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——— Abstract

We continue developing the theory around the twin-width of totally ordered binary structures (or
equivalently, matrices over a finite alphabet), initiated in the previous paper of the series. We
first introduce the notion of parity and linear minors of a matrix, which consists of iteratively
replacing consecutive rows or consecutive columns with a linear combination of them. We show that
a matrix class (i.e., a set of matrices closed under taking submatrices) has bounded twin-width if and
only if its linear-minor closure does not contain all matrices. We observe that the fixed-parameter
tractable (FPT) algorithm for first-order model checking on structures given with an O(1)-sequence
(certificate of bounded twin-width) and the fact that first-order transductions of bounded twin-width
classes have bounded twin-width, both established in Twin-width I, extend to first-order logic with
modular counting quantifiers. We make explicit a win-win argument obtained as a by-product of
Twin-width 1V, and somewhat similar to bidimensionality, that we call rank-bidimensionality. This
generalizes the seminal work of Guillemot and Marx [SODA ’14], which builds on the Marcus-Tardos
theorem [JCTA ’04]. It works on general matrices (not only on classes of bounded twin-width) and,
for example, yields FPT algorithms deciding if a small matrix is a parity or a linear minor of another
matrix given in input, or exactly computing the grid or mixed number of a given matrix (i.e., the
maximum integer k such that the row set and the column set of the matrix can be partitioned into
k intervals, with each of the k? defined cells containing a non-zero entry, or two distinct rows and
two distinct columns, respectively).

Armed with the above-mentioned extension to modular counting, we show that the twin-width
of the product of two conformal matrices A, B (i.e., whose dimensions are such that AB is defined)
over a finite field is bounded by a function of the twin-width of A, of B, and of the size of the field.
Furthermore, if A and B are n X n matrices of twin-width d over F;, we show that AB can be
computed in time Og,4(n*logn).

We finally present an ad hoc algorithm to efficiently multiply two matrices of bounded twin-
width, with a single-exponential dependence in the twin-width bound. More precisely, pipelined
to observations and results of Pilipczuk et al. [STACS ’22], we obtain the following. If the inputs
are given in a compact tree-like form (witnessing twin-width at most d), called twin-decomposition

of width d, then two n X n matrices A, B over Fy can be multiplied in time 4d+°(d)n, in the sense

2d+o(d)

that a twin-decomposition of their product AB, with width , is output within that time, and

each entry of AB can be queried in time Og(loglogn). Furthermore, for every € > 0, the query time
can be brought to constant time O(1/¢) if the running time is increased to near-linear 44+°(@pl+e,

Notably, the running time is sublinear (essentially square root) in the number of (non-zero) entries.
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1 Introduction

Since its introduction, the treewidth of a graph has proved to be a particularly important
concept in graph theory, both in finite model theory [19], in algorithmic design (see for
instance the textbook of Cygan et al. [12, Chapter 7]) and in structural analysis (see the
Graph Minors series of Robertson and Seymour [27]). This invariant is strongly related
to the concept of graph minor. Recall that a minor of a graph is a graph obtained by a
succession of edge contractions and vertex or edge deletions. The treewidth of a graph is
monotone with respect to this operation, in the sense that the treewidth of a minor of a
graph G cannot be larger than the treewidth of G. By a classical theorem by Robertson and
Seymour [28], a class of graphs has bounded treewidth if and only if its minor closure (that
is, the set of all the minors of graphs in the class) does not contain all grids. In particular,
a graph with huge treewidth admits a large square grid as a minor. This result, as well as
its subsequent qualitative improvements (see [9], for instance), is the basis of the so-called
bidimensionality algorithmic technique, a win-win argument leveraging low treewidth or the
existence of a large grid minor [16].

This paper is the fifth of a series dedicated to a novel invariant of binary structures, the
twin-width (see Section 2 for formal definitions). This invariant appeared to be particularly
relevant for the study of ordered binary structures, and especially matrices over a finite
alphabet [4]. Some of our results will only need the matrix entries to belong to a finite
alphabet, while some will require the entries to belong to a finite field. A submatriz of a
matrix is obtained by deleting some rows and columns. Most of our results concern (infinite)
sets of matrices. In our framework, it will be natural to consider sets of matrices closed
under the operation of taking a submatrix. Sets of matrices with this property are called
matriz classes, analogously to permutation classes, which are classes of permutations closed
under taking subpermutations. The alphabet or field being fixed (and having at least two
elements), a matrix class is said to be proper if it does not include all matrices with entries
in the prescribed alphabet or field.

The notion of a rank Latin division has been introduced in [4] (see definition in Section 3).
It consists of a regular partition of the rows and columns delimiting blocks that either have
constant entries or have full rank, in a globally controlled way, where full-rank blocks draw
a universal permutation. Just as the grids act as witnesses of a large treewidth, the rank Latin
divisions witness a large twin-width: a matrix has either small twin-width or has a submatrix
with a large rank Latin division. This is effective: in FPT time, either a contraction sequence
of the matrix (witnessing that the twin-width is low) is output or a large rank Latin division
is found in a submatrix (witnessing that the twin-width is high).

In this paper, we introduce an operation that plays an analogous role with respect
to the twin-width of ordered binary structures that taking a minor plays with treewidth.
Applied to 0,1-matrices, this operation consists of a succession of row or column deletions,
and replacements of two consecutive rows or columns by their entry-wise sum (modulo 2).
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More generally, when applied to matrices over a finite field F,, this operation consists of a
succession of replacements of two consecutive rows or columns by a linear combination of
these (over FF,), and any matrix over F,, obtained this way is a linear minor of the original
matrix. We say that a matrix class excludes a matrix M as a linear minor if M is not a linear
minor of a matrix in the class. As expected, every matrix is a linear minor of any matrix
having a sufficiently large rank Latin division, thus classes with unbounded twin-width do not
exclude any matrix as a linear minor (Lemma 18). It appears that this necessary condition
is also sufficient.

» Theorem 1. A matrix class over a finite field has bounded twin-width if and only if
it excludes some matriz as a linear minor.

While this characterization of bounded twin-width is related to those expressed in terms
of matrix divisions (see Section 2.3 for definitions, and [5, 4] for the corresponding results),
the operational nature of linear minors make them closer to what is currently missing in the

unordered setting: an operation that is to twin-width what graph minors are to treewidth.

In addition, even if the current paper only deals with finite fields, linear minors appear to
naturally extend to the case of infinite fields, when the other invariants based on matrix
divisions fail to do so. As such, Theorem 1 paves the way to the adequate extension of
twin-width to (ordered) binary structures on infinite domains.

Our proof of Theorem 1 involves some (finite) model theoretic arguments. From a model
theoretical point of view, a matrix over a finite alphabet of size p is seen as a structure with
two linearly ordered sets of elements, the row and column index sets, and p binary predicates
expressing the presence of a particular symbol at a specific entry. The logical formulas we
will consider will allow distinguishing row and column indices, comparing indices of a same
sort, and testing whether the entry of the matrix defined by two indices contains a given
symbol.

It appears that the twin-width of ordered structured behaves very nicely with respect
to first-order logic and (as we shall see) its modulo-counting extension. This situation
is reminiscent of the relation of treewidth (and cliquewidth) with monadic second-order
logic [10] and its modulo-counting extension [11].

Indeed, it follows from the results proved in the first paper of the series [5], that first-order
model checking (that is: the problem of deciding whether a first-order (FO) sentence ¢ is
satisfied on a structure) is fixed-parameter tractable on matrices over a finite alphabet, when
parametrized by ¢, the size of the alphabet, and the twin-width of the matrix, provided
that some so-called d-sequence witnessing the upper bound on the twin-width is given
together with the matrix. Here we observe that this result extends to the more expressive
first-order logic with modulo-counting (FO+MOD), which is the logic obtained by adding to
the standard first-order constructions new quantifiers 3!, where «3iPly ©(x)” expresses
that the number of witnesses x for the formula ¢ is congruent to ¢ modulo p.

Logical formulas also allow defining new structures from an original structure. This is
the essence of the notion of transduction. A transduction of binary structures T first colors
the elements of a given binary structure A in all possible ways, thus constructing a set of
colored structures. Then, each of these colored structures gives rise to a new binary structure
by means of fixed logical formulas, thus constructing a set T(A) of derived structures, the
transduction of A by T. A simple interpretation is the same without the initial coloring
process, hence a given structure produces a single other structure. A set D of structures is a
transduction of a set C of structures if there exists a transduction T with D C T(C). A set C
of structures is monadically dependent if the set of all finite graphs is not a transduction
of C. (While this actually follows from [1], we will take here this characteristic property as
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a definition of monadic dependence.) Note that it has been recently proved [8] that, for
hereditary classes of structures (like matrix classes) monadic dependence coincides with the
classical notion of dependence (or NIP), which is one of the most fundamental dividing lines
in model theory; a proof of such a collapse in the particular case of hereditary classes of
ordered graphs was previously shown in [4].

In [5], it was proved that for every FO-transduction T of binary structures, the maximum
twin-width of a structure in T(A) is bounded by a function (depending on T) of the twin-
width of A. We also extend this result to FO+MOD-transductions. As an example, there is
a transduction L, such that for every matrix M over IF,, the set L,(M) is exactly the set of
all linear minors of M. Thus, the closure by linear minors of a matrix class with bounded
twin-width also has bounded twin-width, from which Theorem 1 follows.

Together with the results established in [4], this leads to the following equivalence, where
the equivalence with the properties in bold is proved in the current paper.

» Theorem 2. Given a matriz class M over a finite field, the following are equivalent.
(i) M has bounded twin-width;
(i) M excludes a linear minor;
(iii) M is monadically dependent;
(iv) every matriz class that is an FO-transduction of M is proper;
(v) every matriz class that is an FO+MOD-transduction of M is proper;
(vi) M is small (i.e. the number of n x n matrices in M is at most 200" );
(vii) every FO+MOD-transduction of M is small;
(viii) M is subfactorial (i.e. the number of n X n matrices in M is less than n!, for sufficiently
large n).
Assuming that FPT # AW([x|, those conditions are further equivalent to:
(ix) FO-model checking is FPT on M;
(x) FO+MOD-model checking is FPT on M.

We now consider some consequences of these results (for more, see long version).

We call rank-bidimensional a parameterized problem defined on matrices whenever the
presence of a large rank Latin division in a submatrix incurs an (easy) FPT algorithm. Thus,
we get the following.

» Theorem 3. Every FO+MOD-definable rank-bidimensional problem is in FPT.

From Theorem 3, we obtain FPT algorithms for deciding if a (small) matrix is a linear
minor of another matrix, for exactly computing the grid number, mixed number, and grid
rank of a matrix (see Section 2 for definitions).

Next we show that, over a finite field, the square M? of a matrix M with bounded
twin-width has bounded twin-width, by expressing the squaring operation as an FO+MOD-
transduction. From the characterization in terms of large rank Latin division of submatrices,
it follows that if two matrices A and B have small twin-width, then so does the matrix ( % 4).

2
As (54) = (48 24), we deduce:

» Theorem 4. There is a computable function f : N> — N such that the following holds. Let
A and B be two conformal matrices over a finite field Fq, both of twin-width at most d. Then
the twin-width of the product AB is at most f(d,q).

Note that, by similar arguments, the sum of two conformal matrices over Fy, both of
twin-width at most d, has twin-width at most f’(d, ¢), for some computable function f’.
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We now consider the problem from an algorithmic point of view. From a computational
perspective, the data structures used to encode matrices over a finite field are crucial.
Encoding matrices as bipartite binary structures allows using the machinery developed
for (ordered) graphs. In this setting, natural witnesses for twin-width boundedness are
d-sequences (or, contraction sequences), which we mentioned earlier when discussing first-
order model checking complexity on classes with bounded twin-width (see Section 2.2 for a
formal definition). A naive implementation of the algorithm presented in [4, Theorem 2] runs
in time exp(exp(O(d?logd)))n?, and outputs a 20(d4)-sequence if the twin-width is indeed
at most d. We show how to bring the dependence in n down to O4(n?logn) (Theorem 8).

Gajarsky et al. [18], building on Pilipczuk et al. [26], showed that given an n-vertex graph
(or binary structure) G with a d-sequence and a first-order formula ¢(x1,...,x), one can
compute in time Oy ,(n'") (resp. Og,(n)) a data structure that answers for any query
v1,..., s € V(G) whether G |= p(vi, ..., v;) in time Oy o, (1/€) (resp. Og,,(loglogn)). This
result can be extended to FO+MOD. Then, the squaring operation can be performed by
means of a simple interpretation, which gives a near-linear representation of M? (in the
domain size, that is, sublinear in the number of matrix entries) where entries can be queried
in constant time.

We thus obtain an algorithm that takes two matrices of bounded twin-width (without
witnesses) and outputs their product in quasilinear time in the number of entries.

» Theorem 5. Given two n x n matrices A and B over Fy, both of twin-width at most d,
there is an algorithm to compute their product AB in time Od7q(n2 logn).

However, this algorithm is not practical due to the acute dependence on the twin-width
bound. We thus place ourselves in a setting where inputs are already in compact form
(witnessing low twin-width). The use of an adapted internal representation is a classical
technique of digital computing (Fourier transform, redundant representation of numbers,
etc.). Likewise, it appears that convenient representations of matrices of bounded twin-width
for matrix computations are twin-decompositions [3, 6]. Informally, a twin-decomposition is
a tree whose leaves are bijectively mapped to the domain of the structure (here, to the row
and column indices), and internal nodes are ordered and naturally correspond to contractions.
The binary relations (here, the entries) are encoded by additional edges joining pairs of nodes
of the tree, and respecting some specific rules. Every binary structure with bounded twin-
width has a twin-decomposition with linearly many extra edges, hence the twin-decomposition
forms a degenerate graph. The width of the twin-decomposition is related to this degeneracy
(see Section 2 for precise definitions). Notice that a twin-decomposition of constant width
takes quasilinear space to describe a set of binary relations with possibly quadratically many
pairs. We show that a twin-decomposition can be computed from a contraction sequence in
quadratic time and observe that, conversely, a contraction sequence can be computed from
a twin-decomposition in linear time.

Our last contribution is an ad hoc efficient matrix multiplication algorithm for matrices
over [F, with bounded twin-width, which we state here in the case of matrices over Fs.

» Theorem 6 (Theorem 74[26]). Let A and B be two n X n matrices over Fy given in the
form of twin-decompositions of width at most d. For every e > 0, there is a 49T Dnlte_time
algorithm that outputs a twin-decomposition of the product AB of width 297°) and o data
structure of size 24T n1*e such that querying an entry of AB takes time O(1/¢).

The following (Theorem 7) is our main technical contribution: an algorithm computing
a twin-decomposition of the square M? of a matrix M from a twin-decomposition of M,
which extends to a matrix multiplication algorithm for matrices each represented by a
twin-decomposition.

15:5
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» Theorem 7. Let A and B be two n x n matrices over Fy given in the form of twin-
decompositions of width at most d. There is a 4@ n-time algorithm that outputs a twin-
decomposition of the product AB of width 24+°(d).

Contrary to Theorem 5 that hides a non-elementary dependence in the twin-width bound,
the dependence in d given by Theorem 7 is single-exponential. In addition, since Theorem 7
assumes that a twin-decomposition is given in input, the running time is sublinear in the
number of matrix entries, n? (as opposed to quasilinear for Theorem 5).

The entries of AB can then be queried in time essentially the height of the twin-
decomposition, which can be made logarithmic. However, by computing the data structure
introduced by Pilipczuk et al. [26] in O(d'n'*¢) time and space where d’ upperbounds the
width of a twin-decomposition of the matrix, the entry queries can be performed in O(1/¢)
time. Theorems 6 and 7 carry over on any finite field F, with running time oDy and
20a(d)plte regpectively.

An intriguing question concerns the existence of such results over infinite fields (starting
with Q). We do not have a direct definition of twin-width of matrices over Q based on
contraction sequences. However linear-minor freeness naturally carries to infinite fields, and
thus, it is natural to consider that a class of matrices over Q has bounded twin-width if its
closure under linear minors is not the set of all matrices. This can be equivalently stated via
the notion of grid rank of a matrix M, i.e., the largest k for which there is a k x k subdivision
of M in which every block has rank at least k. Note that if a matrix has grid rank k, then
any linear minor has grid rank at most k. Indeed, one can even show that a class of matrices
has bounded grid rank if and only if it does not contain some matrix as a linear minor. We
believe that computing the product of two matrices over Q with bounded grid rank should
be done in almost quadratic time, however, we lack a structural decomposition as in the
finite field case.

There is a vast literature on computing matrix multiplication, or other natural primitives
of linear algebra, on classes of structured matrices. We give a few references on rank-structured
matrices (see for instance [15, 21, 7, 30, 29]) and matrices of bounded treewidth.

A square matrix has quasiseparable order s if all its submatrices that are completely
above the main diagonal, or completely below it, have rank at most s. Note that on adjacency
matrices this is equivalent to the linear rank-width parameter (a dense analogue of pathwidth).
Pernet [24] shows that multiplying two n x n matrices with quasiseparable order s can be done
in time O(s*~2n?), where w is the exponent of matrix multiplication, or O(s3n) if the matrices
are given in a suitable compact form [25]. The closely-related semiseparable matrices also
have efficient multiplication algorithms [31]. So-called #-matrices (for hierarchical matrices)
and Z2-matrices admit almost linear-time algorithms for vector-matrix multiplication [7].

One can naturally extend the treewidth graph parameter to 0,1-matrices M by considering
the treewidth of the bipartite graph whose biadjacency matrix is M. Fomin et al. [17] show
how to compute the determinant, the rank, and to solve a linear system defined by an n x n
matrix of treewidth &, in time k9()n. Tt was recently shown by Dong et al. [13] how to solve
linear programs in expected almost linear-time on matrices of bounded treewidth.

2 Preliminaries

We denote by [i, j] the set of integers {i,i +1,...,5 — 1,7}, and [i] is a short-hand for [1,4].
We use the standard graph-theoretic notations: V(G), E(G), Ng[S], Na(S) respectively
denote the vertex set, edge set, closed neighborhood of S, open neighborhood of S. Given a
matrix M, we may interchangeably denote by M, , or M|z, y] the entry of M at row = and
column y.
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2.1 Binary structures and matrices

A relational signature X is a finite set of relation symbols R, each with a specified arity » € N.

A Y-structure A is defined by a set A (the domain of A) together with a relation RA C A"
for each relation symbol R € X with arity r. The syntax and semantics of first-order formulas
over X, or X-formulas for brevity, are defined as usual. A binary structure is a X-structure
such that every relation symbol of X' has arity at most 2. An ordered binary structure is
a structure A over a signature X' consisting of unary and binary relation symbols which
includes the symbol <, defining in A a total order on the domain of A.

A matrix M over a finite alphabet A with rows R and columns C' is viewed as an ordered
binary structure with domain R W C', equipped with the following relations:

a unary relation R interpreted as the set of rows,

an antisymmetric binary relation < which defines a total order on R W C, extending the

total orders on the rows and columns of M in such a way that the rows precede the

columns,

one binary relation E,, for each a € A, where E,(r, c) holds if and only if r is a row, c is

not (hence is a column), and a is the entry of M at row r and column c.

2.2 Contraction sequences and twin-width

A trigraph G has vertex set V(G), (black) edge set E(G), and red edge set R(G), with E(G)
and R(G) being disjoint. The set of neighbors Ng(v) of a vertex v in a trigraph G consists of
all the vertices adjacent to v by a black or red edge. A d-trigraph is a trigraph G such that
the red graph (V(G), R(G)) has degree at most d. In that case, we also say that the trigraph
has red degree at most d. A (vertex) contraction or identification in a trigraph G counsists of
merging two (non-necessarily adjacent) vertices u and v into a single vertex z, and updating
the edges of G in the following way. Every vertex of the symmetric difference Ng(u) ANg(v)
is linked to z by a red edge. Every vertex = of the intersection N¢(u) N Ng(v) is linked to z
by a black edge if both uz € E(G) and vz € E(G), and by a red edge otherwise. The rest of
the edges (not incident to u or v) remain unchanged. We insist that the vertices v and v
(together with the edges incident to these vertices) are removed from the trigraph.

A d-sequence (or contraction sequence) is a sequence of d-trigraphs G,,,Gp—1,...,G1,
where G,, = G, G; = K7 is the graph on a single vertex, and G;_; is obtained from G; by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that
G, has precisely i vertices, for every i € [n]. The twin-width of G, denoted by tww(G), is
the minimum integer d such that G admits a d-sequence. See Figure 1 for an illustration.

e~ @ e@
AT QLo [ o ¢ |
e"*o) h @"

Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

Twin-width can be generalized from graphs to binary structures in some (functionally)
equivalent ways [5, 2]. Here we choose the following definition.

On general binary structures, red edges exist between two vertices x,y € V(G;) whenever
there are up to four vertices u # v,u’ # v’ € V(G) such that u and «’ (which might be the
same vertex) were contracted (together with possibly other vertices) to form x, similarly
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v and v' were contracted to form gy, and the atomic types of (u,v) and of (u/,v’), or of
(v,u) and of (v',u’), are distinct. If instead, all such pairs (u,v) have the same atomic type,
this shared atomic type labels the edge xy in G;. Contraction sequences, d-sequences, and
twin-width are then similarly defined.

In particular, we now have a definition of twin-width for the matrices of Section 2.1.

2.3 Matrix divisions

We will often denote by R (resp. C) the sets of row (resp. column) indices of a matrix M.
For X C Rand Y C C, we denote by M[X,Y] the submatrix of M consisting of the entries
at rows in X and columns in Y.

A (k,0)-division of a matrix M is a pair of partitions (R = {Ry,...,Ri},C =
{C4,...,C¢}) of R and C, respectively, such that every R; corresponds to consecutive
rows, and every C;, to consecutive columns. A k-division is a (k, k)-division. We may call
a set of consecutive row or column indices an interval. The grid number, mized number,
grid rank, respectively, of a matrix is the largest integer k such that M has a k-division
({Ri1,..., Rk}, {C4,...,Cy}) for which, for every i, j € [k], respectively,

M{R;, C}] has a non-zero entry,

MIR;, C;] has at least two distinct rows and at least two distinct columns,

MIR;, C;] has at least k distinct rows or at least k distinct columns.

The divisions are called k-grid minor, k-mixzed minor, and rank-k division, respectively.
An interval minor of a matrix M is a matrix N with k& rows and £ columns such that M has
a (k,¢)-division ({Ry,...,Rg},{C1,...,C¢}) such that for every i € [k] and every j € [{],
N; j is an entry of M[R;, C;]. We call k-GRID MINOR, k-MIXED MINOR, RANK-k DIVISION,
INTERVAL MINOR CONTAINMENT, respectively, the computational problems of deciding if an
input matrix has grid number at least k£, mixed number at least k, grid rank at least k, and
if a matrix is an interval minor of another matrix.

2.4 Computing contraction sequences

Efficiently (in polynomial time, FPT time, or even slice-wise polynomial time) approximating
the twin-width of a binary structure remains a challenging open question. However, such an
algorithm is known for totally ordered binary structures, or matrices over a finite alphabet [4].
Following [4], we bring the complexity from a cubic down to an almost quadratic dependence
in the number of rows and columns.

» Theorem 8. Given an nxn symmetric matrix M over a finite alphabet A, and an integer d,
there is an algorithm running in time Og4)4|(n*logn) that

either correctly reports that the twin-width of M is larger than d,

or outputs an exp(exp(exp(O) 4 (d*))))-sequence for M.

2.5 Twin-decompositions

A twin-decomposition of a graph G also uses the framework of a rooted carving decomposition,
i.e., a rooted binary tree whose leaves are in one-to-one correspondence with the vertices
of G. In the case of twin-decompositions though, the internal nodes of the rooted binary
tree are totally ordered and the width is quite different from how carving-width is defined.
A rooted binary tree with n — 1 internal nodes bijectively labeled by ¢ on [n — 1] is
said ranked if whenever u and v are two distinct internal nodes such that v is a descendant of
u, then £(u) < ¢(v) holds. By convention, we then decide that all the leaves are labeled 400
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(or equivalently n). For every i € [n], the i-th border of a ranked tree 7 with n — 1 internal
nodes is the set of maximal rooted subtrees whose roots have label at least . We denote by
B;(T) the i-th border of T. It can be easily shown (using that 7 is a ranked tree) that the
i-th border of T consists of exactly ¢ subtrees. We denote by (7)) the root of 7.

A twin-decomposition of an n-vertex graph G is a pair (T, B) where

(a) T is a rooted binary tree, ranked by ¢ on [n — 1], whose leaves are in one-to-one
correspondence with V(G), and
(b) B (for bicliques) is a set of edges over V(T) (disjoint from edge set of 7), such that:

1. B partitions the edge set of G, where an edge between u,v € V(T) is interpreted as
the biclique of G linking every leaf in the subtree of T rooted at u, to every leaf in
the subtree of T rooted at v, and

2. No edge of B crosses an i-th border, i.e., links a node in a subtree 7" of B;(T) but
not the root of 7' to a vertex outside every subtree of B;(T).

The width of the twin-decomposition (7, B) is again defined as the maximum red degree
among every vertex of every trigraph G; (as previously defined). See Figure 2 for an
illustration of a twin-decomposition corresponding to a particular contraction sequence.

Figure 2 Left: a graph G with a contraction sequence (or partition sequence), where trigraph G;
is obtained after performing the contraction labeled i. Center: the twin-decomposition corresponding
to this contraction sequence, with the edges of B in blue. Right: a ranked tree 7 and a partition
B of the edges of G that does not make for a twin-decomposition, since the edge b3 crosses Bs(T)

(and B4(T)).

For our intended purposes in this extended abstract, we only described twin-
decompositions for graphs but they readily generalize to binary structures (see long version).

2.6 Computing a twin-decomposition from a contraction sequence

There is an easy linear (in the input size, i.e., in the number of edges) algorithm that, given a d-
sequence, computes a corresponding twin-decomposition (of same width d). The list of triples
of a contraction sequence G, ...,Gi,...,G1 is (Un,Vn,2n), ..., (Wi, Vi, 2i)s -« ., (U2, V2, 22)
such that the contraction of u; and v; in G; into a new vertex z; results in G;_1.

» Theorem 9. A twin-decomposition of width d of an n-vertex graph G given with the list of
triples of a d-sequence can be computed in time O(n?).

A consequence of the second paper of the series is that, given twin-decompositions of
bounded width, one can find twin-decompositions of (larger) bounded width, where in
addition the tree 7 has logarithmic depth.
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» Theorem 10 ([2, see Lemma 23 and Proposition 22]). For every integer d, there is a larger
integer D such that every n-vertex graph of twin-width d admits a twin-decomposition of
width at most D and depth O4(logn).

Given a twin-decomposition (7, B) of G with width d and depth h, the presence of an
edge between two vertices of G can be decided in time O(dh). This yields a linear-space
representation of G with edge queries in logarithmic time. Pilipczuk et al further show that:

» Theorem 11 ([26]). Given a twin-decomposition of width d of an n-vertex graph G, and
any € > 0, there is a data structure of size O(dn'*e), computable in time O(dn'*¢) that
supports edge queries of G in time O(1/¢).

All the results mentioned in this section extend from graphs to binary structures.

2.7 Parameterized complexity of model checking

First-order (FO) matrix model checking asks, given a matrix M (or a totally ordered binary
structure S) and a first-order sentence ¢, if M = ¢ holds, that is, if ¢ is true in M. FO model
checking is fixed-parameter tractable (FPT) on a matrix class M, with respect to the sentence
size and the input matrix, if there exists a constant ¢ and a computable function f, such
that M |= ¢ can be decided in time f(|¢|) (m + n)¢, for every n x m matrix M € M and
FO sentence ¢.

FO model checking of general (unordered) graphs is AW[«]-complete [14], and thus very
unlikely to be FPT. Indeed FPT # AW[x] is a much weaker assumption than the already
widely-believed Exponential Time Hypothesis [22], and if false, would in particular imply
the existence of a subexponential algorithm solving 3-SAT. FO model checking of general
binary structures of bounded twin-width given with an O(1)-sequence can even be solved in
linear FPT time f(|p|) |U|, where U is the domain of the structure [5].

Gajarsky et al. [18] reproved that result using a different, and more standard formalism.
Building on Theorem 11, they also presented an algorithm that inputs a binary structure given
with an O(1)-sequence and a formula with some free variables, and after some preprocessing
in near-linear time, can answer queries of the form does the given tuple satisfy the formula in
the structure in constant time.

» Theorem 12 ([18]). For every ¢ > 0, given a binary X-structure A on a domain of
size n, a d-sequence of A, and a first-order X-formula p(x1,...,xL), there is a data structure
computable in time Oq,,(n**e) that given any query of the form vy,...,v; € A reports in
time Og4,.,(1/¢) whether A = p(v1,...,v;) holds.

In classes of ordered binary structures or matrices, one need not require that the contrac-
tion sequence is given in input. Indeed there is an FPT approximation algorithm, that takes
a matrix M of twin-width d, and outputs a g(d)-sequence of M in time h(d) |[M|°™M) [4].
Hence, FO matrix model checking can be solved in FPT time f(|¢|) |M|°™) [4] in classes of
bounded twin-width. We observe that this algorithm extends to FO+MOD model checking.

» Theorem 13 (follows with some small adjustments from [5, Section 7]). Given a d-sequence
of a binary structure S, and a prener FO+MOD-sentence ¢ of quantifier rank £, one can
decide S |= ¢ in time f({,d)n for some computable non-elementary function f.

The same applies to the fact that bounded twin-width is preserved by transductions.

» Theorem 14 (similarly follows from [5, Section 8]). Let C be a set of binary structures
with bounded twin-width, and T be an FO+MOD-transduction. Then T(C) has bounded
twin-width.



E. Bonnet, U. Giocanti, P. Ossona de Mendez, and S. Thomassé

3 Equivalence of bounded twin-width and linear-minor freeness

Alternatively to the definition given in introduction, linear and parity minors can be charac-
terized by matrix divisions. A parity minor of a matrix M is any n X m matrix N obtained
by summing up every cell of an (n, m)-division of a submatrix of M. We denote that by
N <pm M. See Figure 3 for an illustration.

(1011001 1] (1 0 1 0l1 1]
011007101
110
0000000 1 ool o olo1 0o 1
M=|11001011 1 1 0 o1 1 N=|0 0 o
10011010
01 1
00111100 0 0 1 1o o
(0011000 1| 00 1 ofo 1

Figure 3 A parity minor, equivalently linear minor, N of a matrix M over F3. In the middle, the
deleted rows and columns of M are in light gray, while the (4, 3)-division of the remaining submatrix
giving rise to N is represented with solid black lines.

Let us call F-weighting of M any mapping w : rows(M) U cols(M) — F. Equivalently
a linear minor of a matrix M over a finite field F is any n X m matrix IV obtained from
an F-weighting w and (n,m)-division D = ({Ry,...,R,},{C1,...,Cn}) of M by replacing
every cell M[R;,C;] of D by the single entry ZTGRMEQ w(r)w(c) My, that is, setting
N, ;= ZTGR“CEQ w(r)w(c)M;. .. We denote that by N <, M.

» Observation 15. Over Fy, parity minors and linear minors coincide.

The linear-minor closure of M, denoted by Closyy, (M), is the matrix class of all matrices
N which are linear minors of some M in M. We say that M is parity-minor free (resp. linear-
minor free) if its parity-minor closure (resp. linear-minor closure) is not the set of all F-matrices.
We first show that bounded twin-width matrix classes over finite fields are linear-minor free,
and in particular parity-minor free.

» Lemma 16. Let F be a finite field. For every matriz class M over F of bounded twin-width,
M is linear-minor free.

Proof sketch. We can express the set of linear minors of a matrix by a FO+MOD-
transduction. Indeed the modulo-counting quantifiers allow one to write a first-order formula
summing up the entries in a given contiguous submatrix. Thus by Theorem 14, Clos), (M)
has bounded twin-width, and cannot be the set of all F-matrices. <

For the converse, we will need the notion of rank Latin divisions previously introduced [4].
For any integers k > 2 and d > 1, a rank-k Latin d-division of a kd? x kd? matrix M is a regular
d-division D of M that can be refined into a regular d?-division ((Ry, ..., Rg2), (C1,...,Cy2))
such that

Vi € [d?], M[R;,C}] is constant for every j € [d?] but one j; for which it has rank £,

Vj € [d?), M[R;,C}] is constant for every i € [d?] but one i; for which it has rank k,

and every cell of D contains exactly one M[R;,C;] with rank k.

It was previously shown that matrix classes with unbounded twin-width contain matrices
with rank-k Latin d-divisions for arbitrarily large values of k and d. For our purpose we will
only need k£ = 2 and d diverging.
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» Lemma 17 ([4]). Let M be a matriz class of unbounded twin-width over a finite field.
Then for every d, there is a matrix M € M with a rank-2 Latin d-division.

Equipped with that technical lemma, we can show the following (see long version).

» Lemma 18. Let F be a finite field and M be a matriz class of F-matrices. If M is
linear-minor free then it has bounded twin-width.

4 Fixed-parameter algorithms for matrix division problems

We show how to use Theorem 13 and the approximation algorithm of matrix twin-width [4,
Theorem 2], to decide matrix problems involving a division (of a submatrix) with some
FO+4+MOD-definable properties in fixed-parameter time. This is based on a win-win argument
generalizing the algorithmic scheme of Guillemot and Marx [20] to solve PERMUTATION
PATTERN, and somewhat resembling the bidimensionality technique [16]. It allows for
instance to detect a k-grid minor or a k-mixed minor in an n X n matrix, or to decide if a
k x k matrix is a parity or linear minor of an n X n matrix in time f(k)no(l).

» Theorem 19 ([4]). Given as input an n X m matrix M over a fized finite field F, and an
integer k, there is an f(k)(n +m)°M -time algorithm which returns

either a rank-k Latin division of a submatriz of M,

or a contraction sequence certifying that tww(M) < g(k).
where f and g are computable functions.

A parameterized problem I7, taking as input a matrix over a fixed finite field and a non-
negative integer, is FO+MOD-definable if, there is a computable function f, and for every
non-negative integer k, there is a FO+MODI|7] sentence ¢z i, of size f(k) such that (M, k) is
a YES-instance of IT if and only if M |= ¢ ,. A parameterized problem II, taking as input
a matrix M and a non-negative integer k, is said rank-bidimensional if, for some computable
functions f and g, the existence of a rank-f(k) Latin division in M (i.e., a submatrix of M
has a rank-f(k) Latin division) permits to decide IT in time g(k)|M|°™). We can now state
the main observation of this section.

» Theorem 20. Every FO+MOD-definable rank-bidimensional problem is in FPT.

Proof. Let IT be a rank-bidimensional problem, with computable functions f and g. Let
(M, k) be an input of I7. We run the algorithm of Theorem 19 with parameter f(k). In time
f'(k)|M|®M) | this either yields a rank-f(k) division of a submatrix of M, and we can decide
(M, k) in further time g(k)|M|®™) (since IT is rank-bidimensional), or a ¢’ (k)-sequence of
M, and we can conclude by Theorem 13 (since IT is FO+MOD-definable). <

As a corollary of Theorem 20, we obtain for instance that deciding if IV is a parity minor
of M is fixed-parameter tractable in the size of N. Indeed we show (in the long version) how
to express the parity minor containment with FO4+MOD sentences.

» Theorem 21. Let N be a k x k matriz, and M be an n X m matriz, both over Fy. One
can decide N <pm M in time f(k)(n+m)°D) for some computable function f.

Similarly we can invoke Theorem 20 for the following problems. In the following theorem,
LINEAR MINOR CONTAINMENT is the problem of deciding N <), M, given two matrices
N, M over a fixed finite field, parameterized by |N]|.

» Theorem 22. LINEAR MINOR CONTAINMENT, INTERVAL MINOR CONTAINMENT, k-GRID
MINOR, k-MIXED MINOR, RANK-k DIVISION, PERMUTATION PATTERN are in FPT.



E. Bonnet, U. Giocanti, P. Ossona de Mendez, and S. Thomassé

5 Products of bounded twin-width matrices over a finite field

First we show that if a matrix class M over a finite field has bounded twin-width, then so
does its set of squares M? = {AB : A and B are two conformal matrices of M}.

» Theorem 23. There is a function f: N3 — N such that for every conformal matrices A
and B over Fy, The product AB (over F,) has twin-width at most f(tww(A),tww(B),q).

. 0 A 0 A\ [(AB 0
Proof. Since <B 0> . (B O> = < 0 BA) and

fww ((3 )0( )) — tww ((i)( 3)) — max(tww(X), tww(Y), 2),

we shall just prove that there is a function g such that M? has twin-width at most g(tww(M)),
for every square matrix M over . There is a simple FO+MOD-interpretation S such that
S(M) = M?. Indeed one can keep the relations R and < as in M, and express EM (z, ) as

\/ /\ Jok)ldl EJM(x, 2) A EM(z,y),
a:lg—1]>—[0,g—1]  j.k€lg—1]
>, alik) (k=i
i k€lg—1]2

where 7 is the element of F, corresponding to relation F;. The expression ﬁc is a product in
F,, while a(j, k) - (k) is the sum of a(j, k) occurrences of jk. As every element of (F,, +) has
an order dividing g, it is enough to count the number of pairs (7, I;:) = (M., M. ,) modulo ¢,
which the formula does. We finally invoke Theorem 14 to conclude that tww(M?) is bounded
by a function of tww (M) and q. <

» Theorem 24. Let q be a prime power, and d be a natural. Let A, B be two n X n
matrices over Fgq, both of twin-width at most d. One can compute the product AB in time
Ou,q(n*logn).

Proof. By Theorem 8, we compute an Og 4(1)-sequence for

M = (g g) , in time Oy ,(n*logn).
We conclude either by turning this contraction sequence into a twin-decomposition in time
Oua,4(n?), by Theorem 9, and invoking the upcoming practical matrix squaring of Theorem 25,
or by combining the FO+MOD-interpretation of Theorem 23 (and Theorem 14) with the
efficient algorithm of Gajarsky et al. [18] (see Theorem 12) to compute the interpretations of
bounded twin-width structures. We can finally read off the top-left block AB in M? in time
Od7q(n2).

If we chose the former approach, we now have a twin-decomposition (7, B) of AB. We
can initialize an n X n matrix to all 0 entries, and for each edge of B labeled /¢, fill the
corresponding entries with £. This takes quadratic time since we access each matrix entry
at most once. If we instead went with the latter approach, we shall simply make (g — 1)n?
constant-time queries to build AB, ¢ — 1 for each entry of AB. <

The most technical contribution of the paper is the following, stated and shown in the
language of edge-colored graphs in the long version. For every prime power ¢ = p®, we let
m(g) denote the cost of basic arithmetic computations in Fy; here only addition, subtraction
and multiplication are needed.
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» Theorem 25. For every prime power q > 2, there is an O(m(q)d*>q**n)-time algorithm
that, given a twin-decomposition (T,B) of width d of a symmetric n x n matriz M over F,
outputs a twin-decomposition of width O(d*q?) of M?>.

Note that in practice, if ¢ = p® with p prime, one can choose m(q) = (’)(1ogp(q)2 log(p)?)
(see for example [23, Table 2.8]). The comparatively good dependence on twin-width is
achieved by working directly on the twin-decomposition and problem-specific insights. The
algorithm follows three steps. In the first step, a contraction sequence is computed for M?
as a refinement of the one for M. The contraction sequence naturally yields the tree 7’ of a
twin-decomposition (77, B’), where one shall now find B’. The next step aims to obtain a set
By encoding M? (but not yet a twin-decomposition). This set is then cleaned in the third
and last step into a twin-decomposition (77, B’) of M? of width at most exponential in the
width of the twin-decomposition (7, B).
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