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—— Abstract

When a transportation service accommodates both people and goods, operators sometimes opt for
vehicles that can be dynamically reconfigured for different demands. Motivated by air service in
remote communities in Canada’s north, we define a pickup-and-delivery problem in which aircraft
can add or remove seats during a multi-stop trip to accommodate varying demands. Given the
demand for people and cargo as well as a seat inventory at each location, the problem consists in
finding a tour that picks up and delivers all demand while potentially reconfiguring the vehicle
capacity at each location by adding or removing seats. We develop a total of six models using three
different approaches: constraint programming, mixed integer programming, and domain-independent
dynamic programming. Our numerical experiments indicate that domain-independent dynamic
programming is able to substantially outperform the other technologies on both solution quality and
run-time on a set of randomly generated instances spanning the size of real problems in northern
Canada.
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1 Introduction

Pickup-and-delivery problems involve using vehicles to transport goods and/or passengers
from a set of origins to a set of destinations on a given transportation network [1]. A
typical pickup-and-delivery problem such as the Pickup and Delivery Traveling Salesperson
Problem (PD-TSP) includes a one or more vehicles, requests with different pickup and
delivery locations, and an objective to find a minimum-cost tour (or set of routes) that
visit(s) each pickup location before its corresponding delivery location [4]. There has been
substantial research literature on pickup and delivery problems over the past several years
(e.g., [19, 21]) motivated, in part, by global efforts to reduce transportation-related carbon
emissions [16]. Many variations of such problems have been proposed and studied in the
operations research literature. For example, some problems include handling costs when an
item is loaded or unloaded depending on the position of the item in the vehicle [24] and some
include subsets of requests that cannot be in a vehicle at the same time [5].

In this paper, we propose and study a novel variation of PD-TSP: requests can include
both goods (cargo) and passengers and the vehicle has a capacity that can be adjusted
en-route depending on the request and equipment stored at locations in the network. The
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problem is motivated by a real transportation problem faced by air services in northern
Canada. Since many communities in this region are reachable only by air during some parts
of the year, their access to basic human needs such as fresh food and healthcare services is
limited. The need for air transportation combined with the relatively small populations and
lack of resources led northern air services to adopt the practice of transporting both cargo
and passengers on the same flights. The vehicles are aircraft with removable seats, allowing
staff to either remove passenger seats and store them at airports to transport more cargo or
add additional seats, previously stored at airports, to carry more passengers. The problem,
which we call the Pickup-and-Delivery with Seat Replacement Problem (PD-SRP), therefore
requires finding the shortest tour delivering all goods and passengers from their origins to
destinations without exceeding aircraft capacity but allowing seats to be removed from or
added to aircraft at each location, subject to seat availability and total aircraft capacity.

To solve the PD-SRP, we developed three types of optimization models: one Constraint
Programming (CP) model, three Mixed Integer Programming (MIP) models, and two Domain-
Independent Dynamic Programming (DIDP) [14] models. We compare their performance
on randomly generated instances based on the size of the problem in Canada’s north,
demonstrating that both of the DIDP models outperform the CP and MIP models in terms
of the number of instances solved and proved optimal, solution quality, and solve time.

2 Related Works

Reconfigurable capacity is a general term in the transportation literature, typically indicating
that vehicle capacity can be changed at some cost and/or limited by some constraints [22, 23].
Other terms such as multi-compartment vehicle or multi-purpose vehicle are used to convey
a similar meaning [20, 8]. We review the vehicle routing and dial-a-ride problems literature
for studies that considered adjustable vehicles.

Vehicle Routing Problems (VRP): The Vehicle Routing Problem and its many variations
have been studied extensively over the past 50 years [18]. The idea of adjusting the vehicle
to handle different types of demand has been studied in multi-compartment vehicle routing
problems [20]. For example, Henke et al. [9] studied how to split the capacity of a truck
into different compartments to maintain the separation of different colors of recycled glass.
Similarly, for grocery distribution, different temperature-sensitive products can be transported
on the same truck with multiple compartments [11]. In both of these problems, a vehicle’s
capacity configuration is fixed for its entire route and cannot be modified during the trip.

Dial-a-Ride Problems (DARP): In the Dial-a-Ride Problem a transportation request
takes the form of pickup and delivery location pair and the service provider utilizes its fleet
of vehicles to fulfill the requests while minimizing a cost function that typically includes
some travel distance component [10]. Some variants include a reconfigurable vehicle capacity
to serve the needs of different users: those who use seats or those who use wheelchairs
[23]. Some of the vehicle seats can be folded and stored inside the vehicle to make room
for passengers in wheelchairs. Unlike this problem, the seats of the vehicle in the PD-SRP
cannot be stored on the aircraft without occupying cargo capacity and are instead detached
and stored at the airports.

Hatzenbiihler et al. [8] studied a multi-purpose pickup and delivery problem that can
deliver passengers or cargo by exchanging the module of the vehicle at a depot or special
service site. Each vehicle includes a removable module and a fixed platform such that
changing modules modifies the ability of the vehicle from only carrying cargo to only carrying
passengers and vice versa. Compared to problems with conventional solo-purpose vehicles,
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requests can be served with a fewer vehicles but at the expense of adding extra service sites
and visits. We can view the core multi-purpose pickup and delivery problem as a special
case of PD-SRP where the seat exchange decisions must be all-or-none: either all seats are
removed to maximize cargo space or all seats are installed to maximize passenger capacity.

3 Problem Definition

In PD-SRP, we are given n requests, each potentially requiring the transportation of cargo
and passenger demands. Let V = P U D where P = {v1,...,v,} is the set of pickup
locations and D = {v,41, ..., V2, is the set of delivery locations. We assumed that cargo is
shipped in unit-sized boxes, each having the same weight and volume. Although, in reality
cargo is shipped in various shapes and weights, incorporating four-dimensional packing
(i.e., combining volume and weight) would substantially complicate the problem. Therefore,
similar to approximations done in practice by airlines (e.g., standard weight per passenger),
we opted for this simplification.

Each request ¢ includes picking up §; boxes of cargo and 7; passengers from location
v; and delivering them to location v,,4;. Thus, the demand of the corresponding delivery
location has an equal magnitude negative value (i.e., —4; = Gi1n, —7; = Fixn, Vi € P). Note
that this representation can model more complex patterns (e.g., requests that share pickup

or delivery locations but not both) by copying locations for each unique pickup-delivery pair.

When an aircraft is at its maximum seat capacity, it has S seats and can carry C boxes
of cargo. By removing a seat, L boxes of cargo capacity are added to the aircraft. Therefore,
the maximum cargo capacity when removing all the seats is K = SL+ C. Each location i
starts with S? stored seats and therefore the aircraft can add at most min(S, S?) seats or
remove at most S seats when visiting location ¢. There is no maximum number of seats that
can be stored at a given location.

In order to represent the problem as a path, two nodes are assigned to the depot:
vg is the start node and wvg,41 is the end node. For modeling purposes we define sets
Vi1 =V U{vant1}, Vo = VU {vo} and Vo n+1 = V U {vg, van+1}. Therefore, the problem
is defined on graph G = (Vo n,A) where A = {(i,5)]i,5 € Von+1,% # j} with each arc
having an associated distance, d;;. The vehicle is initially at the depot vy with a cargo and
passenger capacity of Cy and Sy where Cy = K — LSy and Sy < S, respectively, and must
finish the trip at depot ve,+1. We assume that the start and end nodes are not the pickup
or delivery location of any requests. Again, this assumption is not limiting as such requests
can be represented by adding extra nodes at the same location as the start and end nodes.

In PD-SRP we aim to minimize the travel distance while deciding how many seats to
add or remove at each location to fulfill all the requests while respecting capacities. The
PD-SRP is NP-hard because if we fix the seat decisions and set all the demands to zero, the
problem can be reduced to TSP which is known to be NP-hard [13].

An instance of this problem can be seen in Figure 1. The optimal tour is shown in pink,
and the seat icon near each vertex represents the number of seats stored at the corresponding
base. The optimal tour for this instance is (vg, va, v4, v1, V3, U5) With two seats left at v;.

4 Methods

We develop six models for the PD-SRP using constraint programming (CP), mixed integer
programming (MIP), and domain independent dynamic programming (DIDP). One of the
MIP models solves a restricted version of the PD-SRP and is used to warm-start the CP
model and the two other MIP models. In this section, we describe each of the models in
detail.
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Figure 1 Example of an PD-SRP instance with 2 requests. The optimal tour is shown by dotted
pink edges. In the aircraft configuration, white seats and boxes show the current passenger and cargo
capacity, respectively. The colored seats and boxes show the corresponding cargo and passenger
requests that are picked up.

4.1 A Constraint Programming Model (CP)

Our CP model equates distance and time and, thus, uses a one-machine scheduling approach
where jobs correspond to the visits and the setup times between two consecutive jobs
correspond to the distance between two locations. The model uses |Vp 2n+1| interval variables
x; that represent visits to each location, and a sequence variable, , that constrains interval
variables to form a sequence with an extra end node representing the return to the depot.
The size of the interval variable is 0 because there is no service time associated with the
visits. For every location ¢ € {0, ...,2n}, variable s; is introduced to represent the number of
seats that are added or removed. The formulation of the CP model is presented in Figure 2.
Note that CP model is written in CP Optimizer language.

The objective function is the minimization of the total distance traveled by the aircraft.
EndOf (z2,4+1) corresponds to the end-point of the last interval variable in the sequence
variable m: the time (i.e., total distance travelled) when the aircraft returns to the depot.
Constraint (1a) ensures that each pair of consecutive interval variables is scheduled with a
transition time equal to at least the required travel distance between the two corresponding
locations. Constraint (1b) enforces that the pickup location of each request is visited before
the delivery location. Constraint (1c) specifies that the aircraft begins and ends at the start
and end depot locations.

We used three cumulative functions to represent the following values that are potentially
changed by each interval variable (aircraft visits): available cargo space, number of empty
seats, and the total number of seats. In particular, cumulative functions (1d) and (1f) are
used to represent the available passenger and cargo space as the trip proceeds. H represents
the number of empty seats in the aircraft (i.e., the available passenger space) and C' represents
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min End0f(z9y,41) (CP)
s.t. NoOverlap(m,{d;;: (i,5) € A}) (1a)
EndBeforeStart(z;, Tnyi) Vie{l,..,n} (1b)
First(m,xg), Last(m,xon11) (1c)

2n
C = StepAt(xo, C’o) + Z StepAtStart(z;, —§; — L - s;) (1d)

i=0
C>0 (Le)

_ 2n
H = StepAt(zg,So) + Z StepAtStart(x;, —7; + s;) (1f)

i=0
H>0 (1g)

~ 2n
S = StepAt(xo, So) + Z StepAtStart(x;, s;) (1h)

i=0
S<S (1i)
x; : intervalVar(0) Vi € Vo,2n+1 (1)
s; : integerVar(—S, min($, 7)) VieVy (1k)
7 : sequenceVar(xg, ..., Tap+1) (11)

Figure 2 The CP Model for the PD-SRP.

the available cargo space. Before the trip starts, K = H 4+ C and, if there are Sy seats in
the aircraft at the start, H = L - So. The expression StepAtStart(var, impact) specifies
the change (increment or decrement) to the cumulative function at the start of an interval
variable. The available cargo space C' will decrease as cargo and seats are picked up, therefore
we use StepAtStart(z;, —§; — L - s;) to represent the changes to available cargo space at
each location ¢ € {1,...,2n}. The available passenger space will decrease when cargo is
picked up, while increasing when adding seats as represented by StepAtStart (z;, —7; + s;)
at each location ¢ € {0, ...,2n}. The cumulative function S is introduced in constraint (1h)
to describe the change of the total number of seats in the aircraft. S will change with the
number of seats being added or removed as represented by s;. Constraint (1i) restricts the
total number of seats by the maximum seat capacity S. In constraint (1k), the domain of s;
is [75' , SY] reflecting the range of the number of seats that the aircraft can remove or add at
location 1.

It should be noted that every interval variable contributes to the cumulative constraint,
which means that these bounds are maintained throughout the sequence. Therefore, we do
not need to have a separate cumulative function for every location of the tour.

4.2 Mixed Integer Programming Models

In this section, we describe three MIP models motivated by existing models for pickup and
delivery problems. The first two models exactly represent the PD-SRP and therefore admit
optimal solutions. The final model is a restriction of the PD-SRP problem that can be used
to quickly find a feasible solution and, therefore, an upper bound for the PD-SRP. In our
experiments, we investigate the use of this restricted model to warm-start the CP model and
two other MIP models.
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min Z Z dijxij (M]HP[OC)

1€Vo JEVN11,i#]

Z zy; =1 1eVy (2a)
JE€EVN+1

Z Tji— Z 25 =0 ieV (2b)
JEVo,j#i JEVN41,i#]
i+ @i — [VI(L— ) <7 i€Vo,j EVNy1,i# ] (2¢)
1< <|V] ieV (2d)
T+ 1< ooy ieP (2e)
yi+m <8 i€V (2f)
yi+mi+s; <8 1€V (2g)
T+ <8 ieW (2h)
u; +q; + Ly; + Lm; < K 1€V (21)
u; < u; — Lsi — Gy + (2K)(1 — x45) i€V, jEVNILIF ] (2))
uj > u; — Ls; — Giviy — (2K)(1 — x45) i€V, JEVNILIF] (2k)
Yy < yi + s — iy +25(1 — zy5) PEV,JEVNILIF ] (2
y; > yi + s — fizig — 28(1 — 245) ieV,jeVni,i# ] (2m)
7 > w4+ miwi — S(1 — x45) i€V, jEVNi1,i#] (2n)
4 > ¢ + qimij — K(1 — z5) i€V, jEVNILIF] (20)
—y; < s; <min (S,8?) ieV (2p)
To = mo = qo = 0,u9 = Co, 0 = So (2q)
z;; € {0,1} i €Vo,] EVNy1,i # ] (2r)
Wiy Yis T, ¢y s € ROT s, €R i€ Vo,Nt+1 (2s)

Figure 3 The MIP;,. Model for the PD-SRP.

4.2.1 Two-indexed Location-Based MIP (MIP,,.)

We propose a two-indexed location-based MIP model for PD-SRP (MIP;,.) based on a model
for an existing pickup and delivery variant [7]. In MIPy,., ;; is a binary variable that is 1 if
arc (i,j) € A is traveled and is 0 otherwise. Non-negative continuous variables 7;,u;, and
y; represent the distance, available cargo space, and empty seats, respectively, on arrival at
vertex ¢ € Vp ny1. As above, let variable s; be the number of seats that are added (s; > 0) or
removed (s; < 0) at location i. Finally, let 7; and ¢; be the number of passengers and boxes
of cargo on the aircraft on arrival at vertex i € Vy n41, respectively. The MIIP;,. model is
shown in Figure 3.

The objective function minimizes the total distance traveled. Constraint (2a) ensures that
each customer is visited exactly once while constraint (2b) forces an arrival and departure
at each non-depot vertex. Constraints (2¢) and (2d) prevent the formation of the subtours,
using Miller-Tucker-Zemlin (MTZ) constraints [17]. Constraint (2e) forces the aircraft to
visit the pickup location of each commodity before the delivery location. Constraints (2f) and
(2g) respectively ensure that the total number of seats before and after adding or removing
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new seats does not exceed the passenger capacity. Similarly, constraint (2h) ensures that the
total number of passengers on the aircraft after fulfilling the demand of vertex i does not
exceed the passenger capacity. Constraint (2i) enforces the relationship between w; and y;.
Note that the left hand side of the constraint restricts the picked-up cargo and passengers to
not exceed the aircraft capacity. Constraints (2j) and (2k) define the upper bound and lower
bound on the available cargo space, respectively. Similarly, constraints (21) and (2m) set the
upper and lower bounds on the number of empty seats. Constraint (2n) ensures that the
passenger demand is met at each location, while constraint (20) does the same thing for the
cargo demand. Constraint (2p) restricts the number of the seats that can be added based on
their availability. The lower bound on the number of removed seats, when s; < 0, is always
the number of seats on the aircraft at the arrival of location 4. Lastly, constraints (2q) - (2s)
specify binary and continuous variable domains.

4.2.2 Three-indexed Rank-Based MIP (MIP,,.x)

The three-indexed ranked-based MIP model for PD-SRP (MIP,.,,,x) is adapted from a model

for the multi-commodity pickup and delivery traveling salesperson problem [3]. In MIP,;,
t

4,
and location ¢ is at position ¢ of the tour, for 4,5 € Vo y+1,7 # j,t € {0,...,2n + 1}. Binary
variable y; ; is 1 if location ¢ is visited at position ¢ of the tour, i € Vo 41, ¢t € {0,...,2n+1}

and 0 otherwise. Variable s; is the number of seats added or removed at the ¢’th position of

z7 . is a binary variable indicating that aircraft goes directly from location i to location j

the tour, for t € {0,...,2n + 1}, with a negative value corresponding to the number of seats
removed. Variables w; and u; represent the empty seats and available cargo space on arrival
at t’th position of the tour, for ¢ € {0,...,2n + 1}. Finally, let 7 and ¢; be the number
of passengers and boxes of cargo on arrival at ¢’th position of the tour. The MIP, ., is
presented in Figure 4.

The objective function minimizes the total travel distance. Constraints (3a) and (3b)
ensure that tour positions are assigned to exactly one location and that each location is
visited exactly once, respectively. Constraint (3c) calculates the number of empty seats just
before visit ¢, where Z?:l Yi,t—17; is the number of passengers picked up at position ¢t — 1
of the tour. Similarly, constraint (3d) calculates the available cargo space just before visit
t, where > | y; +4; is the amount of cargo picked up at position ¢ of the tour. Constraint
(3e) states that each commodity is picked up before it is delivered. Constraint (3f) enforces
the relationship between w; and w;. The left hand side of the constraint enforces that the
picked-up cargo and passengers do not exceed the available aircraft capacity. Constraint
(3g) ensures that there is always C' space available for cargo on the aircraft. From (3f)
and (3g) we can conclude that 7, + w; < S: the total number of seats does not exceed
the passenger capacity. Constraint (3h) ensures the feasibility of the number of seats to
be added or removed. Constraints (3i) and (3j) calculate the number of passengers and
boxes of cargo at each position of the tour, respectively. Constraints (3k) and (3l) enforce
the relationship between y and z variables and, together with (3e) and (3m), prevent the
formation of subtours in a MTZ fashion. Lastly, constraints (3n) - (3q) specify the domains
of the variables.

4.2.3 Upper bound MIP Model (MIP; )

Our preliminary experiments suggested that the CP amd MIP models presented above
struggled to find good feasible solutions. We, therefore, investigate the use of a third MIP
model, designed to quickly find an upper bound on the PD-SRP by solving a restriction of
the full problem. Such a model provides a heuristic solution as well as a potential warm-start
solution for the complete models.
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Figure 4 A Three-Indexed MIP Model for the PD-SRP.
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min Z Z Ci jTij (MIPy )

1€Py jEPo,i#]

st > wiy=1 Vie P (4a)
JEPy,i#]
> ma— Y, m;=0 VjeP  (4b)
1€EPN41,i7#] i€ Py,i#]
ti+ai;—|P|(1—x;) <t Vi € Pyy1,j € PNa1,i £ J (4c)
55 < 80+ (S + SDaiy +|S(1 — 21) Vie Py,j€Pnyri#j  (4d)
Lsi+G4 < K Vie Pyyr (de)
1<t <|P| Vie P (4f)
5;< 8 VieP  (4g)
s > s Vie P (4h)
to = (4i)
So < s0 < So+ 50 (4)
zi; € {0,1} Vie P (4k)
t;eNs; €N Vi€ Pon+1 (41)

Figure 5 The Upper Bound MIP model for a restriction of PD-SRP.

The upper bound model is obtained by over-constraining the original problem to require
that a request must be delivered immediately after being picked up. The nodes in this
problem include the start depot vy, the end depot vy41, and all the pickup nodes P =
{v1,...,v,}. For modeling purposes we define sets Pyi1 = P U {vnyy1},Po = PU{v}
and Py y+1 = P U {vo,vn+1}. The delivery nodes are not explicitly included because each
origin-to-destination trip takes place immediately after the visit to the pickup node with the
total distance increased by both the travel to the pickup node and the travel between the
pickup node and the delivery node.

The MIPyp model is presented in Figure 5. Let x; ; be a binary variable indicating that
the aircraft goes from the delivery location of the request ¢ to the pickup location of request
j. Let s; be the number of seats in the aircraft right after visiting location 7. Finally, let t;
be the position of location ¢ on the tour. The solution returned by this model is likely to be
sub-optimal for the PD-SRP.

The objective function minimizes the total distance traveled. The coeflicient c;; represents
the total distance starting from the delivery location of request i, visiting the pickup location
of request j, and then travelling to the delivery locations of request j. Request 0 is to travel
from the depot to the pickup location of the first request. The delivery and pickup locations
of request 0 are nodes vy and vs,+1, respectively.

Constraints (4a) and (4b) ensure that each node is visited exactly once. Constraints
(4c), (4f), and (4i) prevent the formation of subtours. Constraint (4d) describes seat changes
when the aircraft visits a node and constraint (4e) requires that the space taken up by the
seats in the aircraft must be less than or equal to the remaining space after picking up the
cargo of the current request. Constraint (4g) restricts the number of seats to never surpasses
the maximum number of seats allowed in the aircraft and constraint (4h) ensures that the

number of seats in the aircraft never drops below the number of passengers to be picked up.

Constraints (4j) - (41) specify the domains of the variables.
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4.3 Domain-Independent Dynamic Programming Models

Domain-Independent Dynamic Programming (DIDP) is a recently proposed methodology
for solving combinatorial optimization problems by formulating the problem as state-based
dynamic program (DP) and using a generic solver to solve it [14]. DP models are declaratively
formulated in Dynamic Programming Description Language (DyPDL), a solver-independent
modeling formalism for DP that is inspired by AI planning. In DyPDL, a model consists of
the following;:

state variables: variables that take on numeric, set, or set-element values that define the

states in the search space of the problem

target state: the problem state for which the optimal value is to be computed by the

recursive formulation

constants: state-independent values

transitions: decisions in the DP that move between states

base cases: a set of conditions that define states that terminate the recursion

state constraints: conditions that must be satisfied by all states

dual bound: an optional lower (upper) bound on the objective function for minimization

(maximization) problems.

We developed two DIDP models for the PD-SRP.

4.3.1 A Two-transition DIDP Model (DIDPyr)

Our first DIDP model has two types of transition: one to represent adding or removing seats
and picking up or delivering cargo and passengers and a second to model moving the aircraft
to a different location. In the model, a state is a tuple (U, i,q, 7, s, a), which represents
the set of unvisited vertices, U, the current location, i, the cargo load, ¢, the number of
passengers, 7, the number of seats, s, and a flag representing which type of transition to
apply, a. We set o = 1 if we have finished pickup/delivery at a location to indicate that the
next transition should be to move the aircraft. Otherwise, a = 0.

The DIDPyr model is defined in Figure 6. We focus first on Egs. (5¢) and (5d), which
respectively define the possible seat changes and possible next locations at a location .

Suppose that the number of seats at the current location i is increased by §. Since there
are SY seats stored at each location initially, when the aircraft has s seats, at i we can add
at most min{S?, S — s} seats and remove at most s seats. For simplicity we will denote
S; = min{S?, S — s}. Therefore, § € [fs, S;|. Let numeric constants w; and u; be the net
change of cargo and passengers at location ¢, respectively. The cargo will be increased by
wj, so the current cargo will become ¢ + w; < K — (s + §)L, the current space for cargo.
Similarly, the number of passengers will be 7 + u; < s + 4. Lastly, 6 must only take integer
values. With these conditions, Eq. (5¢) specifies the values of 4.

Consider visiting the next location, j, from current location ¢. To be a valid location to
visit next, j must be unvisited (j € U), it must be connected by an edge in the graph to
i ((i,7) € A), and it must be either a pickup location (j ¢ D) or its corresponding pickup
location must have already been visited. If we let p; be the pickup location for the request
whose delivery location is j, then this final condition is: p; ¢ U. Eq. (5d) represents the
candidate locations to visit next after current location i.

The objective function specifies the state for which the optimal cost needs to be computed:
the state where all pickup and delivery nodes are unvisited, the current location is the start
depot (vg), the cargo and passenger loads are 0, the aircraft has Sy seats, and the next
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compute Z(V,0,0,0,S5,0) (DIDPor)
di 2n+1 ifU=0,a=1
Z(U,i,q,m,s,a) = minser(g,r,s,i) Z(U, 4, ¢+ wi, 7 +uiy, s +6,1) ifU#0,a=0 (5a)
minje g, di; Z(UN\{j}. J, ¢, 7, 5,0) ifU#£0a=1
Z(U,i,q,m,s,) >0 (5Db)
T(i,q,m,s) = {66 {—S,S’Z} lg+w; < K—(s+0)LAT+u; < s+6,6EZ} (5¢)
RU,i)={jeU|(,j)eAN(G¢DVp; ¢U)} (5d)

Figure 6 The Two-transition DIDP Model (DIDP.r) for PD-SRP.

compute Z(V,0,0,0, So) (DIDP, 1)
( : {di,ml if U=0A36€T(,q,m,s)
Z(U,i,q,m,8) = . R .
P min di i + Z(U Gy g+ wi, ™+ ug, s+ 0 ifU #£0
Gere T s B (U\{j}. 4.4 ) #
(6a)
ZU,i,q,m, s) >0 (6b)

Eq. (5¢),Eq. (5d).

Figure 7 The One-transition DIDP Model (DIDP;7) for PD-SRP.

transition should be to move the aircraft (a = 0). In Eq. (5a), the first line computes the
cost to return to the depot from node ¢, the second line describes the cost of adding or

removing ¢ seats at node 4, and the third line describes the cost of visiting node j from 1.

Note that when the aircraft is moved, the state variable « is set to 0 and if the decision
regarding seats is made in this transition, « is set to 1. Constraint (5b) is a dual bound for
the DIDP model which is optional but may be exploited by the solver.

4.3.2 A One-transition DIDP Model (DIDP,r)

We present the DIDP;7 model in Figure 7. In this model, instead of two types of transitions,
we define one type that performs the pickup/delivery and seat exchange at a location and
then moves the aircraft to a new location. A state is the same as in DIDP;r with the
exception of the « flag which is no longer necessary: (U, 1, q, 7, s). As a transition first picks
up or delivers cargo, passengers, and seats at the current location and then moves the aircraft
to the next location, each transition corresponds to selecting (d, j): ¢ is the number of picked
up seats and j is the next location to visit. The set of possible decisions at each state is
therefore T'(i, q,m, s) X R(U, i) as defined in the second line of Eq. (6a).

The objective function of DIDP;, defines the state for which the optimal cost is to be
calculated. It is identical to the target state in DIDPy7 with the removal of . In Eq. (6a),
the first line describes the cost of returning to the depot from node ¢, and the second line
describes the cost of visiting node j from i. Note that the first line checks if there exists
some J such that the capacity constraints on the cargo and the passengers are satisfied. If
there is no such 4§, we assume Z(0,14,q, 7, s) = co.
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4.3.3 Model Sizes and Solver

In a DIDP model, we need to define all transitions that are applicable in a state. In DIDPy7,
0 can take an integer in [—5’7 S] depending on a state, so there are 25 + 1 candidates. We
have |Vy1| locations to visit. Thus, DIDPyr requires 28 +1+ |VN41] transitions to be
defined in total. In contrast, DIDP; needs to define (25 + 1)|Vy 1| transitions but does
not have state variable a. An alternative perspective is that the two DIDP models make
different trade-offs between the maximum branching factor and solution length. DIDP;+ has
a branching factor of at most (25 + 1)|Vy 1| at each state and a solution path length of
|Var11|. DIDPyr has a maximum branching factor that alternates between 25 +1 and |V 41|
and a solution length of 2|V _11|. The performance of a solver is affected by the number of
state variables, the branching factor, and the solution length.

We solve the DIDP models with a complete anytime beam search (CABS) solver [25, 15].
CABS is an anytime algorithm meaning that seeks to quickly find a feasible solution and
then to improve it in the remaining run-time. CABS employs beam search: a heuristic search
algorithm that maintains a fixed number, b (beam width), of best states when exploring the
search space. In CABS, beam search is performed iteratively with increasing the beam width
until a stopping condition is met. Due to the iteratively increasing beam width, CABS is a
complete algorithm [25].

5 Numerical Evaluation

5.1 Experimental Setup

We have developed six different models, i.e., CP, MIP;,., MIP,.4. ., MIPy g, DIDP; 7, DIDPyyp.
For the experiment, we use MIPy g to warm-start the MIP and CP models, producing three
additional approaches: MlP;,. w, MIP,4ni w and CPy .

To implement and solve the models we used Python v3.8.0 and the corresponding Python
interfaces to the solvers: Gurobi Optimizer 10.0.1 and gurobipy for MIP, CP Optimizer
22.1.0.0 and DOCPlex for CP, and didppy 0.3.3 for DIDP.! Each run has a time limit of
600s. The machine used to run the experiment has Intel(R) Core(TM) i7-9700 8 core CPU
@ 3.00GHz, 12MB cache, and memory of 31G.

The models are tested on randomly generated instances with sizes 4,6, 8,10, 12, 15, and
20 with 10 instances per size. The size of each instance is the number of requests, which is
half of the number of locations. We generate problem instances randomly, approximately
reflecting real-world problem size, aircraft capacity and configurations, and stored seats at
each location. We fix the maximum number of seats in the aircraft S = 6, the cargo-to-seat
ratio L = 100, and the cargo capacity on a full-seat aircraft C' = 200. The number of seats
in the aircraft start configuration, Sy, is selected uniformly from {0, ...,6} and the cargo
capacity in the start configuration is Cy = 800 — 100S,. Similarly, the number of seats
available at location i, S?, is set uniformly from {0, ..., 6}, independently for each location.
The (,y) coordinates of every location are uniformly generated from {0, ..., 100}2.

We generate the passenger and cargo demand to ensure the existence of capacity-feasible
solutions. For each request ¢ € {1,...,n}, there is a demand of #; passengers and demand of
G; kg cargo (i.e., ¢;/L units of cargo). We first define the total number of passengers and
units of cargo as K = §;/L + #;, and K is uniformly generated from {1,...,5 + C/L = 8}.
The passenger request #; is then selected uniformly from {0, ..., min(S K )}. Consequently,

the cargo request is §; = L(K — 7;).

! nttps://didp.ai
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To compare the models, we used the number of instances solved and proved optimal, the
PARI10 score time [12] (i.e., mean run-time with 10 times the time limit used if no optimal
solution was proved), and mean relative error (MRE).

MRE compares the solution quality returned by each model. For an optimization problem
let 0bji m,i be the objective value of the best solution achieved by time ¢ of model m for
instance ¢ and let obj; be the best-known objective value for that instance considering all the
models. For the set of instances, Z, the relative error and mean relative error are computed
in Egs. (7) and (8). If a model did not find a feasible solution by a given time, the MIPy
value is used to calculate a non-infinite measure.

0bjt,m,i — 0bj;

RE(t,m,i) = o (7)
MRE(t,m) = % > RE(t,m,i) (8)
i€
5.2 Results

Figures 8a and 8b show the number of solved instances (i.e., proved infeasible or optimal) and
mean PARI10 times for all the models. We do not include MIIPy; g as it is incomplete, however
for each model, its run-time is less than 0.02s. The run times for MIP;,. w, MIP,4ni w,
and CPy models, include the warm-start time.

The DIDP models solved all of the instances with 12 or fewer requests, with DIDPyp
performing slightly better than DIDP; for instances of size 15 as it could solve three instances
compared to none for DIDP;7. Neither CP nor CPy, were able to solve any instances of size
larger than 6 while the MIP models scaled up to size 10 or 12. There was one instance of
size 4 that CPy could not prove optimality, but CP could.

In terms of solution time, the DIDP models were the fastest and CP models were the
slowest. For the MIP models, MIP, .., w performed slightly better than MIP, ., in terms
of both the number of solved instances and mean solution time. For one instance of size 12,
MIP,.qnr_w proved optimality where MIP,.q, could not.

The MRE graph is shown in Figure 8c. DIDPy7 returns the best solutions and finds those
best solutions within a few 10s of seconds. Up to 300s, CPy outperformed MIP,qnx w,
MIP;oc w, MIP;,. but after that point, their solution qualities are very similar. The solution
qualities returned by CP are the worst after 100 seconds. However, the use of MIPy g as a
warm start substantially improves CIP quality especially for short run times. The performance
of the MIP;,. and MIP;,.  models was very similar, however, the MIP;,. 1 model returned
slightly better solution qualities than MIP;,., especially before 200s. As we expected, the
solutions found by the incomplete MIPy g are substantially worse than other models.

Overall, DIDP models performed better than MIP and CP, and in particular DIDPyr
performed best in terms of the number of solved instances and average time to solve the
instances. We hypothesize that DIDP outperforms other models due to the combination
of tight capacity constraints and the precedence constraints induced by the pickup-and-
delivery structure. DIDP uses these constraints to prune many transitions and, thus, reduce
the search space. This result is consistent with previously observed behavior of DIDP on
constrained routing problems [15] and suggests an opportunity for research to understand
model characteristics that correlate with strong DIDP performance compared to other
optimization approaches.
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Figure 8 Performance of MIP, CP and DIDP models.

6 Discussion

The contributions of this work are the introduction of a novel pickup-and-delivery problem
inspired by air services in northern Canada, the creation and evaluation of six optimization
models in three different frameworks, and the further demonstration that the recently
proposed domain-independent dynamic programming approach can out-perform incumbent
techniques in a model-and-solve paradigm.

While DP models are inherently state-based, the DIDP formalism provides a novel avenue
for constraint-based problem solving with connections to early ideas in CP (e.g., [6]). The
DIDP models for PD-SRP are unusual as DP models due to the extensive, constraint-based,
limitations on transitions (i.e., Egs. (5¢) and (5d)). While such limitations are key to strong
DP performance, they are typically procedurally implemented in a problem-specific DP
search algorithm. In DIDP, in contrast, constraint reasoning is used to prune transitions
based on the values of state variables rather than pruning variable domains based on partial
assignments. We believe that understanding this difference and developing constraint-based
reasoning for this context is a fruitful research direction for CP.

Our study has a number of limitations and opportunities for further research:

In the definition of PD-SRP, we discretized cargo into identical boxes with one size
dimension (i.e., weight). In reality, cargo can take many forms from boxes of different
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sizes and weights to baggage in various forms. Minimally, the volume of cargo needs to
be represented. More generally, the problem should address the four-dimensional (i.e.,
volume plus weight) packing of heterogeneous cargo.

We made the assumption that passengers do not have travel time restrictions. However,
as a potential avenue for future research it would be interesting to incorporate additional
constraints regarding how long a single passenger can be stowed in the aircraft or how
long they can wait to be picked up.

As is common in OR literature on transportation problems, our objective function is the
minimization of the travel distance. A more realistic objective would represent aspects
such as time and fuel consumption as well as handling and storage costs for seats.

Most airlines run regular services with defined timetables and routings. Preliminary work
indicates that determining seat exchanges is an easy problem when routes are decided.
If this result bears out, there are two implications. First, we may have tools to deal
with harder aspects of the real world problem including multiple aircraft, uncertain and
dynamically changing demand (e.g., due to extreme weather in Canada’s north), and
strategic decisions about timetable creation, seat inventory, and aircraft capacities. Second,
even with the version of PD-SRP presented here, we may be able to scale by exploiting
the “easy” seat exchange part of the problem through Benders decomposition [2].
Although, in this study, our focus was to design simple models that can be used “off the
shelf”, it is interesting to investigate sophisticated custom-constraint CP models in the
future development of this work to see if they outperform the currently developed MIP
and CP models.

7 Conclusion

This paper studied a novel pickup and delivery transportation problem with reconfigurable
capacities, a problem inspired by air service in northern Canada. We defined the problem
formally and developed six models in three different modeling formalisms: constraint pro-
gramming, mixed integer programming, and domain-independent dynamic programming.
We compared the performance of the models on a set of randomly generated instances. MIP
and CP models were solved with commercial solvers, the DIDP model was solved using the
recently developed domain-independent dynamic programming solver [15].

Our results show that domain-independent dynamic programming models are the fastest
in both finding high-quality feasible solutions to problem instances and in solving them to
optimality. For large instances, when the number of requests is greater than 15, even DIDP
models were not able to solve the instances to the optimality. Although in general, MIP
models were faster to find feasible solutions than CP, for short run times, CP found better
solutions than both of the MIP models.

Our future work will study generalizations of the problem by considering multiple aircraft
and more realistic representation of cargo size and aircraft capacity. We have also embarked
on a study of the decomposition of the problem both to better fit the real-world use case where
routes are often predefined and to exploit the computational advances of the mathematical
structure of the decomposition.
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