 5 and adding a proof

witness. Its judgments take the form Γ ⊢ ρ : s _ t : A where the proof witness ρ is called a
rewrite. Given a set of rule symbols (ϱ, ϑ, . . .), the set of rewrites (ρ, σ, . . .) is given by:

ρ ::= x | c | ϱ | λx.ρ | ρ ρ | ρ ; ρ

A rewrite can either be a variable, a constant, a rule symbol, an abstraction congruence, an
application congruence, or a composition. Note that composition may occur anywhere inside
a rewrite. For the sake of clarity we present the full system for Higher-Order Rewriting Logic
next. We assume given an HRS R such that each rewrite rule ⟨ℓ, r⟩ ∈ R has been assigned
a unique rule symbol ϱ and shall write ⟨ϱ, ℓ, r⟩ ∈ R and also use the same notation for Rc.
HORL consists of two forms of typing judgments:

1. Γ ⊢ s =βη t : A, meaning that s and t are βη-equivalent terms of type A under Γ; and

2. Γ ⊢ ρ : s _R t : A, meaning that ρ is a rewrite with source s and target t, which are
terms of type A under Γ.

▶ Definition 7 (Higher-Order Rewriting Logic). Term equivalence is defined as the reflexive,
symmetric, transitive, and contextual closure of:

Γ, x : A ⊢ s : B Γ ⊢ t : A
EqBeta

Γ ⊢ (λx.s) t =βη s{x\t} : B

Γ, x : A ⊢ s : B x /∈ fv(s)
EqEta

Γ ⊢ λx.s x =βη s : B
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Typing rules for rewrites are as follows:

(x : A) ∈ Γ
RVar

Γ ⊢ x : x _R x : A

(c : A) ∈ C
RCon

Γ ⊢ c : c _R c : A

Γ, x : A ⊢ ρ : s0 _R s1 : B
RAbs

Γ ⊢ λx.ρ : λx.s0 _R λx.s1 : A → B

Γ ⊢ ρ : s0 _R s1 : A → B Γ ⊢ σ : t0 _R t1 : A
RApp

Γ ⊢ ρ σ : s0 t0 _R s1 t1 : B

⟨ϱ, s, t⟩ ∈ Rc · ⊢ s : A · ⊢ t : A
RRule

Γ ⊢ ϱ : s _R t : A

Γ ⊢ ρ : s0 _R s1 : A Γ ⊢ σ : s1 _R s2 : A
RTrans

Γ ⊢ ρ ; σ : s0 _R s2 : A

Γ ⊢ ρ : s′ _R t′ : A Γ ⊢ s =βη s′ : A Γ ⊢ t′ =βη t : A
RConv

Γ ⊢ ρ : s _R t : A

The RVar and RCon rules express that variables and constants represent identity rewrites.
The RAbs and RApp rules express congruence below abstraction and application. The RRule
rule allows us to use a rule symbol to stand for a rewrite between its source and its target,
which must be closed terms of the same type. The RConv rule states that the source and the
target of a rewrite are regarded up to βη-equivalence. Note that there are no rules equating
rewrites; such rules are the purpose of Section 4 which introduces permutation equivalence.

▶ Example 8. Suppose we assign the following rule symbols to the rewriting rules of Ex. 4:
⟨ϱ, mu(λy.x y), x (mu(λy.x y))⟩ and ⟨ϑ, f x, g x⟩. Recall that C def= {mu : (ι → ι) → ι, f :
ι→ ι}. The reduction of Ex. 4 can be represented as a rewrite:

· ⊢ ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)) : mu (λx.f x) _R g (mu (λx.g x) : ι

Inspection of the proof of Thm. 6 in [12] reveals that β and η are only needed for
substitutions in rewrite rules. As a consequence:

▶ Theorem 9. There is a rewrite ρ such that Γ ⊢ ρ : s _R t : A if and only if s ↕η
β

∗→R t ↕η
β.

Now that we know that rewrites over an HRS R are sound and complete with respect to
reduction sequences in R, we review some basic properties of rewrites and then focus, in
the remaining sections, on equivalences between rewrites. In the sequel we will omit R in
Γ ⊢ ρ : s _R t : A and write Γ ⊢ ρ : s _ t : A.

▶ Definition 10 (Source and target of a rewrite). For each rewrite ρ we define the source ρsrc

and the target ρtgt as the following terms:

xsrc def= x

csrc def= c
ϱsrc def= s if (ϱ : s _ t : A) ∈ R

(λx.ρ)src def= λx.ρsrc

(ρ σ)src def= ρsrc σsrc

(ρ ; σ)src def= ρsrc

xtgt def= x

ctgt def= c
ϱtgt def= t if (ϱ : s _ t : A) ∈ R

(λx.ρ)tgt def= λx.ρtgt

(ρ σ)tgt def= ρtgt σtgt

(ρ ; σ)tgt def= ρtgt

The free variables of an expression X (which may be a term or a rewrite) are written
fv(X), and defined as expected, with lambdas binding variables in their bodies. For any given
term or rewrite X, we write X{x\t} for the capture-avoiding substitution of the variable x

in X by t. The operation ρ{x\t} is called rewrite/term substitution.

CSL 2023



8:8 Reductions in Higher-Order Rewriting and Their Equivalence

We mention a few important syntactic properties of terms and rewrites (detailed state-
ments and proofs can be found in Section A of [2]). First, some basic properties hold, such as
weakening (e.g. if Γ ⊢ ρ : s _ t : A then Γ, x : B ⊢ ρ : s _ t : A) and commuting substitution
with the source and target operators (e.g. ρ{x\s}src = ρsrc{x\s}). Terms appearing in
valid equality and rewriting judgments can always be shown to be typable, that is, if either
Γ ⊢ s =βη t : A or Γ ⊢ ρ : s _ t : A, then Γ ⊢ s : A and Γ ⊢ t : A. Second, given a typable
rewrite, Γ ⊢ ρ : s _ t : A, the source of ρ and s are not necessarily equal, but they are
interconvertible, that is Γ ⊢ s =βη ρsrc : A, and similarly for the target, i.e. Γ ⊢ t =βη ρtgt : A.
For example, if ϱ : λx.c x _ λx.d : A→ A then it can be shown that ⊢ ϱ d : c d _ d : A,
and indeed c d =βη (λx.c x) d = (ϱ d)src. Third, any typable term s can be understood as an
empty or unit rewrite s, without occurrences of rule symbols, between s and itself: if Γ ⊢ s : A

then Γ ⊢ s : s _ s : A. We usually coerce terms to rewrites implicitly if there is little danger
of confusion. Substitution of a variable for a term is functorial, that is, given a rewrite
Γ, x : A ⊢ ρ : s _ t : B and a term Γ ⊢ r : A, then Γ ⊢ ρ{x\r} : s{x\r} _ t{x\r} : B.

Term/rewrite substitution generalizes term/term substitution s{x\t} when t is a rewrite,
i.e. s{x\\ρ}. Sometimes we also call this notion lifting substitution, as s{x\\ρ} “lifts” the
expression s from the level of terms to the level of rewrites.

▶ Definition 11 (Term/rewrite substitution).

y{x\\ρ} def=
{

ρ if x = y

y if x ̸= y
c{x\\ρ} def= c

(λy.s){x\\ρ} def= λy.s{x\\ρ} if x ̸= y (s t){x\\ρ} def= s{x\\ρ} t{x\\ρ}

We mention some important properties of term/rewrite substitution. First, term/rewrite
substitution is a kind of horizontal composition, in the sense that if Γ, x : A ⊢ s : B and Γ ⊢ ρ :
t _ t′ : A then Γ ⊢ s{x\\ρ} : s{x\t} _ s{x\t′} : B. Second, term/rewrite and rewrite/term
substitution commute according to the equation s{x\\ρ}{y\t} = s{y\t}{x\\ρ{y\t}}, as-
suming that Γ, x : A, y : B ⊢ s : C and Γ, y : B ⊢ ρ : r _ r′ : A and Γ ⊢ t : B (where, by
convention, x /∈ fv(t)). Note that, in particular, if y does not occur free in ρ, this means that
s{x\\ρ}{y\t} = s{y\t}{x\\ρ}. Third, term/rewrite substitution commutes with reflexivity
in the sense that s{x\\t} = s{x\t} holds whenever Γ, x : A ⊢ s : B and Γ ⊢ t : A. It also
commutes with the source and target operators, in the sense that s{x\\ρ}src = s{x\ρsrc} and
s{x\\ρ}tgt = s{x\ρtgt} hold whenever Γ, x : A ⊢ s : B and Γ ⊢ ρ : t _ t′ : A.

4 Permutation equivalence

This section presents permutation equivalence (Def. 12), a relation over (typed) rewrites
ρ ≈ σ that identifies any two rewrites ρ and σ denoting computations in a given HRS R that
are equivalent up to permutation of steps.

Towards Permutation Equivalence for Rewrites. Equipped with the self-evident operations
of term/rewrite substitution s{x\\ρ}, rewrite/term substitution ρ{x\t} and the fact that
rewrites may be freely composed, we set out to synthesize a definition of permutation
equivalence by attempting to assign a meaning for (λx.ρ) σ, where Γ ⊢ ρ : s0 _ s1 : A and
Γ ⊢ σ : t0 _ t1 : A. We begin by assuming we have equations that allow rewrites to be
post-composed with their targets (≈-IdR) and pre-composed with their source (≈-IdL) and
reason as follows:

(λx.ρ) σ ≈(IdR) ((λx.ρ) ; (λx.s1)) σ ≈(IdL) ((λx.ρ) ; (λx.s1)) (t0 ; σ)
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These rewrites are syntactically valid since we allow composition inside an application.
Next, we allow application to commute with composition by introducing a rule ≈-App:
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2). Applying this equation leads us to:

((λx.ρ) ; (λx.s1)) (t0 ; σ) ≈(App) (λx.ρ) t0 ; (λx.s1) σ

Finally, we introduce β-equality on rewrites. Arbitrary β-reduction of rewrites is not allowed
a priori. It is only allowed when either the abstraction or the argument are unit rewrites, for
which the substitution operators mentioned above can be used. These equations take the
form (λx.s) ρ ≈ s{x\\ρ} and (λx.ρ) s ≈ ρ{x\s} and are called, ≈-BetaTR and ≈-BetaRT.

(λx.ρ) t0 ; (λx.s1) σ ≈(BetaRT) ρ{x\t0} ; (λx.s1) σ ≈(BetaTR) ρ{x\t0} ; s1{x\\σ}

In summary we have (λx.ρ) σ ≈ ρ{x\t0} ; s1{x\\σ}. We could equally well have deduced
(λx.ρ) σ ≈ s0{x\\σ} ; ρ{x\t1}. As it turns out, however, ρ{x\t0} ; s1{x\\σ} and s0{x\\σ} ;
ρ{x\t1} are permutation equivalent in our theory.

Permutation Equivalence for Rewrites: Definition and Properties. We collect the obser-
vations above in the following definition.

▶ Definition 12 (Permutation equivalence). Suppose Γ ⊢ ρ : s _ t : A and Γ ⊢ ρ′ : s′ _ t′ : A

are derivable. Permutation equivalence, written Γ ⊢ (ρ : s _ t) ≈ (ρ′ : s′ _ t′) : A (or simply
ρ ≈ ρ′ if Γ, s, t, s′, t′, A are clear from the context), is defined as the reflexive, symmetric,
transitive, and contextual closure of the following axioms:

ρsrc ; ρ ≈ ρ ≈-IdL
ρ ; ρtgt ≈ ρ ≈-IdR

(ρ ; σ) ; τ ≈ ρ ; (σ ; τ) ≈-Assoc
(λx.ρ) ; (λx.σ) ≈ λx.(ρ ; σ) ≈-Abs
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2) ≈-App

(λx.s) ρ ≈ s{x\\ρ} ≈-BetaTR
(λx.ρ) s ≈ ρ{x\s} ≈-BetaRT

λx.ρ x ≈ ρ if x /∈ fv(ρ) ≈-Eta

Rules ≈-IdL, ≈-IdR and ≈-Assoc, state that rewrites together with rewrite composition have
a monoidal structure. Recall from Section 3 that ρsrc is a term and ρsrc is its corresponding
rewrite. Rules ≈-Abs and ≈-App state that rewrite composition commutes with abstraction
and application. An important thing to be wary of is that rules may be applied only if
both the left and the right-hand sides are well-typed. In particular, the right-hand side of
the ≈-App rule may not be well-typed even if the left-hand side is; for example given rule
symbols c : A→ B and d : A, the expression ((λx.x)(c d)) ; (c d) is well-typed, with source
and target c d, while ((λx.x) ; c) ((c d) ; d) is not well-typed.

Finally, rules ≈-BetaTR, ≈-BetaRT and ≈-Eta introduce βη-equivalence for rewrites. Note
that ≈-BetaTR and ≈-BetaRT restrict either the body of the abstraction or the argument to a
unit rewrite, thus avoiding the issue mentioned in the introduction where a naive combination
of composition and βη-equivalence can lead to invalid rewrites.
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Note that there are no explicit sequencing equations such as the I/O equations2 defining
permutation equivalence in the first-order case [15] and the corresponding equations flat-l
and flat-r of [4] for the higher-order case. Nonetheless, we can derive the following coherence
equation (see Lem. 63 and Lem. 64 in [2] for the proof):

ρ{x\s′} ; t{x\\σ} ≈ s{x\\σ} ; ρ{x\t′} (≈-Perm)

where Γ, x : A ⊢ ρ : s _ t : B and Γ ⊢ σ : s′ _ t′ : A.

▶ Example 13. Consider the HRS of Ex. 4 and the reduction of Ex. 8. We recall the latter
below (R2) and present a second one (R1).

R1 : mu (λx.f x) _ mu (λx.g x) _ g (mu (λx.g x))
R2 : mu (λx.f x) _ f (mu (λx.f x)) _ f (mu (λx.g x)) _ g (mu (λx.g x))

Reduction sequence R1 can be encoded as the rewrite mu (λx.ϑ x); ϱ (λx.g x) and R2 as
ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)). These two rewrites are permutation equivalent:

mu (λx.ϑ x) ; ϱ (λx.g x)
≈(Eta) mu ϑ ; ϱ g
= (mu y){y\\ϑ} ; (ϱ y){y\g}
≈(Perm) (ϱ y){y\f} ; (y (mu y)){y\\ϑ}
= ϱ f ; ϑ (mu ϑ)
≈(IdL) ϱ f ; (f ; ϑ) (mu ϑ)
≈(IdR) ϱ f ; (f ; ϑ) ((mu ϑ) ; (mu g))
≈(App) ϱ f ; f (mu ϑ) ; ϑ (mu g)
≈(Eta) ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x))

The ≈-Perm rule motivates the definition of rewrite/rewrite substitution, ρ{x\\\σ} def=
ρ{x\s′} ; t{x\\σ}, which defines a rewrite s{x\s′} _ t{x\t′}. Note that ρ{x\\\σ} depends
on t and s′, and hence on the particular typing derivations for ρ and σ. Congruence
results ( Lem. 63 and Lem. 64 in [2]) ensure that the value of ρ{x\\\σ} does not depend,
up to permutation equivalence, on those typing derivations. Rewrite/rewrite substitution
generalizes rewrite/term and term/rewrite substitution, in the sense that ρ{x\t} ≈ ρ{x\\\t}
and s{x\\ρ} ≈ s{x\\\ρ}.

Other important facts involving rewrite/rewrite substitution are the following. First,
it commutes with abstraction, application, and composition, that is (λy.ρ){x\\\σ} ≈
λy.ρ{x\\\σ}, (ρ1 ρ2){x\\\σ} ≈ ρ1{x\\\σ} ρ2{x\\\σ}, and (ρ1 ; ρ2){x\\\σ1 ; σ2} ≈ ρ1{x\\\σ1} ;
ρ2{x\\\σ2}. Second, permutation equivalence is a congruence with respect to rewrite/rewrite
substitution, that is, if ρ ≈ ρ′ and σ ≈ σ′ then ρ{x\\\σ} ≈ ρ′{x\\\σ′}. Third, an analog of
the substitution lemma holds, namely ρ{x\\\σ}{y\\\τ} ≈ ρ{y\\\τ}{x\\\σ{y\\\τ}}. Finally, as
discussed above, a β-rule for arbitrary rewrites holds in the form (λx.ρ) σ ≈ ρ{x\\\σ}. The
full theory of rewrite/rewrite substitution is not developed here for lack of space (but see
Section B.2 in [2]).

5 Flattening

Allowing composition to be nested within application and abstraction can give rise to rewrites
in which it is not obvious what reduction sequences of steps are being denoted. An example
from the previous section might be the rewrite ((λx.f x) ; ϑ) ((mu (λx.ϑ x)) ; (mu (λx.g x)))

2 I : ϱ(σ1, ..., σn) ≈ l(σ1, ..., σn) · ϱ(t1, ..., tn) and O : ϱ(σ1, ..., σn) ≈ ϱ(s1, ..., sn) · r(σ1, ..., σn)
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which denotes the reduction sequence f (mu (λx.f x)) _ g (mu (λx.g x)) that replaces both
occurrences of f with g simultaneously. This section shows how rewrites can be “flattened”
so as to expose an underlying reduction sequence, expressed as a canonical (flat) rewrite.
One additional use of flattening will be to use it to show that permutation equivalence is
decidable (cf. end of Sec. Section 6). Before introducing flat rewrites we define multisteps.

A multistep is a rewrite without any occurrences of the composition operator. We use
µ, ν, ξ, . . . to range over multisteps. The capture-avoiding substitution of the free occurrences
of x in µ by ν is written µ{x\ν}, which is in turn a multistep. A flat multistep (µ̂, ν̂, . . .),
is a multistep in β-normal form, i.e. without subterms of the form (λx.µ) ν. A flat rewrite
(ρ̂, σ̂, . . .), is a rewrite given by the grammar ρ̂ ::= µ̂ | ρ̂ ; σ̂. Flat rewrites use the composition
operator “;” at the top level, that is they are of the form µ̂1 ; . . . ; µ̂n (up to associativity of
“;”), where each µ̂i is a flat multistep. Note that we do not require the µ̂i to be in βη-normal
form nor in βη-normal form. As mentioned in the introduction, flattening is achieved by
means of a rewriting system whose objects are themselves rewrites (Def. 15) which is shown
to be confluent and terminating (Prop. 17).

We also formulate an equational theory defining a relation ρ ∼ σ of flat permutation
equivalence between flat rewrites (Def. 19). The main result of this section is that permutation
equivalence is sound and complete with respect to flat permutation equivalence (Thm. 20).

▶ Remark 14. A substitution µ{x\ν} in which µ is a term is a term/rewrite substitution,
i.e. s{x\ν} = s{x\\ν}. A substitution in which ν is a term is a rewrite/term substitution,
i.e. µ{x\s} = µ{x\s}.

▶ Definition 15 (Flattening Rewrite System F). The flattening system F is given by the
following rules, closed under arbitrary contexts, defined between typable rewrites:

λx.(ρ ; σ) ♭7→ (λx.ρ) ; (λx.σ) F-Abs
(ρ ; σ) µ

♭7→ (ρ µsrc) ; (σ µ) F-App1
µ (ρ ; σ) ♭7→ (µ ρ) ; (µtgt σ) F-App2

(ρ1 ; ρ2) (σ1 ; σ2) ♭7→ ((ρ1 ; ρ2) σsrc
1 ) ; (ρtgt

2 (σ1 ; σ2)) F-App3
(λx.µ) ν

♭7→ µ{x\ν} F-BetaM
λx.µ x

♭7→ µ if x /∈ fv(µ) F-EtaM

Note that rules F -BetaM and F -EtaM apply to multisteps only. The reduction relation ♭7→ is
the union of all these rules, closed by compatibility under arbitrary contexts. We write ρ♭ for
the unique ♭7→-normal form of ρ.

▶ Example 16. Consider a rewriting rule ϱ : c _ d : A. The rewrite (λx.(x ; x)) ϱ, whose
meaning (as previously mentioned) is not obvious, can be flattened as follows:

(λx.(x ; x)) ϱ
♭7→F-Abs ((λx.x) ; (λx.x)) ϱ

♭7→F-App1 (λx.x) c ; (λx.x) ϱ
♭7→F-BetaM c ; (λx.x) ϱ

♭7→F-BetaM c ; ϱ

The following result is proved by noting that F -BetaM and F -EtaM steps can be postponed
after steps of other kinds and then providing a well-founded measure for steps in F without
F-BetaM and F-EtaM to prove it is SN. Confluence of F follows from Newman’s lemma.

▶ Proposition 17. The flattening system F is strongly normalizing and confluent.
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Flat Permutation Equivalence. We now turn to the definition of the relation ρ ∼ σ of flat
permutation equivalence. The key notion to define is the following ternary relation:

▶ Definition 18 (Splitting). Let Γ ⊢ µ : s _ t : A and Γ ⊢ µ1 : s′ _ r1 : A and
Γ ⊢ µ2 : r2 _ t′ : A be multisteps. We say that µ splits into µ1 and µ2 if the following
inductively defined ternary relation, written µ⇔ µ1 ; µ2, holds:

SVar
x⇔ x ; x

SCon
c⇔ c ; c

SRuleL
ϱ⇔ ϱ ; ϱtgt

SRuleR
ϱ⇔ ϱsrc ; ϱ

µ⇔ µ1 ; µ2
SAbs

λx.µ⇔ λx.µ1 ; λx.µ2

µ⇔ µ1 ; µ2 ν ⇔ ν1 ; ν2
SApp

µ ν ⇔ µ1 ν1 ; µ2 ν2

▶ Definition 19 (Flat permutation equivalence). Flat permutation equivalence judgments are
of the form: Γ ⊢ (ρ : s _ t) ∼ (ρ′ : s′ _ t′) : A, meaning that ρ and ρ′ are equivalent rewrites,
with sources s and s′ respectively, and targets t and t′ respectively. The rewrites ρ and ρ′

are assumed to be in ♭7→-normal form, which in particular means that they must be flat
rewrites. Sometimes we write ρ ∼ ρ′ if Γ, s, t, s′, t′, A are irrelevant or clear from the context.
Derivability is defined by the two following axioms, which are closed by reflexivity, symmetry,
transitivity, and closure under composition contexts (given by S ::= □ | S ; ρ | ρ ; S):

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ) ∼-Assoc
µ ∼ µ♭

1 ; µ♭
2 if µ⇔ µ1 ; µ2 ∼-Perm

Note that in ∼-Perm, −♭ operates over multisteps. So the only rules of F that are applied
here are the F-BetaM and F-EtaM rules.

▶ Theorem 20 (Soundness and completeness of flat permutation equivalence). Let Γ ⊢ ρ : s _
t : A and Γ ⊢ σ : s′ _ t′ : A. Then ρ ≈ σ if and only if ρ♭ ∼ σ♭.

Proof. The (⇐) direction is immediate, given that reduction ♭7→ in the flattening system F is
included in permutation equivalence (ρ ♭7→ σ implies ρ ≈ σ) and, similarly, flat permutation
equivalence is included in permutation equivalence (ρ ∼ σ implies ρ ≈ σ).
The (⇒) direction is by induction on the derivation of ρ ≈ σ. It is subtle and requires
numerous auxiliary results (see Section D.8 in [2]). ◀

▶ Example 21. With the same notation as in Ex. 13, it can be checked that the rewrites
mu (λx.ϑ x) ; ϱ (λx.g x) and ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)) are permutation
equivalent by means of flattening. Indeed, using the ∼-Perm rule three times:

mu ϑ ; ϱ g ∼ ϱ ϑ as ϱ ϑ ⇔ (λx.mu (λy.x y)) ϑ ; ϱ (λx.g x)
∼ ϱ f ; ϑ (mu ϑ) as ϱ ϑ ⇔ ϱ (λx.f x) ; (λx.x (mu (λy.x y))) ϑ

∼ ϱ f ; (f(mu ϑ) ; ϑ(µ g)) as ϑ (mu ϑ) ⇔ (λx.f x) (mu ϑ) ; ϑ (mu (λx.g x))

Note that ϱ ϑ ⇔ (λx.mu (λy.x y)) ϑ ; ϱ (λx.g x) follows from SApp, SRuleR for the upper
left hypothesis and SRuleL for the upper right one. Hence

(mu (λx.ϑ x) ; ϱ (λx.g x))♭ = mu ϑ ; ϱ g
∼ ϱ f ; (f(mu ϑ) ; ϑ(µ g))
= (ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)))♭
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6 Projection

This section presents projection equivalence. Two rewrites ρ and σ are said to be projection
equivalent if the steps performed by ρ are included in those performed by σ and vice-
versa. We proceed in stages as follows. First, we define projection of multisteps over
multisteps (Def. 25) and prove some of its properties (Prop. 26). Second, we extend projection
to flat rewrites (Def. 28). Third, we extend projection to arbitrary rewrites (Def. 29) and,
again, we prove some of its properties (Prop. 30). Finally, we show that the induced notion
of projection equivalence turns out to coincide with permutation equivalence (Thm. 31).

Projection for Multisteps. Consider the rewrites mu ϑ and ϱ f , using the notation of Ex. 13,
each representing one step. Since rewrites are subject to βη-equivalence, to define projection
one must “line up” rule symbols with the left-hand side of the rewrite rules they witness3.
For example, if the above two multisteps were rewritten as (λy.mu (λx.y x)) ϑ and ϱ (λx.f x),
respectively, then one can reason inductively as follows to compute the projection of the
former over the latter (the inference rules themselves are introduced in Def. 22):

ProjRuleR
λy.mu (λx.y x)///ϱ⇒ λy.y (mu (λx.y x))

ProjRuleL
ϑ///λx.f x⇒ ϑ

ProjApp
(λy.mu (λx.y x)) ϑ///ϱ (λx.f x)⇒ (λy.y (mu (λx.y x))) ϑ

The flat normal form of (λy.y (mu (λx.y x))) ϑ is the rewrite ϑ (mu ϑ). Hence we would
deduce mu ϑ///ϱ f ⇒ ϑ (mu ϑ). We begin by introducing an auxiliary notion of projection
on coinitial multisteps that may not be flat (i.e. may not be in F-BetaM,F-EtaM-normal
form) called weak projection. We then make use of this notion, to define projection for flat
multisteps (Def. 25).

▶ Definition 22 (Weak projection and compatibility). Let Γ ⊢ µ : s _ t : A and Γ ⊢ ν :
s′ _ r : A be multisteps, not necessarily in normal form, such that s =βη s′. The judgment
µ///ν ⇒ ξ is defined as follows:

ProjVar
x///x ⇒ x

ProjCon
c///c ⇒ c

ProjRule
ϱ///ϱ ⇒ ϱtgt

ProjRuleL
ϱ///ϱsrc ⇒ ϱ

ProjRuleR
ϱsrc///ϱ ⇒ ϱtgt

µ///ν ⇒ ξ
ProjAbs

λx.µ///λx.ν ⇒ λx.ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2
ProjApp

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

We say that µ and ν are compatible, written µ ↑ ν if, intuitively speaking, µ and ν are
coinitial, and are “almost” η-expanded and β-normal forms, with the exception that the head
of the term may be the source of a rule, i.e. a term of the form ϱsrc. Compatibility is defined
as follows:

(µi ↑ νi)m
i=1

λx.y µ ↑ λx.y ν

(µi ↑ νi)m
i=1

λx.c µ ↑ λx.c ν

(µi ↑ νi)m
i=1

λx.ϱ µ ↑ λx.ϱ ν

(µi ↑ νi)m
i=1

λx.ϱ µ ↑ λx.ϱsrc ν

(µi ↑ νi)m
i=1

λx.ϱsrc µ ↑ λx.ϱ ν

3 See also the discussion on pg. 120 of [4].
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The interesting cases are the two last rules, which state essentially that a rule symbol is
compatible with its source term. Clearly if µ ↑ ν, then there exists a unique ξ such that
µ///ν ⇒ ξ. Moreover, weak projection is coherent with respect to flattening:

▶ Lemma 23 (Coherence of projection). Let µ1, ν1, µ2, ν2 be multisteps such that the following
are satisfied:
1. µ1 ↑ ν1 and µ2 ↑ ν2;
2. µ♭

1 = µ♭
2 and ν♭

1 = ν♭
2; and

3. µ1///ν1 ⇒ ξ1 and µ2///ν2 ⇒ ξ2.
Then ξ♭

1 = ξ♭
2.

Thus for arbitrary, coinitial multisteps µ and ν, it suffices to show that we can always find
corresponding compatible “almost” η-expanded and β-normal forms, as mentioned above.

▶ Proposition 24 (Existence and uniqueness of projection). Let µ, ν be such that µsrc =βη νsrc.
Then:
1. Existence. There exist multisteps µ̇, ν̇, ξ̇ such that µ̇♭ = µ♭ and ν̇♭ = ν♭ and µ̇///ν̇ ⇒ ξ̇.
2. Compatibility. Furthermore, µ̇ and ν̇ can be chosen in such a way that µ̇ ↑ ν̇.
3. Uniqueness. If (µ̇′)♭ = µ♭ and (ν̇′)♭ = ν♭ and µ̇′///ν̇′ ⇒ ξ̇′ then (ξ̇′)♭ = ξ♭.

Prop. 24 relies on the left-hand side of the rewrite rules of the HRS being patterns. This
ensures, among other things, that flattening is injective when applied to left-hand sides
of rewrite rules in the sense that if (ϱsrc µ1 . . . µn)♭ = (ϱsrc ν1 . . . νn)♭ then µ♭

i = ν♭
i for all

1 ≤ i ≤ n. We can now define projection on arbitrary coinitial rewrites as follows.

▶ Definition 25 (Projection operator for multisteps). Let µ, ν be such that µsrc =βη νsrc. We
write µ/ν for the unique multistep of the form ξ̇♭ such that there exist µ̇, ν̇ such that µ̇♭ = µ♭

and ν̇♭ = ν♭ and µ̇///ν̇ ⇒ ξ̇, as guaranteed by Prop. 24. The proof is constructive (this relies
on the HRS being orthogonal), thus providing an effective method to compute µ/ν.

▶ Proposition 26 (Properties of projection for multisteps).
1. µ/ν = (µ/ν)♭ = µ♭/ν♭

2. Projection commutes with abstraction and application, that is, (λx.µ)/(λx.ν) =
(λx.(µ/ν))♭ and (µ1 µ2)/(ν1 ν2) = ((µ1/ν1) (µ2/ν2))♭, provided that µ1/ν1 and µ2/ν2
are defined.

3. The set of multisteps with the projection operator form a residual system [15, Def. 8.7.2]:
3.1 (µ/ν)/(ξ/ν) = (µ/ξ)/(ν/ξ), known as the Cube Lemma.
3.2 µ/µ = (µtgt)♭ and, as particular cases: s/s = s♭, x/x = x, c/c = c, and ϱ/ϱ = (ϱtgt)♭.
3.3 (µsrc)♭/µ = (µtgt)♭ and, as a particular case, (ϱsrc)♭/ϱ = (ϱtgt)♭.
3.4 µ/(µsrc)♭ = µ♭ and, as a particular case, ϱ/(ϱsrc)♭ = ϱ.

▶ Example 27. Let ϑ : λx.f x→ λx.g x. Then:

(λx.(λx.f x) x)/(λx.ϑ x) = (λx.((λx.f x) x)/(ϑ x))♭ = (λx.(((λx.f x)/ϑ)(x/x))♭)♭

= (λx.((λx.g x) x)♭)♭ = (λx.g x)♭ = g

Projection for Flat Rewrites. The projection operator from Def. 25 is extended to operate
on flat rewrites. One may try to define ρ/σ using equations such as (ρ1 ; ρ2)/σ = (ρ1/σ) ;
(ρ2/(σ/ρ1)). However, it is not a priori clear that this recursive definition is well-founded4.
This is why the following definition proceeds in three stages:

4 Another way to prove well-foundedness is by interpretation, as done in [15, Example 6.5.43].
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▶ Definition 28 (Projection operator for flat rewrites). We define:
1. projection of a flat multistep over a coinitial flat rewrite (µ /1 ρ), by induction on ρ;
2. projection of a flat rewrite over a coinitial flat multistep (ρ /2 µ), by induction on ρ; and
3. projection of a flat rewrite over a coinitial flat rewrite (ρ /3 σ) by induction on σ, as

follows:
µ /1 ν

def= µ/ν µ /1 (ρ1 ; ρ2) def= (µ /1 ρ1) /1 ρ2

ν /2 µ
def= ν/µ (ρ1 ; ρ2) /2 µ

def= (ρ1 /2 µ) ; (ρ2 /2 (µ /1 ρ1))
ρ /3 µ

def= ρ /2 µ ρ /3 (σ1 ; σ2) def= (ρ /3 σ1) /3 σ2

Note that /3 generalizes /2 and /1 in the sense that µ /1 ρ = µ /3 ρ and ρ /2 µ = ρ /3 µ.
With these definitions, the key equation (ρ1 ; ρ2) /3 σ = (ρ1 /3 σ) ; (ρ2 /3 (σ /3 ρ1)) can be
shown to hold.

From this point on, we overload ρ/σ to stand for either of these projection operators.
The key equation ensures that this abuse of notation is harmless. In the following, we
mention some important properties of projection for flat rewrites. First, projection of a
rewrite over a sequence, and of a sequence over a rewrite, obey the expected equations
ρ/(σ1 ; σ2) = (ρ/σ1)/σ2 and (ρ1 ; ρ2)/σ = (ρ1/σ) ; (ρ2/(σ/ρ1)). Second, flat permutation
equivalence is a congruence with respect to projection: more precisely, if ρ ∼ σ then τ/ρ = τ/σ

and ρ/τ ∼ σ/τ . Third, the projection of a rewrite over itself is always empty; specifically
ρ/ρ ∼ (ρtgt)♭. Finally, an important property is that ρ ; (σ/ρ) ∼ σ ; (ρ/σ), corresponding to
a strong form of confluence. The proof of these properties is technical, by induction on the
structure of the rewrites. We do not develop the full theory of projection for flat rewrites
here for lack of space (see Section E in [2] for more details).

Projection for Arbitrary Rewrites. As a final step, the projection operator of Def. 28 may
be extended to arbitrary rewrites by flattening first. The proof of Prop. 30 relies crucially on
the properties of projection for flat rewrites and on Thm. 20; it may be found in Section G
in [2].

▶ Definition 29 (Projection operator for arbitrary rewrites). Let ρ, σ be arbitrary coinitial
rewrites. Their projection is defined as ρ//σ

def= ρ♭/σ♭.

▶ Proposition 30 (Properties of projection for arbitrary rewrites).
1. Projection of a rewrite over a sequence and of a sequence over a rewrite obey the expected

equations ρ//(σ1 ; σ2) = (ρ//σ1)//σ2 and (ρ1 ; ρ2)//σ = (ρ1//σ) ; (ρ2//(σ//ρ1)).
2. Projection commutes with abstraction and application, that is:

2.1 (λx.ρ)//(λx.σ) ≈ λx.(ρ//σ), and more precisely (λx.ρ)//(λx.σ) ♭← [∗ λx.(ρ//σ).
2.2 If ρ1, σ1 are coinitial and ρ2, σ2 are coinitial, then (ρ1 ρ2)//(σ1 σ2) ≈ (ρ1//σ1) (ρ2//σ2),

and more precisely (ρ1 ρ2)//(σ1 σ2) ♭← [∗ (ρ1//σ1) (ρ2//σ2).
3. The projection of a rewrite over itself is always empty, ρ//ρ ≈ ρtgt.
4. Permutation equivalence is a congruence with respect to projection, namely if ρ ≈ σ then

τ//ρ = τ//σ and ρ//τ ≈ σ//τ .
5. The key equation ρ ; (σ//ρ) ≈ σ ; (ρ//σ) holds.

Characterization of Permutation Equivalence in Terms of Projection. Finally, we are
able to characterize permutation equivalence ρ ≈ σ as the condition that the projections ρ//σ

and σ//ρ are both empty. Indeed:
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▶ Theorem 31 (Projection equivalence). Let ρ, σ be arbitrary coinitial rewrites. Then ρ ≈ σ

if and only if ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt.

Proof. (⇒) Suppose that ρ ≈ σ. Then, by Prop. 30, ρ//σ ≈ σ//σ ≈ σtgt. Symmetrically,
σ//ρ ≈ ρtgt. (⇐) Let ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt. Then, by Prop. 30, ρ ≈ ρ ; ρtgt ≈ ρ ;
(σ//ρ) ≈ σ ; (ρ//σ) ≈ σ ; σtgt ≈ σ. ◀

Since flattening and projection are computable, Thm. 20 and Thm. 31 together provide
an effective method to decide permutation equivalence ρ ≈ σ for arbitrary rewrites.
Indeed, to test whether ρ//σ ≈ σtgt, note by Thm. 20 that this is equivalent to testing whether
ρ//σ ∼ (σtgt)♭, so it suffices to check that ρ//σ is empty, i.e. it contains no rule symbols. This
is justified by the fact that if µ has no rule symbols and µ ∼ ρ, then ρ has no rule symbols
(See Lem. 162 in [2]).

7 Related Work and Conclusions

As mentioned in the introduction, proof terms were introduced by van Oostrom and de Vrijer
for first-order left-linear rewrite systems to study equivalence of reductions in [17] and [15,
Chapter 9]. They are inspired in Rewriting Logic [13]. In the setting of HORs, Hilken [6]
introduces rewrites for βη-reduction together with a notion of permutation equivalence for
those rewrites. He does not study permutation equivalence for arbitrary HORs nor formulate
notions of projection. Hilken does, however, justify his equations through a categorical
semantics. We have already discussed Bruggink’s work extensively [4, 3]. Another attempt
at devising proof terms for HOR by the authors of the present paper is [1]. The latter uses a
term assignment for a minimal modal logic called Logic of Proofs (LP), to model rewrites.
LP is a refinement of S4 in which the modality □A is refined to [s]A, where s is said to be a
witness to the proof of A. The intuition is that terms and rewrites may be seen to belong
to different stages of discourse; rewrites verse about terms. Terms are typed with simple
types and rewrites are typed with a modal type [s]A where the term s is the source term
of the rewrite. However, the notion of substitution that is required for subject reduction
is arguably ad-hoc. In particular, substitution of a rewrite ρ : s _ s′ : A for x in another
rewrite σ : t _ t′ : A is defined as the composed rewrite ρ{x\t} ; s′{x\\σ}, where ρ is
substituted for x in t followed by σ where s′ is substituted for x.

Future work. It would be of interest to develop tools based on the work presented here for
reasoning about computations in higher-order rewriting, as has recently been explored for
first-order rewriting [9, 10]. One downside is that our rewrites cannot be treated as terms in
a higher-order rewrite system. Indeed, rewrites are not defined modulo βη (for good reason
since an expression such as (λx.ρ) σ should not be subject to β reduction).

One problem that should be addressed is that of formulating standardization (see e.g. [15,
Section 8.5]) using rewrites. This amounts to giving a procedure that reorders the steps of a
rewrite ρ, yielding a rewrite ρ∗ in which outermost steps are performed before innermost
ones. Standardization finds canonical representatives of ≈-equivalence classes, in the sense
that ρ ≈ σ if and only if ρ∗ = σ∗. The flattening rewrite system of Section 5 is a first
approximation to standardization, since ρ ≈ σ if and only if ρ♭ ∼ σ♭. In a preliminary version
of this work, we proposed a procedure to compute canonical representatives of ≈-equivalence
classes, based on the idea of repeatedly converting µ ; ν into µ′ ; ν′ whenever ν ⇔ ξ ; ν′ and
µ′ ⇔ µ ; ξ, an idea reminiscent of greedy decompositions [5]. Unfortunately, this procedure
does not always terminate, due to the fact that rewrites may have infinitely long “unfoldings”;
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for instance, if ϱ : c _ c and ϑ : f(x) _ d then ϑ(c) : f(c) _ d is equivalent to arbitrarily
long rewrites of the form f(ϱ) ; . . . ; f(ϱ) ; ϑ(c). A terminating procedure should probably
rely on a measure based on the notion of essential development [16, Definition 11].

Another avenue to pursue is to characterize permutation equivalence via labelling. The
application of a rewrite step leaves a witness in the term itself, manifested as a decoration
(a label). These labels thus collect and record the history of a computation. By comparing
them one can determine whether two computations are equivalent. Labelling equivalence for
first-order rewriting is studied by van Oostrom and de Vrijer in [17] and [15, Chapter 9].

We have given semantics to rewrites via Higher-Order Rewriting Logic. A categorical
semantics for a similar notion of rewrite and permutation equivalence was presented by
Hirshowitz [7] (projection equivalence and flattening are not studied though). Our s{x\\ρ}
is called left whiskering and ρ{x\s} right whiskering, using the terminology of 2-category
theory. These are then used to define ρ{x\\\σ}. A precise relation between the two notions
of rewrite should be investigated.
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