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Abstract
A binary constraint tree (BCT, Wang and Yap 2022) is a normalized binary CSP whose constraint
graph is a tree. A BCT constraint is a constraint represented with a BCT where some of the variables
may be hidden (i.e. existentially quantified and used only for internal representation). Structured
decomposable negation normal forms (SDNNF) were introduced by Pipatsrisawat and Darwiche
(2008) as a restriction of decomposable negation normal forms (DNNF). Both DNNFs and SDNNFs
were studied in the area of knowledge compilation. In this paper we show that the BCT constraints
are polynomially equivalent to SDNNFs. In particular, a BCT constraint can be represented with
an SDNNF of polynomial size and, on the other hand, a constraint that can be represented with an
SDNNF, can be represented as a BCT constraint of polynomial size. This generalizes the result of
Wang and Yap (2022) that shows that a multivalued decision diagram (MDD) can be represented
with a BCT. Moreover, our result provides a full characterization of binary constraint trees using a
language that is well studied in the area of knowledge compilation. It was shown by Wang and Yap
(2023) that a CSP on n variables of domain sizes bounded by d that has treewidth k can be encoded
as a BCT on O(n) variables with domain sizes O(dk+1). We provide an alternative reduction for
the case of binary CSPs. This allows us to compile any binary CSP to an SDNNF of size that is
parameterized by d and k.
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1 Introduction

Constraint satisfaction problems (CSPs) offer an expressive and natural way of formulating
problems. A CSP is a problem of checking satisfiablity of a conjunction of constraints on
variables with finite domains. Constraints can be represented in various ways, which include
tables (see e.g. [2, 17, 18]) or multivalued decision diagrams (MDD, see e.g. [1, 5, 6]).

The representation using binary constraint trees was introduced in [27]. A BCT constraint
is a constraint c defined on a set of variables x that is represented with a normalized binary
CSP P whose constraint graph is a tree. The CSP P itself is defined on a set of variables
z which may include some hidden variables in addition to all the original variables from x.
BCTs have a nice property that an arc consistency propagator can be used to check their
consistency [12]. Any CSP can be turned into a binary one with an encoding such as dual
encoding [11], hidden variable encoding [22], double encoding [24], or bipartite encoding [25].

Decomposable negation normal forms (DNNFs) were introduced in [7] as a tractable
language for knowledge representation. Structured DNNFs (SDNNF) were introduced in [20].
The definition of SDNNFs is based on the notion of a v-tree which is a rooted binary tree
whose leaves are in one-to-one correspondence with the constraint variables (both original and
hidden). The conjunction gates in an SDNNF are then required to respect a particular v-tree
(see definitions 5 and 6 in Section 2.3 for more details). The structural requirements imposed
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on SDNNFs allow for instance a polynomial time construction of an SDNNF representing the
conjunction of two SDNNFs that respect the same v-tree – something that is not possible
for DNNFs without any structural requirements. Although DNNFs were introduced as a
representation of functions on boolean variables, they were also considered as a representation
of constraints on variables with finite domains [1, 14].

Both BCT constraints and SDNNFs have a structure based on a tree. We use this
similarity to show the main result of this paper: BCT constraints and SDNNF constraints are
polynomially equivalent. In particular, we show a polynomial time transformation of a BCT
constraint into an SDNNF and also a polynomial time transformation of an SDNNF into a
BCT constraint. The polynomial equivalence of BCTs with SDNNFs offers a characterization
of BCTs by a language of SDNNFs which has been extensively studied in the area of knowledge
compilation [3, 20, 21, 23]. Our result also generalizes the previous construction of a BCT
constraint for an MDD described in [27]. It was shown in [26] that BCTs are strictly more
succinct than MDDs. This also follows from a combination of our result with the fact that
SDNNFs are strictly more succinct than MDDs by [20].

Recently, [28] studied BCTs from the perspective of knowledge compilation together with
several other languages that are being used to represent ad-hoc constraints. The authors
studied BCTs with respect to the queries and transformations considered in the knowledge
compilation map [10] and showed that BCTs allow answering consistency, clausal entailment
and model enumeration queries in polynomial time which is (unsurprisingly) the same as in
the case of structured DNNFs [20]. The authors of [28] also studied BCTs with respect to
transformations. If the input BCTs or SDNNFs are required to have the same tree structure,
then they allow polynomial-time bounded conjunction, unbounded disjunction, forgetting
any number of variables, and conditioning [20, 28]. Interestingly, [20] only considers the
case of combining SDNNFs that respect the same v-tree while [28] also considers the case of
combining BCTs that are not required to have the same tree structure. In this case BCTs do
not allow polynomial time bounded conjunction, they do not allow an unbounded disjunction,
and the case of bounded disjunction is unresolved in [28]. We believe that our result might
help to resolve the case of bounded disjunction for BCTs, because it might be easier to reason
about a disjunction of two SDNNFs than BCTs. It is also worth mentioning that according
to [20], AOMDDs introduced in [19] are strictly less succinct than SDNNFs and thus also
strictly less succinct than BCTs. This already answers one of the questions posed in [28].

Our transformation of a BCT constraint into an SDNNF leads to a smooth SDNNF. It
is thus possible to use a domain consistency propagator for smooth DNNFs described in [14]
as a domain consistency propagator for BCT constraints. An encoding of BCT constraints
with propagation complete CNF formulas was described in [26]. Various CNF encodings
of DNNF theories were considered in [1] and a propagation complete encoding of smooth
DNNFs was introduced in [16]. Our result thus offers an alternative way of reducing BCT
constraints to a CNF encoding.

If CNF φ has treewidth k, then it can be compiled to an SDNNF of size that is parame-
terized by k by the construction described in [21]. In particular, if φ has n variables and m

clauses, then an equivalent SDNNF can be constructed in time O(nm2k). We can obtain
a similar result also for binary CSPs, but we have to take into account also the domain
sizes. It was shown in [28] that if P is a CSP on n variables of domain size d that has
treewidth k, then it can be encoded as a BCT with O(n) variables with domain size dk+1.
The construction in [28] uses the encoding described in [11]. In addition, if P is a binary CSP,
its consistency can be checked in time O(ndk+1) by [13]. To have a complete compilation
procedure of a binary CSP into an SDNNF, we provide a direct reduction of a binary CSP
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to a BCT parameterized by the treewidth and the domain size. The bound we obtain is the
same as in [28], so our result is not really new in this sense, but we obtain a slightly better
bound on the size of an SDNNF constructed for the given binary CSP than if we would
simply combine the bound of [28] with our construction of an SDNNF.

The paper is organized as follows. We introduce the necessary notation in Section 2,
including the definitions of BCTs and structured DNNFs. In Section 3, we show that a BCT
constraint can be represented with an SDNNF. The transformation of an SDNNF to a BCT
is described in Section 4. A tranformation of a binary CSP with bounded treewidth into an
SDNNF is described in Section 5. Section 6 closes the paper with a few concluding remarks.

2 Definitions

In this section, we shall recall the necessary notation and notions used in the paper.

2.1 BCT Constraint
We use a notation adapted from [27] where binary constraint trees were introduced.

A CSP P is a pair (x, C) where x is a set of variables and C is a set of constraints.
Each variable x has a finite domain denoted dom(x). A literal on a variable x is a variable
value assignment (x, a). A tuple over a set of variables {xi1 , xi2 , . . . , xir } is a set of literals
{(xi1 , a1), (xi2 , a2), . . . , (xir

, ar)}. Each constraint cj has a constraint scope scp(cj) ⊆ x
and a relation rel(cj) defined by a set of tuples over scp(cj). A constraint c is a binary
constraint if |scp(c)| = 2 and it is a unary constraint if |scp(c)| = 1. A CSP P is called a
binary CSP if it consists of binary and unary constraints. A binary CSP is normalized if its
constraints have pairwise different scopes. Given any set of variables z and literals τ , we
use τ [z] = {(x, a) ∈ τ | x ∈ z} to denote a subset of τ , while T [z] = {τ [z] | τ ∈ T} is the
projection of a set of tuples T on z. A tuple τ over x is a solution of P if τ [scp(c)] ∈ rel(c)
for all constraints c ∈ C and a ∈ dom(x) for all (x, a) ∈ τ . We use sol(x, C) (or sol(P )) to
denote the set of all solutions of P . We also say that P is satisfied by its solution and that a
solution of P satisfies all constraints in C. A support of a value a ∈ dom(x) in a constraint c

is a tuple τ ∈ rel(c) such that (x, a) ∈ τ and b ∈ dom(y) for all (y, b) ∈ τ .

▶ Definition 1 ([27]). A Binary Constraint Tree (BCT) is a normalized binary CSP whose
constraint graph is a tree. A BCT constraint c is a pair (x, P ) such that P = (z, C) is a BCT,
scp(c) = x ⊆ z, and rel(c) = sol(z, C)[x]. A tree binary encoding (TBE) of a constraint
c∗ is a BCT P = (z, C) such that the BCT constraint (scp(c∗), P ) has the same constraint
relation as c∗ where the variables in scp(c∗) and z \ scp(c∗) are called the original and hidden
variables, respectively.

▶ Example 2. Let us consider a BCT constraint c∗ = (x, P ) on three variables x =
{x1, x2, x3} where P = (z, C) is a BCT described as follows. We have one hidden variable
y in P , i.e. z = {x1, x2, x3, y}, and three constraints C = {c1, c2, c3} with scp(ci) = {xi, y},
i = 1, 2, 3. The domain of all variables (original and hidden) is {1, 2, 3}. For i = 1, 2, 3, we
set rel(ci) = {((xi, a), (y, b)) | a ≠ b}. That is, ci enforces that y has a different value from
xi in any solution to c∗. Altogether, c∗ is equal to the negation of the alldifferent constraint
over the variables x1, x2, x3.

A general construction of a BCT representing the negation of the alldifferent constraint
over variables x1, . . . , xr with domains D = {1, . . . , r} was described in [27] where the authors
also noted that the size of the MDD representing the constraint is exponential in r.

CP 2023
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z4

z3

z2z1

c3

c2c1

(a) The binary constraint tree of P .

(z3, 0) (z3, 1) (z3, 2)

(z1, 0) (z1, 1) (z1, 2)

(b) Relation of constraint c1 (z1 ≤ z3).

(z3, 0) (z3, 1) (z3, 2)

(z2, 0) (z2, 1) (z2, 2)

(c) Relation of constraint c2 (z2 ≤ z3).

(z4, 0) (z4, 1) (z4, 2)

(z3, 0) (z3, 1) (z3, 2)

(d) Relation of constraint c3 (z3 < z4).

Figure 1 A binary constraint tree P = (z, C) from Example 3.

To demonstrate the techniques described in the paper, we shall consider a simple constraint
that is a bit less symmetrical than the negation of the alldifferent constraint on three variables.

▶ Example 3. Figure 1 shows a BCT P = (z, C) that is defined on variables z = (z1, z2, z3, z4)
with domains dom(zi) = {0, 1, 2} for all i = 1, . . . , 4. C consists of three constraints.
Constraints c1 and c2 represent inequalities z1 ≤ z3 and z2 ≤ z3 respectively and its relation
is shown in figures 1b and 1c. Constraint c3 represents inequality z3 < z4 and its relation is
shown in Figure 1d. Note that literals (z4, 0) and (z3, 2) do not have support in c3.

Let us now consider a constraint c∗ with scope scp(c∗) = {x1, x2, x3} where dom(xi) =
{0, 1, 2} for i = 1, 2, 3 and the set of tuples rel(c∗) represents inequality max(x1, x2) < x3. If
we identify variables z1, z2, and z4 with x1, x2, and x3 respectively, then P is a tree binary
encoding of c∗ in which z1, z2, and z4 are original variables and z3 is a hidden variable.

Note that the hidden variable z3 is not actually needed for the constraint representation.
We keep it to demonstrate how a hidden variable can be later forgotten in an SDNNF. We
may also observe that literals (z4, 0) and (z3, 2) do not have a support in constraint c3.
We shall see later how this situation is dealt with during the construction of an SDNNF
representing c∗.

2.2 DNNF
The notion of a DNNF was introduced in [7] as a restriction of NNF. We consider a
multivalued variant that was used for instance in [14, 16]. This form is suitable for using
DNNFs to represent constraints.

Consider a set of variables x = {x1, . . . , xn} with a finite domain dom(xi) for each xi ∈ x.
A sentence in negation normal form (NNF) D is a rooted DAG with vertices V , root ρ ∈ V ,
the set of edges E, and the set of leaves L ⊆ V . The inner vertices (also called gates) are
labeled with logical connectives ∧ or ∨. Each edge (v, u) in D connects an inner vertex v

labeled ∧ or ∨ with one of its inputs u. The edge is directed from v to u, so the inputs of a
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vertex are its successors (or child vertices). The leaves are labeled with literals of variables x,
i.e. each leaf is labeled with a literal (xi, a) on a variable xi ∈ x and a value a ∈ dom(xi).
We assume that each literal (xi, a) is used as a label of at most one leaf. Some of the literals
may be missing in D, however, we assume that for each i = 1, . . . , n at least one leaf of D

is labeled with a literal on variable xi. For technical reasons, we also allow to label leaves
with constants 0 or 1. If a NNF is nonempty, constants can always be propagated and these
constants are thus needed only on a NNF without any variables.

If all the constraint variables xi ∈ x are boolean (i.e. dom(xi) = {0, 1}) and we identify
literal (xi, 1) with the propositional literal xi and literal (xi, 0) with the propositional literal
¬xi, then we obtain the usual definition of a NNF for representing a boolean function.

Assume that c is a constraint with the scope scp(c) = x and that D is a NNF defined on
the variables x. We say that D represents constraint c if for every tuple τ over variables x
we have that τ ∈ rel(c) if and only if D evaluates to true on the tuple τ . Evaluating D on
τ is done in a straightforward manner, we simply set the leaves (xi, a) ∈ τ to true and the
remaining leaves to false, then we use the usual semantic of the circuit D to get the value on
this assignment.

Following [14], we define the decomposability and smoothness properties with respect
to constraint variables x1, . . . , xn. For a vertex v ∈ V , let us denote var(v) ⊆ x the set of
variables in the subcircuit of D rooted at v. More precisely, a variable xi ∈ x belongs to
var(v) if and only if there is a directed path from v to a leaf labeled with a literal (xi, a) for
a value a ∈ dom(xi). We have by assumption that var(ρ) = x.

▶ Definition 4. We define the following structural restrictions of NNFs.
We say that NNF D is decomposable (DNNF), if for every vertex v = v1 ∧ · · · ∧ vk the
sets of variables var(v1), . . . , var(vk) are pairwise disjoint.
We say that DNNF D is smooth if for every vertex v = v1 ∨ · · · ∨ vk we have var(v) =
var(v1) = · · · = var(vk).

Assume that D is a DNNF representing constraint c with scope scp(c) = z. Let x ⊆ z
and y = z \ x. By forgetting variables y in D we mean the construction of a DNNF D′

that represents the constraint c′ which is a projection of c on variables x. In particular,
scp(c′) = x and rel(c′) = rel(c)[x]. Forgetting can be done efficiently on a DNNF, we simply
replace every literal (y, a) with constant 1 for all y ∈ y and a ∈ dom(y) [8].

2.3 Structured DNNF
Structured DNNFs were introduced in [20]. Structured decomposability is based on the
notion of a v-tree defined as follows.

▶ Definition 5 ([20]). A v-tree for a set of variables x is a full, rooted binary tree whose
leaves are in one-to-one correspondence with the variables in x.

Given a node t of a v-tree T , we denote var(t) the set of variables associated with the
leaves in the subtree of T rooted at t. We also denote var(T ) = var(σ) where σ is the root of
T . For a non-leaf node t, we use tl (tr) to denote the left (right) child node of t. For the rest
of this paper, we will assume that each conjunction in a DNNF has exactly two non-constant
inputs, while a disjunction can have any number of inputs. This is a technical assumption
used in [20] mainly to simplify the definition of a SDNNF, since with this assumption, it is
enough to consider only binary v-trees. Note also that we can make this assumption without
loss of generality due to the associativity and commutativity of conjunction.

CP 2023
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∨
DP

∧D4,1 ∧ D4,2

∨E3
4,1 ∨ E3

4,2

∧D3,0 ∧ D3,1

∧D
(2)
3,0 ∧ D

(2)
3,1

∨E1
3,0 ∨E2

3,0 ∨ E1
3,1 ∨ E2

3,1

(z1, 0) (z1, 1)(z2, 0) (z2, 1)

(z3, 0) (z3, 1)

(z4, 1) (z4, 2)

(a) SDNNF DP .

t3

z4

t2

z3

t1

z2z1

(b) v-tree T .

Figure 2 An example of an SDNNF DP and the corresponding v-tree T . This particular SDNNF
is the result of our construction on the BCT P from Example 3. The labels of the nodes mark the
steps of our construction.

▶ Definition 6 ([20]). A DNNF D respects a v-tree T if for every conjunction v = v1 ∧ v2 in
D, there is a node t in T , such that var(v1) ⊆ var(tl) and var(v2) ⊆ var(tr).

Let v be a node in a DNNF D that respects a v-tree T . The decomposition node (d-node)
of v is defined as the deepest node d in T such that var(v) ⊆ var(d).

▶ Definition 7 ([20]). A DNNF that respects a given v-tree T is denoted as DNNFT . Moreover,
the language of structured DNNFs (SDNNF) consists of all DNNFT for any v-tree T .

Given a DNNFT D, we can construct an equivalent smooth DNNFT D′ in quadratic
time [23]. It means that we can always assume that the input DNNFT is smooth.

▶ Example 8. Figure 2 shows an example of a smooth DNNFT . In particular, DNNFT DP

on Figure 2a respects v-tree T on Figure 2b. DNNFT DP represents the BCT constraint
(z, P ) where P is the BCT from Example 3.

For the construction of an SDNNF representing a BCT constraint, we will need the
following operation for composing two v-trees. Assume T1 and T2 are two v-trees on disjoint
sets of variables, i.e. var(T1) ∩ var(T2) = ∅. Then T = T1 ◦ T2 denotes the v-tree with a
newly added root σ whose left child node σl is set to the root of T1 and the right child node
σr is set to the root of T2. It follows that var(T ) = var(T1) ∪ var(T2).
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3 Compiling a BCT Constraint into a Structured DNNF

We shall show in this section that we can construct an SDNNF representing a given BCT
constraint in polynomial time.

▶ Theorem 9. Let c∗ = (x, P ) be a BCT constraint where P = (z, C) is a BCT. Then there
is a smooth SDNNF D representing c∗ with O(md) nodes and O(md2) edges where m = |z|
and d = maxzi∈z |dom(zi)|.

We will describe the construction of D in the rest of this section, thus proving Theorem 9.
Assume that n = |x| and z = {z1, . . . , zm} where x ⊆ z and m ≥ n is the number of all
variables. We assume that |dom(zi)| ≤ d for every i = 1, . . . , m.

The construction proceeds in two steps. First, we describe a construction of a SDNNF
DP representing P . A SDNNF D that represents c∗ then originates from DP by forgetting
the hidden variables y = z \ x. This step can be done efficiently by [20].

Let G be the constraint graph of P . G is a tree with the set of nodes z, each edge
corresponds to a single constraint from C. Let G+ denote a directed tree that originates
from G by picking an arbitrary node as a root and directing all edges from the root towards
the leaves. Let us assume that the nodes z1, . . . , zm are ordered in a reverse topological order
with respect to G+. It means that zm is the root and if (zi, zj) is an edge in G+, then i > j.
See Figure 1a for an example.

For every i = 1, . . . , m, let us consider the subtree Gi of G+ rooted at zi. Let Ci ⊆ C

denote the set of constraints corresponding to the edges of Gi. Denote zi =
⋃

c∈Ci
scp(c). In

this way, we have defined BCT Pi = (zi, Ci). For every value a ∈ dom(zi), we also define
BCT Pi,a as a restriction of Pi to the solutions that contain literal (zi, a). This can be
best understood as adding a unary constraint with scope zi and a single relation (zi, a) to
Ci. Another way of looking at it is restricting the relation of every constraint c ∈ Ci with
zi ∈ scp(c) to the tuples containing (zi, a) and setting dom(zi) to {a}.

The algorithm proceeds for every i = 1, . . . m in order and constructs for every a ∈ dom(zi)
a SDNNF Di,a representing BCT constraint (zi, Pi,a) and a v-tree Ti that is respected by
Di,a using the following steps:

(A1) If zi is a leaf (no edges leave zi in G+), then Pi has no constraints and Pi,a has the
domain of zi restricted to the single value a. DNNF Di,a is a single node labeled with
literal (zi, a) and v-tree Ti is a single node labeled with variable zi.

(A2) Assume that zi is not a leaf and it has k outgoing edges (zi, zi1), . . . , (zi, zik
) associated

with constraints c1, . . . , ck ∈ C. For every p = 1, . . . , k we have that ip < i, because the
nodes are processed in a reverse topological order, and thus we have already constructed
Dip,b and Tip

for each b ∈ dom(zip
). Let us now construct Di,a for a ∈ dom(zi) in the

following two steps.

(A2a) For every p = 1, . . . , k, define E
ip

i,a as follows:

E
ip

i,a =
∨

{(zi,a),(zip ,b)}∈rel(cp)

Dip,b.

CP 2023
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(A2b) We construct Di,j as a conjunction of literal (zi, a) with all DNNFs E
ip

i,a for
p = 1, . . . , k. However, since we only allow conjunctions with two inputs, we
construct Di,a in k + 1 steps as follows.

D
(1)
i,a = Ei1

i,a (1)

D
(p)
i,a = D

(p−1)
i,a ∧ E

ip

i,a for p = 2, . . . , k (2)

Di,a = (zi, a) ∧ D
(k)
i,a (3)

In addition, we define Ti as follows:

T
(1)
i = Ti1 (4)

T
(p)
i = T

(p−1)
i ◦ Tip

for p = 2, . . . , k (5)

Ti = zi ◦ T
(k)
i (6)

Variable zi is identified with a tree consisting of a single leaf labeled with zi in
step (6).

Once we have constructed Dm,a for every a ∈ dom(zm), we compose them to obtain DP

that respects v-tree T = Tm as follows:

DP =
∨

a∈dom(zm)

Dm,a. (7)

Intuitively, E
ip

i,a represents the fact that (zi, a) has a support ((zi, a), (zip
, b)) in cp.

Moreover, the constraints below zip
in G+ can be satisfied with the value of zip

set to b.
SDNNF Di,a represents the models of all constraints that correspond to the edges in the
subtree of G+ rooted at zi and that contain literal (zi, a). If (zi, a) does not have a support in
cp for some p = 1, . . . , k, then the empty disjunction E

ip

i,a is equal to constant 0 and so is Di,a.
However, it is possible that E

ip

i,a is inconsistent even if (zi, a) has a support ((zi, a), (zip
, b))

in cp, but Dip,b is inconsistent for every such b.

▶ Example 10. Figure 2 shows the result of the construction when applied to the BCT P

from Example 3. Note that there is no leaf labeled with literal (z4, 0), because (z4, 0) has no
support in constraint c3. For the same reason, there is no leaf labeled with literal (z3, 2).
Consequently, there are no leaves labeled with literals (z1, 2) and (z2, 2). It is worth noting
that value 2 would be removed from the domains of variables z1, z2, and z3 and value 0 would
be removed from the domain of z4 when enforcing arc consistency. In this way, enforcing arc
consistency is part of the construction.

If variable z3 would be forgotten from DP , we would obtain a SDNNF representing the
constraint c∗ from Example 3. This would amount to replacing leaves labeled with literals
(z3, 0) and (z3, 1) with constant 1. In this case, it just means removing these leaves altogether.
Afterwards, we could simplify the SDNNF by removing the trivial gates with a single input,
the result of this simplification can be seen in Figure 3.

We will now show that DP is a smooth SDNNF of polynomial size that represents P . We
will start by showing that DP is a smooth SDNNF.

▶ Lemma 11. DP is a smooth SDNNF that respects v-tree Tm.

Proof. Let us first show that DP is an SDNNF that respects v-tree Tm. We will proceed by
induction on i = 1, . . . , m. If zi is a leaf of G+, then by step (A1), Di,a consists of a single
leaf node for every a ∈ dom(zi). It follows that Di,a respects Ti which also consists of a
single leaf node.
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∨
DP

∧D4,1 ∧ D4,2

∨ E3
4,2

∧D
(2)
3,0 ∧ D

(2)
3,1

∨ E1
3,1 ∨ E2

3,1

(x3, 1) (x3, 2)

(x1, 0) (x1, 1)(x2, 0) (x2, 1)

(a) Simplified SDNNF.

t3

x3

t1

x2x1

(b) Simplified v-tree T .

Figure 3 Simplified SDNNF for the BCT constraint c∗ from Example 3 representing constraint
max(x1, x2) < x3. The SDNNF originated from the SDNNF in Figure 2a by forgetting z3, identifying
x1 = z1, x2 = z2, x3 = z4, and removing gates with a single input.

Let us now assume that zi is not a leaf, in particular i > 1. Let us assume that zi has k

outgoing edges to nodes zi1 to zik
. Assume a value a ∈ dom(zi). By induction hypothesis, for

every p = 1, . . . , k and every b ∈ dom(zip
) we have that Dip,b is a SDNNF respecting v-tree

Tip . It follows that E
ip

i,a constructed in step (A2a) is a SDNNF respecting Tip . We have
that var(Eip

i,a) = zip
. Since the subtrees rooted at nodes zi1 , . . . , zik

are pairwise disjoint, the
same is true for sets zi1 , . . . , zip

. Moreover, variable zi is not in any of these sets. Therefore,
Di,a constructed in step (A2b) is a DNNF. The construction of the tree Ti proceeds in a
way similar to the construction of Di,a, and thus Di,a respects Ti. In particular, the node of
Ti introduced in (5) is the d-node of the conjunction (2) for the same value of p, and the
node introduced in (6) is the d-node of the conjunction (3).

DP is constructed in step (7) as a disjunction of Dm,a, a ∈ dom(zm). As each of these
SDNNFs respects Tm, the same is true for DP .

Let us now show the smoothness. Assume that Di,a is nontrivial, i.e. it is not just a
single leaf labeled with 0. We show by induction that then Di,a is a SDNNF that depends
on all variables in zi. This is true for the leaves. If zi is not a leaf, Di,a is constructed
in step (A2b). By induction hypothesis used on each Dip,b we get that E

ip

i,a is a smooth
disjunction that depends on all variables in zip

. Thus also Di,a depends on all variables in
zi = {zi} ∪

⋃k
p=1 zip . It follows that also the disjunction introduced in the final step (7) is

smooth. ◀

Now, let us estimate the size of DP .

▶ Lemma 12. SDNNF DP has O(md) nodes and O(md + s) edges where s =
∑

c∈C |rel(c)|.
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Proof. For every i = 1, . . . , m, we add one disjunction for each value a ∈ dom(zi) in
step (A2a) and k conjunctions in step (A2b) assuming zi is not a leaf. One more disjunction
gate is added in the final step (7). Altogether, we thus add O(md) gates to DP . Each
conjunction gate has at most two inputs, thus O(md) edges are leaving the conjunction
gates. For every constraint cp with scope {zi, zip

}, every tuple ((zi, a), (zip
, b)) adds one edge

leaving disjunction gate E
ip

i,a. The total number of edges leaving the disjunction gates added
in step (A2a) is thus at most s. The disjunction gate added in the final step has at most
|dom(zi)| ≤ d inputs. Altogether, we have O(md + s) edges in DP . ◀

It remains to show that DP represents P .

▶ Lemma 13. SDNNF DP represents P .

Proof. We shall first show by induction on i that Di,a represents Pi,a for every i = 1, . . . , m

and a ∈ dom(zi). This is true for leaves (and thus also for i = 1), because Pi,a does not have
any constraints, it depends only on zi, and the domain of zi is restricted to the value a. A
single node labeled with literal (zi, a) added in step (A1) is thus a correct representation of
Pi,a in this case.

Let us now consider a variable zi with outgoing edges (zi, zi1), . . . , (zi, zik
) associated

with constraints c1, . . . , ck ∈ C where k ≥ 1. Ci is thus a disjoint union of Cip
, p = 1, . . . , k

with {c1, . . . , ck}. Let us also consider a value a ∈ dom(zi). Let us assume by induction
hypothesis that each Dip,b represents Pip,b for every b ∈ dom(zip). Recall that the scope of
Pi,a is the set zi of variables in the subtree of G+ rooted at zi. Let τ be a tuple of variables
zi and let us fix some a ∈ dom(zi).

Let us first assume that τ ∈ sol(Pi,a). It follows that (zi, a) ∈ τ . We will show that τ

satisfies Di,a. Let us consider literals (zi1 , b1), . . . , (zik
, bk) ∈ τ . For every p = 1, . . . , k we

have that τ satisfies Pip
. It satisfies Pip,bp

as well since (zip
, bp) ∈ τ . By induction hypothesis,

circuit Dip,bp
represents Pip,bp

and thus it evaluates to true on τ . By definition of Pi,a,
τ satisfies Pi and thus also constraint cp. It follows that {(zip , bp), (zi, a)} ∈ rel(cp) and
thus, by step (A2a), also E

ip

i,a evaluates to true. Since this holds for every p = 1, . . . , k and
(zi, a) ∈ τ , we have by step (A2b) that Di,a evaluates to true on τ .

Let us now assume that Di,a evaluates to true on τ and let us show that τ ∈ sol(Pi,a).
We have (zi, a) ∈ τ by (3), it remains to show that τ ∈ sol(Pi). Let p ∈ {1, . . . , k} be
arbitrary. We have by (1) to (3) that E

ip

i,a evaluates to true. By (A2a), we have that Dip,bp

evaluates to true on τ for some {(zi, a), (zip
, bp)} ∈ rel(cp). Induction hypothesis implies

τ [zip
] ∈ sol(Pip,bp

) and thus also (zip
, bp) ∈ τ . Together with (zi, a) ∈ τ we obtain that cp is

satisfied by τ . In addition, all constraints in Pip
are satisfied by τ . Since this holds for every

p = 1, . . . , k, we get that all constraints of Pi are satisfied and thus τ ∈ sol(Pi).
Let us now show that DP represents P . If τ is a tuple satisfying P and (zm, a) ∈ τ , then

τ satisfies Pm,a. It follows that Dm,a evaluates to true and that DP evaluates to true as
well. If, on the other hand, DP evaluates to true on τ , then Dm,a evaluates to true for some
a ∈ dom(zm). Thus τ is a solution of both Pm,a and P = Pm. ◀

Theorem 9 now follows from the above propositions.

Proof of Theorem 9. The SDNNF D representing c∗ originates from DP by forgetting
variables y = z \ x. This step can be performed in polynomial time by [20] by replacing the
literals on variables from y with constants 1 and then propagating these constants. Note
that in DP , this is equivalent to removing the corresponding leaves which were added in (3).
In particular, this step preserves smoothness which is ensured for DP by Lemma 11. The
size bound on D follows from Lemma 12 using the fact that |C| ≤ m and |rel(c)| ≤ d2 for
every c ∈ C. ◀
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4 Compiling an SDNNF to a BCT Constraint

In this section, we shall show the following theorem.

▶ Theorem 14. Let c∗ be a constraint represented by a smooth SDNNF. Then there is a
tree binary encoding of c∗ of polynomial size.

It is useful to look at a DNNF in terms of certificates [4], also called minimal satisfying
subtrees in [16]. A certificate for a satisfying assignment is simply a minimal satisfied sub-
DNNF that contains the output gate. Due to decomposability, the certificates of a DNNF
are trees whose leaves are some of the leaves of the DNNF. In addition, no two leaves of a
certificate are labeled with a literal of the same variable. Assume D is a smooth DNNF on
variables x = (x1, . . . , xn) and S its certificate. We shall also assume that D has no leaves
labeled with constants 0 or 1 (as these can always be propagated). Then for each i = 1, . . . , n,
we have that S contains exactly one leaf associated with a literal of variable xi (see also [16]
for more details). The leaves of S thus determine a tuple τ on which D evaluates to true. We
say in this case that the leaves of S are associated with the literals in tuple τ . The certificates
are thus in one-to-one correspondence with the satisfying assignments of D.

Let us now fix a constraint c∗ with scp(c∗) = x. Let us assume that c∗ is represented by
a smooth SDNNF D that respects a v-tree T and let ρ denote the root of D. In particular,
var(T ) = var(ρ) = x. Then the certificates of D also respect T . In fact, we will show that
if S is a certificate of D, then the conjunction gates of S are in one-to-one correspondence
with the inner nodes of T . This property lies at the basis of our construction of a tree binary
encoding P = (z, C) of c∗. The idea is to introduce a hidden variable for each inner node t

of T with the domain being the ∧-gates whose d-node is t. The constraints make sure that
the models of P are in one-to-one correspondence with the certificates of D.

We will construct a BCT P = (z, C) satisfying x ⊆ z and rel(c∗) = sol(P )[x]. For each
inner node t of T , we introduce a hidden variable yt. The set of all these hidden variables
will be denoted as y. We then define z = x ∪ y. The domain of an original variable xi ∈ x is
dom(xi) as given by the constraint c∗. For a hidden variable yt ∈ y, we set dom(yt) = Λ(t)
where Λ(t) denotes the set of conjunction gates of D that have d-node t.

The constraints of C correspond to the edges of T . In particular, for each edge (t, t′) of
T where t′ is a child node of t, we add a constraint ct,t′ to C whose definition differs slightly
depending on whether t′ is a leaf or an inner node of T . A sequence of vertices v0, . . . , vk of
D is called an ∨-path if it is a path, nodes v1, . . . , vk−1 are ∨-gates, v0 is a conjunction gate
and vk is either a conjunction gate, or a leaf node.

(C1) Assume t′ is a leaf labeled with variable xi. Then scp(ct,t′) = {yt, xi} and rel(ct,t′) is
defined as a set of tuples {(yt, v), (xi, a)} such that D contains a ∨-path from v to the
leaf labeled with literal (xi, a).

(C2) Assume t′ is an inner node of T . Then scp(ct,t′) = {yt, yt′} and rel(ct,t′) is defined as
a set of tuples {(yt, v), (yt′ , v′)} such that D contains a ∨-path from v to v′.

▶ Example 15. Figure 4 shows the result of the application of the construction to the SDNNF
from Figure 2. Recall that the SDNNF itself was constructed as a representation of the BCT
P from Example 3. BCT in Figure 4 differs from P in that it has three hidden variables y1,
y2, and y3. Note that y1 and y2 are basically equivalent to z3 and y3 is equivalent to z4. The
auxiliary variables can thus be easily eliminated by which we obtain the constraints of P .
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Figure 4 Example of the construction of the tree binary encoding of a constraint represented by
the SDNNF D in Figure 2.

The size of P defined in this way is clearly polynomial in the size of D. The rest of this
section is devoted to showing the correctness of the construction. We will start with a few
technical propositions on the structure of the certificates of D.

▶ Lemma 16. Assume v is a node of D with d-node t in T . Then var(v) = var(t). Moreover,
1. if v = v1 ∧ v2, then tl is the d-node of v1 and tr is the d-node of v2, and
2. if v = v1 ∨ · · · ∨ vk, then t is the d-node of all input nodes v1, . . . , vk.

Proof. We will proceed by the induction on the structure of D. If v = ρ is the root of D,
then var(v) = x. It follows that its d-node t is the root of T and thus var(t) = x = var(v).

Let us assume that v = v1 ∧ v2 and that var(v) = var(t). Since D does not contain
leaves labeled with constants, we have that both var(v1) and var(v2) are nonempty and thus
var(vi) ⊊ var(v) for i = 1, 2 and var(v) = var(v1)∪var(v2). Let ti be the d-node of vi, i = 1, 2.
By the definition of structured DNNFs, both t1 and t2 are descendants of t in T and thus
var(ti) ⊆ var(t), i = 1, 2. By the definition of d-nodes, we also have that var(vi) ⊆ var(ti),
i = 1, 2. It follows that var(t) = var(v) = var(v1) ∪ var(v2) ⊆ var(t1) ∪ var(t2) ⊆ var(t)
and thus var(t) = var(t1) ∪ var(t2). The only possibility is that both t1 and t2 are the child
nodes of t and thus t1 = tl, t2 = tr, and var(vi) = var(ti), i = 1, 2.

Assume that v = v1 ∨ · · · ∨ vk and var(v) = var(t). By smoothness we get that
var(t) = var(v) = var(v1) = · · · = var(vk). It follows that t is the d-node of all input nodes
v1, . . . , vk.

We have shown that if var(v) = var(t) and v′ is a child node of v with d-node t′, then
var(v′) = var(t′) which also holds for the leaves. ◀

▶ Lemma 17. Assume that v0, . . . , vk is a ∨-path with k > 0. Assume that t is the d-node
of v0 and t′ is the d-node of vk. Then v1, . . . , vk−1 have d-node t′ and t′ is a child node of t.

Proof. By smoothness, var(v1) = var(v2) = · · · = var(vk) and thus all gates v1, . . . , vk−1
have the same d-node as vk. In particular, t′ is the d-node of v1 which is an input to the
conjunction gate v0. By Lemma 16 we have that t′ is a child node of t. ◀

Based on Lemma 17, we can show the following proposition.

▶ Lemma 18. Assume S is a certificate and t is an inner node of T . Then S contains
exactly one conjunction gate v from Λ(t).
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Proof. Consider a variable xi ∈ var(t) and the path v0, . . . , vk in S that leads from the root
v0 = ρ to the leaf vk of S labeled with a literal on xi. It follows that var(vj) ⊆ var(vj−1)
for every j = 1, . . . , k. Moreover var(v0) = x and var(vk) = {xi}. Let vi1 , . . . , vip

be the
subsequence of v0, . . . , vk formed only by conjunction nodes. Then by Lemma 17 we get that
ti1 , . . . , tip

, tk form a path in T from the root to the leaf labeled with xi. For some index ij

we thus have that tij = t and it follows that vij is a conjunction gate in S with d-node t.
Let us now assume that S contains two ∧-gates v1 and v2 with the same d-node t, thus

var(v1) = var(v2) = var(t) by Lemma 16. However, Lemma 16 also implies that there is no
path from v1 to v2 or from v2 to v1. If we take the paths from the root ρ to v1 and v2 in S,
they have to split in a ∧-gate v (by minimality of S), but then v is not decomposable.

It follows that vij
is the only conjunction gate in S that belongs to Λ(t). ◀

Note that each literal on a variable from z = x ∪ y is associated with a node of D. In
particular, for xi ∈ x, literal (xi, a) is associated with the leaf of D labeled with (xi, a). To
this end, we need to assume that every such literal has a leaf labeled with it. However, if
D does not contain any leaf associated with literal (xi, a), then this literal does not have a
support in c∗ and a can be removed from dom(xi). We may thus assume that no such value
is in dom(xi). For an inner node t of T , a literal (yt, v) is associated with the node v ∈ Λ(t).

▶ Lemma 19. Let τ ∈ sol(P ) be a tuple that is a solution to P . Then τ [x] ∈ rel(c∗).

Proof. Since D represents c∗, it is enough to show that there is a certificate S of D whose
leaves are associated with the literals in τ [x].

Tuple τ associates a node v of D with every node t of T . We proceed by induction on
the structure of T to describe a certificate St for the sub-DNNF of D rooted at v.

Assume first that t is a leaf of T labeled with variable xi. Consider the literal (xi, a) ∈ τ

and set the certificate St to a single node labeled with this literal.
Assume now that t is an inner node of T . Since t is an inner node of T , we have that

(yt, v) ∈ τ for some v ∈ Λ(t). Tuple τ also contains literals associated with tl and tr. These
literals associate a nodes vl and vr of D with tl and tr respectively. By induction hypothesis,
we have constructed certificate Sl and Sr for the sub-DNNFs rooted at vl and vr respectively.
Since τ satisfies constraints ct,tl and ct,tr , D contains a ∨-paths from v to vl and from v to
vr. Certificate St for the the sub-DNNF rooted at v is then constructed as a union of Sl, Sr,
node v and the ∨-paths from v to vl and vr.

Let σ be the root of T and let us assume that v is the node of D associated with σ by
τ . Let Sσ be the certificate of the sub-DNNF rooted at v. If v = ρ is the root of D, then
S = Sσ is a certificate of D. Otherwise, D contains a path from ρ to v that consists only of
∨-gates and we construct S by combining this path with Sσ. ◀

▶ Lemma 20. For every τ∗ ∈ rel(c∗), there is τ ∈ sol(P ) satisfying τ∗ = τ [x].

Proof. Since τ∗ ∈ rel(c∗), there is a certificate S of D whose leaves are associated with
the literals from τ∗. By Lemma 18, the certificate S contains exactly one conjunction gate
vt ∈ Λ(t) for each inner node t. We form τ by adding literals (yt, vt) to τ∗ for all internal
nodes t of T . Let us check that τ satisfies all constraints of P . Let ct,t′ be a constraint of
P where t′ is a child node of t in T . By Lemma 16, one of the child nodes of vt in D has
d-node t′, let us denote it v1. Since vt is a conjunction gate, v1 must belong to S. If v1 is a
disjunction, then by Lemma 16, its child nodes have d-node t′, too. If we follow the path in
S from v1 to a leaf or to the next conjunction gate, we get a ∨-path that ends in the node
vk whose d-node is still t′ and vk is either a leaf or a conjunction gate.
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If t′ is a leaf of T labeled with variable xi, we must have that vk is a leaf of S labeled with
a literal (xi, a) for some a ∈ dom(xi), it follows that (xi, a) ∈ τ∗ ⊆ τ and {(yt, vt), (xi, a)} ∈
rel(ct,t′), constraint ct,t′ is thus satisfied by τ .

If t′ is an inner node, then vk is a conjunction gate vt′ associated with t′ in S. It follows
that (yt′ , vt′) ∈ τ and {(yt, vt), (yt′ , vt′)} ∈ rel(ct,t′), constraint ct,t′ is thus satisfied by τ . ◀

Theorem 14 now follows by the above construction from the following proposition.

▶ Theorem 21. P = (z, C) is a tree binary encoding of c∗ of polynomial size.

Proof. C consists of O(n) constraints and the total size of the domains of variables in z is
bounded by the number of the nodes in D. Lemmas 19 and 20 imply that P is a TBE of
c∗. ◀

5 Binary Constraint Graphs With Bounded Treewidth

In this section, we shall extend the construction from Section 3 to BCG constraints that
naturally generalize BCT constraints.

▶ Definition 22. A BCG constraint c is a pair (x, P ) such that P = (z, C) is a normalized
binary CSP, scp(c) = x ⊆ z and rel(c) = sol(z, C)[x].

The construction we describe is parameterized by the treewidth of the underlying con-
straint graph and the domain size. The treewidth of a graph is defined using a tree
decomposition.

Given an undirected graph G = (V, E), its tree decomposition is defined as a pair (T, χ)
where T = (VT , ET ) is a tree and χ : VT → P(V ) is a function that assigns each vertex
t ∈ VT a subset of V called a bag that satisfies the following conditions:
(d1) V =

⋃
t∈VT

χ(t).
(d2) For each edge {u, v} ∈ E there is a node t ∈ VT such that {u, v} ⊆ χ(t).
(d3) If a node v is contained in two bags χ(t1) and χ(t2), then v ∈ χ(t) for every node t on

the path connecting t1 with t2.
The width of the tree decomposition is defined as maxt∈VT

|χ(t)| − 1. The treewidth tw(G)
of G is the minimum width among all possible tree decompositions of G. It should be noted
that any tree decomposition of a graph G on n vertices can be transformed into a tree
decomposition with the same width and O(n) nodes [15].

We are now ready to formulate the main result of this section.

▶ Theorem 23. Assume that c∗ = (x, P ) is a BCG constraint defined by a normalized
binary CSP P = (z, C). Denote G the constraint graph of P . Denote m = |z| and
d = maxzi∈z |dom(zi)|. Then there is an SDNNF D representing c∗ with O(mdtw(G)+1)
nodes and O(md2 tw(G)+1) edges.

The proof of Theorem 23 is based on the following proposition.

▶ Theorem 24. Assume that c∗ = (x, P ) is a BCG constraint defined by a normalized
binary CSP P = (z, C). Denote G the constraint graph of P . Denote m = |z| and
d = maxzi∈z |dom(zi)|. Then c∗ has a tree binary encoding P ′ = (z′, C ′) with |z′| = O(m)
and |dom(z′

i)| ≤ dtw(G)+1 for every z′
i ∈ z′.

Note that Theorem 24 actually follows from Proposition 4 in [28] which is based on the
encoding described in [11]. If we would simply combine the bound given by Theorem 24
with the bound given by Theorem 9, we would get an SDNNF D representing c∗ with
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Figure 5 Example of the construction, see the description in Example 25.

O(mdtw(G)+1) nodes and O(md2(tw(G)+1)) edges. We provide a specific construction that
proves Theorem 24 and that can be combined with Lemma 12 to prove a slightly better
bound stated in Theorem 23. The construction we describe below is similar to the dual
encoding described in [11].

Let us fix a BCG constraint c∗ = (x, P ) where P = (z, C) is a normalized binary CSP
with constraint graph G. Let us assume that z = (z1, . . . , zm) and d = maxm

i=1 | dom(zi)|.
Let us also fix a tree decomposition (T, χ) of G. Let us assume that VT = (t1, . . . , tN ) for
some N = O(m). We shall describe a BCT P ′ = (z′, C ′) which is a TBE of c∗. First, let us
define the variables in z′. We associate a new variable vi with every ti, i = 1, . . . , N . Then
we set z′ = z ∪ v where v = (v1, . . . , vN ). The domains of variables in z are given by c∗. For
every vi, i = 1, . . . , N , we set the domain as follows. Let us consider the set of constraints
defined on variables from χ(ti) as Ci = {c ∈ C | scp(c) ⊆ χ(ti)}. Then the domain of vi is
defined as the set of solutions to CSP (χ(ti), Ci), i.e. dom(vi) = sol(χ(ti), Ci).

Let us now define the constraints in C ′.

(T1) For every edge {ti, tj} ∈ ET we add a constraint c′
i,j into C ′ with scp(c′

i,j) = {vi, vj}.
The constraint relation rel(c′

i,j) consists of pairs {(vi, τ1), (vj , τ2)} where τ1 ∈ dom(vi),
τ2 ∈ dom(vj), and τ1[χ(ti) ∩ χ(tj)] = τ2[χ(ti) ∩ χ(tj)].

(T2) For every zi, i = 1, . . . , m, we pick a representative node tri ∈ VT satisfying zi ∈ χ(tri).
We then add a constraint c′

i into C ′ with scp(c′
i) = {zi, tri

}. The set of tuples rel(c′
i)

consists of pairs {(zi, a), (vri , τ)} where a ∈ dom(zi), τ ∈ dom(vri), and (zi, a) ∈ τ .

▶ Example 25. Let us consider a binary CSP P = (z, C) with z = {z1, . . . , z5} whose
constraint graph G is depicted in Figure 5a. We shall use ci,j ∈ C to denote the constraint
with scope {zi, zj}. Figure 5b shows a tree decomposition T of the graph with the contents
of the bags inside the rectangles. The structure of the tree binary encoding P ′ of P is then
shown in Figure 5c. The domain of variable v1 consists of tuples τ on variables z1, z2, and
z3 satisfying constraints c1,2, c2,3, and c1,3. Assume a tuple σ′ ∈ sol(P ′). Constraint c′

2
makes sure that if (z2, a) ∈ σ′, then σ′ contains (v2, τ) satisfying (z2, a) ∈ τ . Similarly for
other variables. Constraints c′

1,2 and c′
2,3 extend this property also to nodes v2 and v3. The

tuples assigned to variables v1, v2, and v3 are thus consistent with each other and also with
constraints C. We thus have that σ′[z] ∈ sol(P ).
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The proof of the correctness of the above construction and thus also the proof of Theo-
rem 24 is moved to the appendix. Here, we will describe its application for proving the main
result of this section.

Proof of Theorem 23. Using Theorem 24, we obtain a TBE encoding P ′ = (z′, C ′) with
O(m) variables and the domain sizes bounded by dtw(G)+1. We can then apply Theorem 9
to obtain an SDNNF D that represents c∗. D has O(mdtw(G)+1) nodes. By Lemma 12, the
number of edges of D is bounded by O(mdtw(G)+1 + s) where s =

∑
c′∈C′ |rel(c′)|. Since

|C ′| = O(m), it is enough to show that |rel(c′)| ≤ d2 tw(G)+1 for every c′ ∈ C ′.
Assume first a constraint c′

i,j added in step (T1). We may assume that G is connected
(otherwise we process each connected component of G separately) and therefore χ(ti)∩χ(tj) ̸=
∅. The number of pairs of tuples τ1 and τ2 that satisfy τ1[χ(ti) ∩ χ(tj)] = τ2[χ(ti) ∩ χ(tj)] is
thus at most dtw(G)+1 · dtw(G) = d2 tw(G)+1. Therefore

∣∣rel(c′
i,j)

∣∣ ≤ d2 tw(G)+1.
Assume now a constraint c′

i added in step (T2). The number of tuples τ satisfying that
(zi, a) ∈ τ for one particular a ∈ dom(zi) is at most dtw(G) and thus

∣∣rel(c′
i,j)

∣∣ ≤ dtw(G)+1 ≤
d2 tw(G)+1. ◀

Note that the size estimate in Theorem 23 is only an upper bound and the real size of P ′

and the SDNNF D depends on the particular tree decomposition and, in particular, on how
much the bags intersect. Therefore, there is a space for optimization in a practical setting.

6 Conclusion

As the main result of our paper, we have shown that binary constraint trees are polynomially
equivalent to structured DNNF circuits. We would like to note that for a given BCT P

the construction in Section 3 leads to a deterministic SDNNF DP (thanks to rule 3 in
step (A2b)). This means that for every pair of distinct children v1 and v2 of a disjunction
node, the sub-NNFs rooted at v1 and v2 do not share any models (see [9, 20]). This property
allows for instance model counting on DP . However, forgetting the hidden variables from DP

does not preserve determinism in general [10] and thus the actual result of the construction
is not a deterministic SDNNF. Introducing hidden variables is thus an important part
of the construction described in Section 4 since SDNNFs are strictly more succinct than
deterministic SDNNFs [20].

Several rules for reducing the number of hidden variables in a BCT constraint were
described in [27], it would be interesting to investigate the effect of these rules on a SDNNF
that is compiled into a BCT constraint, reduction rules are applied to it and then it is
compiled back to a SDNNF. When compiling the BCT constraint back to a SDNNF, we
can pick an arbitrary node of the constraint tree as a root which allows us to change the
structure of the SDNNF to a different orientation of the v-tree. This, for instance, extends
the applicability of the conjoin operation described in [20] to conjoining two SDNNFs whose
v-trees differ, but their undirected versions are the same.
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A Proof of Theorem 24

In this section, we shall prove the correctness of the construction described in Section 5.
We shall also prove Theorem 24 that states the properties of the construction. We use the
same notation that was used in Section 5. In particular, we assume a fixed BCG constraint
c∗ = (x, P ) where P = (z, C) is a normalized binary CSP with constraint graph G. We
assume that that BCT P ′ = (z′, C ′) is the result of the construction from Section 5. We
shall show that P ′ is a TBE of c∗. The construction of C ′ implies the following property.

▶ Lemma 26. Let p ∈ {1, . . . , m} be arbitrary and let ti ∈ VT be such that zp ∈ χ(t). Assume
that σ′ ∈ sol(P ′) and assume that (zp, a), (vi, τ) ∈ σ′. Then (zp, a) ∈ τ .

Proof. Let trp be the representative node picked for zp in step (T2) and consider the path
trp

= tj1 , tj2 , . . . , tjk
= ti in T connecting trp

with ti. For every q = 1, . . . , k we have that
zp ∈ χ(trp

)∩χ(ti) and thus zp ∈ χ(tjq
) by condition (d3). Denote τq ∈ dom(vjq

) the tuple for
which (vjq

, τq) ∈ σ′. We shall show by induction on q that (zp, a) ∈ τq for every q = 1, . . . , k.
Since τk = τ , we then have that (zp, a) ∈ τ .
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Since t1 = trp , we have that (zp, a) ∈ τ1 by constraint c′
p added to C ′ in step (T2).

Assume now that q > 1 and consider constraint c′
jq−1,jq

added in step (T1). The induction
hypothesis implies that (zp, a) ∈ τq−1, and by definition of rel(c′

jq−1,jq
) we also have that

(zp, a) ∈ τq. ◀

We are now ready to prove the correctness of the construction.

▶ Lemma 27. (x, P ′) is a tree binary encoding of BCG constraint c∗ = (x, P ).

Proof. The constraint graph of P ′ is a tree that originates from T by adding leaves corre-
sponding to the constraints c′

i added in step (T2). We shall show that sol(P ′)[z] = sol(P ).
Then rel(c∗) = sol(z, C)[x] = sol(z′, C ′)[x] and the proposition follows.

Assume first that we have a solution σ′ ∈ sol(P ′). Denote σ = σ′[z] and let us show
that σ satisfies all constraints of P . Let c ∈ C be a constraint with scp(c) = {zp, zq}. We
have (zp, a) ∈ σ and (zq, b) ∈ σ for some a ∈ dom(zp) and b ∈ dom(zq). By condition (d2)
we have that scp(c) ⊆ χ(ti) for some ti ∈ VT . Consider literal (vi, τ) ∈ σ′. By Lemma 26,
we have that (zp, a) ∈ τ and (zq, b) ∈ τ . Since τ ∈ dom(vi), we have that {(zp, a), (zq, b)} =
τ [scp(c)] ∈ rel(c). Since this holds for every constraint c ∈ C, we get that σ ∈ sol(P ).

Assume now that we have a solution σ ∈ sol(P ). Let us now define a tuple σ′ =
σ ∪ {(vi, σ[χ(ti)]) | i = 1, . . . , N}. Since σ ∈ sol(P ), we have that σ[χ(ti)] ∈ rel(Ci) and thus
σ[χ(ti)] ∈ dom(vi). Tuple σ′ is thus correctly defined. It also satisfies all constraints (T1)
and (T2) and thus σ′ ∈ sol(P ′). ◀

Proof of Theorem 24. Assume that P ′ = (z′, C ′) is constructed as above. Then (x, P ′) is a
tree binary encoding of c∗ = (x, P ) by Lemma 27. We may assume by [15] that |VT | = O(m)
and thus |z′| = m + |VT | = O(m). For every variable zi ∈ z we have |dom(zi)| ≤ d by
assumption. For every variable vi ∈ z′ \ z we have that |χ(ti)| ≤ tw(G) + 1 and thus
|dom(vi)| ≤ dtw(G)+1 by the definition of dom(vi). ◀
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