
Positive Data Languages
Florian Frank #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stefan Milius #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Henning Urbat #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
Positive data languages are languages over an infinite alphabet closed under possibly non-injective
renamings of data values. Informally, they model properties of data words expressible by assertions
about equality, but not inequality, of data values occurring in the word. We investigate the class of
positive data languages recognizable by nondeterministic orbit-finite nominal automata, an abstract
form of register automata introduced by Bojańczyk, Klin, and Lasota. As our main contribution we
provide a number of equivalent characterizations of that class in terms of positive register automata,
monadic second-order logic with positive equality tests, and finitely presentable nondeterministic
automata in the categories of nominal renaming sets and of presheaves over finite sets.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Data Languages, Register Automata, MSO, Nominal Sets, Presheaves

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.48

Related Version Full Version with omitted details and proofs: https://arxiv.org/abs/2304.12947

Funding Florian Frank: Supported by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) as part of the Research and Training Group 2475 “Cybercrime and Forensic Computing”
(grant number 393541319/GRK2475/1-2019).
Stefan Milius: Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Found-
ation) – project number 419850228.
Henning Urbat: Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 470467389.

Acknowledgements The authors wish to thank Bartek Klin for pointing out the example in Re-
mark 2.10.

1 Introduction

Automata over infinite alphabets provide a simple computational model for reasoning about
structures involving data such as nonces [21], URLs [3], or values in XML documents [25].
Consider, for instance, the (infinite) set A of admissible user IDs for a server. The sequence
of all user logins within a given time period then forms a finite word a1 · · · an ∈ A⋆ over the
infinite alphabet A, and behaviour patterns may be modelled as data languages over A, e.g.

L0 = { a1 · · · an ∈ A⋆ | ai ̸= an for all i < n } (“last user has not logged in before”),
L1 = { a1 · · · an ∈ A⋆ | ai = aj for some i ̸= j } (“some user has logged in twice”).

Both L0 and L1 involve assertions about equality, or inequality, of data values (here, user
IDs). However, asserting inequality is sometimes considered problematic and thus undesired.
For example, since users may have multiple IDs, a logfile a1 . . . an ∈ L0 does not actually
guarantee that the last user has not logged in before. In contrast, if a1 . . . an ∈ L1, then it is
guaranteed that some user has indeed logged in twice. The structural difference between the

© Florian Frank, Stefan Milius, and Henning Urbat;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florian.ff.frank@fau.de
https://orcid.org/0000-0002-9458-3408
mailto:mail@stefan-milius.eu
https://orcid.org/0000-0002-2021-1644
mailto:henning.urbat@fau.de
https://orcid.org/0000-0002-3265-7168
https://doi.org/10.4230/LIPIcs.MFCS.2023.48
https://arxiv.org/abs/2304.12947
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Positive Data Languages

Positive RA

MSO∼,+ ∩ NOFAFSUBA

Positive ∩ NOFA NOFRA

Super-finitary SetF-aut.

Thm. 3.2

Rem. 3.3 Thm. 4.4

Thm. 2.9

Thm. 7.7

Figure 1 Equivalent characterizations of positive NOFA-recognizable languages.

two languages is that L1 is closed under arbitrary renamings ρ : A → A (i.e. a1 · · · an ∈ L1
implies ρ(a1) · · · ρ(an) ∈ L1), taking into account possible identification of data values,
while L0 is only closed under injective (equivalently bijective) renamings. We refer to
languages with the former, stronger closure property as positive data languages. Intuitively,
such languages model properties of data words expressible by positive statements about
equality of data values. It is one of the goals of our paper to turn this into a theorem.

For that purpose, we build on the abstract account of data languages and their automata
based on the theory of nominal sets [13, 27], initiated by the work of Bojańczyk, Klin,
and Lasota [6]. Specifically, we investigate nondeterministic orbit-finite nominal automata
(NOFA), the nominal version of classical nondeterministic finite automata. We approach the
class of positive NOFA-recognizable data languages from several different perspectives, ranging
from concrete to more abstract and conceptual, and establish the equivalent characterizations
summarized in Figure 1. In more detail, our main contributions are as follows.

Register automata. NOFAs are known to be expressively equivalent to register automata
[17,19], i.e. finite automata that can memorize data values using a fixed number of registers
and test the input for (in)equality with previously stored values. Restricting transitions to
positive equality tests leads to positive register automata, which correspond to finite-state
unification-based automata (FSUBA) [18, 32] and are shown to capture precisely positive
NOFA-recognizable languages (Theorem 3.2 and Remark 3.3). On the way, we isolate a
remarkable property of this language class: while NOFAs generally require the ability to
guess data values during the computation to reach their full expressive strength, guessing
and non-guessing NOFA are equivalent for positive data languages (Theorem 2.17).

Monadic second-order logic. As illustrated above, positive data languages model (only)
positive assertions about the equality of data values. To substantiate this intuition, we
employ monadic second-order logic (MSO∼) over data words [4,9,25], an extension of classical
MSO with equality tests for data values, and consider its restriction MSO∼,+ to positive
equality tests. While this logic is more expressive than NOFA, we show that within the class
of NOFA-recognizable languages it models exactly the positive languages (Theorem 4.4).

Categorical perspective. The classical notion of nondeterministic finite automata can
be categorified by replacing the finite set of states with a finitely presentable object of
a category C . For example, NOFAs are precisely nondeterministic C -automata for C =
nominal sets. Apart from the latter category, several other toposes have been proposed
as abstract foundations for reasoning about names (data values), most prominently the
category of nominal renaming sets [12], the category SetI of presheaves over finite sets
and injective maps [31], and the category SetF of presheaves over finite sets and all maps
(equivalently, finitary set functors) [10]. It is thus natural to study nondeterministic automata
in the latter three categories, viz. nondeterministic orbit-finite renaming automata (NOFRA),

F. Frank, S. Milius, and H. Urbat 48:3

nondeterministic super-finitary SetI-automata and nondeterministic super-finitary SetF-
automata. Our final contribution is a classification of their expressive power: we show that
SetI-automata are equivalent to NOFAs, while both NOFRAs and SetF-automata capture
positive NOFA-recognizable languages (Theorems 2.9 and 7.7). Hence, both nominal and
presheaf-based automata are able to recognize positive and all NOFA-recognizable languages,
respectively.

2 Nominal Automata and Positive Data Languages

For the remainder of the article, we fix a countably infinite set A of data values, a.k.a. names
or atoms. The goal is to study positive data languages, that is, languages of finite words
over A closed under arbitrary renamings. This is achieved via the framework of nominal
(renaming) sets [12,13,27].

2.1 Nominal Sets and Nominal Renaming Sets
A renaming is a finite map ρ : A → A, that is, ρ(a) = a for all but finitely many a ∈ A.
We let Fin(A) denote the monoid of renamings, with multiplication given by composition,
and Perm(A) its subgroup given by finite permutations, i.e. bijective renamings. For M ∈
{ Perm(A),Fin(A) } an M-set is a set X equipped with a monoid action M × X → X,
denoted (ρ, x) 7→ ρ · x. A subset S ⊆ A is a support of x ∈ X if for every ρ, σ ∈ M such
that ρ|S = σ|S one has ρ · x = σ · x. Informally, consider X as a set of syntactic objects
(e.g. words, trees, λ-terms) whose description may involve free names from S. A nominal
M-set is an M -set where every element x has a finite support. This implies that x has a
least finite support suppx ⊆ A. A name a ∈ A is fresh for x, denoted a# x, if a /∈ suppx.

Nominal Perm(A)-sets are called nominal sets, and nominal Fin(A)-sets are called nominal
renaming sets. A nominal renaming set X can be regarded as a nominal set by restricting
its Fin(A)-action to a Perm(A)-action. The least supports of an element x ∈ X w.r.t. both
actions coincide [11, Thm. 4.8], so the notation suppx is unambiguous.

A subset X of a nominal M -set Y is M-equivariant if ρ · x ∈ X for all x ∈ X and
ρ ∈ M . More generally, a map f : X → Y between nominal M -sets is M-equivariant if
f(ρ · x) = ρ · f(x) for all x ∈ X and ρ ∈ M . This implies supp f(x) ⊆ suppx for all x ∈ X.

We write X × Y for the cartesian product of nominal M -sets with componentwise action,
and

∐
i∈I Xi for the coproduct (disjoint union) with action inherited from the summands.

Given a nominal set X, the orbit of an element x ∈ X is the set {π · x : π ∈ Perm(A)}.
The orbits form a partition of X. A nominal set is orbit-finite if it has only finitely many
orbits. A nominal renaming set is orbit-finite if it is orbit-finite as a nominal set.

▶ Example 2.1. The set A with the Fin(A)-action ρ · a = ρ(a) is a nominal renaming set,
as is the set A⋆ of finite words over A with ρ · w = ρ⋆(w) = ρ(a1) · · · ρ(an) for w = a1 · · · an.
The least support of a1 · · · an ∈ A⋆ is the set {a1, . . . , an}. The set A⋆ has infinitely many
orbits; its equivariant subsets An (words of a fixed length n) are orbit-finite. For instance, A2

has the two orbits {aa : a ∈ A} and {ab : a ̸= b ∈ A}. An example of a nominal set that is
not a renaming set is A#n = { a1 . . . an : ai ̸= aj for i ̸= j } with pointwise Perm(A)-action.

A nominal set X is strong if, for every x ∈ X and π ∈ Perm(A), one has π · x = x if and
only if π fixes every element of supp(x). (The “if” statement holds in every nominal set.) For
instance, the nominal sets A#n, An and A⋆ are strong. Up to isomorphism, (orbit-finite)
strong nominal sets are precisely (finite) coproducts

∐
i∈I A

#ni where ni ∈ N. For every
orbit-finite nominal set X, there exists a surjective Perm(A)-equivariant map e : Y ↠ X for

MFCS 2023

48:4 Positive Data Languages

some orbit-finite strong nominal set Y (see e.g. [23, Cor. B.27]). In fact, if o is the number
of orbits of X, one may take Y = J ×A#n where J = {1, . . . , o} and n = maxx∈X |suppx|.
We refer the reader to [14, Sec. 4.1] and [6, Thm. 10.9] for more details on representing
orbit-finite nominal sets.

2.2 Nominal Automata and Nominal Renaming Automata
The object of interest in this paper is data languages L ⊆ A

⋆ closed under renamings:

▶ Definition 2.2.
1. A data language L ⊆ A

⋆ is positive if it is Fin(A)-equivariant.
2. The positive closure of L ⊆ A

⋆ is given by L = { ρ⋆(w) : w ∈ L, ρ ∈ Fin(A) }.

A natural automata model for data languages is given by nondeterministic orbit-finite
automata [6] over nominal sets and their restriction to nominal renaming sets:

▶ Definition 2.3. Let M ∈ { Perm(A),Fin(A) }.
1. A nondeterministic orbit-finite M -automaton A = (Q, δ, I, F) consists of an orbit-finite

nominal M -set Q of states, an M -equivariant transition relation δ ⊆ Q ×A × Q, and
M -equivariant subsets I, F ⊆ Q of initial and final states. Nominal orbit-finite M -
automata are called nondeterministic orbit-finite automata (NOFA) for M = Perm(A)
and nondeterministic orbit-finite renaming automata (NOFRA) for M = Fin(A).

2. Given a nominal orbit-finite M -automaton A, we write q a−−→ q′ if q′ ∈ δ(q, a). A run of
A on input w = a1 · · · an ∈ A⋆ is a sequence (q0, a1, q1, a2, . . . , an, qn) such that q0 ∈ I

and qr
ar+1−−−−→ qr+1 for 0 ≤ r < n. The run is accepting if qn ∈ F . The automaton A

accepts the word w if A admits an accepting run on input w. The accepted language
L(A) ⊆ A

⋆ is the set of all accepted words. A data language is NOF(R)A-recognizable if
some NOF(R)A accepts it.

For example, the languages L0 and L1 from the Introduction are NOFA-recognizable.

▶ Remark 2.4.
1. The restriction to the input alphabetA is for simplicity: all our results extend to alphabets

Σ = Σ0 ×A for a finite set Σ0, i.e. finite coproducts of copies of A.
2. Another use of nominal renaming sets in automata theory appears in the work by Moerman

and Rot [24] on deterministic nominal automata with outputs. The restrictions of their
model make it unsuitable for language recognition [24, Rem. 4.1] but allow for a succinct
representation of computed maps via separating automata.

To relate the expressive power of NOFA and NOFRA, we start with a simple observation:

▶ Proposition 2.5. Every NOFRA accepts a positive language.

The converse (Theorem 2.9) needs an automata-theoretic construction of the closure of a
language. To this end, we first turn the states of a NOFA into a sort of normal form.

▶ Remark 2.6 (cf. [6]). Every NOFA A = (Q, δ, I, F) is equivalent to one whose nominal set
of states is of the form J ×A#m for some finite set J and m ∈ N. Indeed, choose a nominal
set Q′ = J ×A#m and an equivariant surjection e : Q′ ↠ Q (see Section 2.1), and consider
the NOFA A′ = (Q′, δ′, I ′, F ′) whose structure is given by the preimages

δ′ = (e× idA ×e)−1[δ], I ′ = e−1[I], F ′ = e−1[F].

F. Frank, S. Milius, and H. Urbat 48:5

It is not difficult to verify that L(A′) = L(A); see also Proposition 6.9. Note that in a
NOFA with states J ×A#m, the equivariant sets of initial and final states are of the form
I = JI ×A#m and F = JF ×A#m for some JI , JF ⊆ J .

▶ Construction 2.7 (Positive Closure of a NOFA). Let A = (Q, δ, I, F) be a NOFA with
states Q = J ×A#m (cf. Remark 2.6). The NOFRA A = (Q, δ, I, F) is given by the states
Q = J ×Am, initial states I = JI ×Am, final states F = JF ×Am, and transitions

δ = { (j, ρ⋆p) ρa−−−→ (j′, ρ⋆p′) : (j, p) a−−→ (j′, p′) in A and ρ ∈ Fin(A) }.

▶ Proposition 2.8. The NOFRA A accepts the positive closure of the language of A.

The proof of L(A) ⊆ L(A) is slightly subtle since the transitions of a run in A may be induced
by different ρ’s; some bookkeeping and sensible choice of fresh names ensures compatibility.

Now we come to our first characterization of positive NOFA-recognizable languages:

▶ Theorem 2.9. A language is positive and NOFA-recognizable iff it is NOFRA-recognizable.

Indeed, the “if” direction holds due to Proposition 2.5 and because every NOFRA is a NOFA.
The “only if” direction follows from Proposition 2.8, using that L = L for positive L.

▶ Remark 2.10. A NOF(R)A is deterministic, and hence called a DOF(R)A, if it admits
a single initial state and its transition relation is a function δ : Q × A → Q. In contrast
to classical finite automata, DOFAs are less expressive that NOFAs [6]. We leave it as an
open problem whether Theorem 2.9 restricts to DOF(R)As. In this regard, observe that
Construction 2.7 produces a nondeterministic automaton A even if the given automaton A is
deterministic. Computing the positive closure of a DOFA-recognizable language necessarily
requires the introduction of nondeterminism, as illustrated by the following example due
to Bartek Klin (personal communication). Consider the language L consisting of all words
whose last letter appears immediately before the last occurrence of a repeated letter; that is,
words of the form vabbwa where (i) v, w ∈ A⋆ and a, b ∈ A, (ii) any two consecutive letters
in w are distinct, (iii) the first letter of w is distinct from b and (iv) the last letter of w is
distinct from a. This language is recognizable by a DOFA, in fact by an orbit-finite nominal
monoid [4]. Its positive closure L consists of all words whose last letter appears immediately
before some occurrence of a repeated letter, which is not DOFA-recognizable.

2.3 Abstract Transitions and Runs
Sections 3 and 4 will relate positive NOFA-recognizable languages to register automata and
monadic second-order logic. This relies on a presentation of transitions of A in terms of
abstract transitions, given by equations involving register entries and input values.

▶ Definition 2.11. Let A = (Q, δ, I, F) and A = (Q, δ, I, F) be as in Construction 2.7.
1. An equation is an expression of the form k = •, • = k or k = k, where k, k ∈ {1, . . . ,m}.
2. An abstract transition is a triple (j, E, j′) where j, j′ ∈ J and E is a set of equations.
3. Every triple ((j, p), a, (j′, p′)) ∈ Q×A×Q induces an abstract transition (j, E, j′) defined

as follows for k, k ∈ {1, . . . ,m} (we write (−)i for the i-th letter of a word):

k = • ∈ E ⇐⇒ pk = a, • = k ∈ E ⇐⇒ a = p′
k, k = k ∈ E ⇐⇒ pk = p′

k
.

We let abs(δ) denote the set of abstract transitions induced by transitions in δ, and we
write j E−−→ j′ for (j, E, j′) ∈ abs(δ).

MFCS 2023

48:6 Positive Data Languages

4. A triple ((j, q), b, (j′, q′)) ∈ Q×A×Q is consistent with the abstract transition (j, E, j′)
if for every k, k ∈ {1, . . . ,m} the following conditions hold:

k = • ∈ E =⇒ qk = b, • = k ∈ E =⇒ b = q′
k, k = k ∈ E =⇒ qk = q′

k
.

▶ Proposition 2.12. For every triple ((j, q), b, (j′, q′)) ∈ Q×A×Q, we have

(j, q) b−−→ (j′, q′) in A iff ((j, q), b, (j′, q′)) is consistent with some (j, E, j′) ∈ abs(δ).

▶ Definition 2.13. An abstract run in A is a sequence (j0, E1, j1, E2, j2, . . . , En, jn) such
that j0 ∈ JI and jr−1

Er−−−→ jr for r = 1, . . . , n. It is accepting if jn ∈ JF .

▶ Notation 2.14. Given an abstract run (j0, E1, j1, E2, j2, . . . , En, jn), we inductively define
the predicates Eq(i)

k (i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}) on the set {1, . . . , n}:
1. if • = k in Ei then Eq(i)

k (i);
2. if r < n and k = k in Er+1 and Eq(i)

k (r) then Eq(i)
k

(r + 1).
Informally, Eq(i)

k (r) asserts that 1 ≤ i ≤ r ≤ n and that in every run in A of length r whose
transitions are consistent with E1, . . . , Er, the i-th input letter equals the content of register
k after r steps. The accepted language may be characterized using these predicates:

▶ Proposition 2.15. The NOFRA A accepts the word b1 · · · bn ∈ A
⋆ iff there exists an

accepting abstract run of length n (with induced predicates Eq(i)
k) such that for i, r ∈ {1, . . . , n},

r < n and k = • in Er+1 and Eq(i)
k (r) for some k =⇒ bi = br+1. (2.1)

As a first application of this result, we identify an important difference between NOFA and
NOFRA concerning the power of guessing data values during the computation:

▶ Definition 2.16. A NOFA/NOFRA is non-guessing if each initial state has empty support
and for each transition q

a−−→ q′ one has supp q′ ⊆ supp q ∪ {a}.

The NOFA-recognizable language L0 from the Introduction is not recognizable by any non-
guessing NOFA [17, Ex. 1]. Note that L0 is not positive; in fact, it is necessarily so, since for
positive languages guessing does not add to the expressive power of automata:

▶ Theorem 2.17. Every positive NOFA-recognizable language is accepted by some non-
guessing NOFRA, hence by some non-guessing NOFA.

To make a NOFRA non-guessing, one keeps track (via the state) of those registers containing
data values forced by abstract transitions. The other registers then may be modified
arbitrarily, which allows the elimination of guessing transitions.

3 Positive Register Automata

We now relate positive NOFA-recognizable languages to register automata, a.k.a. finite-
memory automata, originally introduced by Kaminski and Francez [17]; we follow the
equivalent presentation by Bojańczyk et al. [6]. A register automaton is a quintuple A =
(C,m, δ, I, F) where C is a finite set of control states, m ∈ N is the number of registers
(numbered from 1 to m), I, F ⊆ C are sets of initial and final states, and δ ⊆ C×Bool(Φ)×C
is the set of transitions. Here, Bool(Φ) denotes the set of boolean formulas over the atoms
Φ = ({1, . . . ,m} × {before} ∪ {•} ∪ {1, . . . ,m} × {after})2. Elements of Φ are called
equations; we write x = y for (x, y) ∈ Φ. Moreover, we denote (c, φ, c′) ∈ δ by c φ−−→ c′. A

F. Frank, S. Milius, and H. Urbat 48:7

configuration of A is a pair (c, r) of a state c ∈ C and a word r ∈ (A ∪ {⊥})m corresponding
to a partial assignment of data values to the registers. The initial configurations are (c,⊥m)
for c ∈ I. Given an input a ∈ A and configurations (c, r), (c′, r′) we write (c, r) a−−→ (c′, r′) if
this move is consistent with some transition c φ−−→ c′, that is, the formula φ is true under the
assignment making an atom x = y ∈ Φ true iff the corresponding data values are defined and
equal. For instance, (k, before) = • is true iff rk ̸= ⊥ and rk = a, and (k,before) = (k, after)
is true iff rk, r

′
k

̸= ⊥ and rk = r′
k
. A word w = a1 . . . an ∈ A⋆ is accepted by A if it admits

an accepting run, viz. a sequence of moves (c0, r0) a1−−−→ (c1, r1) a2−−−→ · · · an−−−→ (cn, rn) where
(c0, r0) is initial and cn ∈ F . The accepted language L(A) ⊆ A

⋆ is the set of accepted words.
As shown by Bojańczyk et al. [6], register automata accept the same languages as NOFAs.

To capture positive languages, we restrict to register automata with positive transitions:

▶ Definition 3.1. A register automaton is positive if for each transition c φ−−→ c′ the formula φ
is positive: φ = true or φ uses the boolean operations ∨ and ∧ only.

▶ Theorem 3.2. A data language is positive and NOFA-recognizable iff it is accepted by
some positive register automaton.

Here, the approach is to regard a configuration of a positive register automaton as a state
of a NOFRA. Conversely, an abstract transition j

E−−→ j′ of a NOFA can be transformed
into a transition j φ−−→ j′ of a register automaton for the conjunction φ of all equations in E,
identifying k = •, • = k, k = k with (k, before) = •, • = (k, after), (k, before) = (k, after). A
tweak of the initial states accounts for the requirement that registers are initially empty.

▶ Remark 3.3. Just like register automata are equivalent to finite-memory automata,
positive register automata correspond to a restricted version of finite-memory automata
called finite-state unification-based automata (FSUBA) [18,32]. The original definition of the
latter involves a fixed initial register assignment, which enables acceptance of non-positive
languages. However, FSUBA with empty initial registers are equivalent to positive register
automata; see the full paper for details. This implies in particular that positive register
automata admit a decidable inclusion problem, in contrast to the case of unrestricted register
automata [25]. Indeed, FSUBA translate into a more general model called RNNA [29, Sec. 6],
for which inclusion is decidable. Tal [32] has given a direct decidability proof for FSUBA.

4 Monadic Second-Order Logic with Positive Equality Tests

As motivated in the Introduction, positive data languages are considered as expressing
properties of data words involving positive statements about equality of data values. In the
following we make this idea precise. For this purpose, we employ monadic second-order logic
with equality tests, abbreviated MSO∼ [4, 9, 25]. Its formulae are given by the grammar

φ,ψ := x < y | x ∼ y | X(x) | ¬φ | φ ∨ ψ | φ ∧ ψ | ∃x. φ | ∃X.φ | ∀x. φ | ∀X.φ,

where x, y range over first-order variables and X over monadic second-order variables. A
formula is interpreted over a fixed data word w = a1 . . . an ∈ A

⋆. First-order variables
represent positions, i.e. elements of the set {1, . . . , n}, and second-order variables represent
subsets of {1, . . . , n}. The atomic formula x < y means “position x comes before position y”,
and x ∼ y means “the same data value occurs at positions x and y”. The interpretation of the
remaining constructs is standard. A sentence is a formula without free variables. We write
L(φ) ⊆ A

⋆ for the set of data words satisfying the sentence φ. For example, the languages
L0 and L1 from the Introduction are defined by φ0 = ∀y. last(y) ⇒ (∀x. x < y ⇒ ¬(x ∼ y)),
where last(y) = ¬∃z. y < z and ψ ⇒ ξ = ¬ψ ∨ ξ, and by φ1 = ∃x. ∃y. x < y ∧ x ∼ y.

MFCS 2023

48:8 Positive Data Languages

Recall that by standard rules of negation, every formula is equivalent to one in negation
normal form (NNF), where for each subformula ¬φ the formula φ is atomic.

▶ Definition 4.1. An MSO∼ formula lies in MSO∼,+ (monadic second-order logic with
positive equality tests) if it admits an NNF containing no subformula of the form ¬(x ∼ y).
A data language is MSO∼,+-definable if it is of the form L(φ) for an MSO∼,+ sentence φ.

The above sentence φ1 lies in MSO∼,+ but φ0 does not. The following is immediate:

▶ Proposition 4.2. Every MSO∼,+-definable language is positive.

▶ Remark 4.3. The logic MSO∼ is more expressive than NOFAs [25], and the same holds for
MSO∼,+: the language defined by the MSO∼,+ sentence φ = ∀x.∃y. (x < y ∨ y < x) ∧ x ∼ y

(“no data value occurs only once”) is not NOFA-recognizable. However, within the class of
NOFA-recognizable languages, positive and MSO∼,+-definable languages coincide:

▶ Theorem 4.4. A NOFA-recognizable language is positive iff it is MSO∼,+-definable.

Indeed, one can express the abstract acceptance condition of Proposition 2.15 in MSO∼,+.

5 Toposes for Names

In the remainder, we investigate positive data languages and their automata from a more
conceptual perspective. Some familiarity with basic category theory (functors, natural trans-
formations, (co-)limits, adjunctions) is required; see Mac Lane [22] for a gentle introduction.

Nominal sets and nominal renamings sets (Section 2.1) were initially introduced as a
convenient abstract framework for reasoning about names, and related issues such as freshness,
binding, and substitution. An alternative, and more general, approach uses the presheaf
categories SetI [31] and SetF [10]. The intuition behind each of these categories C is very
similar: one thinks of X ∈ C as a collection of finitely supported objects, equipped with a
renaming operation that extends renamings ρ : A → A to the level of elements of X. The
difference between the four categories lies in whether elements admit a least support, or just
some finite support, and in whether renamings ρ are injective or arbitrary maps; see Figure 2.
The last column classifies the respective finitely presentable objects, which underly automata.
We now recall the latter concept and describe the categories in more detail.

Finitely presentable objects. A diagram D : I → C in a category C is directed if its
scheme I is a directed poset: every finite subset of I has an upper bound. A directed colimit
is a colimit of a directed diagram. An object X of C is finitely presentable if its hom-functor
C (X,−) : C → Set to the category of sets and functions preserves directed colimits. In many
categories, finitely presentable objects correspond to the objects with a finite description.
For example, the finitely presentable objects of Set are precisely finite sets, and if C is a
variety of algebras (e.g. monoids, groups, rings), an algebra is a finitely presentable object of
C iff it is presentable by finitely many generators and relations [2, Thm. 3.12].

Nominal (renaming) sets. We let Nom denote the category of nominal sets and Perm(A)-
equivariant maps, and RnNom the category of nominal renaming sets and Fin(A)-equivariant
maps. Both categories are toposes, that is, they are finitely complete (with limits formed
as in Set), cartesian closed, and admit a subobject classifier. Note that Nom is a boolean
topos (its subobject classifier is 2 = {0, 1} with the trivial group action), which is not true for
RnNom [12, Sec. 5]. The next proposition provides a categorical description of orbit-finite
nominal (renaming) sets; for nominal sets this result is well-known, see [26, Prop. 2.3.7]
or [27, Thm. 5.16], and the statement for nominal renaming sets may be deduced from it.

F. Frank, S. Milius, and H. Urbat 48:9

Category Objects Least supp. Renamings Finitely pres. objects
Nom nominal sets yes injective orbit-finite sets
RnNom nominal renaming sets yes arbitrary orbit-finite sets
SetI presheaves over I no injective super-finitary presheaves
SetF presheaves over F no arbitrary super-finitary presheaves

Figure 2 Toposes that model sets of finitely supported objects.

▶ Proposition 5.1. A nominal (renaming) set is orbit-finite iff it is a finitely presentable
object of Nom or RnNom, respectively.

The forgetful functor U : RnNom → Nom given by restricting the Fin(A)- to a Perm(A)-
action has a left adjoint F : Nom → RnNom [24, Thm. 2.6]. We refer to op. cit. for its
explicit description, but remark that F (A#n) = An for every n ∈ N [24, Thm. 3.7].

Presheaves. A (covariant) presheaf over a small category C is a functor P : C → Set.
We write SetC for the category of presheaves and natural transformations. We specifically
consider presheaves over F and I, the categories whose objects are finite subsets S ⊆f A and
whose morphisms ρ : S → T are functions or injective functions, respectively. The categories
Nom and RnNom form full reflective subcategories of SetI and SetF via embeddings

I⋆ : Nom ↣ SetI and J⋆ : RnNom ↣ SetF.

Here, I⋆ is given for X ∈ Nom, S ⊆f A, ρ : S → T in I and f : X → Y in Nom by

(I⋆X)S = {x ∈ X : suppx ⊆ S }, (I⋆X)ρ(x) = ρ · x, (I⋆f)S(x) = f(x),

where ρ ∈ Perm(A) is any permutation extending the injective map ρ. The embedding J⋆ is
defined analogously. In both cases, the essential image of the embedding consists precisely of
the presheaves preserving pullbacks of injective maps, see [27, Thm. 6.8] and [12, Thm. 38].
Informally, a presheaf P ∈ SetC , where C ∈ {I,F}, specifies a set PS of S-supported objects
for every S ⊆f A, and the pullback preservation property asserts precisely that every object
admits a least support. A presheaf P ∈ SetC is super-finitary if there exists S ⊆f A such
that (i) PS′ is a finite set for all S′ ⊆ S, and (ii) for every T ⊆f A and x ∈ PT , there exists
S′ ⊆ S and ρ ∈ C (S′, T) such that x ∈ Pρ[PS′]. (This implies that PT is finite.) Such an S
is called a generating set for P . The next proposition shows that super-finitary presheaves
are the analogue of orbit-finite sets; see [1, Cor. 3.34] for the case C = F:

▶ Proposition 5.2. For C ∈ {I,F} and P ∈ SetC , the following are equivalent: (i) P is super-
finitary; (ii) P is finitely presentable; (iii) there exists an epimorphism (a componentwise
surjective natural transformation)

∐
i∈I C (Si,−) ↠ P with I finite and Si ⊆f A. Moreover,

super-finitary presheaves are closed under sub-presheaves and finite products.

To relate the two presheaf categories SetI and SetF, recall that every functor E : C → D

between small categories induces an adjunction (5.1), where the right adjoint E⋆ is given
by E⋆(P) = P ◦ E, and the left adjoint sends a presheaf P ∈ SetC to its left Kan extension
LanEP . For the inclusion functor E : I ↪→ F, we obtain the commutative diagram (5.2) of
adjunctions. Here, I⋆ and J⋆ are the reflectors, i.e. the left adjoints of I⋆ and J⋆.

SetC SetD⊤
LanE

E⋆

(5.1)
SetI SetF

Nom RnNom

⊤
LanE

I⋆⊢

E⋆

J⋆I⋆

F

U

⊥

⊣ J⋆
(5.2)

MFCS 2023

48:10 Positive Data Languages

▶ Proposition 5.3. All functors in (5.2) preserve finitely presentable objects.

Hence, the adjunctions (5.2) restrict to the full subcategories of finitely presentable objects.

6 Nondeterministic Automata in a Category

Our aim is to investigate nondeterministic automata and their languages in the toposes of
Figure 2, and to compare their expressive power. To this end, we first introduce the required
automata-theoretic concepts uniformly at the level of abstract categories.

▶ Assumptions 6.1. Fix a category C with finite limits and (strong epi, mono)-factorizations.
We assume that strong epimorphisms are stable under finite products (that is, e × e′ is a
strong epimorphism whenever e and e′ are) and pullbacks (that is, in every pullback square
e ◦ f = f ◦ e, the morphism e is a strong epimorphism whenever e is).

The (strong epi, mono)-factorization f = (A I Be m) of a morphism f : A → B

in C is its image factorization, and the subobject represented by m is the image of f .

▶ Example 6.2. Every topos satisfies Assumptions 6.1, including Set, Nom, RnNom, SetI

and SetF. Note that in a topos all epimorphisms are strong. In the five categories above,
epi- and monomorphisms are the (componentwise) surjective and injective morphisms, resp.
Pullbacks and finite products are formed (componentwise) at the level of underlying sets.

▶ Definition 6.3. A language over Σ ∈ C is a family of subobjects of Σn for each n ∈ N:

L = (m(L)
n : L(n) ↣ Σn)n∈N.

We write L ≤ L′ iff L(n) ≤ L′(n) for all n, using the partial order ≤ on subobjects of Σn.

▶ Remark 6.4. If C is countably extensive (e.g. a topos with countable coproducts), languages
correspond bijectively to subobjects of Σ⋆ =

∐
n∈N Σn. Indeed, every language L yields the

subobject
∐

n m
(L)
n :

∐
n L

(n) ↣ Σ⋆, and conversely every subobject of Σ⋆ is of this form. In
particular, this holds in the categories of Example 6.2.

▶ Definition 6.5. A nondeterministic C -automaton is a quintuple A = (Q,Σ, δ, I, F) con-
sisting of an object Q ∈ C of states, an input alphabet Σ ∈ C , and subobjects

mδ : δ ↣ Q× Σ ×Q, mI : I ↣ Q, mF : F ↣ Q,

representing transitions, initial states, and final states, respectively. A morphism h : A′ → A

of nondeterministic C -automata is given by a pair of morphisms hs : Q′ → Q and ha : Σ′ → Σ
of C that restrict as shown below (note that ht, hi and hf are uniquely determined):

δ′ δ

Q′ × Σ′ ×Q′ Q× Σ ×Q

ht

mδ′ mδ

hs×ha×hs

I ′ I

Q′ Q

hi

mI′ mI

hs

F ′ F

Q′ Q

hf

mF ′ mF

hs

(6.1)

We write NAut(C) for the category of nondeterministic automata in C and their morphisms,
and NAutfp(C) for its full subcategory given by nondeterministic fp-automata, viz. automata
where Q, Σ, δ, I, F are finitely presentable objects of C .

▶ Definition 6.6. For every nondeterministic C -automaton A = (Q,Σ, δ, I, F), its accepted
language is the language L(A) over Σ given as follows:
1. m(0)

L(A) : L(0)(A) ↣ 1 = Σ0 is the image of the unique morphism I ∩ F
!−→ 1, where 1 is

the terminal object of C and I ∩ F is the intersection (pullback) of mI and mF .

F. Frank, S. Milius, and H. Urbat 48:11

2. For n > 0, the subobject m(n)
L(A) : L(n)(A) ↣ Σn is defined via the commutative diagram

L(n)(A) AccRun(n)
A δn

Σn I × (Σ ×Q)n−1 × Σ × F (Q× Σ ×Q)n

m
(n)
L(A)

en,A dn,A

m
(n)
δ

mn
δ

pn,A dn,A

Here, letting ∆: Q↣ Q×Q denote the diagonal, dn,A is the monomorphism

I×(Σ×Q)n−1×Σ×F mI ×(id ×∆)n−1×id ×mF−−−−−−−−−−−−−−−−−→ Q×(Σ×Q×Q)n−1×Σ×Q ∼= (Q×Σ×Q)n,

the morphisms dn,A and m
(n)
δ form the pullback of dn,A and mn

δ , the morphism pn,A is
the projection, and en,A and m

(n)
L(A) form the image factorization of pn,A ◦m(n)

δ .

▶ Example 6.7.
1. A nondeterministic fp-automaton in Set is a classical nondeterministic finite automaton.

The pullback AccRun(n)
A is the set of accepting runs of length n, hence L(A) is the usual

accepted language: the set of words with an accepting run.
2. A nondeterministic fp-automaton in Nom or RnNom with alphabet Σ = A is a NOFA

or NOFRA, respectively. The two notions of accepted language in Definition 2.3 and
Definition 6.6 match, that is, L(A) is the set of words with an accepting run.

3. In the next section, we will also look into nondeterministic SetI- and SetF-automata.

▶ Remark 6.8. Readers familiar with coalgebras [28] may note that if C is a topos, the
final states and transitions of a nondeterministic C -automaton correspond to a coalgebra
γ : Q → Ω × (PQ)Σ where Ω is the subobject classifier and P : C → C is the covariant power
object functor [16, Sec. A.2.3]. We expect our above definition of accepted language to match
the one given by coalgebraic trace semantics [15, 30], with the required arguments relying on
the internal logic of the topos C . Details are left for future work; we have found that the
present relational approach to automata leads to shorter and more direct proofs.

▶ Proposition 6.9. Let h : A′ → A be an NAut(C)-morphism where Σ′ = Σ and ha = idΣ.
1. The accepted language of A′ is contained in that of A, that is, L(A′) ≤ L(A).
2. If hs is strongly epic in C and the squares (6.1) are pullbacks, then L(A′) = L(A).

Hence, the construction A 7→ A′ of Remark 2.6 indeed yields an equivalent NOFA.

▶ Proposition 6.10. Let C and D be categories satisfying the Assumptions 6.1.
1. Every functor G : C → D lifts to a functor G : NAut(C) → NAut(D) defined by

G(Q,Σ, δ, I, F) = (GQ,GΣ, Gδ,GI,GF) and Gf = Gf.

Here, Gδ, GI, GF are the images of the morphisms shown below, with can denoting the
canonical morphism induced by the product projections:

Gδ
Gmδ−−−−→ G(Q×Σ×Q) can−−−→ GQ×GΣ×GQ, GI

GmI−−−−→ GQ, GF
GmF−−−−−→ GQ.

2. Every adjunction L ⊣ R : C → D lifts to an adjunction L ⊣ R : NAut(C) → NAut(D).

MFCS 2023

48:12 Positive Data Languages

In particular, the adjunctions (5.2) lift to adjunctions between the respective categories
of nondeterministic automata, which in turn restrict to fp-automata by Proposition 5.3:

NAutfp(SetI) NAutfp(SetF)

NAutfp(Nom) NAutfp(RnNom)

⊤
LanE

I
⋆⊢

E
⋆

J
⋆

I⋆

F

U

⊥

⊣ J⋆
(6.2)

The positive closure A 7→ A of Construction 2.7, which is key to our results in Sections 2
through 4, is an instance of the proposition since A = FA for the left adjoint F : Nom →
RnNom.

7 Nondeterministic Presheaf Automata

We proceed to relate the expressive power of the four automata models in (6.2). Specifically,
for C ∈ {I,F} we consider nondeterministic SetC -automata A = (Q,Σ, δ, I, F) with a super-
finitary (= finitely presentable) presheaf Q of states and input alphabet Σ = VC ∈ SetC ,
for the inclusion functor VC (S) = S. (This implies that δ, I and F are super-finitary
by Proposition 5.2.) Note that VC corresponds to the input alphabet A used for NOF(R)As:

VI = I⋆(A) and VF = J⋆(A) = LanE(VI).

A language in SetC is a sub-presheaf L ⊆ V ⋆
C , or equivalently a family of sub-presheaves

L(n) ⊆ V n
C for n ∈ N (Definition 6.3 and Remark 6.4). Here, V ⋆

C (S) = S⋆, the set of words
over the finite alphabet S ⊆f A, and V n

C (S) = Sn, the subset of words of length n.

▶ Remark 7.1. For the sake of distinction, we refer to languages in SetC as presheaf
languages, and to subsets of A⋆ as word languages. Both concepts are closely related: Every
presheaf language L ⊆ V ⋆

I in SetI induces a Perm(A)-equivariant word language W(L) ⊆ A
⋆

given by W(L) =
⋃

S⊆fA
L(S), and, conversely, every Perm(A)-equivariant word language

K ⊆ A
⋆ induces a presheaf language P(K) ⊆ V ⋆

I given by [P(K)]S = K ∩ S⋆ for S ⊆f A.
Analogously for presheaf languages in SetF and Fin(A)-equivariant word languages. In both
cases, these translations almost yield a bijective correspondence: one has K = W(P(K)), but
generally only L ⊆ P(W(L)). For instance, for L ⊆ V ⋆

F given by L(∅) = ∅ and L(S) = {ε}
for S ̸= ∅ one has [P(W(L))]∅ = {ε}, so L ⊊ P(W(L)). The equality L = P(W(L)) holds iff
L is downwards closed, that is, L(S′) = L(S) ∩ (S′)⋆ for all S′ ⊆ S ⊆f A.

The presheaf version of positive word languages and positive closures is as follows:

▶ Definition 7.2. Let L ⊆ V ⋆
I be a presheaf language in SetI.

1. The language L is positive if L = KE for some (unique) language K ⊆ V ⋆
F in SetF.

2. A positive closure of L is a language L in SetF such that L ⊆ LE and L is minimal with
that property, that is, L ⊆ K for every language K ⊆ V ⋆

F in SetF such that L ⊆ KE.

A positive closure is clearly unique; its existence is ensured by the next proposition, which
is proved using the universal property of left Kan extensions.

▶ Proposition 7.3. The positive closure of L ⊆ V ∗
I is given by the image of the morphism

φ : LanE(L) LanE(ι)−−−−−−→ LanE(V ∗
I) ∼=

∐
k

LanE(V k
I)

∐
k

cank

−−−−−−−→
∐

k

LanE(VI)k =
∐

k

V k
F = V ∗

F

where ι : L ↪→ V ∗
I is the inclusion, the isomorphism witnesses preservation of coproducts by

the left adjoint LanE, and cank is the canonical map induced by the product projections.

F. Frank, S. Milius, and H. Urbat 48:13

▶ Remark 7.4. A presheaf P ∈ SetI is strong if P = I⋆(X) for a strong nominal set X.
Since I⋆ preserves coproducts, (super-finitary) strong presheaves are exactly (finite) cop-
roducts

∐
j∈J I(Sj ,−) of representable presheaves. By Proposition 5.2 and Proposition 6.9,

every super-finitary SetI-automaton is equivalent to one whose presheaf of states is strong.
Given such an automaton A with states Q =

∐
j∈J I(Sj ,−), applying the lifted left adjoint

LanE yields a super-finitary SetF-automaton A with states LanE(Q) =
∐

j∈J F(Sj ,−), using
that LanE preserves coproducts and representables (see e.g. [22, Ex. X.3.2]). This is the
analogue of Construction 2.7 for presheaf automata. Similar to Proposition 2.8, we have

▶ Proposition 7.5. For every super-finitary nondeterministic SetI-automaton A with a
strong presheaf of states, the SetF-automaton A = LanE(A) accepts the language L(A).

While by definition nondeterministic presheaf automata accept presheaf languages, using
Remark 7.1 we can also naturally associate a word language semantics to them:

▶ Definition 7.6.
1. The word language accepted by a nondeterministic SetC -automaton A is W(L(A)) ⊆ A

⋆,
the word language induced by the presheaf language of A.

2. A word language L ⊆ A
⋆ is SetC -recognizable if there exists a super-finitary nondetermi-

nistic SetC -automaton accepting it.

This enables a classification of the expressive power of nondeterministic SetC -automata:

▶ Theorem 7.7.
1. A word language is NOFA-recognizable iff it is SetI-recognizable.
2. A word language is positive and NOFA-recognizable iff it is SetF-recognizable.

For item 1 one shows that the functors I⋆ and I
⋆ of (6.2) preserve the accepted word

languages of automata. For item 2 one uses Proposition 7.5 and the observation that every
nondeterministic SetF-automaton accepts a positive word language.

This shows that the theory of data languages can be based on presheaves rather than
nominal sets [6]. In particular, the conceptual difference between the two approaches (viz. ex-
istence of least supports) is largely inessential from the perspective of automata theory.

8 Conclusions and Future Work

We have characterized positive data languages recognizable by NOFAs in terms of register
automata, logic, and category theory; see Figure 1 for a summary of our contributions.
Our results underline the phenomenon that weak classes of data languages tend to have a
rich theory and admit many equivalent perspectives, paralleling classical regular languages
over finite alphabets. For example, a similar observation has been made for data languages
recognizable by orbit-finite nominal monoids [4, 8, 9].

The logic MSO∼,+ defines positive data languages, but is more expressive than NOFAs.
Identifying a suitable syntactic fragment of MSO∼,+ that captures precisely the positive
NOFA-recognizable languages remains an open problem. The same holds for the decidability
of the satisfiability problem for MSO∼,+, which is known to be undecidable for MSO∼ [20].
On a related note, it might be interesting to characterize the expressive power of full MSO∼,+.
Specifically, does it capture precisely the MSO∼-definable positive languages?

Finally, besides register automata, a number of further automata models for data languages
have been proposed, most notably pebble automata [25] and data automata [5,7]. In general,
these models differ in their expressive power. However, it is conceivable that some or all of
them may become equivalent when restricted to positive data languages.

MFCS 2023

48:14 Positive Data Languages

References
1 Jiří Adámek, Stefan Milius, Lurdes Sousa, and Thorsten Wißmann. On finitary functors.

Theory Appl. Categ., 34(37):1134–1164, 2019.
2 Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories. London Mathem-

atical Society Lecture Note Series. Cambridge University Press, 1994.
3 Michał Bielecki, Jan Hidders, Jan Paredaens, Jerzy Tyszkiewicz, and Jan Van den Bussche.

Navigating with a browser. In Proc. 29th International Colloquium on Automata, Languages
and Programming (ICALP 2002), volume 2380 of Lect. Notes Comput. Sci., pages 764–775.
Springer, 2002.

4 Mikołaj Bojańczyk. Nominal monoids. Theory Comput. Syst., 53(2):194–222, 2013. doi:
10.1007/s00224-013-9464-1.

5 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data trees and XML reasoning. In Proc. 25th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 2006), pages 10–19. ACM,
2006.

6 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

7 Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.
Two-variable logic on words with data. In Proc. 21th IEEE Symposium on Logic in Computer
Science (LICS 2006), pages 7–16. IEEE Computer Society, 2006.

8 Mikołaj Bojańczyk and Rafał Stefański. Single-use automata and transducers for infinite
alphabets. In Proc. 47th International Colloquium on Automata, Languages, and Programming
(ICALP 2020), volume 168 of LIPIcs, pages 113:1–113:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.113.

9 Thomas Colcombet, Clemens Ley, and Gabriele Puppis. Logics with rigidly guarded data
tests. Log. Methods Comput. Sci., 11(3), 2015.

10 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), pages
193–202. IEEE Computer Society, 1999.

11 Murdoch J. Gabbay. Nominal renaming sets (technical report), 2007. URL: http://gabbay.
org.uk/papers/nomrs-tr.pdf.

12 Murdoch J. Gabbay and Martin Hofmann. Nominal renaming sets. In Proc. 15th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008),
pages 158–173. Springer, 2008.

13 Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving
binders. In Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999),
pages 214–224. IEEE Computer Society, 1999.

14 Fabio Gadducci, Marino Miculan, and Ugo Montanari. About permutation algebras,
(pre)sheaves and named sets. High. Order Symb. Comput., 19(2-3):283–304, 2006.

15 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Log. Methods Comput. Sci., 3(4:11):1–36, 2007.

16 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic
Guides. Oxford Univ. Press, 2002.

17 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

18 Michael Kaminski and Tony Tan. Regular expressions for languages over infinite alphabets.
Fundam. Informaticae, 69(3):301–318, 2006.

19 Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-deterministic reas-
signment. Int. J. Found. Comput. Sci., 21(5):741–760, 2010.

20 Bartek Klin, Sławomir Lasota, and Szymon Torunczyk. Nondeterministic and co-
nondeterministic implies deterministic, for data languages. In Proc. 24th International
Conference on Foundations of Software Science and Computation Structures (FOSSACS
2021), volume 12650 of Lect. Notes Comput. Sci., pages 365–384. Springer, 2021.

https://doi.org/10.1007/s00224-013-9464-1
https://doi.org/10.1007/s00224-013-9464-1
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
http://gabbay.org.uk/papers/nomrs-tr.pdf
http://gabbay.org.uk/papers/nomrs-tr.pdf
https://doi.org/10.1016/0304-3975(94)90242-9

F. Frank, S. Milius, and H. Urbat 48:15

21 Klaas Kürtz, Ralf Küsters, and Thomas Wilke. Selecting theories and nonce generation for
recursive protocols. In Proc. 2007 ACM Workshop on Formal Methods in Security Engineering
(FMSE 2007), pages 61–70. ACM, 2007.

22 Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
23 Stefan Milius and Henning Urbat. Equational axiomatization of algebras with structure. In

Proc. 22nd International Conference on Foundations of Software Science and Computation
Structures (FOSSACS 2019), volume 11425 of Lect. Notes Comput. Sci., pages 400–417.
Springer, 2019. doi:10.1007/978-3-030-17127-8_23.

24 Joshua Moerman and Jurriaan Rot. Separation and Renaming in Nominal Sets. In Proc. 28th
EACSL Annual Conference on Computer Science Logic (CSL 2020), volume 152 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 31:1–31:17. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020.

25 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435, 2004.

26 Daniela Petrişan. Investigations into Algebra and Topology over Nominal Sets. PhD thesis,
University of Leicester, 2012.

27 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

28 Jan J. M. M. Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000.

29 Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal automata with
name binding. In Proc. 20th International Conference on Foundations of Software Science
and Computation Structures, (FOSSACS 2017), volume 10203 of Lect. Notes Comput. Sci.,
pages 124–142, 2017.

30 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gen-
eralizing determinization from automata to coalgebras. Log. Methods Comput. Sci., 9(1:9),
2013.

31 Ian Stark. Categorical models for local names. LISP Symb. Comput., 9(1):77–107, 1996.
32 A. Tal. Decidability of inclusion for unification based automata. Master’s thesis, Department

of Computer Science, Technion – Israel Institute of Technology, 1999.

MFCS 2023

https://doi.org/10.1007/978-3-030-17127-8_23

	1 Introduction
	2 Nominal Automata and Positive Data Languages
	2.1 Nominal Sets and Nominal Renaming Sets
	2.2 Nominal Automata and Nominal Renaming Automata
	2.3 Abstract Transitions and Runs

	3 Positive Register Automata
	4 Monadic Second-Order Logic with Positive Equality Tests
	5 Toposes for Names
	6 Nondeterministic Automata in a Category
	7 Nondeterministic Presheaf Automata
	8 Conclusions and Future Work

