Towards More Efficient Local Search for
Pseudo-Boolean Optimization

Yi Chu &

Institute of Software, Chinese Academy of Sciences, Beijing, China

Shaowei Cai! &
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

Chuan Luo &
School of Software, Beihang University, Beijing, China

Zhendong Lei &
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

Cong Peng &
Finovation in CCBFT, Beijing, China

—— Abstract

Pseudo-Boolean (PB) constraints are highly expressive, and many combinatorial optimization
problems can be modeled using pseudo-Boolean optimization (PBO). It is recognized that stochastic
local search (SLS) is a powerful paradigm for solving combinatorial optimization problems, but the
development of SLS for solving PBO is still in its infancy. In this paper, we develop an effective
SLS algorithm for solving PBO, dubbed NuPBOQO, which introduces a novel scoring function for
PB constraints and a new weighting scheme. We conduct experiments on a broad range of six
public benchmarks, including three real-world benchmarks, a benchmark from PB competition,
an integer linear programming optimization benchmark, and a crafted combinatorial benchmark,
to compare NuPBO against five state-of-the-art competitors, including a recently-proposed SLS
PBO solver LS-PBO, two complete PB solvers PBO-IHS and RoundingSat, and two mixed integer
programming (MIP) solvers Gurobi and SCIP. NuPBO has been exhibited to perform best on
these three real-world benchmarks. On the other three benchmarks, NuPBO shows competitive
performance compared to state-of-the-art competitors, and it significantly outperforms LS-PBO,
indicating that NuPBO greatly advances the state of the art in SLS for solving PBO.

2012 ACM Subject Classification Theory of computation — Randomized local search

Keywords and phrases Pseudo-Boolean Optimization, Stochastic Local Search, Scoring Function,
Weighting Scheme

Digital Object Identifier 10.4230/LIPIcs.CP.2023.12
Supplementary Material Software (Source Code): https://github.com/filyouzicha/NuPB0

Funding This work is supported by the Strategic Priority Research Program of the Chinese Academy
of Sciences, Grant No. XDA0320000 and XDA0320300, the National Natural Science Foundation of
China under Grant 62302492, and Grant 62202025, the Research Program of CCBFT, Grant No.
KT2100040, and CCF-Huawei Populus Grove Fund under Grant CCF-HuaweiSY20231.

! Corresponding author.

© Yi Chu, Shaowei Cai, Chuan Luo, Zhendong Lei, and Cong Peng;

37 licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 12; pp. 12:1-12:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:chuyi2020@iscas.ac.cn
https://orcid.org/0000-0003-4681-7414
mailto:caisw@ios.ac.cn
https://orcid.org/0000-0003-1730-6922
mailto:chuanluo@buaa.edu.cn
https://orcid.org/0000-0001-5028-1064
mailto:leizd@ios.ac.cn
https://orcid.org/0000-0003-1893-4293
mailto:pengcong.zb@ccbft.com
https://orcid.org/0000-0001-8070-9092
https://doi.org/10.4230/LIPIcs.CP.2023.12
https://github.com/filyouzicha/NuPBO
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Towards More Efficient Local Search for Pseudo-Boolean Optimization

1 Introduction

Recent progress in the theory and application of the Boolean satisfiability (SAT) and maximum
satisfiability (MaxSAT) problems has led to the development of high-performance complete
solvers [11, 23, 1, 32, 2, 4, 31] and stochastic local search (SLS) solvers [8, 28, 7, 6, 27, 25, 5, 45].
SAT and MaxSAT solvers can address challenging problems in a wide variety of fields, and
they are usually designed to deal with formulas encoded in conjunctive normal form (CNF).

For problems involving cardinality constraints, CNF solvers usually become ineffective,
since expressing such constraints in CNF would dramatically increase the size of the formula
and introduce many auxiliary variables and clauses [30]. Linear pseudo-Boolean (PB)
constraints provide a more natural and direct way to express cardinality constraints than
CNF. Meanwhile, linear PB constraints stay close to CNF and can benefit from advancements
in SAT solving [33]. In practice, PB constraints occur in many areas, including VLSI design,
economics, computer vision, and manufacturing [43, 44, 33]. The pseudo-Boolean optimization
(PBO) problem is to find a satisfying assignment to a set of PB constraints that minimizes a
given objective function.

1.1 Related Work

Existing pseudo-Boolean solvers are primarily based on complete methods. A number of
PB solvers are based on resolution: they express the PB constraints in CNF and then call
conflict-driven clause learning (CDCL) solvers, such as MINISAT+[13], Open-WBOI[29], and
NaPS [34]; alternatively, they deal with the PB constraints but derive new information
only in the form of clauses [17]. CDCL is somewhat limited in its reasoning in that it is
based on a resolution-proof system, for which exponential lower bounds are known for simple
combinatorial principles [20, 15]. Another method requires going beyond resolution and using
cutting planes, which can be found in recent PB solvers such as Sat4j [24], RoundingSat
[14, 12] and RoundingSat-Card [15]. The success of the implicit hitting set (IHS) method
in MaxSAT motivates another work, i.e., the implementation of the PBO-IHS solver for
solving PBO [36, 37]. In addition, since PB constraints can be considered as 0-1 linear
constraints, mixed integer programming (MIP) solvers can be directly applied to solving
PBO. Representative and high-performance MIP solvers include SCIP [16] - one of the fastest
non-commercial solvers, and Gurobi [19] - one of the most powerful commercial solvers.
Stochastic local search (SLS) is recognized to be one of the most powerful techniques
for solving computationally hard problems in many areas of computer science, operations
research, and engineering, and it has shown great success in solving SAT and MaxSAT [22].
In the book [21], a model for local search to solve constraint problems is presented. Somewhat
surprisingly, there are only a few research works on using SLS for solving PBO [3, 39, 26].
Since the introduction of dynamic local search (DLS) methods [35, 9, 40, 41], weighting
schemes play critical roles in the development of high-performance SLS algorithms. Modern
SLS solvers for MaxSAT employ a scoring function defined as the weighted cost of unsatisfied
clauses and incorporate a clause weighting scheme to adjust the weights during the search.
In particular, most SLS solvers for MaxSAT focus on improving the scoring function through
carefully designed weighting schemes. In recent years, the introduction of new weighting
schemes has led to breakthroughs in the SLS algorithms for the (weighted) partial MaxSAT
((W)PMS) problem. The newly proposed weighting scheme, Weighting-PMS, in the SATLike
[25] algorithm significantly improves the performance of SLS for (W)PMS. Currently, the
state-of-the-art SLS algorithms for (W)PMS all employ the Weighting-PMS technique [5, 45].

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

It is intuitive that the scoring function commonly used in SLS algorithms for MaxSAT
(i.e., measuring the total weight of all unsatisfied clauses) does not work well for the PBO

problem, because it does not take into account the unsatisfied degree of PB constraints.

Indeed, this issue has already attracted attention in the literature, and a scoring function
that considers the unsatisfied degree of PB constraints is proposed in [42] and can effectively
handle linear PB-constrained problems.

A recent SLS solver called LS-PBO [26] has been proposed for PBO and currently
represents the state of the art in SLS for PBO. For LS-PBO, its scoring function measures
the sum of the product between the degree of violation of all unsatisfied constraints and the
weights of the constraints. However, such scoring function does not consider the balance
between the degree of violation among different constraints. In addition, weighting schemes
have not been applied to PBO until the introduction of LS-PBO. The weighting scheme
in LS-PBO resembles the existing one named Weighting-PMS, which aims to increase the
weights of unsatisfied constraints and the objective function when the algorithm falls into a
local optimum, and to set an upper bound on the weight of the objective function. However,
in the context of PBO solving, the research of designing weighting schemes is still in its
infancy, which urgently calls for more powerful weighting schemes for PBO.

1.2 Contributions

In this work, we focus on improving the performance of SLS for solving PBO. In particular, we
propose two main ideas. The first idea is a novel scoring function that considers the violation
degree of unsatisfied constraints and utilizes a smooth function to balance the violation
degree of different constraints. For each constraint, its smooth function is instantiated as

the average of the coefficients of all variables appearing in the corresponding constraint.

Since our scoring function is equipped with a weighting scheme, our second idea is a novel
weighting scheme for PBO. Rather than setting an upper bound on the weight of the objective
function, we adopt a weighting scheme with a stricter condition for updating the weight of
the objective function.

On the basis of these two ideas, we develop a new SLS algorithm, named NuPBO. We
conduct experiments on 6 benchmarks, which include 3 benchmarks encoded from real-world
applications, and 3 standard benchmarks. On these 6 benchmarks, NuPBO is compared to
5 solvers, including LS-PBO [26], PBO-IHS [37], RoundingSat [12], Gurobi [19], and SCIP
[16]. On the 3 application benchmarks, NuPBO achieves improvement over LS-PBO, and
significantly outperforms other competitors. On the other 3 benchmarks, NuPBO exhibits

competitive performance compared to its competitors, including the commercial solver Gurobi.

This represents a significant advance in the research of SLS solvers for PBO. In addition, we
evaluate the effectiveness of the underlying ideas on all benchmarks.

2 Preliminaries

Given a set of n Boolean variables V' = {x1,2a,...,2,}, a literal is either a variable z; or
., Vi, , where k
denotes the length of clause ¢;. A CNF formula F' is a conjunction of clauses. An assignment

its negation —z;. A clause is a disjunction of literals, i.e., ¢; = 1;, Vi, ..

is a mapping that assigns a Boolean value (True (i.e., 1) or False (i.e., 0)) to each variable.

Given an assignment «, a clause c is satisfied if at least one literal in ¢ is True; otherwise,
¢ is unsatisfied. Given a CNF formula F, the Boolean satisfiability (SAT) problem is to
decide whether an assignment exists such that all clauses are satisfied, and the maximum
satisfiability (MaxSAT) problem is to find an assignment that maximizes the number of
satisfied clauses.

12:3

CP 2023

12:4

Towards More Efficient Local Search for Pseudo-Boolean Optimization

A linear pseudo-Boolean constraint (LPB constraint, PB constraint for short) has the
following form:

Zajljbb, aj,bEZ (1)

j=1

where b is called the degree of the constraint, ; is a literal, a; is the coefficient of /;, n is the
length of the constraint, > is one of the classical relational operators (=, >,>, < or <), and
Z is the integer set.

For each Boolean variable, z; = 1 — —x;. It is important to note that for an equality
constraint, there need to be two normalized constraints to represent it. Therefore, all PB
constraints can be normalized into the following form:

Za]‘lj Z b, aj,b S NS_ (2)

Jj=1

where N is the non-negative integer set [33].

In the following sections, we assume that the PB constraints are of the normalized form.
A PB formula F' is a conjunction of PB constraints. An assignment is a mapping that assigns
a Boolean value to each variable. Given an assignment «, a PB constraint c is satisfied if
the corresponding inequality holds under «; otherwise, ¢ is unsatisfied. If an assignment «
satisfies all constraints in F', then we say « is a feasible solution (or solution for short).

A pseudo-Boolean optimization (PBO) instance consists of a PB formula F and a linear
Boolean objective function Y77, e;l; +d, e; € N*,d € Z, and the task is to find an
assignment that satisfies all PB constraints in ' and minimizes the objective function. Given
an assignment «, we use obj(«) to denote the value of the objective function. Given a
solution «, the cost of the solution « is equal to obj(«). We say a solution «y is better than
another solution aw, if 0bj(ay) < obj(as).

The average coeflicient of a PB constraint ¢ is denoted as avgeoe(c) = (Z;;l a;)/n. The
average coefficient of an objective function o is denoted as avgeee(0) = (Z?Zl e;)/n. Because
PB constraints must be satisfied in a PBO problem, the PB constraints are referred to as
hard constraints.

Given an assignment o, we define the value of violation of a hard constraint c as

viol(c) = max | 0,b — Z a;l;
j=1

In other words, if the hard constraint c is satisfied under «, then viol(c) = 0; otherwise (i.e.,
¢ is unsatisfied), viol(c) is the integer distance of ¢ from being satisfied. In a PBO instance,
a solution is an assignment, under which all hard constraints are satisfied.

The SLS algorithms that employ constraint weighting schemes usually maintain weight
for each constraint. We use w(c) to represent the weight of each hard constraint ¢, and w(o)
to represent the weight of the objective function o.

3 Main ldeas

In general, the search directions of SLS algorithms are guided by the scoring function. It is
recognized that the effectiveness of the scoring function could be enhanced through working
with a weighting scheme. In this section, we first propose a new scoring function, and then
design a new weighting scheme to work with it.

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

Table 1 The violation and objective value under all assignments of the PBO instance I; in
Example 3.1.

Assignment (z1, z2, z3)

viol /obj

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
viol(c1) 0 0 0 0 1 3 3 2
viol(c2) 1 0 0 0 4 2 3 1
viol(cs) 29 13 14 0 0 0 0 0
obj(a 1 1 0 0 2 2 1 1

3.1 A New Scoring Function

Given a PBO instance, which consists of n PB constraints (hard constraints) and one objective
function, we assume that the current assignment is a.

Scoring Function in LS-PBO. Before introducing our new scoring function, we first describe
the existing scoring function proposed in LS-PBO [26], which is presented as follows.
For a hard constraint ¢, the penalty function is defined as penalty(c) = w(c) x viol(c);
then the hard score of a variable x is defined as the decrement of the sum of the penalty
function values of all hard constraints caused by flipping x, which is denoted by hscore(z).
For the objective function o, the value of the objective function is obj(«), and the penalty
function is defined as penalty(o) = w(o) X obj(a); then the soft score of a variable x is
defined as the decrement of the penalty function value of the objective function caused
by flipping x, which is denoted by sscore(z).
The score of a variable x is defined as score(x) = hscore(x) + sscore(x).

An Intuitive View. The above scoring function has a drawback, which is due to its underlying
penalty function. The penalty function above considers the weights and viol (resp. obj)
values of hard (resp. soft) constraints. In this way, it measures the importance of a variable
in a constraint ¢ by the coefficient of the corresponding variable in ¢. Nevertheless, it should
be noted that, as the value of score(x) is determined by all hard constraints and the objective
function involving z, the above penalty function may overemphasize the importance of x in
constraints with relatively large coefficients, resulting in an unreasonable value of its score.
In the following, we illustrate our intuition through a simple PBO instance.

» Example 3.1. Let us consider a PBO instance I, which consists of three hard constraints
and an objective function: c¢; : 4—x1 + o + x3 > 4, o @ 3—x1 + T2 + 223 > 4, c3 :
291 + 1525 + 16x3 > 29, minimize: x; + —x3. The values of viol of hard constraints and
the value of obj of the objective function under all assignments are presented in Table 1.
Solutions for I; are those resulting in the zero value of viol for all hard constraints. From
Table 1, the optimal solution is o* = (0,1, 1), and obj(a*) is 0.

Given instance I7, consider a scoring function without any weighting scheme, or equival-
ently, the weight of each constraint is 1, i.e., w(c1) = 1, w(ez) = 1, w(ez) = 1, w(o) = 1; the
initial assignment o = (0,0,0). In accordance with the definition of the scoring function in
LS-PBO, score(x1) = 21, score(xe) = 17, and score(zs) = 17. Actually, in order to optimize
the assignment, SLS algorithms tend to select the variable to be flipped as the one with the
largest score, so in this situation, x; is picked. After flipping x1, the assignment becomes
a = (1,0,0), and the score value of each variable becomes score(xy) = —21, score(zy) = 3,
score(xs) = 3. Then, no matter whether x5 or x3 is flipped, the Hamming distance between

12:5

CP 2023

12:6

Towards More Efficient Local Search for Pseudo-Boolean Optimization

the current assignment and the optimal solution is the same as that between the initial
assignment and the optimal solution, which is two. The search is not progressing in the
direction towards the optimal solution.

In practice, PBO instances encoded from real-world problems are much more complex
than the given illustrative example. If SLS algorithms conduct the search in incorrect
directions, it would be difficult to identify a promising search space that is more likely to
contain the optimal solution or those close to optimality.

As presented in Table 1, when we focus on the value of viol(cs), for those cases where
the value of viol(c3) is not 0, its value is much larger than the viol value of other hard
constraints. Considering that each hard constraint has a penalty value directly proportional
to its viol value, utilizing scoring function aims to guide the search towards the area with a
lower sum of penalty values. Consequently, through making use of such scoring function,
the algorithms would prefer the falsified literal with the largest coefficient to be True (in
instance I, under the assumption that the current assignment is (0,0, 0), this falsified literal
is #7 in the hard constraint cs).

Our New Scoring Function. In our opinion, a good scoring function for PBO should balance
the wviol values of different constraints. To this end, we propose to smooth the penalty values
of constraints. For simplicity, we denote the smoothing function of a hard constraint ¢ as
smooth(c), and the smoothing function of the objective function o as smooth(o). Based on
the idea of balancing the viol value, we propose the following, new scoring function:

For a hard constraint ¢, the penalty function is defined as penalty(c) =
%ﬁ;&ly ; then the hard score of a variable z is defined as the decrement of the
sum of the penalty function values of all hard constraints caused by flipping , which is

denoted by hscore(zx).

For the objective function o, the value of the objective function is obj(a), and
the penalty function is defined as penalty(o) = %‘m; then the soft score
of a variable x is defined as the decrement of the penalty function value of the objective

function caused by flipping «, which is denoted by sscore(z).

The score of a variable z is defined as score(x) = hscore(x) + sscore(z).

In order to instantiate the above scoring function, we propose to use a method for smooth-
ing by using the average of the constraint coefficients, i.e., smooth(c) = round(avgeoe(c)),
smooth(o) = round(avgeoe(0)) (round is a rounding function). Consider the PBO instance
I in Example 3.1, which has smooth(c;) = 2, smooth(ca) = 2, smooth(cs) = 20, and
smooth(o) = 1. Assume that each hard constraint and the objective function have a
weight of 1 and the current assignment « = (0,0,0). Based on the new scoring function,
score(x1) = —3.05, score(xs) = 2.25, and score(xs) = 1.3. Hence, SLS algorithms would
select variable x5 to be flipped. Flipping x5 would change the current assignment « to (0,1,0),
and the score value of each variable would become score(x;) = —3.3, score(xz) = —2.25,
score(xs) = 0.7. Afterward, SLS algorithms would select variable x3 to be flipped. If x3 is
flipped, assignment a becomes (0,1, 1), which is the optimal solution of instance I;.

According to this illustrative example, it can be observed that, by using the average of
constraint coeflicients to smooth the penalty value, the issue of the large difference among
coeflicients of a variable in various constraints can be alleviated, resulting in a more effective
scoring function.

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

3.2 A New Weighting Scheme

Combinatorial optimization problems with both hard and soft constraints require effective
weighting schemes that balance the weights of hard and soft constraints. A potential problem
was pointed out in a previous study [10]: the excessive weight given to soft constraints
may make it difficult to satisfy all the hard constraints, thereby hindering the algorithm’s
capability of finding solutions. Moreover, an existing study [38] demonstrates that designing
a weighting scheme for problems with hard constraints is challenging as it requires weighting
unsatisfied constraints while maintaining the distinction between hard and soft constraints.

To alleviate the above problem, the weighting scheme proposed in LS-PBO sets an upper
bound ¢ (an integer parameter) to the maximum value of the objective function weight. We
use unsat_hard_set to denote the set of unsatisfied hard constraints. For a PBO instance
I, the average of the product of the avgeo.(c) and w(c) of all constraints ¢ is denoted as
wWavgeoe(I), that is, wavgeee(I) = (Y iv (avgeoe(c;) X w(c;)))/m. Assuming that the current
assignment is «, the best solution that has been found is a*, and its corresponding objective
function value is obj(a*).

The weighting scheme adopted in LS-PBO is described as follows:

Initialization phase: at the start of the local search process, the weight of each hard
constraint c¢ is initialized as 1, i.e., w(c) := 1; the weight of the objective function o is
also initialized as 1, i.e., w(o) := 1.

Update phase: when the search is trapped in a local optimum (i.e., there is no variable
whose score value is greater than 0), for each ¢ in unsat_hard_set, w(c) := w(c) + 1; if
obj(a)) > obj(a*) and w(0) X avgeee(0) — WaVGeoe () < ¢, w(o) := w(o) + 1, where (is a
parameter introduced by LS-PBO.

In fact, the setting of (greatly affects the performance of LS-PBO, and if the average of
the coefficients of the objective function is much greater than the average of the coefficients
of the hard constraints, the weight of the objective function basically would not be updated.
In addition, varying the timing of weighting constraints could be a promising strategy to
improve the performance of the weighting scheme.

We propose to deal with these problems by modifying the condition of updating weights.
Specifically, we propose a stricter condition for increasing objective function weight. Our
proposed weighting scheme is as follows:

Initialization phase: at the start of the local search process, the weight of each hard
constraint c is initialized as 1, i.e., w(c) := 1; the weight of the objective function o
is initialized as 0, i.e., w(o) := 0.

Update phase: when the search is trapped in a local optimum (i.e., there is no variable
whose score value is greater than 0), for each ¢ in unsat_hard_set, w(c) := w(c) + 1; if
unsat_hard_set is empty, w(o) := w(o) + 1.

In the beginning, the weight of the objective function is initialized as 0, so that the
algorithm would first focus on finding solutions. If the search is trapped in a local optimum,
the weight of the objective function is increased only when the current assignment « is a
solution (all hard constraints are satisfied under «). Accordingly, if the algorithm frequently
visits solutions, then the objective function would have a greater chance to increase its weight.
Otherwise, there would be limited opportunities to increase the objective function weight.

12:7

CP 2023

12:8 Towards More Efficient Local Search for Pseudo-Boolean Optimization

Algorithm 1 The NuPBO Algorithm.

Input: A PBO instance I, cutoff time.
Output: The best solution (a*) found and its objective function value obj*, or “No
solution found”.
1 o = J; obj* := +o0;
2 while no terminating criteria are met do

3 « = an initial assignment;

4 for each c in hard constraints do

5 L w(c):=1,;

6 for the objective function o, w(0):=0;

7 L=10000000;

8 for step=0; step<L; step++ do

9 if « is feasible and obj* >obj(a) then

10 L o™ :=a; obj*:=0bj(a); L=step+10000000;
11 if D := {z|score(z) > 0} # & then

12 v:=a variable in D with the highest score;

13 else

14 update constraints weights by the new weighting scheme described in Section 3.2;
15 if 3 unsatisfied hard constraints then

16 c:=a random unsatisfied hard constraint;

17 v:=the variable whose literal is false with highest score in c;
18 else

19 L v:=a randomly chosen variable with sscore > 0;
20 | a:r=a with v flipped;

21 if a® # @ then return o* and obj™;
22 else return No solution found;

4 The NuPBO Algorithm

In this section, we develop a new SLS algorithm named NuPBOQO, which is based on the main
ideas proposed in Section 3. NuPBO adopts the Dynamic Local Search (DLS) framework as
does LS-PBO. The pseudo-code of NuPBO is outlined in Algorithm 1. We use a® and obj*
to denote the best-found solution and the corresponding objective function value (i.e., the
cost of the best-found solution), while & denotes the current assignment which is maintained
during the search.

*

In the beginning, o* is initialized as an empty set, and obj* is initialized as +o0o (Line 1).
NuPBO then iteratively calls the local search process until reaching a terminating criterion
(e.g., reaching a preset cutoff time, or achieving a feasible assignment « whose corresponding
obj value is equal to 0) (Lines 2-20).

In the local search process, an initial assignment is generated by assigning each Boolean
variable to a default value 0 (as in LS-PBO) (Line 3). NuPBO then initializes the weights
of all hard constraints as 1, and sets the weight of objective function to 0 according to our
proposed weighting scheme. After initialization, NuPBO conducts the search process (Lines
8-20). During the search process, whenever NuPBO finds a solution whose obj is lower than
obj*, then a* and obj* are updated accordingly.

In each search step, NuPBO selects a variable and flips it based on two situations: (I)
If the set D of decreasing variables (i.e., the variable x with score(x) > 0) is not empty, a
variable with the highest score is selected from D, breaking ties by preferring the variable

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

that has been flipped least recently. (II) When D is empty, which indicates that the search
is trapped in a local optimum, then NuPBO updates the weights of constraints according to
our new weighting scheme. Then, if there exist unsatisfied hard constraints, an unsatisfied
hard constraint ¢ is randomly picked. As we know, for a MaxSAT instance, if a clause cm is
unsatisfied, then it would become satisfied after flipping any variables in ¢m. For a PBO
instance, if a hard constraint cp is unsatisfied (i.e., viol(cp) > 0), only flipping variables
whose literals are False under the current assignment can reduce viol(cp) (Assuming under
the current assignment «, 1 is 1, then the literal x; is True, while the literal -z is False).
Therefore, NuPBO picks the variable whose literal is False with the highest score in c.
Otherwise (i.e., all the hard constraints are satisfied), NuPBO randomly chooses a variable
whose sscore is greater than 0.

Finally, when any terminating criterion is met, NuPBO stops and reports the best solution
o and obj* if a solution is found; otherwise, it reports “No solution found”.

5 Experimental Evaluations

In this section, we introduce experimental preliminaries and then conduct extensive exper-
iments on 6 PBO benchmarks. First, we compare NuPBO with 5 state-of-the-art PBO
solvers. Second, we conduct experiments to show that combining NuPBO with complete
solvers can lead to better portfolios. Third, we report experimental results to demonstrate
the effectiveness of our main ideas. Finally, we examine the stability of the SLS solvers by
running each SLS solver 10 times with seeds ranging from 1 to 10.

5.1 Experimental Preliminaries

Benchmarks. We evaluate NuPBO on 6 benchmarks, which are described as follows:
PB16: the OPT-SMALLINT-LIN benchmark from the latest 2016 pseudo-Boolean com-
petition. As a mainstream benchmark for evaluating the performance of PBO solvers, it
consists of 1600 instances of various categories.?

MIPLIB: 0-1 integer linear programming optimization problems. This benchmark contains
291 instances of various categories, provided in the literature [12].3

CRAFT: crafted combinatorial benchmarks whose coefficients are small integers. This
benchmark contains 955 instances of various categories, provided in the literature [12].4
MWCB: the Minimum-Width Confidence Band Problem. This benchmark contains 24
instances.

SAP: the Seating Arrangements Problem. This benchmark contains 21 instances.

WSNO: the Wireless Sensor Network Optimization Problem. This benchmark consists of
18 instances.

For the benchmarks of MWCB, SAP, and WSNO, the descriptions, the downloading websites,
and the methods of converting the real-world applications into PBO instances and the
encoded PBO instances are presented in the literature [26].°

http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://zenodo.org/record/3870965
https://zenodo.org/record/4036016
https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/

(SN V)

12:9

CP 2023

http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
https://zenodo.org/record/3870965
https://zenodo.org/record/4036016
https://lcs.ios.ac.cn/%7ecaisw/Resource/LS-PBO/

12:10

Towards More Efficient Local Search for Pseudo-Boolean Optimization

State-of-the-Art Competitors. We compare NuPBO with 5 state-of-the-art solvers, includ-
ing one SLS solver (i.e., LS-PBO) and 4 complete solvers. The 4 complete solvers include 2
PB solvers (i.e., PBO-IHS and RoundingSat) and 2 MIP solvers (i.e., Gurobi and SCIP):
LS-PBO [26]: the state-of-the-art SLS algorithm for solving PBO. Adopt the parameter
setting recommended by its authors. It outperforms Gurobi and RoundingSat on many
real-world application benchmarks.®
PBO-IHS [37]: a recent THS PBO solver building upon RoundingSat [14].°
RoundingSat [12]: a recent PBO solver combining core-guided search with cutting planes
reasoning.”
Gurobi [19]: one of the most powerful commercial MIP solvers (Version 9.1.2). The
default configuration is used, along with a single thread.®
SCIP [16]: one of the fastest non-commercial solvers for MIP (Version 7.0.3, using SoPlex
5.0.2 as its internal LP solver).”?

Experimental Setup. LS-PBO and NuPBO are implemented in C++, and compiled with
g++ (version 8.5.0) using the option “-O3”. Installation procedures for other solvers follow
their detailed guidelines. All the experiments are carried out on a workstation under the
operating system CentOS, with the AMD EPYC7702 2.0GHz CPU.

In these experiments, we adopt two cutoff times of 300 CPU seconds (300s) and 3600
CPU seconds (1h). Each solver performs one run within a given cutoff time on each instance,
and we record the cost of the best solution found by solver S; on instance I, denoted as
sols,1,- The cost of the best solution found among all solvers in the same table within the
same cutoff time on instance Iy is denoted as besty, . For each solver S solving a benchmark
B; within a cutoff time, we use 3 metrics to evaluate the performance of S.

#win.: the number of instances where the corresponding best;, can be obtained by solver

S on B; (i.e., the number of winning instances).

aVgscore: i our experiments, the competition score of solver S; on instance Ij, is repres-
bestIk +1

solsj1k4—17
solver S; could not report a solution on instance Iy, then scoreg, 1, = 0. We use avgscore

ented by scores,r, = which measures the gap between solg;, and besty, . If
to denote the average competition score of a solver on a benchmark. The competition
score of each solver on each instance is the metric to measure the performance of solvers
in the incomplete track of recent MaxSAT Evaluations (2017-2023).

feas.: the number of instances where solver S obtains solutions on B;.

In our experiments, avgscore is calculated by ignoring the instances that are proven
to have no solution by the complete solvers. Based on the preliminary experiments, we
conclude that at least 123 instances in the PB16 benchmark and at least 17 instances in the
MIPLIB benchmark do not have solutions. All instances in the CRAFT, MWCB, SAP, and WSNO
benchmarks have solutions.!?

The number of instances in each benchmark is indicated by ‘#inst.. For each of the
above three metrics, if a solver obtains a larger metric value on a benchmark, then the solver
exhibits better performance on the benchmark. The results highlighted in bold indicate the

best performance for the corresponding metric.

5 https://bitbucket.org/coreo-group/pbo-ihs-solver/

" https://doi.org/10.5281/zenodo . 4043124

8 https://www.gurobi.com/products/gurobi-optimizer/

9 https://www.scipopt.org/index.php#download

10Note that the definition of the competition score (metric) in this subsection has no relationship to the
definition of the score in the scoring function in subsection 3.1.

https://bitbucket.org/ coreo-group/pbo-ihs-solver/
https://doi.org/10.5281/zenodo.4043124
https://www.gurobi.com/products/gurobi-optimizer/
https://www.scipopt.org/index.php#download

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

Table 2 Experimental results of NuPBO and all the competitors on all the benchmarks (top:
cutoff 300s, bottom: cutoff 1h) (Benc, i.e., Benchmark. avgs, i.e., avgscore)-

‘ SLS solvers PB solvers MIP solvers
Benc #inst.‘ NuPBO LS-PBO PBO-IHS RoundingSat Gurobi SCIP
o g on [F2 o[£ w27 v [.
cutoff 300s
PB16 1600 13?? 0.8800 1710803 0.7516 1%13(?1 0.8712 1936942 0.8916 11;)258 0.9011 1828474 0.7918
MIPLIB 291 ;ig 0.8480 27252 0.7375 28340 0.7350 2%195 0.7855 ;gg 0.8013 é;l 0.7360
CRAFT 955 32;1 0.9868 S;g 0.9682 Sgg 0.9433 Sgg 0.9639 sgi 0.9961 ;glll 0.9583
MWCB 24 ;i 1.0000 204 0.9448 109 0.4496 204 0.6247] 102 0.4004 g 0.0761
SAP 21 ;i 1.0000 201 0.9750 8 0.0000 8 0.0000 (1) 0.0395 8 0.0000
WSNO 18 12 1.0000 i; 0.9026 g 0.1738 148 0.6624 g 0.2431 g 0.1631
cutoff 1h
PB16 1600 1223 0.8897 1821748 0.8164 1359102 0.8875 12(13 0.9100 :ggg 0.9354 12(1)1 0.8565
MIPLIB 291 ;i; 0.8519 28331 0.7673 ;gg 0.7903 28477 0.8099 ;gg 0.9023 ;3; 0.8104
CRAFT 955 gzé 0.9992 S;g 0.9714 34813 0.9841 S;i 0.9902 ggg 0.9987 Sgg 0.9704
MWCB 24 ;i 0.9998 214 0.9690 204 0.5620 204 0.7116 204 0.7437 107 0.5058
SAP 21 ;i 1.0000 201 0.9785 8 0.0000 8 0.0000 (1) 0.0451 8 0.0000
WSNO 18 12 1.0000 158) 0.9985 154 0.5989 i; 0.8660 143 0.4904 2 0.0842

5.2 Comparisons with State-of-the-Art Solvers

The comparative results of NuPBO and all the competitors on all the benchmarks are shown
in Table 2. We first analyze the results with a cutoff time of 300s.

In terms of the number of winning instances, NuPBO gives the best performance on 4
benchmarks, including CRAFT and the 3 real-world application benchmarks, and ranked
second on the PB16 and MIPLIB benchmarks (with Gurobi being the best).

In terms of avgscore, NuPBO outperforms all the competitors on 4 benchmarks, including
MIPLIB and the 3 real-world application benchmarks. On the PB16 benchmark, its
aVgscore ranks third after Gurobi and RoundingSat. The avgscore value of NuPBO ranks
second on the CRAFT benchmark behind Gurobi.

In terms # feas., NuPBO and LS-PBO find solutions for all instances in the 3 real-world
application benchmarks, while PBO-IHS, RoundingSat, and Gurobi are respectively the
best for finding solutions on PB16, MIPLIB, and CRAFT. Although the value of # feas.
of NuPBO ranks second on MIPLIB and CRAFT benchmarks, and ranks fourth on PB16

benchmark, NuPBO performs considerably better than LS-PBO, an SLS solver for PBO.

12:11

CP 2023

12:12

Towards More Efficient Local Search for Pseudo-Boolean Optimization

Table 3 Experimental results of VBSa.i, VBSczciude ispbo, and VBSeaciude nupbo On all the
benchmarks (top: cutoff 300s, bottom: cutoff 1h).

Benchmark #inst ‘ VBSau VBSeactude_tspbo VBS exctude_nupbo

‘#wm. AUGscore #feas.‘#win. AVGscore #feas.‘#win. aVgscore Ffeas.

cutoff 300s
PB16 1600 | 1434 0.9709 1434 | 1430 0.9703 1434 | 1356 0.9690 1433
MIPLIB 291 254 0.9270 254 254 0.9270 254 218 09119 254
CRAFT 955 955 1.0000 955 955 1.0000 955 939 0.9999 955
MWCB 24 24 1.0000 24 24 1.0000 24 0 0.9448 24
SAP 21 21 1.0000 21 21 1.0000 21 0 0.9750 21
WSNO 18 18 1.0000 18 18 1.0000 18 11 0.9032 18
cutoff 1h
PB16 1600 | 1440 0.9749 1440 | 1438 0.9747 1440 | 1394 0.9730 1438
MIPLIB 291 262 0.9562 262 262 0.9562 262 238 0.9492 262
CRAFT 955 955 1.0000 955 955 1.0000 955 953 >0.9999 955
MWCB 24 24 1.0000 24 23 0.9998 24 1 0.9690 24
SAP 21 21 1.0000 21 21 1.0000 21 0 0.9785 21
WSNO 18 18 1.0000 18 18 1.0000 18 15 0.9985 18

With the cutoff time of 1h, NuPBO outperforms LS-PBO on the 3 real-world application
benchmarks. On the other 3 benchmarks, NuPBO shows competitive performance compared
to Gurobi, and significantly outperforms the state-of-the-art SLS solver LS-PBO in terms of
all metrics of #win., avgscore, and # feas..

5.3 Complementarity between SLS Solvers and Complete Solvers

In this subsection, we conduct experiments to investigate the complementarity between SLS
solvers and complete solvers when solving PBO.

To investigate the complementarity between SLS solvers and complete solvers, we construct
three perfect portfolio selectors: given a set of base solvers O, for each instance, the solution
of the perfect portfolio selector constructed on © is the best among the entire collection of
solutions reported by all solvers in ©. These three perfect portfolio selectors are built based on
©,={LS-PBO, NuPBO, PBO-IHS, RoundingSat, Gurobi, SCIP }, ©:={NuPBO, PBO-IHS,
RoundingSat, Gurobi, SCIP }, and ©3={LS-PBO, PBO-IHS, RoundingSat, Gurobi, SCIP
} dubbed VBSau, VBSecuciude isppo a0d VBSeqciude nupbo, respectively. Then we conduct
experiments to evaluate the performance of these three perfect portfolio selectors on all
benchmarks. The related results are presented in Table 3.

The comparison between VBS,; and VBSczciude 1spbo reveals the number of instances
where only the LS-PBO solver can achieve the optimal solution among all solvers. Similarly,
comparing VBSq.; and VBSczciude nupbo Shows the number of instances where only the
NuPBO solver can obtain the optimal solution among all solvers. As shown in Table 3,
taking the PB16 benchmark with a cutoff time of 300 seconds as an example, out of the
1600 instances, there are 4 instances where only LS-PBO can achieve the optimal solution
among all solvers, and there are 78 instances where only NuPBO can obtain the optimal
solution among all solvers. Additionally, in 1 instance, only NuPBO was able to find a
feasible solution. The results in Table 3 demonstrate that, compared to the state-of-the-art
SLS solver LS-PBO, NuPBO is able to enhance the complementarity between SLS solvers
and complete solvers, which indicates that a portfolio selector, which combines NuPBO and
complete solvers, could advance the state of the art in PBO solving.

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

Table 4 Experimental results of NuPBO, NuPBO-alt(s), and NuPBO-alt(w) on all the benchmarks
(top: cutoff 300s, bottom: cutoff 1h).

Benchmark #inst ‘ NuPBO NuPBO-alt(s) NuPBO-alt(w)
nchmark #inst.

‘#win. AUGscore #feas.‘#wm. AVGscore #feasl‘#win. avgscore Ffeas.

cutoff 300s
PB16 1600 | 1141 0.9026 1351 | 1024 0.8288 1253 | 1034 0.8822 1323
MIPLIB 291 182 0.8687 242 147 0.8347 242 112 0.8312 239
CRAFT 955 941 0.9874 943 | 941 0.9864 942 848 0.9648 925
MWCB 24 24 1.0000 24 0 0.9466 24 0 0.9700 24
SAP 21 13 0.9990 21 9 0.9974 21 0 0.9782 21
WSNO 18 17 0.9995 18 18 1.0000 18 15 0.9704 18
cutoff 1h
PB16 1600 | 1170 0.9076 1360 | 1113 0.8842 1329 | 1090 0.8911 1336
MIPLIB 291 188 0.8754 243 149 0.8520 244 121 0.8620 245
CRAFT 955 953 >0.9999 955 | 953 >0.9999 955 864 0.9683 926
MWCB 24 24 1.0000 24 0 0.9459 24 0 0.9655 24
SAP 21 11 0.9986 21 13 0.9988 21 0 0.9824 21
WSNO 18 18 1.0000 18 18 1.0000 18 18 1.0000 18

5.4 Analysis on the Underlying Ideas

In order to demonstrate the effectiveness of our two main ideas in our NuPBO solver, we
conduct comparative experiments on 3 solvers. We develop two alternative versions of
NuPBO, by replacing its scoring function and weighting scheme with the ones proposed in
LS-PBO, dubbed NuPBO-alt(s) and NuPBO-alt(w), respectively. The weighting scheme
proposed in LS-PBO introduces a parameter ¢ for NuPBO-alt(w), which is set to 100 as
recommended by LS-PBO’s authors [26].

The comparative results of the cutoff time of 300 seconds and 1 hour are shown in Table 4.

From Table 4, NuPBO outperforms its alternative versions on the majority of instances. We
first discuss the effectiveness of the new scoring function.

Regarding the New Scoring Function. With the cutoff time of 300s, in terms of the metrics
of #win. and avgscore, NuPBO exhibits the best performance on 5 benchmarks. In terms of
the metric of #feas., NuPBO performs better than NuPBO-alt(s) on the PB16 benchmark
and CRAFT benchmark. On the remaining 4 benchmarks, the number of feasible solutions
obtained by NuPBO is equal to that obtained by NuPBO-alt(s).

With the cutoff time of 1h, NuPBO exhibits significantly better performance than
NuPBO-alt(s) on 3 benchmarks including PB16, MIPLIB, and MWCB. On the remaining 3
benchmarks, namely CRAFT, SAP and WSNO, the performance of NuPBO is comparable to
that of NuPBO-alt(s).

To examine the intuition in Section 3.1, we conduct an experiment to analyze the
relationship between the instance feature and the performance difference between NuPBO
and NuPBO-alt(s). Due to the difficulty of counting the coefficients of all variables in
different constraints within an instance, we use the Gini coefficient [18] of the degree of hard
constraints as the instance feature, denoted by Ginigy. For a PBO instance Iy, if the degree
values of all hard constraints in I; are arranged in ascending order, Giniy can be calculated
as follows: Ginig = % S, i(d; — d), where n is the number of hard constraints, i is the

12:13

CP 2023

12:14

Towards More Efficient Local Search for Pseudo-Boolean Optimization

52 %3 ~ i —
ge | X
GE,O X X XX %
il x x X% X X o
605 « [X X ><‘><< X%
83 e K x
e L
< X
68 % Xg: Y :)
o5 gini<0.5 %170.5=gini<0.9 ,0.9<gini
2 83 L X X XX U | i
T . . . A o -

0 500 1000 1500 2000 2500 3000

Instances from all the 6 benchmarks

Figure 1 The ratio of the score metric of NuPBO and NuPBO-alt(s) on instances from all the 6
benchmarks (cutoff 300s).

rank of degree values in ascending order, d; is the degree of i-th hard constraint (d; values
are in ascending order), and d is the mean value.!! The greater Giniy(I1), the greater the
inequality between the degrees of constraints in instance ;. In those instances whose Ginig is
large, the coefficient of a variable may differ greatly between constraints. For an instance I,
we use scorenyppor, to represent the competition score of NuPBO, and scoren,ppo-ait(s)1,

to represent the competition score of NuPBO-alt(s). R(I1) = SCS:Z;E:;ngl(l)jlﬂ is used to
. -alt(s)Iq

denote the performance difference between NuPBO and NuPBO-alt(s). Thus, if NuPBO
finds a solution while NuPBO-alt(s) does not, R = 2 (on the contrary, R =0.5). If R=1,
NuPBO and NuPBO-alt(s) obtained the same competition score (or no solution has been
found).

We conduct an experiment on all 6 benchmarks with a cutoff time of 300s. The related
results are presented in Figure 1. According to Figure 1, the x-axis represents 2909 instances
of the 6 benchmarks, sorted by Giniy in ascending order, and the y-axis represents the
corresponding R values.

Results in Figure 1 demonstrate that NuPBO outperforms NuPBO-alt(s), as the number
of instances with R > 1 exceeds those with R < 1. In addition, on instances with Ginig > 0.9,
NuPBO exhibits a significant performance advantage over NuPBO-alt(s), and many instances
in this category have an R value of 2, which indicates that NuPBO performs much better

in terms of the metric of # feas.. On instances with Ginigq > 0.5, NuPBO also shows
performance improvement over NuPBO-alt(s).

Regarding the New Weighting Scheme. With the cutoff time of 300s, in terms of the
metrics of #win. and avgscore, NuPBO outperforms NuPBO-alt(w) on all the benchmarks.
In terms of the metric of # feas., NuPBO achieves better performance than NuPBO-alt(w)
on 3 benchmarks. On the other 3 benchmarks, the value of # feas. achieved by NuPBO is
equal to that obtained by NuPBO-alt(w).

With the cutoff time of 1h, regarding the metrics of #win. and avgscore, NuPBO outper-
forms NuPBO-alt(w) on 5 out of 6 benchmarks, and achieves the same performance on the
WSNO benchmark. Regarding the metric of # feas., NuPBO demonstrates better performance
than NuPBO-alt(w) on 2 benchmarks. On the MIPLIB benchmark, the performance of
NuPBO-alt(w) is only slightly better than that of NuPBO. On the 2 real-world application
benchmarks, these SLS solvers achieve the same performance. The experimental results
clearly indicate the effectiveness of our proposed new weighting scheme.

Unttps://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm

https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

Table 5 Experimental results of NuPBO, LS-PBO, NuPBO-alt(s), and NuPBO-alt(w) with seeds
ranging from 1 to 10 on all the benchmarks (left: cutoff 300s, right: cutoff 1h).

Benchmark #inst.‘ cutoff 300s ‘ cutoff 1h

AVJavgsol AVGstdev % AVGavgsol AUGstdev %

NuPBO
PB16 1600 34567.32 259.79 0.75% 34721.64 123.30 0.36%
CRAFT 955 3035410.02 0.10 <0.01%| 3000465.70 0.09 <0.01%
MIPLIB 291 59271045.04 240944.55 0.41%|58116554.74 299542.17 0.52%
MWCB 24 197890.62 1504.80 0.76% 193513.34 888.91 0.46%
SAP 21 1039.04 3.74 0.36% 1033.64 3.00 0.29%
WSNO 18 1301.21 225.55 17.33% 1158.61 0.00 0.00%
LS-PBO
PB16 1600 30844.62 143.86 0.47% 34305.81 213.45 0.62%
CRAFT 955 3074484.99 1.69 <0.01%| 3071190.03 1.11 <0.01%
MIPLIB 291 53327323.12 1262751.16 2.37%|50874231.31 924287.05 1.82%
MWCB 24 209821.48 1582.87 0.75%| 201482.90 1525.52 0.76%
SAP 21 1066.74 4.61 0.43% 1059.17 3.43 0.32%
WSNO 18 1448.88 299.06 20.64% 1174.76 44.64 3.80%
NuPBO-alt(s)
PB16 1600 36842.12 112.50 0.31% 35779.84 129.39 0.36%
CRAFT 955 3038627.52 0.10 <0.01%| 3000465.70 0.10 <0.01%
MIPLIB 291 65612369.74 911077.41 1.39%(63282671.88 90491.84 0.14%
MWCB 24 210377.43 1688.62 0.80%| 205368.10 1267.23 0.62%
SAP 21 1039.50 3.49 0.34% 1034.15 2.68 0.26%
WSNO 18 1295.50 192.98 14.90% 1158.65 0.12 0.01%
NuPBO-alt(w)

PB16 1600 34535.79 312.20 0.90% 34594.61 214.89 0.62%
CRAFT 955 3094400.67 1.45 <0.01%| 3094398.61 1.15 <0.01%
MIPLIB 291 59063484.68 259177.44 0.44%|57971941.39 350572.11 0.60%
MWCB 24 205188.29 1467.44 0.72%| 201127.28 929.57 0.46%
SAP 21 1061.47 4.08 0.38% 1054.01 3.41 0.32%
WSNO 18 1293.97 143.69 11.10% 1159.25 2.02 0.17%

5.5 Stability of Local Search Solvers

In order to examine the stability of all four SLS solvers adopted in our experiments, each of
the four SLS solvers runs 10 times with seeds ranging from 1 to 10 on all instances from all 6
benchmarks.

For a given solver S and an instance I: solgy; denotes the cost of the best solution found
by solver S with seed J on instance I, avgsol denotes the average cost of best solutions
obtained by solver .S over all 10 runs on instance I, while stdev denotes the standard deviation
of the cost of the best solutions obtained by solver S over all 10 runs on instance 7. On
a benchmark B consisting of multiple instances: avgqvgsor Tepresents the average value of
avgsol obtained by solver S over all instances where solutions are obtained, while avgstgey
stands for the average value of stdev obtained by solver S over all instances where solutions
are found. The calculation of avgsygsor is based on instances where solutions are found,

12:15

CP 2023

12:16

Towards More Efficient Local Search for Pseudo-Boolean Optimization

different solvers may find solutions on different subsets of instances for a given benchmark
and cutoff time. In addition, for a given benchmark, it is possible that a solver finds solutions
on more instances within a cutoff time of 1h than adopting a cutoff time of 300s. Moreover,
according to the above definition of avgavgsor, We note that the value of avgavgsor cannot be
used to compare the performance of different solvers.

The experimental results presented in Table 5 demonstrate that, with the cutoff time
of 300s, all four SLS solvers exhibit stable performance on 5 out of 6 benchmarks, while on
the WSNO benchmark, the performance is less stable compared to the other benchmarks. In
addition, the values of % for NuPBO are less than 1% on all 5 benchmarks, which
clearly indicates that NuPBO can achieve stable performance. With the cutoff time of 1h,
all four SLS solvers perform stably on the 6 benchmarks.

6 Conclusions and Future Work

This paper is devoted to improving the performance of SLS solvers for solving the PBO
problem via a new scoring function and a new weighting scheme. First, we introduced our
new scoring function. Furthermore, we proposed a new weighting scheme that effectively
determines when to increase the weight of the objective function. Based on these two
main ideas, we developed a new SLS solver named NuPBO. Extensive experimental results
demonstrate that NuPBO significantly outperforms LS-PBO on all testing benchmarks.
NuPBO outperforms all its competitors on 3 real-world application benchmarks and shows
competitive performance compared to state-of-the-art competitors on solving PB16, MIPLIB,
and CRAFT benchmarks. In addition, NuPBO enhances the complementarity between SLS
solvers and complete solvers on all testing benchmarks.

For future work, we would like to develop more efficient heuristic strategies and explore
the effect of instance features on the performances of different categories of PBO solvers.

—— References

1 Carlos Ansétegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77-105, 2013.

2 Carlos Ansé6tegui and Joel Gabas. WPM3: An (in)complete algorithm for weighted partial
MaxSAT. Artificial Intelligence, 250:37-57, 2017.

3 VL Beresnev, EN Goncharov, and AA Mel’nikov. Local search with a generalized neighborhood
in the optimization problem for pseudo-boolean functions. Journal of Applied and Industrial
Mathematics, 6:22-30, 2012.

4 Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete
MaxSAT. In Proceedings of CPAIOR 2019, pages 39-56, 2019.

5 Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation
and hybridization for maximum satisfiability. Artificial Intelligence, 287:103354, 2020.

6 Shaowei Cai, Chuan Luo, Jinkun Lin, and Kaile Su. New local search methods for partial
MaxSAT. Artificial Intelligence, 240:1-18, 2016.

7 Shaowei Cai, Chuan Luo, and Kaile Su. Scoring functions based on second level score for k-sat
with long clauses. J. Artif. Intell. Res., 51:413-441, 2014. doi:10.1613/jair.4480.

8 Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local search for partial
maxsat. In Proceedings of AAAI 201/, pages 2623—-2629, 2014.

9 Byungki Cha and Kazuo Iwama. Performance test of local search algorithms using new types
of random CNF formulas. In Proceedings of IJCAI 1995, pages 304-311, 1995.

10 Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and Shuichi Miyazaki. Local search
algorithms for partial MAXSAT. In Proceedings of AAAI 1997, pages 263-268, 1997.

https://doi.org/10.1613/jair.4480

Y. Chu, S. Cai, C. Luo, Z. Lei, and C. Peng

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Proceedings of CP 2011, pages 225-239, 2011.

Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordstrém, and Peter J. Stuckey.
Cutting to the core of pseudo-boolean optimization: Combining core-guided search with
cutting planes reasoning. In Proceedings of AAAI 2021, pages 3750-3758, 2021.

Niklas Eén and Niklas Sérensson. Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006.

Jan Elffers and Jakob Nordstrom. Divide and conquer: Towards faster pseudo-boolean solving.
In Jérome Lang, editor, Proceedings of IJCAI 2018, pages 1291-1299, 2018.

Jan Elffers and Jakob Nordstrém. A cardinal improvement to pseudo-Boolean solving. In
Proceedings of AAAI 2020, pages 1495-1503, 2020.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mithmer, Benjamin Miiller, Marc E. Pfetsch, Franziska Schlosser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization

Online, March 2020. URL: http://www.optimization-online.org/DB_HTML/2020/03/7705.

html.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence, 187:52-89, 2012.

Corrado Gini. Concentration and dependency ratios. Rivista di politica economica, pages
769-792, 1997.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL: https://www.

gurobi.com.

Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,
1985.

Pascal Van Hentenryck and Laurent Michel. Constraint-based local search. The MIT press,
2009.

Holger H. Hoos, Laetitia Jourdan, Marie-Eléonore Kessaci, Thomas Stiitzle, and Nadara-
jen Veerapen. Special issue on "stochastic local search: Recent developments and trends".
International Transactions in Operational Research, 27(1):697-698, 2020.

Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A partial
Max-SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 8(1-2):95-100,
2012.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7(2-3):59-64, 2010.

Zhendong Lei and Shaowei Cai. Solving (weighted) partial MaxSAT by dynamic local search
for SAT. In Proceedings of IJCAI 2018, pages 1346-1352, 2018.

Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger H. Hoos. Efficient local search for pseudo
boolean optimization. In Proceedings of SAT 2021, pages 332-348, 2021.

Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: An efficient local search
algorithm for weighted partial maximum satisfiability. Artificial Intelligence, 243:26-44, 2017.
Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, and Kaile Su. CCLS: An efficient local
search algorithm for weighted maximum satisfiability. IEEE Transactions on Computers,
64(7):1830-1843, 2015.

Ruben Martins, Vasco M. Manquinho, and Inés Lynce. Open-WBO: A modular maxsat solver,.
In Proceedings of SAT 2014, pages 438—445, 2014.

Rafig Muhammad and Peter J. Stuckey. A stochastic non-CNF SAT solver. In Proceedings of
PRICAI 2006, pages 120-129, 2006.

Alexander Nadel. Anytime weighted MaxSAT with improved polarity selection and bit-vector
optimization. In Proceedings of FMCAD 2019, pages 193-202, 2019.

12:17

CP 2023

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://www.gurobi.com
https://www.gurobi.com

12:18

Towards More Efficient Local Search for Pseudo-Boolean Optimization

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT
resolution. In Proceedings of AAAI 2014, pages 2717-2723, 2014.

Olivier Roussel and Vasco Manquinho. Pseudo-boolean and cardinality constraints. In
Handbook of satisfiability, pages 1087-1129. I0S Press, 2021.

Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint
in band form and related techniques for pb-solvers. IEICE Transactions on Information €
Systems, 98-D(6):1121-1127, 2015.

Bart Selman and Henry Kautz. Domain-independent extensions to GSAT: solving large
structured satisfiability problems. In Proceedings of IJCAI 1993, pages 290-295, 1993.

Pavel Smirnov, Jeremias Berg, and Matti Jarvisalo. Pseudo-boolean optimization by implicit
hitting sets. In Proceedings of CP 2021, pages 51:1-51:20, 2021.

Pavel Smirnov, Jeremias Berg, and Matti Jarvisalo. Improvements to the implicit hitting set
approach to pseudo-boolean optimization. In Proceedings of SAT 2022, pages 13:1-13:18, 2022.
John Thornton and Abdul Sattar. Dynamic constraint weighting for over-constrained problems.
In Proceedings of PRICAI 1998, pages 377388, 1998.

Renato Tinés, Michal W Przewozniczek, and Darrell Whitley. Iterated local search with
perturbation based on variables interaction for pseudo-boolean optimization. In Proceedings
of GECCO 2022, pages 296304, 2022.

Chris Voudouris and Edward Tsang. Partial constraint satisfaction problems and guided local
search. Proc., Practical Application of Constraint Technology (PACT’96), London, pages
337-356, 1996.

Christos Voudouris, Edward PK Tsang, and Abdullah Alsheddy. Guided local search. In
Handbook of metaheuristics, pages 321-361. Springer, 2010.

Joachim P. Walser. Solving linear pseudo-boolean constraint problems with local search. In
Proceedings of AAAI 1997, pages 269274, 1997.

Robert Wille, Hongyan Zhang, and Rolf Drechsler. ATPG for reversible circuits using
simulation, boolean satisfiability, and pseudo boolean optimization. In Proceedings of ISVLSI
2011, pages 120-125, 2011.

Yuhang Zhang, Richard Hartley, John Mashford, and Stewart Burn. Superpixels via pseudo-
boolean optimization. In Proceedings of ICCV 2011, pages 1387-1394, 2011.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, Chu-Min Li, and Felip Manya. BandMaxSAT:
A local search maxsat solver with multi-armed bandit. In Proceedings of IJCAI 2022, pages
1901-1907, 2022.

	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	3 Main Ideas
	3.1 A New Scoring Function
	3.2 A New Weighting Scheme

	4 The NuPBO Algorithm
	5 Experimental Evaluations
	5.1 Experimental Preliminaries
	5.2 Comparisons with State-of-the-Art Solvers
	5.3 Complementarity between SLS Solvers and Complete Solvers
	5.4 Analysis on the Underlying Ideas
	5.5 Stability of Local Search Solvers

	6 Conclusions and Future Work

