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Abstract
We consider the problem of estimating the support size of a distribution D. Our investigations are
pursued through the lens of distribution testing and seek to understand the power of conditional
sampling (denoted as COND), wherein one is allowed to query the given distribution conditioned
on an arbitrary subset S. The primary contribution of this work is to introduce a new approach to
lower bounds for the COND model that relies on using powerful tools from information theory and
communication complexity.

Our approach allows us to obtain surprisingly strong lower bounds for the COND model and its
extensions.

We bridge the longstanding gap between the upper bound O
(
log log n + 1

ϵ2

)
and the lower bound

Ω
(√

log log n
)

for the COND model by providing a nearly matching lower bound. Surprisingly,
we show that even if we get to know the actual probabilities along with COND samples, still
Ω

(
log log n + 1

ϵ2 log(1/ϵ)

)
queries are necessary.

We obtain the first non-trivial lower bound for the COND equipped with an additional oracle
that reveals the actual as well as the conditional probabilities of the samples (to the best of our
knowledge, this subsumes all of the models previously studied): in particular, we demonstrate
that Ω

(
log log log n + 1

ϵ2 log(1/ϵ)

)
queries are necessary.
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33:2 Support Size Estimation: The Power of Conditioning

1 Introduction

We consider the problem of estimating the support size of a distribution D over a domain Ω
(of size n), which is defined as follows:

supp(D) := {x | D(x) > 0}.

We are interested in (ϵ, δ)-approximation1 of the size of supp(D) (i.e., |supp(D)|). For
simplicity in exposition, throughout this paper, we consider δ to be a small constant (more
specifically, 1/3, which can be reduced to any arbitrary small constant.). The support size
estimation is a fundamental problem in data science and finds a myriad of applications
ranging from database management, biology, ecology, genetics, linguistics, neuroscience, and
physics (see [30] and the references therein). Naturally, the distribution is not specified
explicitly, and therefore, the complexity of the problem depends on the queries that one is
allowed to the distribution. As such, the primary objective is to minimize the number of
queries (aka query complexity).

Along with support size estimation, several other properties of distributions have attracted
investigations over the past three decades (see [9]). As such, several query models have been
considered by the research community. The simplest model SAMP only allows drawing
independent and identically distributed samples from D. Valiant and Valiant [30] showed
that to get an estimation up to an additive factor of ϵn (for any ϵ > 0), O(n/ϵ2 log n) samples
suffice, which was subsequently improved to O( n

log n log2(1/ϵ)) by Wu and Yang [31]. Further,
Wu and Yang proved that Ω( n

log n log2(1/ϵ)) samples are also necessary to get an estimate
up to an additive error of ϵn. A natural extension to SAMP is called probability-revealing
sample or PR-SAMP, due to Onak and Sun [27], wherein instead of just returning an
independent sample x from D (as in SAMP), the oracle provides a pair (x, D(x)) (i.e., a
sample along with the probability assigned on it by D). Onak and Sun showed that to
estimate the support size up to an additive error of ϵn, Θ(1/ϵ2) samples are necessary and
sufficient in the PR-SAMP model. The same upper bound for the PR-SAMP model was
also implicit in the work by Canonne and Rubinfeld [8].

As we seek to explore more powerful models than PR-SAMP, a model of interest is
DUAL [2, 22, 8] wherein we have access to two oracles: One is SAMP that provides a
sample from D, and another is EVAL that given any x ∈ Ω, outputs the value of D(x). In
the DUAL model, for any ϵ1, ϵ2 ∈ (0, 1], distinguishing between whether the support size
of D is at most ϵ1n or at least ϵ2n requires Θ(1/(ϵ2 − ϵ1)2) queries [8]. An extension of
EVAL is CEVAL wherein for totally ordered domains, given x, CEVAL outputs

∑
y≼x D(x).

Similarly, CDUAL is an extension of DUAL where we have access to oracles SAMP and
CEVAL. Caferov, Kaya, O’Donnell, and Say [7] showed that Ω( 1

ϵ2 ) queries are needed in the
CDUAL model to estimate the support size up to an additive factor of ϵn. However, to the
best of our knowledge, no non-trivial result is known for the support size estimation problem
with (1 + ϵ) multiplicative error in the above models.

While SAMP, PR-SAMP, and DUAL are natural models, they are limiting in theory
and practice as they fail to capture several scenarios wherein one is allowed more powerful
access to the distribution under consideration. Accordingly, CFGM [13] and CRS [11]

1 We want to estimate |supp(D)| by ŝ such that |supp(D)|
(1+ϵ) ≤ ŝ ≤ (1 + ϵ)|supp(D)| with the success

probability at least 1 − δ. This version is also referred to as (1 + ϵ)-multiplicative factor estimation.
Another interesting version to consider is the additive ϵn-estimation (where n denotes the size of the
domain) which asks to output a ŝ such that |supp(D)| − ϵn ≤ ŝ ≤ |supp(D)| + ϵn with the success
probability at least 1 − δ. Unless otherwise stated explicitly, we consider the multiplicative variant.
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initiated the study of a more general sampling model COND, where we are allowed to
draw samples conditioning on any arbitrary subsets of the domain Ω. More specifically, the
sampling oracle takes a subset S ⊆ Ω chosen by the algorithm and returns an element x ∈ S

with probability D(x)/D(S) if D(S) > 0. The models proposed by CFGM and CRS differ in
their behavior for the case when D(S) = 0. The model proposed by CFGM [13] allows the
oracle to return a uniformly random element from S when D(S) = 0. On the other hand,
the COND model defined in CRS [11] assumes that the oracle (and hence the algorithm)
returns “failure” and terminates if D(S) = 02. Note that the COND model of CRS is more
powerful than that of CFGM since, when D(S) = 0, in the former case, we get to know that
D(S) = 0, whereas in the latter case, we get a uniformly random element of S.

The relative power of the COND model of CRS over that of CFGM is also exhibited
in the context of support size estimation. Acharya, Canonne, and Kamath [1] designed an
algorithm with query complexity Õ(log log n/ϵ3) in the COND model of CFGM to estimate
the support size up to (1 + ϵ) multiplicative factor under the assumption that the probability
of each element is at least Ω(1/n). They also note that the assumption of a lower bound
on the probability of each element is required for their techniques to work. It is worth
highlighting that for the problem of support size estimation in the SAMP model, one needs
a lower bound of Ω(1/n) on the minimum probability assigned to any element in the support.
Otherwise, one can assign a negligible probability to certain elements which will never be
observed. In the COND model, such an assumption is not necessary. Indeed, a result of
Falahatgar, Jafarpour, Orlitsky, Pichapati, and Suresh [18] implies that O

(
log log n + 1

ϵ2

)
queries are sufficient in the COND model of CRS for any arbitrary probability distribution,
i.e., there is no requirement for the assumption of lower bound on the probability of each
element. The key idea behind this result is that it is possible to decide whether the support
size is > 2t or ≤ t for any integer t ≥ 0 (for any arbitrary probability distributions) with
high probability using only O(1) queries, even with weaker oracle access in which, given any
S ⊆ Ω, it can be determined whether S ∩ supp(D) = ∅ or not. On the lower bound side, we
only know that at least Ω(

√
log log n) COND queries are necessary [13].

The two models were introduced in the context of uniformity testing, wherein the choice
of how to handle the case of D(S) = 0 did not make any significant differences. We would
like to emphasize that CRS’s model is more powerful than that of CFGM, and thus any lower
bound shown in the first one also provides the same in the latter one. Moreover, the model
of CRS closely approximates the behavior of modern probabilistic programming systems [21].
Therefore, throughout this paper, we consider the COND model of CRS.

Since its introduction, the COND model has attained significant attention both in theory
and practice. From a theoretical perspective, various other distribution testing problems have
been studied under the COND model [17, 24, 26] and its variant like subcube conditioning
model [3, 10, 15]. Apart from that, the COND model and its variants find real-world
applications in the areas like formal methods and machine learning (e.g., [14, 25, 20]). Also,
the modern probabilistic programming systems extend classical programs with the addition
of sampling and observe, where the semantics of the observe match that of CRS’s COND
model [21].

2 Note that analyzing each step of the algorithm makes it possible to determine the set, conditioning
on which caused the algorithm to output “failure” and terminate. The rest of the algorithm can then
execute with the information that D(S) = 0 for the above set S. Therefore, for the simplicity of
exposition, we will assume that the COND model defined in CRS returns “failure” when D(S) = 0, but
the algorithm does not terminate.

MFCS 2023
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It is worth remarking that the COND model is incomparable with PR-SAMP. Therefore,
it is quite natural, both from a theory and practical perspective, to consider a sampling
model that inherits power from both COND and PR-SAMP. We consider a model where
we are allowed to condition on any arbitrary subset S ⊆ Ω, and if D(S) > 0, we receive a
sample x ∈ S with probability D(x)/D(S) (as in COND) along with the probability assigned
on it by D (i.e., D(x)); “failure” otherwise. We refer to this model as probability-revealing
conditional sample3 or in short COND-PR. To the best of our knowledge, Golia, Juba, and
Meel [20] were the first ones to initiate the study of the COND-PR model. Their work
focused on the multiplicative estimation of entropy on the COND-PR model. Golia et al.
were primarily motivated to investigate the COND-PR model upon the observation that
the usage of the model counter and a sampler can simulate the COND-PR model wherein
a circuit specifies the distribution. Also, implicit in their study is that the availability of
model counter and samplers [16] allows one to simulate generalization of COND-PR model
wherein for a given input D and S in addition to D(x) for a sampled item x ∈ S, the oracle
also returns the value of D(x)/D(S) (the conditional probability of x given S). We refer to
this model as conditional sampling evaluation model4, or in short COND-EVAL. To the
best of our knowledge, the COND-EVAL subsumes all the previously studied variants of
the COND model (see Figure 1).

SAMP

PR-SAMP

EVAL

DUALCOND CEVAL

CDUALCOND-PR

COND-EVAL

Figure 1 Relative power of different models: An edge u → v means the model v is more powerful
than the model u.

To summarize, there has been a long line of research that has relied on the usage of the
COND model and its variants, resulting in significant improvements in the query complexity
for several problems in distribution testing. While there has been a multitude of techniques
for obtaining upper bounds for the COND model and its variants, such has not been the
case for lower bounds. In particular, the prior techniques developed in the context of support
size estimation for COND model have primarily relied on the observation that an algorithm
A that makes q COND queries can be simulated by a decision tree of O(q2q2) nodes.
Accordingly, the foregoing observation allows one to obtain Ω(

√
log log n) lower bound for

3 The name is motivated from the PR-SAMP model [27].
4 The name is motivated from the standard evaluation model EVAL [28] where given any x ∈ Ω, we get

the value of the probability density function of D at x.
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COND, which leaves open a major gap with respect to the upper bound of O(log log n + 1
ϵ2 ).

The situation is even direr when considering models that augment COND with powerful
oracles such as EVAL since the approach based on a decision tree fails due to additional
information supplied by oracles such as EVAL, and accordingly, no non-trivial lower bounds
are known for models such as CDUAL, COND-EVAL, and the like. Therefore, there is a
desperate need for new lower bound techniques to fully understand the power of the COND
model and its natural extensions.

1.1 Our Contribution
One of our primary contributions is to provide a seemingly new approach to proving lower
bounds in the COND model and its more powerful variants. Our approach is based on
information theory and reductions to problems in communication complexity. We note that
the communication complexity-based approaches to lower bounds have been explored in
prior work; such approaches are only limited to weaker models such as the SAMP and the
PAIRCOND models [6, 5]. While we demonstrate the application of our approach in the
context of support size estimation for different variants of COND, we believe our approach
is of general interest and can be applied to other distribution testing problems.

For ease of exposition, here we situate the discussion in the context of the most general
model, COND-EVAL. One of the inherent difficulties in proving any non-trivial lower bound
for the COND-EVAL model arises from the fact that the different sets for conditioning can
overlap in an arbitrary manner (and unlike in PAIRCOND model, these sets are of arbitrary
size) and further be chosen in an adaptive way. The adaptivity and arbitrary size of sets make
it extremely difficult to upper bound the conditional entropy at any step of the algorithm.
Furthermore, the power of revealing the probability mass (on any set) by a COND-EVAL
query risks licking “a lot of” information which makes it even more challenging. The key
departure from earlier work is the choice of an infinite family of distributions, so the range
of outcomes of an algorithm is continuous and so cannot be encoded with any finite (or even
infinite) length message. To this end, we rely on Fano’s inequality, a fundamental tool in
information theory, to show lower bounds for statistical estimation. In order to apply Fano’s
inequality, we need to upper bound the information gain at every step of the algorithm. Our
approach proceeds by relying on a restricted model of conditioning where the queried sets are
laminar, i.e., either they do not intersect or are subsets/supersets of each other. Accordingly,
we first obtain lower bounds for the restricted model and lift to the lower bounds for the
COND-EVAL model.

Our approach is compelling enough to provide non-trivial lower bounds in the most potent
COND-EVAL model, for which no lower bound was known before. However, before providing
the usefulness of the general framework, let us demonstrate how a special instantiation of
our approach can be applied to obtain strong lower bounds in the context of support size
estimation for the COND model and its (simpler) variants. Our first result bridges the
long-standing gap between the upper bound of O(log log n + 1

ϵ2 ) and the lower bound of
Ω(

√
log log n) in case of COND model. In particular, we obtain an Ω(log log n + 1

ϵ2 log(1/ϵ) )
lower bound on the query complexity in the COND-PR model, which in turn provides the
same lower bound for the PR-SAMP, DUAL, and COND model.

▶ Theorem 1. Every algorithm that, given COND-PR access to a distribution D on [n]
and ϵ ∈ (0, 1], estimates the support size |supp(D)| within a multiplicative (1 + ϵ)-factor with
probability at least 2

3 , must make Ω
(

log log n + 1
ϵ2 log(1/ϵ)

)
queries to the COND-PR oracle.

MFCS 2023



33:6 Support Size Estimation: The Power of Conditioning

Recall the best-known upper bound for the support size estimation in COND is
O(log log n + 1

ε2 ) and therefore, the above theorem achieves a near-matching lower bound
in the context of COND and COND-PR. It is rather surprising that the combination of
PR-SAMP and COND does not yield power in the context of the support size estimation.
It is worth mentioning that we already know of a lower bound of Ω(1/ϵ2) for the PR-SAMP
and DUAL model due to [8]. Hence, our result along with [8] provides a lower bound of
Ω(log log n + 1

ϵ2 ) for these two models (i.e., we can get rid of the annoying log(1/ϵ) factor
from the lower bound term of Theorem 1).

Our primary result is to establish the first non-trivial lower bound in the context of
COND-EVAL, which in turn provides the first-known lower bound for many other previously
studied models, such as CDUAL.

▶ Theorem 2. Any algorithm that, given COND-EVAL access to a distribution D on [n]
approximates the support size |supp(D)| within a multiplicative (1 + ϵ)-factor with probability
at least 2/3, must make Ω

(
log log log n + 1

ϵ2 log(1/ϵ)

)
queries.

Since COND-EVAL subsumes COND-PR, we have the upper bound of O(log log n+ 1
ϵ2 ),

and the ensuing gap leaves open an interesting question. It is worth remarking that it is not
hard to see (by extending the proof of Theorem 1) that the upper bound is nearly tight if
one were to replace COND-EVAL with approximate-COND-EVAL wherein, for a given
D and S, the oracle essentially provides an estimate of D(S) up to a small multiplicative
error (see the discussion in the full version). We conjecture that the upper bound is tight for
COND-EVAL.

▶ Conjecture 3. Any algorithm that, given COND-EVAL access to a distribution D on [n]
approximates the support size |supp(D)| within a multiplicative (1 + ϵ)-factor with probability
at least 2/3, must make Ω

(
log log n + 1

ϵ2 log(1/ϵ)

)
queries.

The validity of the above conjecture would establish the significant power of the COND
model in the context of support size estimation as COND-EVAL and COND-PR, despite
being augmented with powerful oracles in addition to conditioning, do not yield better
algorithms.

2 Preliminaries

Notations

We use the notation [n] to denote the set of integers {1, 2, · · · , n}. For any probability
distribution D defined over [n], for any i ∈ [n], let D(i) denote the probability of choosing i

when sampling according to D. For any subset S ⊆ [n], we use D(S) to denote the probability
mass assigned on S by the distribution D, i.e., D(S) :=

∑
i∈S D(i).

Different access models

Let D be a distribution over [n]. Below we formally define the query models that we consider
in this paper.

▶ Definition 4 (COND Query Model). A conditional (in short, COND) oracle for D takes
as input a set S ⊆ [n], and if D(S) > 0, returns an element j ∈ S with probability D(j)/D(S).
If D(S) = 0, then the oracle returns “failure”.
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▶ Definition 5 (COND-PR Query Model). A probability-revealing conditional sampling
(in short, COND-PR) oracle for D takes as input a set S ⊆ [n], and if D(S) > 0, returns
a pair (j, D(j)) (where j ∈ S) with probability D(j)/D(S). If D(S) = 0, then the oracle
returns “failure”.

▶ Definition 6 (COND-EVAL Query Model). A conditional evaluation (in short, COND-
EVAL) oracle for D takes as input a set S ⊆ [n], and if D(S) > 0, returns a tuple
(j, D(j), D(j)/D(S)) (where j ∈ S) with probability D(j)/D(S). If D(S) = 0, then the oracle
returns “failure”.

▶ Definition 7 (SET-EVAL Query Model). A set evaluation (in short, SET-EVAL) oracle
for D takes as input a set S ⊆ [n], and returns the value D(S).

It is straightforward to observe that the COND-EVAL is at least as powerful as the
COND-PR oracle which in turn is at least as powerful as the COND oracle. Further, the
COND-EVAL oracle is at least as powerful as the SET-EVAL oracle.5

Shannon entropy and source coding theorem

The entropy of a discrete random variable X taking values in X is defined as H(X) :=∑
x∈X p(x) log 1

p(x) where p(x) = Pr[X = x].
The seminal work of Shannon [29] establishes a connection between the entropy and the

expected length of an optimal code that encodes a random variable.

▶ Theorem 8 (Shannon’s Source Coding Theorem [29]). Let X be a discrete random variable
over domain X . Then for every uniquely decodable code C : X → {0, 1}∗, E(|C(X)|) ≥ H(X).
Moreover, there exists a uniquely decodable code C : X → {0, 1}∗ such that E(|C(X)|) ≤
H(X) + 1.

3 Technical Overview

Lower bound for COND-PR

We start with deriving the lower bound of Theorem 1. It consists of two parts – an Ω(log log n)
lower bound for a multiplicative 4/3-factor estimation algorithm and an Ω( 1

ϵ2 log 1
ϵ

) lower
bound for an additive ϵn-factor algorithm. We first show an Ω(log log n) lower bound for a
multiplicative 4/3-factor algorithm. For that purpose, we consider an integer-guessing game
between Alice and Bob, where Alice uniformly at random chooses an integer x ∈ [log n]. Then
sends a message (binary string) to Bob. Upon receiving the message, Bob’s task is to guess
x correctly (with high probability). Since the entropy of the chosen integer is log log n, by
Shannon’s source coding theorem, the length of the message, on average, must be Ω(log log n).
We show that if there exists an algorithm T that makes t COND-PR queries, then it suffices
for Alice to send a message of length O(t), and hence t = Ω(log log n).

To show the same, for each x ∈ [log n], Alice considers a distribution Dx with support [2x].
The probability Dx(j) of an element j ∈ [2x] in Dx decreases exponentially as j increases.
Alice runs the algorithm T on the distribution Dx and would like to send an encoding of
the run (i.e., the sampled element along with its probability for each step). Using a trivial

5 Since on input S, the COND-EVAL oracle returns a tuple (j, D(j), D(j)/D(S)) where j ∈ S, one can
compute the value of D(S) whenever D(S) > 0; otherwise (when D(S) = 0) the COND-EVAL oracle
returns “failure”, from which one can infer that D(S) = 0.

MFCS 2023
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encoding, even to send a sampled element, requires Θ(log n) bits, which is already more
than the Shannon entropy and thus would not give any lower bound. So Alice needs to
use a slightly clever encoding. Roughly speaking, since the probabilities are exponentially
decreasing, the conditional sampling from any set S ⊆ [n] returns an element from the first
“few” smallest elements of S (with high probability). Thus even though |S| can be large, the
sampled element (at each step) can be specified by only constantly many bits. Alice sends
this encoding of the sampled element (along with its probability value which can again be
encoded with constantly many bits due to the construction of Dx’s) at each of t steps to Bob.
Hence Bob knows the complete run and thus can determine the index x using the algorithm
T . We provide detailed proof in the full version.

Next, we turn our attention to showing the dependency of ϵ in the lower bound. We
show an Ω

(
1

ϵ2 log 1
ϵ

)
lower bound for an additive ϵn-factor algorithm. Since a multiplicative

(1 + ϵ)-factor algorithm also provides an additive ϵn-factor estimation, the above lower
bound also works for (1 + ϵ)-factor algorithms. We prove this bound by showing a reduction
from a well-studied communication complexity problem, namely the Gap-Hamming distance
problem, and then applying the known lower bound for the Gap-Hamming distance [12].
The proof argument (and the dependence on ϵ) also holds true for COND-EVAL model.

Lower bound for COND-EVAL

The approach used to get an Ω(log log n) lower bound in the COND-PR model cannot be
used to show the same for the COND-EVAL model. One of the powers of COND-EVAL
model (over the COND-PR) comes from its ability to compute D(S) :=

∑
j∈S D(j) for any

set S ⊆ [n].
Recall the hard instance Dx’s used in the Ω(log log n) lower bound proof for the COND-

PR model. Let X∗ := {2x | x ∈ [log n]}. It is easy to verify that Dx(X∗) ̸= Dx′(X∗) for any
x ≠ x′ ∈ [log n]. So, the value of x (and hence the support of Dx) can be determined using
only one COND-EVAL query with the set X∗. Thus our lower bound argument fails in this
model. For the sake of intuition about how we overcome the above issue, we want to point out
that the above argument does not fail if we have an approximate COND-EVAL query instead
of COND-EVAL query, i.e., if the oracle gives the estimate of D(S) up to a small additive
error say 3

2n0.1 . This is because for x, x′ ∈ [ log n
10 , log n], we have |Dx(X∗) − Dx′(X∗)| ≤ 2

2n0.1 .
Hence, given that x, x′ ∈ [ log n

10 , log n], we can not distinguish between x and x′ as the estimate
could be the same for both x and x′.

To mitigate the above issue (for COND-EVAL), we construct a new set of hard distribu-
tions. Our objective is that for any set X∗, if the value of Dx(X∗) is in (0, 1), then value of
Dx(X∗) should not give information about x. One plausible approach could be to replace
each distribution Dx with a finite set of distributions such that for any set S ⊆ [n], there
are many distributions in the instance with the same value of D(S). Unfortunately, we do
not know how to get such a set of distributions preserving other useful properties needed
for our proof. Our key high-level idea is to replace the distribution Dx (for each x ∈ [log n])
with a distribution over an infinite number of distributions. This way, the value of Dx(X∗)
cannot be used to determine the value of chosen x (as there can be infinite values of x having
the same value D(X∗)). However, one immediate issue that arises is if our instance has an
infinite domain (here distributions), then how do we even get a distribution over an infinite
space? Further, like before, we still want the probabilities to exponentially decrease so that
the sampled element is always among the first few smallest elements of the conditioning
set S. Fortunately, in statistics and compositional data analysis, there has been a study of
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probability distributions on the set of all (infinite) distributions. Based on requirements, our
choice is the well-studied Dirichlet distribution that satisfies a strong independence property
which is necessary for our analysis.

A Dirichlet distribution on support [K] with parameters α1, · · · , αK > 0 has a probability

density function given by f(p1, . . . , pK) =
∏

i∈[K]
p

αi−1
i

B(α1,··· ,αK ) where {pi}i∈K belongs to the standard
K−1 simplex, i.e.,

∑
i∈[K] pi = 1 and pi ≥ 0 for all i ∈ [K] and B(α1, · · · , αK) is a normalizing

constant. When α1 = · · · = αK = 1, the Dirichlet distribution is just the uniform distribution
on K − 1 simplex. The higher the value of parameter αi, the higher the (expected) value of
pi. Since we want the probability value to be exponentially decreasing, we set the values
of α1, · · · , αn exponentially decreasing. Then for each index x chosen uniformly at random
from [log n], we sample a distribution Dx with support [2x] from the Dirichlet distribution
with parameters α1, · · · , α2x . By the standard Yao’s principle, it suffices to show a high error
probability of any deterministic algorithm that correctly estimates the support size (and
hence determines the index x) of the distribution sampled as above. Note that the entropy
of the index is still log log n, but the previous communication framework (between Alice and
Bob) will not be useful here. This is because the range of the outcomes of the algorithm
(the actual and the conditional probabilities) is continuous, and so cannot be encoded with
any finite (or even infinite) length message. Instead, we apply Fano’s inequality, a tool from
information theory.

Roughly speaking, we show that the information gain (about the index) by the query’s
outcome at every step is O(1). Since the initial entropy of the index is log log n, at least
log log n steps of the algorithm are needed. The main technical challenge is to upper bound
the information gain at every step. It is particularly challenging as it requires calculating
the explicit density function (for the outcome) corresponding to each index. These density
functions are conditioned on the previous outcomes and thus change at every step. Further,
the set queried by the algorithms can be adaptive, which makes our task even more difficult.
To ease our analysis, we first assume that the queried sets by the algorithm are laminar,
i.e., either they do not intersect or are subsets/supersets of each other. Our Ω(log log n)
lower bound holds for COND-EVAL model for all the algorithms satisfying this laminar
condition. It is not hard to observe that any algorithm that makes t general queries can
be simulated by an algorithm that queries the laminar family of sets and makes at most
2t queries. This observation gives us Ω(log log log n) lower bound for the general case. We
believe that Ω(log log n) is the correct lower bound for the general case, but (perhaps it is an
artifact of our analysis that) the laminar structure is necessary for applying the independence
properties of Dirichlet distribution which leads to only an Ω(log log log n) lower bound. For
the sake of simplicity, we first prove the lower bound for a weaker model called, SET-EVAL,
and then extend to the general COND-EVAL model. We refer to the oracle that, given any
S ⊆ [n], just outputs the value of D(S), as SET-EVAL oracle. Since using a COND-EVAL
query, we can simulate a SET-EVAL query, the COND-EVAL model is at least as powerful
as SET-EVAL. We now describe the proof of the lower bound for the SET-EVAL model in
more detail.

For an index x chosen uniformly at random from [log n], we sample a distribution Dx

with support [2x] from the Dirichlet distribution with parameters α1, · · · , α2x (αj = 1
2j for all

j ∈ [x]). By the standard Yao’s principle, it suffices for us to show a high error probability of
any deterministic algorithm that correctly estimates the support size (and hence determines
the index x) of the distribution sampled as above. Let T be any such deterministic algorithm
that queries a laminar family of sets. We need to show that T must make Ω(log log n) queries.
The main technical ingredient in the proof is to show that the information gain (about
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the index x) by the outcome of any query of the algorithm is O(1). This implies that the
total information gain is O(t), where t is the number of queries. Then Fano’s inequality
immediately implies that t ≥ Ω(log log n). Let the i-th query (i ∈ [t]) be denoted by set Ai,
and the outcome of the i-th query (sum of probabilities of elements in the set Ai) be denoted
by Zi. The information gain (about the index x) by the i-th query (for any i ∈ [t]) is the
conditional mutual information I(X; Zi|Zi−1) where Zi is the random variable denoting the
outcome of i-th query, Zi−1 = (Z1, . . . , Zi−1) is the random variable denoting the vector
of previous outcomes and X is the random variable denoting the uniformly chosen index
x from [log n]. By definition, the conditional mutual information I(A; B|C) for random
variables A, B, C is equal to the expectation (over C) of the KL divergence between the joint
distribution Q(A,B)|C and the product distribution QA|C ×QB|C . The technical difficulty is to
upper bound the conditional mutual information I(X; Zi|Zi−1) by O(1). This is particularly
challenging since the joint and the product distributions are not explicitly given, and queries
are adaptive. To overcome this difficulty, at any step i ∈ [t] (after (i − 1)-th query), we
first partition the [log n] into four groups denoted by Li

0, Li
1, Li

2, Li
3 such that for the first

three groups, the outcome of the algorithm (i.e., Zi) is (deterministically) determined by
the previous outcomes of the algorithm (i.e., Zi−1 = (Z1, . . . , Zi−1)) whereas for any x in
the fourth group Li

3, the outcome is not fixed (given previous outcomes) but comes from a
distribution (which we show to be also Dirichlet). Let this distribution be denoted by Qx

for x ∈ Li
3. The information gain by the i-th query is log 3 (because there are three groups

for which outcome is deterministically determined) plus the information gain corresponding
to the last group Li

3. This term can be upper bounded by the maximum KL divergence
between distributions Qx and Qx′ for any x, x′ ∈ Li

3. Thus our goal is to show that KL
divergence between Qx and Qx′ for any x, x′ ∈ Li

3 is O(1). Using the independence property
of Dirichlet distributions and the laminar structure of query sets, we show that the KL
divergence between the distributions Qx and Qx′ is equal to the KL divergence between two
beta distributions with different parameters (beta distributions are a special case of Dirichlet
distributions). The explicit formula for KL divergence between two beta distributions is
well-known (e.g., see [23]), and we use this formula to upper bound the KL divergence by
O(1).
▶ Remark 9. Technically, the above lower bound for SET-EVAL (and COND-EVAL) does
not hold if it is promised that the probabilities in the given distribution are rational numbers.
This is because, in the lower bound instances above, the probability of an element can be
any arbitrary real number in (0, 1). However, we can use the following standard fact to show
that the lower bound holds even with the rational probabilities.

A Polya urn is an urn containing αi balls of color i, for each i ∈ [K]. The urn evolves at
each discrete time step – a ball is sampled uniformly at random. The ball’s color is observed,
and two balls of the observed color are returned to the urn. Let Xi,m be the number of
balls of color i (for each i ∈ [K]) added after m time steps. Clearly Dm = ( X1,m

m , · · · ,
XK,m

m )
is a probability distribution over [K]. It can be shown that the distributions D1, · · · , Dm

converges to a Dirichlet distribution with parameters α1, . . . , αK when m tends to ∞ [4].
Instead of using Dirichlet distribution in our lower bound proof, we can use the distribution

Dm for sufficiently large m. Since for any m, the probabilities in Dm are rational numbers,
we can get the lower bound even when the probabilities are rationals.

The power of COND-EVAL

We further demonstrate the power of the COND-EVAL model by showing an algorithm
with constant query complexity for a number of distribution testing problems for which
there are strong lower bounds known for the COND-PR and COND model. Our first
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example is the well-studied Equivalence testing problem. Here, given two distributions
D and D′, the goal is to accept if D = D′ and reject if their total variation distance
||D − D′||T V =

∑
i∈[n] |D(i) − D′(i)| > ϵ (both with high probability). It is known that

Ω(
√

log log n) queries are necessary in the COND model [1]. On the other hand, Ω(1/ϵ)
queries are required in the COND-PR model. (Consider a uniform distribution U on [n].
Now randomly choose i, j ∈ [n]. We modify U to construct another distribution U ′ by setting
U ′(i) = 2/n, U ′(j) = 0, and no changes in the probability mass of other elements. Note
that ϵ = ||U − U ′||T V = 2/n. It is easy to see that Ω(n) = Ω( 1

ϵ ) queries are required to
distinguish U and U ′ in the COND-PR model.) We show that Equivalence testing can be
done in just two COND-EVAL queries. The above upper bound result extends to another
unrelated problem for the COND-EVAL model – the problem of testing whether the given
distribution is m-grained, i.e., the probability of each element is an integer multiple of 1/m.
Finally, we show that the multiplicative (1 + ϵ)-approximation of square of the L2 norm
(
∑

j∈[n] D(j)2) of a distribution D can be computed using O( 1
ϵ2 ) queries of COND-EVAL.

To the best of our knowledge, this problem has been studied previously only in the SAMP
model [19], wherein it was shown that Ω(

√
n

ϵ2 ) queries are required.

The power of bounded-set conditioning

We further study the support size estimation problem when we allow SAMP oracle access
and conditioning on sets of size at most k. We show a lower bound of Ω(n/k) and an
upper bound of O(n log log n

k ) for constant factor approximation in this model. The upper
bound holds for the COND oracle model, while our lower bound holds for the stronger
COND-EVAL oracle model.

Both the upper and lower bounds are not difficult to establish. Falahatgar et al. [18]
showed that O(log log n) queries are sufficient (with no restriction on the size of the set for
conditioning) to get a constant approximation for oracle access which, given any S ⊆ [n],
returns whether S ∩ supp(D) = ∅ or not. Oracle access to a set of size s can be simulated by
s/k oracle access when conditioning on at most k-sized sets is allowed. This gives an upper
bound of O( n log log n

k ). Interestingly, the hard instance for the bounded-set conditioning to
estimate the support size is when the support size is constant. We refer the readers to the
full version for all the detailed proofs.

4 Conclusion

We investigate the power of conditioning for estimating the support size up to a multiplicative
(1 + ϵ)-factor. To date, there is a gap between the upper bound of O(log log n + 1/ϵ2) and
the lower bound of Ω(

√
log log n) in the standard COND model. In this paper, we close this

gap by providing a lower bound of Ω(log log n + 1
ϵ2 log 1

ϵ

). We actually show the lower bound
in even a more powerful model, namely COND-PR, where in addition to the conditioning,
one is also allowed to get the actual probability of the sampled elements (i.e., a combination
of COND and PR-SAMP). In the dependency of ϵ, there is a small gap of log(1/ϵ) factor,
and we want to leave the problem of removing this factor from the lower bound term as an
open problem.

It is quite surprising that the combination of COND and PR-SAMP does not yield more
power compared to only the COND model in the context of the support size estimation. We
thus continue our investigation by appending the algorithms with an even more powerful
oracle that could also get the conditional probabilities of the sampled elements (not just
the actual probabilities). We call this model COND-EVAL. This model turns out to be
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more powerful in the context of several other important distribution testing problems. For
the support size estimation, we show a lower bound of Ω(log log log n + 1

ϵ2 log 1
ϵ

) in this
COND-EVAL model. On the technical side, this paper introduces many new ideas, such as
using continuous distribution (Dirichlet distribution) for constructing hard instances and
applying information theory and communication complexity tools to conditional sampling
models. We hope that such techniques could be useful for showing non-trivial lower bounds
for other distribution testing problems as well.

For the support size estimation problem in the COND-EVAL model, currently, we
only know of an O(log log n) upper bound, whereas we could only show a lower bound of
Ω(log log log n). We would like to pose the problem of closing this gap as an interesting open
problem. Another interesting open problem is to determine if an upper bound of o(log log n)
is possible in the COND-PR and COND-EVAL models, assuming a certain lower bound on
the probability mass of each element in the support size (e.g., the probability of any element
is either 0 or at least 1/n).
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