
Real-Time Double-Ended Queue Verified
(Proof Pearl)
Balazs Toth
Department of Computer Science, Technische Univerität München, Germany

Tobias Nipkow Ñ

Department of Computer Science, Technische Univerität München, Germany

Abstract
We present the first verification of the real-time doubled-ended queue by Chuang and Goldberg
where all operations take constant time. The main contributions are the full system invariant, the
precise definition of all abstraction functions, the structure of the proof and the main lemmas.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Data structures design and analysis; Software and its engineering →
Functional languages

Keywords and phrases Double-ended queue, data structures, verification, Isabelle

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.29

Funding Tobias Nipkow: Research partially supported by DFG Koselleck grant NI 491/16-1.

1 Introduction

Based on the work of Chuang and Goldberg [2] we implement and formally verify a double-
ended queue (deque) in a purely functional language such that each enqueue and dequeue
operation on either end takes O(1) time in the worst case. This is what real-time means.
Operations on previous versions of a deque are in constant time since purely functional data
structures are persistent by default.

The deque implementation by Chuang and Goldberg consists of two stacks, with each
stack corresponding to one of the two ends of the deque. These two stacks are balanced
at all time, meaning that the bigger stack is never more than three times bigger than the
smaller stack. The enqueue and dequeue operations use the respective stacks (by pushing
and popping). The deque maintains its size invariant by rebalancing the two ends. Since
such a rebalancing takes time O(n), it distributes a constant fraction of the rebalancing steps
on the enqueue and dequeue operations before the invariant can be violated again. This
achieves worst-case and not just amortized constant time for each operation. We show the
detailed implementation in Section 5.

Chuang and Goldberg [2, p.292] describe the main size invariant of a real-time deque and
explain how this invariant is re-established via rebalancing of the two ends. But to formally
verify the implementation, we need much more detailed invariants, which also capture the
state during rebalancing. For example, an explicit measure of the remaining rebalancing
steps is needed. We verify the implementation w.r.t. a formal specification of deques. The
verification uses the interactive theorem prover Isabelle/HOL [12, 11]. The Isabelle theories
are available online [14] and comprise 4400 lines of definitions and proofs. Some of the names
in this paper have been modified (mostly shortened) for presentation reasons.

© Balazs Toth and Tobias Nipkow;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.proof.cit.tum.de/~nipkow/
https://orcid.org/0000-0003-0730-515X
https://doi.org/10.4230/LIPIcs.ITP.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Real-Time Double-Ended Queue Verified (Proof Pearl)

1.1 Related Work
The quest for efficient functional queues started with the two-stack implementation by
Burton [1] where all operations take amortized constant time. Hood and Melville [7] show
how to obtain a real-time implementation by distributing the work of moving elements
from one of the two stacks to the other one over a whole sequence of enqueue and dequeue
operations. A verification of Hood and Melville’s queue can be found elsewhere [4, 10]. The
principles of the real-time deque were already described by Hood [6], apparently unbeknownst
to Chuang and Goldberg. Madhavan and Kuncak [9] automatically verified the amortized
constant-time complexity of a simpler deque (see start of Section 4).

Okasaki [13] shows how to obtain simpler implementations of real-time queues and
deques by relying on lazy evaluation. The resource requirements of his code were analyzed
semi-automatically by Madhavan et al. [8].

2 Preliminaries

Isabelle types are built from type variables, e.g. ′a, and (postfix) type constructors, e.g.
′a list; the function type arrow is ⇒. The notation t :: τ means that term t has type τ . The
notation f n, where f :: τ ⇒ τ , is the n-fold composition of f with itself.

Type ′a list are lists of elements of type ′a. They come with the following vocabulary:
(#) (list constructor), (@) (append), |xs| (length of list xs), rev xs (reverse of xs), hd (head),
tl (tail, where tl [] = []), take n xs (take the first n elements of list xs), drop n xs (drop the
first n elements of list xs), take_last n xs (take the last n elements of list xs), and other
self-explanatory notation. Type nat are the natural numbers. Pairs come with the projection
functions fst and snd. Logical equivalence is written = instead of ←→. A yellow background
marks the code of the actual implementation of the data structure, while code without a
background is just used for the verification.

3 Specification

The interface is comprised of the functions

empty :: ′q is_empty :: ′q ⇒ bool
enqL :: ′a ⇒ ′q ⇒ ′q enqR :: ′a ⇒ ′q ⇒ ′q
deqL :: ′q ⇒ ′q deqR :: ′q ⇒ ′q
firstL :: ′q ⇒ ′a firstR :: ′q ⇒ ′a

where ′q is the type of deques and ′a the type of elements. They allow enqueuing and
dequeuing elements on both ends (as indicated by the L/R suffixes). We express the
specification using an abstraction function listL :: ′q ⇒ ′a list

listL empty = [] is_empty q = (listL q = [])
listL (enqL x q) = x # listL q listR (enqR x q) = x # listR q
listL q ̸= [] −→ listL (deqL q) = tl (listL q) listR q ̸= [] −→ listR (deqR q) = tl (listR q)
listL q ̸= [] −→ firstL q = hd (listL q) listR q ̸= [] −→ firstR q = hd (listR q)

where listR q = rev (listL q). The above properties express that listL and listR are
homomorphisms from deques to lists. There is also an invariant invar :: ′q ⇒ bool and
invar q is an additional precondition of the above equations, except for listL empty = []. All
operations are required to preserve invar – we do not show the corresponding propositions.

B. Toth and T. Nipkow 29:3

4 Abstract Description of Implementation

A deque is represented by two stacks, one for each end of the deque. Things work well as
long as both stacks remain non-empty. As soon as one becomes empty and a deq (= pop)
operation is to be performed, we need to move part of the other stack over to the empty
side first. It can be shown that if the (bottom) half of the non-empty stack is moved (and
reversed), this leads to an implementation with amortized constant-time operations.

To achieve worst-case constant-time complexity the invariant n ≥ m ≥ 1 ∧ 3 ∗ m ≥ n
is maintained where m and n are the sizes of the smaller and the bigger stacks S and
B. If the length of the deque is ≤ 3, it is represented by a single list, all operations are
trivially constant-time and the above invariant does not apply. We focus on the two-stack
situation. The invariant can be violated by dequeuing on the smaller stack or enqueuing on
the larger stack. Let S and B be the stacks after the violating operation and let m = |S |
and n = |B|. Then 3 ∗ m < n and either 3 ∗ (m + 1) ≥ n (pop) or 3 ∗ m ≥ n − 1 (push),
i.e. n = 3 ∗ m + k where 1 ≤ k ≤ 3. Thus there are P and Q such that B = P @ Q and
|Q| = m + 1. Now we transform S into S @ rev Q and B into P in 5 phases. In each phase,
we pop the elements off one stack and push them onto another stack, thus reversing the order.

Big1 Pop the top 2 ∗ m + k − 1 elements off B onto a new stack rP: B = Q and rP = rev P
Small1 Reverse S onto a new stack rS : rS = rev S
Big2 Reverse rP onto a new stack B ′: B ′ = P
Small2 Reverse B onto a new stack S ′: S ′ = rev Q
Small3 Reverse rS onto S ′: S ′ = S @ rev Q

Now S ′ and B ′ are the new stacks. Phases Big1 and Small1 can be performed in parallel
thus taking at most 2 ∗ m + 2 + 1 steps – the 1 is an administrative step between phases.
Similarly, phase Big2 can be performed in parallel with phases Small2 followed by Small3,
thus taking at most 2 ∗ m + 2 + 1 steps again. The 4 ∗ m + 6 steps are spread out as
follows: 6 steps are performed in the violating operation and 4 steps in each subsequent enq
and deq. The invariant cannot be violated again during those m operations: we start with
stacks S ′ and B ′ of size 2 ∗ m + 1 and 2 ∗ m + k − 1; in the worst case k = 1 and all m
operations are deqs on B ′; in the end we still have 3 ∗ (2 ∗ m + k − 1 − m) ≥ 2 ∗ m + 1.
In fact, it takes about 4/3 ∗ m deqs or 4 ∗ m pops before the invariant can be violated
again. Because rebalancing happens in parallel with enqueuing and dequeuing, the stacks
are augmented with further data structures. A counter keeps track of how many elements of
the original stacks are still valid – every deq decrements the counter. An additional list ext
is maintained that enqs push to. At the end of the 5 phases, we cannot just append S ′ to
ext – this would not be constant-time. Thus stacks are actually implemented as pairs of lists
(which complicates push and pop a little) and phase Small3 returns (ext, T) where T is S ′

or B ′ above, which are real lists, not stacks.

5 Verified Implementation

A deque can be in one of the following states:

datatype ′a deque = Empty | One ′a | Two ′a ′a | Three ′a ′a ′a
| Idles (′a idle) (′a idle) | Rebal (′a states)

A deque contains less than four elements (first four constructors), or
it consists of two stacks representing the ends of the deque (Idles constructor), or
it is in the middle of rebalancing (Rebal constructor).

ITP 2023

29:4 Real-Time Double-Ended Queue Verified (Proof Pearl)

The emptyness check is trivial:

is_empty Empty = True
is_empty _ = False

Note that all code is shown on coloured background to distinguish it easily from all verification-
related material.

In the following, we will show the implementation bottom-up, except for the rebalancing
process, where we follow the order of the phases. There are a number of overloaded functions
that are defined on multiple types:

Functions push and pop that implement enq and deq.
Function step implements the rebalancing steps.
An invariant invar.
Two abstraction functions to lists: list returns the list abstraction after rebalancing,
list_current returns the list in the current, non-rebalanced state.
Function remaining_steps calculates the remaining steps of a rebalancing process.

The invariant, list abstractions and remaining_steps are not code but key components of
the verification and important contributions of our paper. Some other functions are also
overloaded. For types that only have a function list its size is defined as:

size d = |list d|

If it has list and list_current then there are size and size_new:

size d = min |list_current d| |list d|
size_new d = |list d|

We verified the following properties for every type that have the respective functions:

list (push x d) = x # list d
invar d −→ size (push x d) = size d + 1
invar d −→ invar (push x d)
invar d −→ remaining_steps (push x d) = remaining_steps d

invar d ∧ 0 < size d ∧ pop d = (x, d ′) −→ x # list d ′ = list d
invar d ∧ 0 < size d ∧ pop d = (x, d ′) −→ size d ′ = size d − 1
invar d ∧ pop d = (x, d ′) −→ invar d ′

invar d ∧ pop d = (x, d ′) −→ remaining_steps d ′ ≤ remaining_steps d

invar d −→ list (step d) = list d
invar d −→ size d = size (step d)
invar d −→ invar (step d)
invar d −→ remaining_steps (step d) = remaining_steps d − 1

For list_current and size_new the same properties hold as for list and size.
Our collection of datatypes is considerably more refined than those by Chuang and

Goldberg because we express a number of the implicit invariants in their code explicitly on
the level of types. For example, Chuang and Goldberg’s type Deque has a constructor LIST
:: ′a list ⇒ Deque that is applied only to lists of size ≤ 4. The latter is an important implicit
invariant that guarantees that operations rev and (@), which are applied to arguments of
LIST, execute in constant time. Our type deque expresses the invariant clearly via the first
four constructors. As a result, our implementation is more explicit but requires more small
building blocks.

B. Toth and T. Nipkow 29:5

5.1 Stack
The basic building block for our implementation is the type ′a stack that serves as the ends
of the deque. It actually consists of two stacks represented by lists:

datatype ′a stack = Stack (′a list) (′a list)

The stack operations below use the left of the two stacks first, and resort to the right list if the
left one is empty. As explained towards the end of Section 4 the right list contains elements
resulting from a rebalancing, and the left list holds elements that were newly enqueued
during rebalancing.

push x (Stack left right) = Stack (x # left) right

pop (Stack [] []) = Stack [] []
pop (Stack (x # left) right) = Stack left right
pop (Stack [] (x # right)) = Stack [] right

first (Stack (x # left) right) = x
first (Stack [] (x # right)) = x

is_empty (Stack [] []) = True
is_empty (Stack _ _) = False

There is no invariant but a list abstraction function:

list (Stack left right) = left @ right

5.2 Idle
Datatype idle represents an end of the deque that is not in a rebalancing process.

datatype ′a idle = Idle (′a stack) nat

It contains a stack to which it delegates its push and pop operations. Furthermore, we will
need to check the size of the end frequently, to know whether rebalancing is required. To
achieve this in constant time, we keep track of the size of the stack and update it with every
operation accordingly.

push x (Idle stk n) = Idle (push x stk) (n + 1)

ITP 2023

29:6 Real-Time Double-Ended Queue Verified (Proof Pearl)

pop (Idle stk n) = (first stk, Idle (pop stk) (n − 1))

The invariant invar (Idle stk n) = (size stk = n) is obvious. The list function delegates to
the corresponding list function on the stack; we omit showing such trivial definitions.

5.3 Current
Now we start to look into the rebalancing procedure. Type ′a current stores information
about operations that happen during rebalancing but which have not become part of the old
state that is being rebalanced.

datatype ′a current = Current (′a list) nat (′a stack) nat

Both ends of the deque contain a current state which contains a list of newly enqueued
elements and their number. The push operation on a current state adds to the list and
increases its size counter:

push x (Current ext extn old tar) = Current (x # ext) (extn + 1) old tar

Additionally, current has a stack keeping track of the end’s state before rebalancing.
The natural number after it is the target size (usually denoted by tar) of the end after
rebalancing, but without taking the ext component into account. The pop operation on
current enables dequeuing of elements during the rebalancing: If there are newly enqueued
elements, pop dequeues an element from the corresponding list and adjusts its size counter.
Otherwise, it dequeues an element from the old state of the end and reduces the target size
by one.

pop (Current (x # ext) extn old tar) = (x, Current ext (extn − 1) old tar)
pop (Current [] extn old tar) = (first old, Current [] extn (pop old) (tar − 1))

The operations preserve the obvious invariant for the counter of newly enqueued elements:

invar (Current ext extn _ _) = (|ext| = extn)

The abstraction list yields the list of the state before rebalancing, but modified by the
intervening push’s and pop’s. current has next to its size function based on list, an additional
function size_new calculating the target size at the end of rebalancing.

list (Current ext _ old _) = ext @ list old

size_new (Current _ extn _ tar) = extn + tar

5.4 Rebalancing
Rebalancing transfers elements from the bigger end to the smaller one. Datatype states
stores both ends (types big_state and small_state are explained below) together with a
direction indicating if the transfer happens from left to right or right to left. Therefore it
also indicates which end is on which side.

datatype ′a states = States direction (′a big_state) (′a small_state)
datatype direction = L | R

B. Toth and T. Nipkow 29:7

Table 1 Rebalancing phases.

Big Small
Big1 _ (P @ Q) [] |P|
↓
Big1 _ Q (rev P) 0

Small1 _ S []
↓
Small1 _ [] (rev S)

Copy _ (rev P) [] 0

↓(Big2)

Copy _ [] P |P|

Small2 _ (rev S) Q [] 0
↓
Small2 _ (rev S) [] (rev Q) |Q|
Copy _ (rev S) (rev Q) |Q|
↓ (Small3)
Copy _ [] (S @ rev Q) (|S | + |Q|)

The phases described in Section 4 are represented by the following constructors for the
big and small end of the deque, with their corresponding behaviour w.r.t. rebalancing steps.
Big2 and Small3 perform the same work and are both represented by the constructor Copy.

Big1 :: ′a current ⇒ ′a stack ⇒ ′a list ⇒ nat ⇒ ′a big_state
Big1 _ S xs n pops the top n elements off S and puts them on xs.
Small1 :: ′a current ⇒ ′a stack ⇒ ′a list ⇒ ′a small_state
Small1 _ S xs pops all elements off S and puts them on xs.
Small2 :: ′a current ⇒ ′a list ⇒ ′a stack ⇒ ′a list ⇒ nat ⇒ ′a small_state
Small2 _ xs S ys n pops all elements off S, puts them on ys, counts them in n and leaves
xs unchanged.
Copy :: ′a current ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a common_state
Copy cur xs ys n pops elements off xs, puts them on ys, and counts them, until n reaches
the tar component of cur. Stopping before all of xs has been moved has the effect of
performing the deq operations that have accumulated in cur during rebalancing.

Every phase contains a current state that deals with enq and deq operations (see Section 5.3).
Table 1 shows how each phase leads to the next at both ends of the deque. The variables

are named as in Section 4. For readability we have equated stacks with lists. For simplicity
the Copy phases assume that the copying is not cut short by a reduced tar. We will implement
overloaded step functions that advance and transition the phases step-by-step.

5.4.1 Big
The bigger end of the deque goes through two phases during rebalancing, modeled with
datatype big_state with two constructors:

datatype ′a big_state = Big1 (′a current) (′a stack) (′a list) nat
| Big2 (′a common_state)

Both constructors were explained at the beginning of Section 5.4. At that point we pretended
that both ends of the deque have a common constructor Copy. Instead, constructor Big2 is a
wrapper around a common state common_state (see Section 5.4.3) that both ends delegate
their push/pop/step operations to in phases Big2 and Small3. Operations push and pop on
Big1 are delegated to current. Function step uses norm for the transition from phase Big1 to
Big2 which is defined in Section 5.4.3.

ITP 2023

29:8 Real-Time Double-Ended Queue Verified (Proof Pearl)

push x (Big1 cur big aux n) = Big1 (push x cur) big aux n
push x (Big2 state) = Big2 (push x state)

pop (Big1 cur big aux n) = (let (x, cur) = pop cur in (x, Big1 cur big aux n))
pop (Big2 state) = (let (x, state) = pop state in (x, Big2 state))

step (Big1 cur big aux 0) = Big2 (norm (Copy cur aux [] 0))
step (Big1 cur big aux n) = Big1 cur (pop big) (first big # aux) (n − 1)
step (Big2 state) = Big2 (step state)

The remaining functions on big_state again delegate to common_state in phase Big2.
We do not show those equations.

The following invariant is preserved by push, pop and step:

invar (Big1 cur big aux n) = let Current _ _ old tar = cur in
invar cur

∧ tar ≤ |aux| + n (1)
∧ n ≤ size big (2)
∧ take_last (size old) (rev aux @ list big) = list old (3)
∧ take tar (rev (take n (list big)) @ aux) = rev (take tar (list old)) (4)

(1) The target size of the end after the rebalancing (tar) is ≤ to the total number of elements
that the phase reverses (|aux| + n). This needs to hold because phase Big1 moves to aux
the elements that remain on this end. Only ≤ but not = holds because of potentially
dequeued elements that reduce the target size (see Section 5.3: pop).

(2) There must be at least as many elements as the phase wants to reverse.
(3) Undoing the progress of the phase by reversing aux back and appending it back to big

reproduces the old state of the end. We account for potentially dequeued elements by
dropping those from the front of the restored end.

(4) Finishing the phase by reversing and appending n more elements to aux gives us the
elements that remain on this end in a reversed order.

In phase Big1, list finishes rebalancing and returns the final list of the end. In contrast,
list_current returns the original list of the end.

list (Big1 (Current ext _ _ tar) big aux n) =
let a = rev (take n (list big)) @ aux in ext @ rev (take tar a)

list_current (Big1 cur _ _ _) = list cur

The verification also requires the number of remaining steps of rebalancing:

remaining_steps (Big1 (Current _ _ _ tar) _ _ n) = n + tar + 1

In phase Big1, n more elements need to be moved before 1 additional step transitions to
phase Big2 which requires tar steps.

B. Toth and T. Nipkow 29:9

5.4.2 Small
As depicted in Table 1, the smaller end of the deque goes through three different phases
during rebalancing. They are represented by datatype small_state:

datatype ′a small_state = Small1 (′a current) (′a stack) (′a list)
| Small2 (′a current) (′a list) (′a stack) (′a list) nat
| Small3 (′a common_state)

Just as in big_state, constructor Small3 contains the common data structure to which the
phases Big2 and Small3 delegate their operations (see Section 5.4.3). This time we do not
show any of the trivial delegating equations.

Operations push and pop are defined analogously to their big_state relatives:

push x (Small1 cur small aux) = Small1 (push x cur) small aux
push x (Small2 cur aux big new n) = Small2 (push x cur) aux big new n

pop (Small1 cur small aux) = (let (x, cur) = pop cur in (x, Small1 cur small aux))
pop (Small2 cur aux big new n)
= (let (x, cur) = pop cur in (x, Small2 cur aux big new n))

In phase Small1, step idles once it has emptied its stack because it needs to wait for the big
end to finish phase Big1 before both ends can transition to their next phases simultaneously
(see Section 5.4.4). In phase Small2 the stack is popped until it is empty and phase Small3
starts:

step (Small1 cur small aux)
= (if is_empty small then Small1 cur small aux

else Small1 cur (pop small) (first small # aux))
step (Small2 cur aux big new n)
= (if is_empty big then Small3 (norm (Copy cur aux new n))

else Small2 cur aux (pop big) (first big # new) (n + 1))

The following invariant, presented phase by phase, is preserved by push, pop and step:

invar (Small1 cur small aux) = let Current _ _ old tar = cur in
invar cur

∧ size old ≤ tar (1)
∧ size old ≤ size small + |aux| (2)
∧ take_last (size old) (rev aux @ list small) = list old (3)

(1) The target size is not smaller than the original size of the end. Otherwise, rebalancing
would not be successful because the smaller end would shrink further.

(2) The stack holding the original elements of the smaller end (old) cannot grow but
potentially shrink through pop operations. Moreover, since phase Small1 is reversing a
copy of the original elements of the smaller size, the total number of elements it works on
is ≥ to the size of the stack old.

(3) Undoing the progress of the phase by reversing aux back and appending it back to small
reproduces the old state of the end. We account for potentially dequeued elements by
dropping those from the front of the restored end.

ITP 2023

29:10 Real-Time Double-Ended Queue Verified (Proof Pearl)

invar (Small2 cur aux big new n) = let Current _ _ old tar = cur in
invar cur

∧ n = |new| (1)
∧ tar = n + size big + size old (2)
∧ size old ≤ |aux| (3)
∧ rev (take (size old) aux) = list old (4)

(1) The phase counts its reversed elements correctly.
(2) The elements transferred from the bigger end and the original elements from the smaller

end will build the new smaller end. Consequently, the sum of their elements is equal to
the target size. Hereby, the number of transferred elements is split into already reversed
and not yet reversed ones.

(3, 4) Next to the reversal, phase Small2 also holds the already reversed original state of
the smaller end. Accordingly, it is equal to old when reversed back and accounted for the
potentially dequeued elements.

Of the abstraction functions list and list_current we merely show list because list_current
simply delegates to its counterpart on current.

list (Small2 (Current ext _ _ tar) aux big new n)
= ext @ rev (take (tar − n − size big) aux) @ rev (list big) @ new

Function list is partial. It is lacking a case for phase Small1 because phase Small1 lacks the
elements coming from the bigger end, so it is impossible to simulate all further steps of the
rebalancing. The lacking case will be added one level higher for States where we also have
the bigger end available (see Section 5.4.4).

For phase Small2, list finishes the reversal of the transferred elements, prepends the
reversed result of phase Small1 while accounting for potentially dequeued elements, and
prepends the potentially enqueued elements.

The smaller end does not have its own remaining steps measurement because they depend
on the state of the bigger end.

5.4.3 Common
The datatype ′a common_state is a joint representation of phases Big2 and Small3:

datatype ′a common_state = Copy (′a current) (′a list) (′a list) nat
| Idle (′a current) (′a idle)

Copy represents rebalancing; Idle signals termination of rebalancing and keeps the rebalanced
state of an end in an idle state (see Section 5.2).

step (Copy cur aux new n)
= (let Current ext extn old tar = cur

in norm
(if n < tar then Copy cur (tl aux) (hd aux # new) (n + 1)
else Copy cur aux new n))

step (Idle cur idle) = Idle cur idle

Function norm performs the transition back to an idle end. If tar has been reached, norm
creates a new stack and puts the elements that arrived during rebalancing in the front and
the result of rebalancing in the back and sets the size accordingly:

B. Toth and T. Nipkow 29:11

norm (Copy cur aux new n)
= (let Current ext extn old tar = cur

in if tar ≤ n then Idle cur (Idle (Stack ext new) (extn + n))
else Copy cur aux new n)

Both constructors also contain a current state on which the push and pop operations work:

push x (Copy cur aux new n) = Copy (push x cur) aux new n
push x (Idle cur (Idle stk n)) = Idle (push x cur) (Idle (push x stk) (n + 1))

pop (Copy cur aux new n)
= (let (x, cur) = pop cur in (x, norm (Copy cur aux new n)))
pop (Idle cur idle) = (let (x, idle) = pop idle in (x, (Idle (fst (pop cur)) idle))

Both operations also update the idle component when the respective phase terminated.
Additionally, the pop operation checks if it dequeued the last element of the reversal and
transitions, using norm, to the idle phase if so.

For the phases Big2 and Small3 the invariant is the following:

invar (Copy cur aux new n) = let Current _ _ old tar = cur in
invar cur

∧ n < tar (1)
∧ n = |new| (2)
∧ tar ≤ |aux| + n (3)
∧ take tar (list old) = take (size old) (rev (take (tar − n) aux) @ new) (4)

(1) The number of elements for which the rebalancing is finished did not yet reach the target
number.

(2) n correctly holds the number of finished elements.
(3) There are enough elements left to reach the target number.
(4) When simulating the termination by reversing the missing elements, the front of the new

and old end are the same.

The invariant for the idle state requires that the subcomponents satisfy their invariants and
that the fronts of the old and the rebalanced ends are the same:

invar (Idle cur idle)
= invar cur ∧ invar idle ∧ take (size idle) (list cur) = take (size cur) (list idle)

Function list finishes the phases Big2/Small3 and prepends the elements that arrived
during rebalancing. In the Idle state it delegates to list on idle.

list (Copy (Current ext _ _ tar) aux new n) = ext @ rev (take (tar − n) aux) @ new
list (Idle _ idle) = list idle

The abstraction function list_current simply delegates to its counterpart on current.
Counting of the remaining steps is similarly straightforward. In phases Big2/Small3 the

difference between the processed elements and the target remains; the idle state does not
need any more steps.

remaining_steps (Copy (Current _ _ _ tar) _ _ n) = tar − n
remaining_steps (Idle _ _) = 0

ITP 2023

29:12 Real-Time Double-Ended Queue Verified (Proof Pearl)

5.4.4 States
Putting the two ends together into states completes the implementation of the rebalancing
procedure. Remember that in Section 5.4.2 phase Small1 could not transition to Small2
by itself because it needs to synchronize with the end of Big1. The step function on states
covers this case by moving from Small1 to Small2 once Big1 has reached 0. The other cases
were already covered by the step functions on big_state and small_state.

step (States dir (Big1 currentB big auxB 0) (Small1 currentS _ auxS))
= States dir (step (Big1 currentB big auxB 0)) (Small2 currentS auxS big [] 0)
step (States dir big small) = States dir (step big) (step small)

The joint list abstraction lists returns the pair containing the lists for the two ends. It
also compensates for the partiality of list on the smaller end: lists simulates the remaining
steps of phase Small1 and performs the transition to phase Small2, for which list is already
defined, to create the missing list abstraction for phase Small1. For the other phases it calls
the respective list abstractions.

lists (States _ (Big1 curB big auxB n) (Small1 curS small auxS))
= (list (Big1 curB big auxB n),

list (Small2 curS (rev (take n (list small)) @ auxS) (popn big) [] 0))
lists (States _ big small) = (list big, list small)

Function lists_current simply delegates to the big and small end:

lists_current (States _ big small) = (list_current big, list_current small)

For convenience, we define

list_small_first states = (let (big, small) = lists states in small @ rev big)

list_current_small_first states
= (let (big, small) = lists_current states in small @ rev big)

and analogously list_big_first and list_current_big_first.
The invariant is defined as follows:
invar (States dir big small) =

invar big ∧ invar small
∧ list_small_first (States dir big small)

= list_current_small_first (States dir big small) (1)
∧ case (big, small) of

(Big1 _ big _ n, Small1 (Current _ _ old tar) small _) ⇒
size big − n = tar − size old ∧ size small ≤ n (2,3)

| (Big1 _ _ _ _, _) ⇒ False (4)
| (Big2 _ , Small1 _ _ _) ⇒ False (5)
| (_ , _) ⇒ True

(1) Rebalancing preserves the abstract queue (as a list): the list abstraction after the end of
rebalancing must be the same as the list abstraction that uses the state before rebalancing.

(2) After phase Big1, the bigger end transfers exactly the number of elements missing on
the smaller end to reach the target size.

(3) Phase Big1 does not finish before Small1. This needs to hold because the smaller end
transitions from phase Small1 to Small2 at the end of stage Big1.

B. Toth and T. Nipkow 29:13

(4) Phase Big1 can only occur together with phase Small1.
(5) Phase Big2 cannot occur together with phase Small1.

The case analysis in the invariant ensures that phase Big1 runs in parallel with phase Small1,
and phase Big2 with the phases Small2 and Small3.

The overall remaining steps are the maximum of the remaining steps of both ends:

remaining_steps (States _ big small) =
max

(remaining_steps big)
(case small of

Small1 (Current _ _ _ tar) _ _ ⇒ let Big1 _ _ _ nB = big in nB + tar + 2
| Small2 (Current _ _ _ tar) _ _ _ nS ⇒ tar − nS + 1
| Small3 state ⇒ remaining_steps state)

We focus on the smaller end because we covered the bigger end already in Section 5.4.1. The
remaining steps for the small end in phase Small1 cannot be calculated in isolation because
they depend on the big end: Phase Small1 needs to wait for phase Big1 to finish, which are
nB steps. Then it moves via Small2 and Small3 to Idle, counting up until the target size
tar is reached. Consequently, the smaller end needs nB + tar steps from phase Small1 to
finish and 2 more steps for the transitions. In phase Small2, the counter is at nS already
and hence tar − nS steps remain, plus 1 for the last transition. The remaining steps for
phase Small3 are already covered in Section 5.4.3.

Finally, we must ensure that the deque re-establishes the size constraints after rebalancing.
therefore size_ok calculates, relative to the remaining steps, if the size constraints can
be met: it is not allowed that one end is more than 3 times larger than the other after
rebalancing. Additionally, none of the ends is allowed to be empty at the end. Herefore, it is
also important that both ends have enough elements to facilitate all the dequeue operations
that can potentially happen. Therefore, size_ok uses the size measurements implemented
for both ends.

size_ok states = size_ok ′ states (remaining_steps states)

size_ok ′ (States _ big small) steps =
size_new small + steps + 2 ≤ 3 ∗ size_new big
∧ size_new big + steps + 2 ≤ 3 ∗ size_new small
∧ steps + 1 ≤ 4 ∗ size small
∧ steps + 1 ≤ 4 ∗ size big

Note that (m ≤ k ∗ n ∧ n ≤ k ∗ m) = (max m n ≤ k ∗ min m n), i.e. we have merely
rewritten the size invariant from Section 4.

5.5 Deque
Finally, we can put together all the parts for the overall invariant:

invar (Idles l r) =
invar l ∧ invar r ∧ ¬ is_empty l ∧ ¬ is_empty r

∧ size l ≤ 3 ∗ size r ∧ size r ≤ 3 ∗ size l
invar (Rebal states) = (invar states ∧ size_ok states ∧ 0 < remaining_steps states)
invar _ = True

In the idle state, the deque must satisfy the invariants of both ends and the size constraints
between them. During rebalancing, the deque must satisfy the invariant of the rebalancing
process, must ensure that it meets the size constraints after rebalancing, and remaining_steps

ITP 2023

29:14 Real-Time Double-Ended Queue Verified (Proof Pearl)

must correctly predict that there are further steps needed. The other states of the deque
fulfill the invariant trivially.

The overall list abstraction function listL (Section 3) is composed trivially from the
separate states’ list abstractions:

listL Empty = []
listL (One x) = [x]
listL (Two x y) = [x, y]
listL (Three x y z) = [x, y, z]
listL (Idles left right) = list left @ rev (list right)
listL (Rebal states) = listL states

listL (States L big small) = list_small_first (States L big small)
listL (States R big small) = list_big_first (States R big small)

5.5.1 Enqueuing
Function enqL enqueues one element on the left end of the deque and returns the resulting
deque.

enqL x Empty = One x
enqL x (One y) = Two x y
enqL x (Two y z) = Three x y z
enqL x (Three a b c) = Idles (Idle (Stack [x, a] []) 2) (Idle (Stack [c, b] []) 2)
enqL x (Idles l (Idle r nR)) =

let Idle l nL = push x l in
if nL ≤ 3 ∗ nR then Idles (Idle l nL) (Idle r nR)
else let nl = nl − nR − 1;

nR = 2 ∗ nL + 1;
big = Big1 (Current [] 0 l nL) l [] nL;
small = Small1 (Current [] 0 r nR) r [];
states = States R big small;
states = step6 states;

in Rebal states
enqL x (Rebal (States L big small) =

let small = push x small;
states = step4 (States L big small);

in case states of
States L (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ Idle small big
| _ ⇒ Rebal states

enqL x (Rebal (States R big small) =
let big = push x big;

states = step4 (States R big small);
in case states of

States R (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ Idle big small
| _ ⇒ Rebal states

B. Toth and T. Nipkow 29:15

Function enqL advances the constructors Empty, One and Two to the next larger one. For
Three, it transitions the deque into the idle state by placing two elements at each end.

In the idle state, it enqueues one element on the left end and checks if the size invariant
between the two ends still holds. If so, it keeps the deque in the idle state. Otherwise, it
initiates rebalancing in the same way as deqL ′, but in the other direction.

If the deque is already in the rebalancing process, enqL enqueues the new element and
advances rebalancing by 4 steps. If that finishes rebalancing, it moves back into the idle
state.

Function enqR, the counterpart of enqL, swaps the two ends of the deque, calls enqL and
swaps the ends back.

enqR x d = swap (enqL x (swap d))

5.5.2 Dequeuing
The function deqL ′ dequeues one element from the left end of the deque and returns the
dequeued element and the remaining deque. Accordingly, it implements deqL and firstL
simultaneously.

deqL ′ (One x) = (x, Empty)
deqL ′ (Two x y) = (x, One y)
deqL ′ (Three x y z) = (x, Two y z)
deqL ′ (Idles l (Idle r nR)) =

let (x, Idle l nL) = pop l in
if nR ≤ 3 ∗ nL then (x, Idles (Idle l nL) (Idle r nR))
else if 1 ≤ nL then

let nL ′ = 2 ∗ nL + 1;
nR ′ = nR − nL − 1;
small = Small1 (Current [] 0 l nL ′) l [];
big = Big1 (Current [] 0 r nR ′) r [] nR ′;
states = States L big small;
states = step6 states;

in (x, Rebal states)
else case r of Stack r1 r2 ⇒ (x, small_deque r1 r2)

deqL ′ (Rebal (States L big small) =
let (x, small) = pop small;

states = step4 (States L big small);
in case states of

States R (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ (x, Idle big small)
| _ ⇒ (x, Rebal states)

deqL ′ (Rebal (States R big small) =
let (x, big) = pop big;

states = step4 (States R big small);
in case states of

States R (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ (x, Idle big small)
| _ ⇒ (x, Rebal states)

ITP 2023

29:16 Real-Time Double-Ended Queue Verified (Proof Pearl)

If the deque has less than four elements, deqL ′ dequeues the leftmost element and transitions
to the next smaller constructor (not shown).

In the idle state, deqL ′ dequeues an element from the left end and checks if the size
invariant between the two ends still holds. If so, the deque stays in the idle states. Otherwise,
it checks if the left end became empty and transitions to one of the small states using
small_deque (below) in that case. In the last case, when the left end is not empty and the
size constraints are violated, it starts rebalancing. Therefore, it divides the total number of
elements into two almost equal halves – the right is one larger because the total number is
odd. Then, the phases Big1 (for the bigger, right side) and Small1 (for the smaller, left side)
are initialized with these numbers as target sizes and the state of the respective end. Finally,
deqL ′ starts rebalancing by executing 6 steps.

When the deque is already in the rebalancing state, deqL ′ dequeues one element from the
respective end and advances the rebalancing with 4 more steps. If that finishes rebalancing,
it transitions the deque back into the idle state.

small_deque [] [] = Empty small_deque [] [x, y] = Two y x
small_deque [x] [] = One x small_deque [] [x, y, z] = Three z y x
small_deque [] [x] = One x small_deque [x, y, z] [] = Three z y x
small_deque [x] [y] = Two y x small_deque [x, y] [z] = Three z y x
small_deque [x, y] [] = Two y x small_deque [x] [y, z] = Three z y x

Function deqR ′, analogously to enqR, is reduced to deqL ′ by swapping the ends twice.
deqR and firstR are specializations of deqR ′.

deqR ′ deque = (let (x, deque) = deqL ′ (swap deque) in (x, swap deque))

5.6 Proof
In this section we explain how the top-level properties of the specification in Section 3 are
proved. This is what we proved for enqL and deqL ′:

invar d −→ listL (enqL x d) = x # listL d (∗)
invar d −→ invar (enqL x d)

invar d ∧ listL d ̸= [] ∧ deqL ′ d = (x, d ′) −→ x # listL d ′ = listL d
invar d ∧ ¬ is_empty d −→ invar (deqL d)

The proofs are case analyses over all the defining equations of the non-recursive functions
enqL and deqL ′. In each case, the proof is largely by application of the verified properties for
the underlying data structures (see Section 5). As an example of these top-level proofs we
present one crucial case of (∗):

listL (enqL x (Rebal (States L big small))) = x # listL (Rebal (States L big small))

assuming that the deque stays in the rebalancing state. We start by defining states =
States L big small, small ′ = push x small and states ′ = States L big small ′ as shorthands.
Then we can unfold the definition of enqL:

listL (enqL x (Rebal (States L big small))) = listL (step4 states ′)

Using the property of the step functions preserving list abstractions (see Section 5), we can
simply ignore the four rebalancing steps:

B. Toth and T. Nipkow 29:17

... = listL states ′

This enables us to unfold the definition of listL:

... = list_small_first states ′

= let (bs, ss ′) = lists states ′ in ss ′ @ rev bs

Now, we can utilize that push operations prepend the new element to the list abstractions:

... = let (bs, x # ss) = lists states ′ in (x # ss) @ rev bs
= x # (let (bs, ss) = lists states in ss @ rev bs)

Concluding the proof, we fold the definition of listL again:

... = x # list_small_first states
= x # listL (Rebal states)

The required properties of firstL and deqL are simple corollaries of the above properties
for deqL ′. The dual properties of enqR and deqR ′ are again corollaries via these additional
properties:

invar d −→ listR (swap d) = listL d
invar d −→ invar (swap d)

5.7 Complexity
All operations of our implementation take constant time because they only employ constant-
time functions (arithmetic, (#), hd, tl) and are not recursive. Some of the auxiliary functions
used in the verification are not constant-time but this is irrelevant. Our colour schema helps
to distinguish the two worlds.

6 Conclusion

We have presented an implementation of a real-time double-ended queue and in particular the
key ingredients of its verification: the abstraction functions, the invariants (incl. all auxiliary
functions to define them), and the key theorems about the implementation. It would be
interesting to investigate if our invariants could be simplified and if semi-automatic theorem
provers like Why3 [3] could automate the proof significantly beyond the current level.

Finally note that our deque implementation is fully executable and that Isabelle can
generate code in many functional languages (including Haskell and Scala) from it [5].

References
1 F. Warren Burton. An efficient functional implementation of FIFO queues. Inf. Process. Lett.,

14(5):205–206, 1982. doi:10.1016/0020-0190(82)90015-1.
2 Tyng-Ruey Chuang and Benjamin Goldberg. Real-time deques, multihead turing machines,

and purely functional programming. In Functional programming languages and computer
architecture - FPCA '93. ACM Press, 1993. doi:10.1145/165180.165225.

3 Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers.
In Matthias Felleisen and Philippa Gardner, editors, European Symposium on Programming
(ESOP 2013), volume 7792 of LNCS, pages 125–128. Springer, 2013.

4 Alejandro Gómez-Londoño. Hood-Melville queue. Archive of Formal Proofs, January 2021.
URL: https://isa-afp.org/entries/Hood_Melville_Queue.html.

ITP 2023

https://doi.org/10.1016/0020-0190(82)90015-1
https://doi.org/10.1145/165180.165225
https://isa-afp.org/entries/Hood_Melville_Queue.html

29:18 Real-Time Double-Ended Queue Verified (Proof Pearl)

5 Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming (FLOPS
2010), volume 6009 of LNCS, pages 103–117. Springer, 2010.

6 Robert Hood. The Efficient Implementation of Very-High-Level Programming Language
Constructs. PhD thesis, Cornell University, 1982. TR 82-503.

7 Robert Hood and Robert Melville. Real-time queue operation in pure LISP. Inf. Process.
Lett., 13(2):50–54, 1981. doi:10.1016/0020-0190(81)90030-2.

8 Ravichandhran Madhavan, Sumith Kulal, and Viktor Kuncak. Contract-based resource
verification for higher-order functions with memoization. In Giuseppe Castagna and Andrew D.
Gordon, editors, Symposium on Principles of Programming Languages, POPL 2017, pages
330–343. ACM, 2017. doi:10.1145/3009837.3009874.

9 Ravichandhran Madhavan and Viktor Kuncak. Symbolic resource bound inference for func-
tional programs. In Armin Biere and Roderick Bloem, editors, Computer Aided Verific-
ation, CAV 2014, volume 8559 of LNCS, pages 762–778. Springer, 2014. doi:10.1007/
978-3-319-08867-9_51.

10 Tobias Nipkow, editor. Functional Data Structures and Algorithms. A Proof Assistant Approach.
ACM Books, Forthcoming. URL: https://functional-algorithms-verified.org/.

11 Tobias Nipkow and Gerwin Klein. Concrete Semantics with Isabelle/HOL. Springer, 2014.
URL: http://concrete-semantics.org.

12 Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

13 Chris Okasaki. Simple and efficient purely functional queues and deques. J. Funct. Program.,
5(4):583–592, 1995. doi:10.1017/S0956796800001489.

14 Balazs Toth and Tobias Nipkow. Real-time double-ended queue. Archive of Formal Proofs,
June 2022. , Formal proof development. URL: https://www.isa-afp.org/entries/Real_
Time_Deque.html.

https://doi.org/10.1016/0020-0190(81)90030-2
https://doi.org/10.1145/3009837.3009874
https://doi.org/10.1007/978-3-319-08867-9_51
https://doi.org/10.1007/978-3-319-08867-9_51
https://functional-algorithms-verified.org/
http://concrete-semantics.org
https://doi.org/10.1017/S0956796800001489
https://www.isa-afp.org/entries/Real_Time_Deque.html
https://www.isa-afp.org/entries/Real_Time_Deque.html

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Specification
	4 Abstract Description of Implementation
	5 Verified Implementation
	5.1 Stack
	5.2 Idle
	5.3 Current
	5.4 Rebalancing
	5.4.1 Big
	5.4.2 Small
	5.4.3 Common
	5.4.4 States

	5.5 Deque
	5.5.1 Enqueuing
	5.5.2 Dequeuing

	5.6 Proof
	5.7 Complexity

	6 Conclusion

