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Abstract
We present a 9k · nO(1)-time algorithm for the proper circular-arc vertex deletion problem, resolving
an open problem of van ’t Hof and Villanger [Algorithmica 2013] and Crespelle et al. [Computer
Science Review 2023]. Our structural study also implies parameterized algorithms for modification
problems toward proper Helly circular-arc graphs.
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1 Introduction

A graph is a circular-arc graph if its vertices can be assigned to arcs on a circle such that
there is an edge between two vertices if and only if their corresponding arcs intersect. If
none of the arcs properly contains another, then the graph is a proper circular-arc graph.
See Figure 1 for two examples of proper circular-arc graphs. Proper circular-arc graphs
“form an important subclass of the class of all claw-free graphs,” and their study has been
an important step towards finding “a structural characterization of all claw-free graphs” [6].
The structures and recognition of proper circular-arc graphs have been well studied and well
understood [19, 8].

Another and earlier motivation for studying (proper) circular-arc graphs is from their
relation with (proper) interval graphs, i.e., intersection graphs of intervals on the real line.
The intersection graph of a family of sets has a vertex for each set and an edge between two
vertices if and only if their the sets they represent have a nonempty intersection. It is easy
to see that each (proper) interval graph is a (proper) circular-arc graph, and the connection
of these classes has been used in both structural and algorithmic studies of these classes.
Indeed, the first linear-time recognition algorithm for proper circular-arc graphs is based on a
general observation of both proper circular-arc graphs and proper interval graphs [8]. Neither
graph in Figure 1 is a proper interval graph, but removing any vertex from Figure 1(a), or
any vertex but v5 from Figure 1(b) leaves a proper interval graph.

Let G be a hereditary (closed under taking induced subgraphs) graph class. Given a graph
G and an integer k, the G vertex deletion problem asks whether we can remove k vertices
from G to make a graph in G. It is known that the G vertex deletion problem is NP-hard
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Figure 1 Two proper circular-arc graphs and their arc models.

when G is nontrivial (i.e., having infinite members and infinite non-members) [15]. These
problems have been intensively studied in the framework of parameterized computation.
Suppose that the input graph has n vertices and m edges. We say that a graph problem
is fixed-parameter tractable (FPT) if there is an algorithm solving it in time f(k) · nO(1),
where f is a computable function depending only on k [9]. For example, it is well known
that the proper interval vertex deletion problem is FPT[20, 3]. In the algorithm of van ’t
Hof and Villanger [20], the kinship between proper circular-arc graphs and proper interval
graphs plays a crucial role. They showed that it suffices to destroy all the small forbidden
induced subgraphs, and then the graph is already a proper circular-arc graph, on which the
proper interval vertex deletion problem can be solved in linear time. They asked whether
the proper circular-arc vertex deletion problem is FPT as well, and this open problem was
recently raised again by Crespelle et al. [7]. We answer this question affirmatively.

▶ Theorem 1. The proper circular-arc vertex deletion problem can be solved in time 9k ·nO(1).

A major difference between the class of proper interval graphs and the class of proper
circular-arc graphs is that the later class is not closed under disjoint union. This can be easily
observed from their models: while we can always put intervals for two different components
side by side, no such accommodation is possible for two sets of arcs if one set of them covers
the whole circle. As a matter of fact, if a proper circular-arc graph is not connected, it has
to be a proper interval graph. (The same remark applies to the relation between circular-arc
graphs and interval graphs.)

If a proper circular-arc graph contains a hole of length at least five, then its property
is quite similar to a proper interval graph. What is difficult is when a few arcs cover
the whole circle in an arc model. For such a graph, it is more convenient to study its
complement. Indeed, when characterizing proper circular-arc graphs, Tucker [19] actually
listed the forbidden induced subgraphs of the complement class. He also observed that if
the complement G of a proper circular-arc graph G is not connected, then G is bipartite.
Permutation graphs are the intersection graphs of line segments between two parallel lines,
and bipartite permutation graphs are those permutation graphs that are bipartite. Bipartite
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permutation graphs are also known as proper interval bigraphs and unit interval bigraphs [14].
It is well known that a co-bipartite graph H is a proper circular-arc graph if and only if H is
a bipartite permutation graph.

Let (G, k) be an instance to the proper circular-arc vertex deletion problem, and let V−
be a solution. If G − V− is not connected, then it is a proper interval graph; if G− V− is
not co-connected, then it is the complement of a bipartite permutation graph. We can call
the algorithm of Cao [3] and the algorithm of Bożyk et al. [1] to check whether such a set
V− exists, and we are done if it does. In the rest, we may assume that G− V− is neither a
proper interval graph nor the complement of a bipartite graph, hence both connected and co-
connected. For this purpose we may assume that G itself is both connected and co-connected;
otherwise, there is a unique component C of G or G such that V (G) \ V (C) ⊆ V−. Either
the instance is trivially FPT, when n = O(k), or it suffices to consider the largest component
of G or G.

The algorithm proceeds as follows. We can destroy all forbidden induced subgraphs of
order at most seven by branching. Now G is free of small forbidden induced subgraphs and
is both connected and co-connected. Our key observation is that if G is not already a proper
circular-arc graph, then G must be bipartite. Note that any induced subgraph of a bipartite
graph is bipartite, but we have assumed that G− V− is not the complement of a bipartite
graph. Therefore, we are ready to directly return “yes” or “no.”

Since the parameterized algorithm branches on a small set of vertices that intersects every
solution, we can easily turn it into an approximation algorithm for the maximum proper
circular-arc induced subgraph problem.

▶ Theorem 2. There is a polynomial-time approximation algorithm of approximation ratio 9
for the minimization version of the proper circular-arc vertex deletion problem.

Proper circular-arc graphs also arise naturally when we consider the clique graph (the
intersection graph of maximal cliques of a host graph) of a circular-arc graph. The complicated
structures of circular-arc graphs are mainly due to the lack of the so-called Helly property:
every set of pairwise intersecting arcs has a common intersection. For example, neither
model in Figure 1 is Helly: the set {v1, v2, v3} in (a) and the set {v3, v4, v5} in (b) violate
the Helly property. A graph is a Helly circular-arc graph if it admits an arc model that is
Helly. Since every interval model is Helly, all interval graphs are Helly circular-arc graphs. It
is well known that the clique graph of an interval graph, with at most n maximal cliques, is
a proper interval graph [13]. The same upper bound holds for the number of maximal cliques
in a Helly circular-arc graph, and the clique graph of a Helly circular-arc graph is always
a proper circular-arc graph [10]. Let us remark parenthetically that a circular-arc graph
may have an exponential number of maximal cliques, e.g., the complement of the union of p

disjoint edges, which has 2p vertices, each of degree 2p− 2.
The class of proper Helly circular-arc graphs is sandwiched between proper circular-arc

graphs and proper interval graphs. This observation has been crucial for the algorithms
for modification problems toward proper interval graphs [3]. A graph is a proper Helly
circular-arc graph if it has an arc model that is both proper and Helly. A word of caution is
worth on the definition of proper Helly circular-arc graphs. One graph might admit two arc
models, one being proper and the other Helly, but no arc model that is both proper and Helly.
For example, both models in Figure 1 are proper but neither is Helly, and it is not difficult
to make Helly arc models for S3 and W4, but, as the reader may easily verify, neither of
them admits an arc model that is both proper and Helly. Therefore, the class of proper Helly
circular-arc graphs does not contain all those graphs being both proper circular-arc graphs
and Helly circular-arc graphs, but a proper subclass of it. Indeed, a proper circular-arc
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graph is a proper Helly circular-arc graph if and only if it is {S3, W4}-free [16]. Another
characterization of proper Helly circular-arc graphs is that they are precisely those graphs
whose clique matrices have the circular-ones property for both rows and columns [17].

We then consider modification problems toward proper Helly circular-arc graphs. For
this class we also consider the edge deletion and completion problems (a proof of their
NP-completeness was provided in the full version). The edge deletion (resp., completion)
problem asks whether we can delete (resp., add) at most k edges to a graph to make it satisfy
certain properties. Again, we start by destroying all small forbidden induced subgraphs, up
to six vertices. We show that a connected graph free of such induced subgraphs is already a
proper Helly circular-arc graph. For the vertex deletion problem, either we remove all but
one component, or we remove vertices to get a proper interval graph. The edge deletion
problem is even simpler: if the graph is not connected, we cannot make it connected by
deleting edges. Thus, depending on whether the graph is connected, either we are already
done, or we are solving the proper interval edge deletion problem. This idea can even solve
the general deletion problem that allows k1 vertex deletions and k2 edge deletions. The
situation is quite different for the completion problem. We are happy if we can add at
most k edges to make the input graph a proper interval graph. Otherwise, we have to
make a connected proper Helly circular-arc graph. After we have dealt with all the small
forbidden induced subgraphs, the only nontrivial case is when there is a large component,
which contains a long hole H, and several small components. We need to “attach” these
small components to vertices on H. Since these operations are local, we can find a solution
by dynamic programming. Thus, all three problems are FPT, and they can be done in linear
FPT time. Again, the parameterized algorithm for the vertex deletion problem can be easily
turned into an approximation algorithm.

▶ Theorem 3. For modification problems toward proper Helly circular-arc graphs, there are
an O(6k · (m + n))-time algorithm for the vertex deletion problem;
an O(8k · (m + n))-time algorithm for the edge deletion problem;
an O(14k1+k2 · (m + n))-time algorithm for the deletion problem; and
a kO(k) · (m + n)-time algorithm for the completion problem.

Moreover, there is an O(nm + n2)-time approximation algorithm of approximation ratio 6
for the minimization version of the proper Helly circular-arc vertex deletion problem.

Somewhat surprisingly, modification problems toward circular-arc graphs and its sub-
classes have not received sufficient attention. We hope our work will inspire more study in
this direction. Apart from the two classes in the present paper, the next interesting class
is the class of normal Helly circular-arc graphs, a super class of proper Helly circular-arc
graphs. They have played crucial roles in solving modification problems to interval graphs
[5, 2]. Also related and probably simpler are the modification problems toward unit (Helly)
circular-arc graphs. It is well known that a graph is a proper interval graph if and only if it
is a unit interval graph. However, there are proper (Helly) circular-arc graphs that are not
unit (Helly) circular-arc graphs, e.g., the graph obtained from an even hole of length at least
eight by adding edges to connect consecutive even-numbered vertices.

2 Preliminaries

All graphs discussed in this paper are undirected, simple, and finite. The vertex set and
edge set of a graph G is denoted by, respectively, V (G) and E(G). Let n = |V (G)| and
m = |E(G)|. A walk in a graph G is a sequence of vertices and edges in the form of v0,
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v0v1, v1, v1v2, . . ., vℓ. Since the edges are determined by the vertices, such a walk can be
denoted by v0v1 . . . vℓ unambiguously. We say that this walk connects v0 and vℓ, which are
the ends of this walk, and refer to it as a v0–vℓ walk. The length of a walk is the number of
occurrences of edges it contains, and ℓ in the previous example. A walk is closed if ℓ > 1 and
v0 = vℓ. A walk is a path if all its vertices are distinct. A path is nontrivial if it contains at
least three vertices. A closed walk of length ℓ is a cycle if it visits precisely ℓ vertices; i.e.,
no repeated vertices except the two ends. The length of a cycle C is denoted as |C|. For
simplicity, we denote a cycle of length ℓ as v1v2 · · · vℓ instead of v1v2 · · · vℓv1. The indices
are understood to be modulo ℓ; e.g., v0 = vℓ and h−1 = hℓ−1. A hole is an induced cycle
of length at least four. A walk, path, cycle, or hole is odd (resp., even) if its length is odd
(resp., even). For ℓ ≥ 3, we use Cℓ to denote an induced cycle on ℓ vertices; if we add a new
vertex to a Cℓ and make it adjacent to no or all vertices on the cycle, then we end with a C∗

ℓ

or Wℓ, respectively.
The complement graph G of a graph G is defined on the same vertex set V (G), where a

pair of vertices u and v is adjacent in G if and only if uv ̸∈ E(G); e.g., C∗
5 is W5. The graph

C∗
3 is also called a claw. A graph G is connected if every pair of vertices is connected by a

path, and co-connected if G is connected.
A circular-arc graph is the intersection graph of a set of arcs on a circle. The set of arcs

is called an arc model of this graph. In this paper, all arcs are closed. An arc model is proper
if no arc in it properly contains another arc. A graph is a proper circular-arc graph if it has
a proper arc model. In case there is a point of the circle avoided by all the arcs in an arc
model, we can cut the circle and straighten all the arcs into line segments. Such a graph
is an interval graph, i.e., the intersection graph of a set of closed intervals on the real line,
and the set of intervals is an interval model of this graph. Proper interval graphs are defined
analogously. Clearly, any (proper) interval model can be viewed as a (proper) arc model
leaving some point uncovered, and hence all (proper) interval graphs are always (proper)
circular-arc graphs.

(a) S3 (tent). (b) S3 (net). (c) F1 (long claw). (d) F2. (e) F3. (f) F4.

Figure 2 Some small forbidden induced graphs.

Let F be a fixed graph. We say that a graph G is F -free if G does not contain F as an
induced subgraph. For a set F of graphs, a graph G is F-free if G is F -free for every F ∈ F .
If every F ∈ F is minimal, i.e., not containing any F ′ ∈ F as a proper induced subgraph,
then F comprises the (minimal) forbidden induced subgraphs of this class. See Figure 2 for
some of the forbidden induced subgraphs considered in the present paper. We use S∗

3 to
denote the graph obtained by adding an isolated vertex to S3.

▶ Theorem 4 ([19]). A graph is a proper circular-arc graph if and only if it is free of S∗
3 , C∗

ℓ

with ℓ ≥ 4, as well as the complements of S3, F1, F2, F3, F4, C2ℓ+2, and C∗
2ℓ−1 with ℓ ≥ 2.

Neither the class of circular-arc graphs nor the class of proper circular-arc graphs is closed
under taking disjoint unions. Indeed, if a (proper) circular-arc graph G is not a (proper)
interval graph, then in any model of G, the union of the arcs covers the whole circle. Such a
graph is necessarily connected.

MFCS 2023
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▶ Proposition 5 (Folklore). If a proper circular-arc graph G is not connected, then G is a
proper interval graph.

Proper circular-arc graphs have three infinite families of forbidden induced subgraphs,
namely, {C∗

ℓ | ℓ ≥ 4}, {C2ℓ+2 | ℓ ≥ 2}, and {C∗
2ℓ−1 | ℓ ≥ 2} by Theorem 4. The first of them

can be ignored for connected graphs.

▶ Lemma 6. Let G be a connected graph. If G does not contain the complement of C∗
3 or

the complement of S3, then G is {C∗
ℓ | ℓ ≥ 5}-free.

Proof. Suppose for contradiction that there exist an induced cycle C and a vertex v in G

with |C| ≥ 5 and V (C) ∩ N(v) = ∅. Since G is connected, we can find a shortest path
from v to C. Let the last three vertices on this path be x, y, and z; note that z is on C

and x is nonadjacent to any vertex on C. We may number the vertices on C such that
C = v1v2 · · · v|C| and z = v2. If y is adjacent to only v2 on C, then {v1, v2, v3, y} induces
a claw. If y is also adjacent to both v1 and v3, then {v1, v3, x, y} induces a claw, and it is
similar if y is adjacent to any three consecutive vertices on C. Otherwise, y is adjacent to
precisely one of v1 and v3. Without loss of generality, assume that y is adjacent to v3 but
not v1. Note that y is not adjacent to v4 either, and then {v1, v2, v3, v4, x, y} induces a copy
of the complement of S3. ◀

An arc model is Helly if every set of pairwise intersecting arcs has a nonempty common
intersection. A circular-arc graph is proper Helly if it has an arc model that is both proper
and Helly.

▶ Theorem 7 ([17]). A proper circular-arc graph is a proper Helly circular-arc graph if and
only if it contains no W4 or S3.

Note that S∗
3 contains S3, while all the complements of F1, F2, F3, F4, and {C2ℓ, C∗

2ℓ−1 |
ℓ ≥ 4} contain W4. The following corollaries follow from Theorem 7, together with Theorem 4
and Lemma 6, respectively.

▶ Corollary 8 ([17]). A graph is a proper Helly circular-arc graph if and only if it contains
no C∗

3 , S3, S3, W4, W5, C6, or C∗
ℓ for ℓ ≥ 4.

▶ Corollary 9. Let G be a connected graph. If G does not contain C∗
3 , C∗

4 , S3, S3, W4, W5,
or C6, then G is a proper Helly circular-arc graph.

Recall that proper interval graphs are precisely {C∗
3 , S3, S3, Cℓ | ℓ ≥ 4}-free graphs [18, 21].

▶ Corollary 10. Let G be a proper Helly circular-arc graph. Then G is a proper interval
graph if and only if G does not contain any holes.

The following can be viewed as a constructive version of Corollary 9.1

▶ Proposition 11 (⋆). Let G be a connected graph. In O(m + n) time we can either detect
an induced subgraph in {C∗

3 , C∗
4 , S3, S3, W4, W5, C6}, or build a proper and Helly arc model

for G.

A graph is a permutation graph if its vertices can be assigned to line segments between two
parallel lines such that there is an edge between two vertices if and only if their corresponding
segments intersect. The class of permutation graphs has a large number of forbidden induced
subgraphs [11]. Fortunately, most of them contain an odd cycle, and thus the structures of
forbidden induced subgraphs of bipartite permutation graphs are far simpler.

1 Proofs of statements marked with ⋆ are given in the full version (attached).
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▶ Theorem 12 ([11]). A graph is a bipartite permutation graph if and only if it is free of F1,
F2, F3, C3, and Cℓ with ℓ ≥ 5.

We correlate proper circular-arc graphs and bipartite permutation graphs.

▶ Theorem 13 (Folklore). The following are equivalent on a graph G:
i) G is a proper circular-arc graph and G is bipartite; and
ii) G is a bipartite permutation graph.

The following is complement to Proposition 5 in a sense. Note that (proper) circular-arc
graphs that are co-bipartite have played crucial roles in understanding these graph classes [19].

▶ Proposition 14 (⋆). Let G be a proper circular-arc graph. If G is not connected, then G

is a bipartite permutation graph.

3 Deletions to proper Helly circular-arc graphs

We first study the proper Helly circular-arc vertex deletion problem. We may assume without
loss of generality that the input graph cannot be made a proper interval graph by removing
k vertices. Therefore, the resulting graph after removing any k-solution is connected by
Proposition 5. An FPT algorithm is immediate from Corollary 9: after destroying all the
copies of C∗

3 , C∗
4 , S3, S3, W4, W5, and C6 in G by standard branching, we return all vertices

except those in a maximum-order component. A similar (and simpler) approach works for
the proper Helly circular-arc edge deletion problem. The focus of the following proof is thus
on efficient implementations.

▶ Theorem 15. The proper Helly circular-arc vertex deletion problem and the proper Helly
circular-arc edge deletion problem can be solved in time O(6k · (m + n)) and O(10k · (m + n)),
respectively.

Proof. Let (G, k) be an instance of proper Helly circular-arc vertex deletion. Our algorithm
proceeds as follows. We start by calling the algorithm of Cao [3] to check whether there is a
set V− of at most k vertices such that G− V− is a proper interval graph. If the set is found,
then we return “yes.” In the rest, we look for a solution V− such that G− V− is not a proper
interval graph. By Proposition 5, (note that a proper Helly circular-arc graph is a proper
circular-arc graph,) G− V− is connected.

For the general case, the algorithm solves the problem by making recursive calls to itself;
we return “no” directly for a recursive call in which k < 0. For each component C of G, we
call the algorithm of Proposition 11. If a subgraph induced by F ⊆ V (G) is found, then the
algorithm calls itself |F | times, each with a new instance (G− v, k− 1) for some v ∈ F . Since
we need to delete at least one vertex from F , the original instance (G, k) is a yes-instance
if and only if at least one of the instances (G − v, k − 1) is a yes-instance. Now that G is
free of C∗

3 , C∗
4 , S3, S3, W4, W5, and C6, every component of G is a proper Helly circular-arc

subgraph (Corollary 9). We find a component C of G that has the maximum order. We
return “yes” if |V (C)| ≥ n− k, when V (G) \ V (C) is a solution, or “no” otherwise. Since
each of C∗

3 , C∗
4 , S3, S3, W4, W5, and C6 has at most 6 vertices, at most 6 recursive calls are

made, all with parameter value k − 1. By Proposition 11, each recursive call can be made in
O(m + n) time. Therefore, the total running time is O(6k · (m + n)).

The algorithm for the edge deletion problem is even simpler. Again, we start by calling
the algorithm for proper interval edge deletion problem [3], which takes time O(4k · (m + n)).
We proceed only when the answer is “no.” In the recursive calls for the general case, we always

MFCS 2023
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return “no” whenever k is negative or G becomes disconnected; note that a disconnected
graph cannot be made connected by edge deletions. We call the algorithm of Proposition 11,
and return “yes” if G is already a proper Helly circular-arc graph. Otherwise, an induced
subgraph F is found. The algorithm calls itself |E(F )| times, each with a new instance
(G− uv, k− 1) for some edge uv in G[F ]. By Proposition 11, each recursive call can be made
in O(m + n) time. Therefore, the total running time is O(10k · (m + n)), where 10 is the
number of edges in a W5. ◀

It is straightforward to adapt an approximation algorithm for the proper Helly circular-arc
vertex deletion problem from the parameterized algorithm in Theorem 15. From Theorem 15
we can easily derive an FPT algorithm for the combined deletion problem toward proper
Helly circular-arc graphs, which allows k1 vertex deletions and k2 edge deletions. We can fill
in the gap between the constants in Theorems 15 and 3. Only S3, W5, and C6 have more
that eight edges. For an S3, either we delete one edge between two degree-four vertices, or
we have to delete both edges incident to a degree-2 vertex. For the other two cases, the ideas
are similar. The details are deferred to the full version.

4 Proper Helly circular-arc completion

Compared to the deletion problems, the completion problem toward proper Helly circular-arc
graphs is significantly more difficult. For all the deletion problems, we can always assume
that the graph is connected, and then by Corollary 9, we are only concerned with small
forbidden induced subgraphs. Since adding edges may make a graph connected, we cannot
assume connected input graphs for the completion problem.

Every hole in a proper Helly circular-arc graph is a dominating set of the graph, and we
can be more specific on the intersection between a hole and the neighborhood of any vertex.

▶ Proposition 16 (⋆). Let H be a hole in a proper Helly circular-arc graph. Every vertex in
this graph has at least two neighbors on H.

It is well known that the maximal cliques of an interval graph can be arranged as a path.
Gavril [12] showed that the maximal cliques of a Helly circular-arc graph can be arranged as
a circle. This implies that a Helly circular-arc graph has a linear number of maximal cliques.

▶ Theorem 17 ([12]). A graph G is a Helly circular-arc graph if and only if its maximal
cliques can be arranged as a circle so that for every vertex v in G, the maximal cliques
containing v are consecutive.

We use a clique cycle to denote the circular arrangement of maximal cliques specified
in Theorem 17, and a clique path is defined analogously. In a clique path, we call the first
and the last cliques end cliques. Note that a clique path can always be viewed as a clique
cycle, while if two consecutive cliques of a clique cycle are disjoint, then it can be viewed as
a clique path.

Proper interval graphs are precisely claw-free interval graphs, which can be restated as a
graph is a proper interval graph if and only if it is claw-free and has a clique path. One may
thus expect that a graph is a proper Helly circular-arc graph if and only if it is claw-free
and has a clique cycle. As we have mentioned, however, S3 is a Helly circular-arc graph
and hence has a clique cycle, but it is not a proper Helly circular-arc graph even though
it is claw-free. The following statement can be directly observed from forbidden induced
subgraphs of the class of proper Helly circular-arc graphs and of the class of normal Helly
circular-arc graphs; see also Lin et al. [17, Theorem 9].2

2 An arc model is known to be normal and Helly if no set of three or fewer arcs covers the circle [12, 4].
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▶ Lemma 18 ([17]). A graph is a proper Helly circular-arc graph if and only if it is claw-free
and it has an arc model in which no set of three or fewer arcs covers the circle.

If a proper Helly circular-arc graph G is not an interval graph, then it has a hole
(Corollary 10). The structure of every local part of G is very like a proper interval graph
when the hole is long enough (the length at least six). With the removal of two maximal
cliques with no edge in between from G, the hole is separated into two sub-paths. Since
every remaining vertex is adjacent to one of the two sub-paths, the remaining graph has
precisely two components.

▶ Lemma 19 (⋆). Let G be a proper Helly circular-arc graph that is not an interval graph.
Let A1 and A2 be two maximal cliques of G with no edge between them, and let B1 and B2 be
the vertex sets of the two components of G− (A1 ∪A2). Let G1 be any proper interval graph
on B1 ∪A1 ∪A2 in which A1 and A2 are the end cliques, and NG1(Ai) ∩B1 = NG(Ai) ∩B1
for i = 1, 2. Replacing G[B1∪A1∪A2] with G1 gives another proper Helly circular-arc graph.

For the completion problem, we may again assume that the input graph G is free of C∗
3 ,

C∗
4 , S3, S3, W4, W5, and C6. We are done if G is already a proper Helly circular-arc graph.

In particular, this is the case when G is a proper interval graph or when G is connected
(Corollary 9). Thus, we may assume that G is not connected and it is not a proper interval
graph. There must be a hole in G (Corollary 10), and we add either a chord of this hole, or
an edge between this hole and every vertex in other components. If there is a hole of length
of no more than 16k + 16, then there are only O(k2) such choices, and we can branch on
adding one of them. In the rest, every hole is longer than 16k + 16 (hence at least half of
the vertices on H have no neighbors incident to a k-solution). Let H be such a hole, and
let G0 be the component of G that contains H. Note that G0 is a proper Helly circular-arc
graph (Corollary 9). After adding k or fewer edges, if the resulting graph is a proper Helly
circular-arc graph, then there must be a hole of length greater than k in the subgraph
induced by V (H). Thus, for every vertex x in V (G) \ V (G0), at least two edges must be
added between x and H (Proposition 16). We can return “no” if |V (G0)| < n− k

2 . Other
components have fewer than k vertices while any hole is longer than 16k + 16, and thus they
are already proper interval subgraphs. They are accordingly called small components.

We say that a vertex x is touched by a solution E+ if x is an endpoint of an edge in
E+, and a set X of vertices is touched if at least one vertex in X is touched. All vertices in
V (G) \ V (G0) are touched, and we are more concerned with touched vertices in G0.

▶ Proposition 20 (⋆). Let E+ be a solution to G. If a maximal clique K of G is untouched
by E+, then K is a maximal clique of G + E+.

Recall that a clique cycle of a proper Helly circular-arc graph can be found in linear time
[4]. We may fix a clique cycle ⟨K1, K2, . . . , Kℓ⟩ of G0, denoted by K, and assume that H

and K are numbered such that no neighbor of v1 or v|H| is touched, and {v1, v|H|} ⊆ K1,
which is untouched. Note that G0 has at least |H| maximal cliques. Since H is longer than
16k + 16, few of them are touched by a k-solution E+. By Lemma 19 and Proposition 20,
these untouched maximal cliques serve as “isolators” of the modifications.

We can guess another untouched maximal clique Kp of G0 that is disjoint from and
nonadjacent to K1. By Proposition 20, K1 and Kp are both maximal cliques of a proper
Helly circular-arc graph G + E+. Since Kp is disjoint from and nonadjacent to K1, it follows
that G+E+− (K1∪Kp) is not connected. Then H is broken into two paths in G− (K1∪Kp).
Recall that every vertex in V (G) \ V (G0) needs to be connected to a vertex on H. When
the graph G + E+ is not a proper interval graph, every small component is connected to
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exactly one of the two sub-paths of H. But then the resulting graph remains connected
after all vertices in K1 ∪Kp removed, a contradiction. We can guess in 2k time to which
side each small component is attached. Then we need to add edges to make two proper
interval graphs. However, we cannot call the proper interval completion problem to solve this
task. For example, the subgraph induced by

⋃p
i=1 Ki together with the small components is

already a proper interval graph. The trouble is how to make them connected while keeping
K1 and Kp the end cliques of the final clique path. The same holds for the other part of the
problem.

For each i with 1 < i < |H|, let the maximal cliques containing vi be Kfrom(i), . . ., Kto(i);
i.e., from(i) and to(i) are the smallest and, respectively, the largest indices. We define Kto(1)
and Kfrom(|H|) analogously. Let r be the number of small components, denoted as C1, . . . , Cr.
For each pair p, q of indices with 1 ≤ p < q ≤ |H|, and each subset S of [1..r], we check
whether it is possible to add at most k edges to make G[

⋃from(q)
i=to(p) Ki ∪

⋃
j∈S Cj ] a proper

interval graph, under the condition that Kto(p) and Kfrom(q) are the end cliques and remain
untouched. Let β(S, p, q) denote the minimum cost if it is at most k, or ∞. We define
β(S, p, q) to be ∞ when Kto(p) and Kfrom(q) are not disjoint. Then β([1..r], 1, |H|) is the
value we need, which can be calculated as follows.

▶ Proposition 21. The value of β([1..r], 1, |H|) can be computed in kO(k)(n + m) time.

Proof. First, for a and b with a < b ≤ a + 8k and S ⊆ [1..r], we calculate β(S, a, b) as
follows. From each component Cj with j ∈ S, we take a vertex x, guess a vertex vi with
a < i < b, and add the edge xvi. After that, the subgraph induced by

⋃from(b)
i=to(a) Ki ∪

⋃
j∈S Cj

is connected. It will remain connected after adding edges. We then branch on adding
edges to destroy induced subgraphs in {C∗

3 , S3, S3} and holes in the subgraph induced by⋃from(b)
i=to(a) Ki ∪

⋃
j∈S Cj , without adding any edges incident to Kto(a) or Kfrom(b).

Since G0 is a proper Helly circular-arc graph, a vertex is adjacent to at most four vertices
on H (there is a claw otherwise). A solution is incident to at most 2k vertices, and thus
at most 8k vertices on H have touched neighbors. If vb−1 has a touched neighbor, then for
some i with 2 ≤ i ≤ 8k + 2, the vertex vb−i has no touched neighbor. For b − a > 8k, by
Lemma 19, we have

β(S, a, b) = min
1≤i≤8k+1

S′⊆S

(β(S \ S′, a, b− i) + β(S′, b− i, b)) . (1)

We can then use dynamic programming to calculate β([1..r], 1, |H|) with (1). ◀

We are now ready to summarize the algorithm in Figure 3. The analysis is left to the full
version.

5 Proper circular-arc vertex deletion

Since we will use properties of both the graph G and its complement, we beg the reader’s
attentiveness in reading this section. There are algorithms for the vertex deletion problem
toward proper interval graphs and toward bipartite permutation graphs. We are henceforth
focused on graphs that are both connected and co-connected. As usual, we can get rid of
small forbidden induced subgraphs easily.

▶ Definition 22. A graph is reduced if it is both connected and co-connected, and it contains
no C∗

3 , C∗
5 , C∗

4 , C6, S3, S∗
3 , F1, F2, F3, or F4.
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1. if there exists an induced subgraph X in {C∗
3 , C∗

4 , S3, S3, W4, W5, C6} then
branch on adding missing edges of X; \\ returns “no” if k becomes negative.

2. if G is a proper Helly circular-arc graph then return “yes”;
3. find a hole H of G and let G0 be the component of G that contains H;
4. if |H| ≤ 16k + 16 then

branch on adding chords of H or edges between H and other components;
5. if |V (G0)| < n− k

2 then return “no”;
6. if β([1..r], 1, |H|) ≤ k then return “yes”;

else return “no.”

Figure 3 The outline of the algorithm for the proper Helly circular-arc completion problem.

Similar to Proposition 11, one can make an algorithm for finding one of the subgraphs
listed above when the input graph is not reduced. We omit details since it does not improve
our main algorithm. The next lemma is complement and similar to Lemma 6.

▶ Lemma 23. A reduced graph is {C∗
ℓ | ℓ ≥ 7}-free.

Proof. Let R be a reduced graph. Suppose for contradiction that there exist a hole H

of length at least seven and a vertex that is nonadjacent to any vertex on H. Since R is
connected, we can find a vertex x adjacent to H, and another vertex y that is adjacent to
x but not to H. Let H = v1v2 · · · v|H|. We argue first that x cannot be adjacent to two
consecutive vertices on H. Suppose for contradiction that x is adjacent to both v1 and v2.
Then v1, v2, and x form a triangle. Since R is free of C∗

3 , it follows that x is adjacent to both
v4 and v5. But then v1, v2, v4, v5, and x induce a C∗

4 (note that v5 and v1 are nonadjacent
because ℓ ≥ 7).

Assume without loss of generality that x is adjacent to v3. Note that x is adjacent
to neither v2 nor v4. If x is adjacent to v5 as well, then x is nonadjacent to v6, and
{v2, . . . , v6, x, y} induces an F2. By symmetry, x cannot be adjacent to v1 either. But then
{v1, . . . , v5, x, y} induces an F1. ◀

By definition, a reduced graph is C∗
3 - and C∗

5 -free.

▶ Corollary 24. A reduced graph is {C∗
2ℓ+1 | ℓ ≥ 1}-free.

By Theorem 4, the definition of reduced graphs, and Lemma 6, a reduced graph is the
complement of a proper circular-arc graph if and only if it does not contain any even hole of
length at least eight. We will therefore be focused on long even holes. The main structural
statement characterizes reduced graphs that contain long even holes.

▶ Lemma 25. If a reduced graph contains an even hole of length at least eight, then it is
bipartite.

Proof (sketch). Let v1v2 · · · vℓ be an even hole with ℓ ≥ 8 of a reduced graph R, and denote
it by B. We prove the lemma with a sequence of claims.
1. No vertex on B participates in any triangle.
2. If some odd hole of R intersects B, then there exists an odd hole of R whose intersection

with B is a nonempty sub-path of B.
3. If V (C) ∩ V (B) is consecutive for an odd induced cycle C, then |V (C) ∩ V (B)| ≤ 4.
4. No odd induced cycle can intersect B (no vertex on B is contained in any odd induced

cycle).
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Finally, we show that R does not contain any odd cycle at all. Let C be an odd induced
cycle that is disjoint from B. First assume C = x1x2x3. Since R is C∗

3 -free, every vertex
on B is adjacent to at least one vertex on C. Assume without loss of generality that x1
has the largest number of neighbors on B, and let their indices be i1, i2, . . ., ip, sorted
increasingly. Note that all of them have the same parity by the first claim. Since R is
C6-free, ij+1 − ij is either two or at least six for all j = 1, . . . , p− 1. Since p ≥ ⌈ ℓ

3⌉, there
must be three consecutive ones with differences two; assume without loss of generality, that
they are v1, v3, and v5. If ℓ = 8, then x1v5v6 · · · v8v1 has length six, and hence x1 must be
adjacent to v7 as well; otherwise, x1 has another neighbor on B because p ≥ ⌈ ℓ

3⌉ ≥ 4. This
neighbor forms an F3 with {x1, v1, v2, . . . , v5}. Now that |C| ≥ 5; let it be x1x2 · · ·x|C|. We
take vi ∈ N(x1) ∩ V (B) and vj ∈ N(x3) ∩ V (B). The sub-path vivi+1 · · · vj forms an odd
cycle with either x1x2x3 (when j − i is odd) or x3x4 · · ·x|C|x1 (when j − i is even). From
this odd cycle we can retrieve an induced odd cycle, which has to intersect both B and C

(because both B and C themselves are induced cycles). This contradicts the fourth claim,
and concludes the proof of this lemma. ◀

The following is immediate from Theorem 4, Lemma 6, and Lemma 25.

▶ Corollary 26. If a reduced graph R is not bipartite, then R is the complement of a proper
circular-arc graph.

We are now ready to present the algorithm for the proper circular-arc vertex deletion
problem in Figure 4. Let (G, k) be an instance to the problem, and we may assume without
loss of generality that G does not contain any small forbidden induced subgraphs on at most
seven vertices. If there is a set V− of k vertices such that G− V− is a proper interval graph
or G − V− is a bipartite permutation graph, then we are done. Hence, we will look for a
solution V− such that G− V− is both connected and co-connected (Propositions 5 and 14).

For this purpose we may assume that G itself is connected and co-connected: if G is not
connected, we can work on the components of G one by one, and it is similar for G. Thus,
G is a reduced graph. If G is not bipartite, then G is already a proper circular-arc graph
(Corollary 26). Otherwise, G is bipartite, of which any induced subgraph of it is bipartite.
In other words, if there exists a solution V−, then G− V− is a bipartite permutation graph,
and this has been handled already.

1. if (G, k) is a yes-instance of proper interval vertex deletion then
return “yes”;

2. if (G, k) is a yes-instance of bipartite permutation vertex deletion then
return “yes”;

\\ We’re looking for a solution V− with both G− V− and G− V− connected.
3. branch on deleting vertices of small forbidden induced subgraphs;
4. C ← maximal vertex sets that are connected and co-connected;
5. if G[C] is co-bipartite for all C ∈ C then return “no”;
6. C ← a maximum set from C with G[C] not co-bipartite;
7. if |V (G) \ V (C)| ≤ k then return “yes”;

else return “no.”

Figure 4 The outline of the algorithm for proper circular-arc vertex deletion.

Again, it is quite straightforward to turn this algorithm into an approximation algorithm,
and the proofs for Theorems 1 and 2 are left to the full version.
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